Answers

1.1 True or False

1. (a) Sometimes true
(b) False (the maximum number of days in a year - on Earth - is 366)
(c) Always true
(d) False (they both have 30 days)
(e) Always true
(f) True, for Games in recent years
(g) Sometimes true (century years are not leap years unless they can be divided by 400 , e.g. 1900 was not a leap year but 2000 was a leap year)
2. (a) False (angles on a line add up to 180°)
(b) True
(c) True
(d) True - a square is a special type of rectangle. However, the converse is false, not every rectangle is a square.
(e) False (the circumference of a circle is only approximately 3 times the diameter)
(f) True
3. (a) True
(b) False (for example, $5-3=2$ but $3-5=-2$)
(c) True
(d) False (for example, $\frac{8}{2}=4$ but $\frac{2}{8}=0.25$)
(e) False (for example, $(3+4)^{2}=49$ but $3^{2}+4^{2}=25$)
(f) False (for example $(7-4)^{2}=9$ but $7^{2}-4^{2}=33$)
(g) True
(h) True (provided both sides are defined, i.e. provided $y \neq 0$)

1.2 Proof

1. If N is the first number the the other must be $N+1$ because they are consecutive.

Adding the two numbers gives $N+(N+1)=2 N+1$.
Being a multiple of $2,2 N$ must be even. Adding on 1 will give an odd total. This proves that the sum of the two consecutive numbers must be odd.
2. If N is the first number then the other must be $N+2$ because they are consecutive odd numbers.

Adding the two numbers gives $N+(N+2)=2 N+2=2(N+1)$.
Being a multiple of $2,2(N+1)$ must be even.
This proves that the sum of two consecutive odd numbers must be even.
3. Being even, the first of the two consecutive numbers must be a multiple of 2 . We can therefore write it as $2 N$, where N is a whole number. Being consecutive, the other even number must be $2 N+2$.

Multiplying the two numbers gives a product equal to

$$
2 N \times(2 N+2)=2 N \times 2(N+1)=2 \times 2 \times N \times(N+1)=4 N(N+1)
$$

which is 4 times $N(N+1)$.
This proves that the product of two consecutive even numbers must be a multiple of 4 .
4. (a) If the first of the two consecutive odd numbers is x then $x-1$ will be even. This means that $x-1=2 p$ where p is a whole number, so $x=2 p+1$.
Since they are consecutive odd numbers, the other number must be

$$
x+2=(2 p+1)+2=2 p+3
$$

Adding the two consecutive odd numbers gives a total of

$$
(2 p+1)+(2 p+3)=4 p+4=4(p+1)
$$

which is 4 times $(p+1)$.
This proves that the sum of two consecutive odd numbers must be a multiple of 4 .
(b) If the consecutive odd numbers are $(2 p+1)$ and $(2 p+3)$, as in part (a), then their product is

$$
\begin{aligned}
(2 p+1)(2 p+3) & =4 p^{2}+2 p+6 p+3 \\
& =4 p^{2}+8 p+3
\end{aligned}
$$

\times	$2 p$	+1
$2 p$	$4 p^{2}$	$+2 p$
+3	$+6 p$	+3

Adding on 1 gives $\left(4 p^{2}+8 p+3\right)+1=4 p^{2}+8 p+4=4\left(p^{2}+2 p+1\right)$ which is 4 times $\left(p^{2}+2 p+1\right)$.
This proves that if you multiply two consecutive odd numbers, and then add 1 , the result must be a multiple of 4 .
5. (a) The total is always 3 times the middle number.
(b) If N is the first number then the other two numbers must be $N+1$ and $N+2$.

Adding gives a total of

$$
N+(N+1)+(N+2)=3 N+3=3(N+1)
$$

which is 3 times the middle number.
This proves that the sum of 3 consecutive numbers is always equal to 3 times the middle number.
6. (a) The total is always 5 times the middle number.
(b) If N is the first number then the other four numbers must be $N+1, N+2$,
$N+3$ and $N+4$.
Adding gives a total of

$$
N+(N+1)+(N+2)+(N+3)+(N+4)=5 N+10=5(N+2)
$$

which is 5 times the middle number.
This proves that the sum of 5 consecutive numbers is always equal to 5 times the middle number.
7. (a) The total is always even.
(b) If N is the first number then the other three numbers must be $N+1, N+2$ and
$N+3$.
Adding gives a total of

$$
N+(N+1)+(N+2)+(N+3)=4 N+6=2(2 N+3)
$$

which is 2 times $(2 N+3)$, so must be even.

This proves that the sum of 4 consecutive numbers is always even.
N.B. Unlike questions 5 and 6, the total is not a multiple of 4. It is, however, always equal to 4 times the mean of the two middle numbers.
8. If the numbers are $N, N+1$ and $N+2$ then

$$
\begin{aligned}
\text { the sum of the squares } & =N^{2}+(N+1)^{2}+(N+2)^{2} \\
& =N^{2}+\left(N^{2}+2 N+1\right)+\left(N^{2}+4 N+4\right) \\
& =3 N^{2}+6 N+5
\end{aligned}
$$

so subtracting 2 from the sum of the squares gives

$$
\begin{aligned}
& \left(3 N^{2}+6 N+5\right)-2 \\
& =3 N^{2}+6 N+3 \\
& =3\left(N^{2}+2 N+1\right)
\end{aligned}
$$

which is 3 times $\left(N^{2}+2 N+1\right)$.
This proves that 2 less than the sum of the squares of 3 consecutive numbers is always a multiple of 3 .
N.B. The proof above for question 8 shows that, in fact, 2 less than the sum of the squares of 3 consecutive numbers is always equal to 3 times the square of the middle number.
9. (a)

Size of Pond (metres)	Number of Paving Slabs
1×1	8
2×2	12
3×3	16
4×4	20
5×5	24
6×6	28
7×7	32
8×8	36
9×9	40
10×10	44

(b) The formula linking the number of tiles, N, to the side length, L, of the pond is

$$
N=4 L+4
$$

(c) In the following figure, if the diagram on the left represents a pond with sides of length L then the slabs surrounding it consist of 2 'horizontal' strips of L slabs, 2 'vertical' strips of L slabs, and 4 corner slabs, Hence the total number of slabs is

$$
N=L+L+L+L+4=4 L+4
$$

10. If N is the original number then

The instruction	produces
double your number	$2 N$
add 5	$2 N+5$
multiply the number you now have by itself	$(2 N+5)^{2}=4 N^{2}+20 N+25$
subtract 25	$4 N^{2}+20 N$
divide by 4	$N^{2}+5 N=N(N+5)$
divide by your original number	$N(N+5) \div N=N+5$

This proves that Roger's trick always works.

1.3 Algebraic Identities

1. (a) $7(x-8)-3(x-20)=4(x+1)$

If $x=1$,

$$
\begin{aligned}
\text { LHS of }(\mathrm{A}) & =7(1-8)-3(1-20)=[7 \times(-7)]-[3 \times(-19)] \\
& =-49+57=8 \\
\text { RHS of }(\mathrm{A}) & =4(1+1)=4 \times 2=8
\end{aligned}
$$

\therefore statement (A) is true for $x=1$.
If $x=3$,

$$
\begin{aligned}
\text { LHS of }(\mathrm{A}) & =7(3-8)-3(3-20)=[7 \times(-5)]-[3 \times(-17)] \\
& =-35+51=16 \\
\text { RHS of }(\mathrm{A}) & =4(3+1)=4 \times 4=16
\end{aligned}
$$

\therefore statement (A) is true for $x=3$.
If $x=5$,

$$
\begin{aligned}
\text { LHS of (A) } & 7(5-8)-3(5-20)=[7 \times(-3)]-[3 \times(-15)] \\
& =-21+45=24 \\
\text { RHS of }(\mathrm{A}) & =4(5+1)=4 \times 6=24
\end{aligned}
$$

\therefore statement (A) is true for $x=5$.
$\therefore x=1, x=3$ and $x=5$ all satisfy equation (A).
(b) Proof of the statement $7(x-8)-3(x-20) \equiv 4(x+1)$

Proof

$$
\begin{array}{rlrl}
\text { LHS of }(\mathrm{A}) & \equiv 7(x-8)-3(x-20) & \\
& \equiv 7 x-56-3 x+60 & & \text { (multiplying out the brackets) } \\
& \equiv 4 x+4 & & \text { (collecting like terms) } \\
\text { RHS of }(\mathrm{A}) & \equiv 4(x+1) & & \\
& \equiv 4 x+4 & & \text { (multiplying out the brackets) }
\end{array}
$$

Since both sides of (A) simplify to $4 x+4$, it follows that
LHS of $(A) \equiv$ RHS of (A) for any value of x.

$$
\therefore 7(x-8)-3(x-20) \equiv(4 x+1)
$$

2. (a) $x^{3}-9 x^{2}+23 x=15$

If $x=1$,
LHS of $(B)=1^{3}-9 \times 1^{2}+23 \times 1=1-9+23=15=$ RHS of (B)
\therefore statement (B) is true for $x=1$.
If $x=3$,
LHS of $(B)=3^{3}-9 \times 3^{2}+23 \times 3=27-81+69=15=$ RHS of (B)
\therefore statement (B) is true for $x=3$.
If $x=5$,
LHS of $(B)=5^{3}-9 \times 5^{2}+23 \times 5=125-225+115=15=$ RHS of (B)
\therefore statement (B) is true for $x=5$.
$\therefore x=1, x=3$ and $x=5$ all satisfy equation (B).
(b) If $x=4$,

LHS of $(B)=4^{3}-9 \times 4^{2}+23 \times 4=64-144+92=12 \neq$ RHS of (B)
\therefore statement (B) is not true for $x=4$.
Since we have found a value for which statement (B) is not true, statement (B) is not an identity.
3.
(a) $8(p-q)+3(p+q)=2(p+2 q)+9(p-q)$
If $p=10$ and $q=5$,
LHS of $(C)=8(10-5)+3(10+5)=8 \times 5+3 \times 15$

$$
=40+45=85
$$

$$
\begin{aligned}
\text { RHS of }(C) & =2(10+[2 \times 5])+9(10-5)=2 \times 20+9 \times 5 \\
& =40+45=85
\end{aligned}
$$

\therefore statement (C) is true for $p=10$ and $q=5$.
(b) If $p=6$ and $q=4$,

$$
\begin{aligned}
\text { LHS of }(\mathrm{C}) & =8(6-4)+3(6+4)=8 \times 2+3 \times 10 \\
& =16+30=46 \\
\text { RHS of }(\mathrm{C}) & =2(6+[2 \times 4])+9(6-4)=2 \times 14+9 \times 2 \\
& =28+18=46
\end{aligned}
$$

\therefore statement (C) is true for $p=6$ and $q=4$.
(c) Proof of the statement $8(p-q)+3(p+q) \equiv 2(p+2 q)+9(p-q)$

Proof
LHS of $(\mathrm{C}) \equiv 8(p-q)+3(p+q)$
$\equiv 8 p-8 q+3 p+3 q \quad$ (multiplying out the brackets)
$\equiv 11 p-5 q \quad$ (collecting like terms)
RHS of $(\mathrm{C}) \equiv 2(p+2 q)+9(p-q)$
$\equiv 2 p+4 q+9 p-9 q \quad$ (multiplying out the brackets)
$\equiv 11 p-5 q \quad$ (collecting like terms)
Since both sides of (C) simplify to $11 p-5 q$ it follows that
LHS of $(\mathrm{C}) \equiv$ RHS of (C) for any values of p and q.
$\therefore 8(p-q)+3(p+q) \equiv 2(p+2 q)+9(p-q)$
4. Proof of the statement $x(m+n)+y(n-m) \equiv m(x-y)+n(x+y)$

Proof
LHS of $(\mathrm{D}) \equiv x(m+n)+y(n-m)$ $\equiv x m+x n+y n-y m \quad$ (multiplying out the brackets)

RHS of $(\mathrm{D}) \equiv m(x-y)+n(x+y)$

$$
\begin{array}{ll}
\equiv m x-m y+n x+n y & \text { (multiplying out the brackets) } \\
\equiv x m+x n+y n-y m & \\
\equiv \text { (rearranging the order of terms) }
\end{array}
$$

Since both sides of (D) simplify to $x m+x n+y n-y m$, it follows that LHS of $(\mathrm{D}) \equiv$ RHS of (D) for any values of m, n, x and y.
$\therefore x(m+n)+y(n-m) \equiv m(x-y)+n(x+y)$
5. (a)

\times	x	+2
x	x^{2}	$+2 x$
+10	$+10 x$	+20

$(x+2)(x+10)=x^{2}+12 x+20$
(b)

\times	x	-5
x	x^{2}	$-5 x$
-4	$-4 x$	+20

$(x-5)(x-4)=x^{2}-9 x+20$
(c) Proof of the statement $(x+2)(x+10)-(x-5)(x-4) \equiv 21 x$

Proof

$$
\begin{array}{rlr}
\text { LHS of }(\mathrm{E}) & \equiv(x+2)(x+10)-(x-5)(x-4) & \\
& \equiv\left[x^{2}+12 x+20\right]-\left[x^{2}-9 x+20\right] & \\
& \equiv x^{2}+12 x+20-x^{2}+9 x-20 & \\
& \equiv 21 x & \\
& \equiv \text { (romoving parts }(a) \text { and }(b)) \\
& \text { (collecting like terms) } \\
\therefore(x+2)(x+10)-(x-5)(x-4) \equiv 21 x & &
\end{array}
$$

6. (a)

\times	x	+6
x	x^{2}	$+6 x$
+8	$+8 x$	+48

(b) By part (a), $x^{2}+14 x+48=(x+6)(x+8)$

If $x \neq-6$, then $(x+6) \neq 0$ so we may divide both sides by $(x+6)$ to get

$$
\frac{x^{2}+14 x+48}{x+6}=\frac{(x+6)(x+8)}{x+6}=x+8
$$

$\therefore \frac{x^{2}+14 x+48}{x+6}=x+8$, provided $x \neq-6$.
7. (a) Proof of the identity $a^{2}-b^{2} \equiv(a+b)(a-b)$

Proof
From the multiplication grid

$$
\begin{aligned}
& \text { RHS of (F) } \equiv(a+b)(a-b) \\
& \equiv a^{2}+a b-a b-b^{2} \\
& \equiv a^{2}-b^{2}=\operatorname{LHS} \text { of (F) } \\
& \therefore a^{2}-b^{2} \equiv(a+b)(a-b)
\end{aligned}
$$

\times	a	$+b$
a	a^{2}	$+a b$
$-b$	$-a b$	$-b^{2}$

(b) (i) $81^{2}-80^{2}=(81+80)(81-80)=161 \times 1=161$
(ii) $101^{2}-99^{2}=(101+99)(101-99)=200 \times 2=400$
(iii) $2731^{2}-269^{2}=(2731+269)(2731-269)=3000 \times 2462=7386000$
(iv) $11.7^{2}-8.3^{2}=(11.7+8.3)(11.7-8.3)=20 \times 3.4=68$
(v) $999991^{2}-9^{2}=(999991+9)(999991-9)$

$$
=1000000 \times 999982=999982000000
$$

(vi) $75.41^{2}-24.59^{2}=(75.41+24.59)(75.41-24.59)=100 \times 50.82=5082$
8. (a) Proof of the identity $m^{2}-1 \equiv(m+1)(m-1)$
(G)

Proof
From the multiplication grid
RHS of $(\mathrm{G}) \equiv(m+1)(m-1)$
$\equiv m^{2}+m-m-1$
$\equiv m^{2}-1 \equiv$ LHS of (G)

\times	m	+1
m	m^{2}	$+m$
-1	$-m$	-1

$\therefore m^{2}-1 \equiv(m+1)(m-1)$
(b) Proof of the identity $m^{4}-1 \equiv\left(m^{2}+1\right)\left(m^{2}-1\right)$
(H)

Proof
From the multiplication grid

$$
\begin{aligned}
\text { LHS of }(\mathrm{H}) & \equiv\left(m^{2}+1\right)\left(m^{2}-1\right) \\
& \equiv m^{4}+m^{2}-m^{2}-1 \\
& \equiv m^{4}-1 \equiv \operatorname{LHS} \text { of }(\mathrm{H})
\end{aligned}
$$

\times	m^{2}	+1
m^{2}	m^{4}	$+m^{2}$
-1	$-m^{2}$	-1

$$
\begin{equation*}
\therefore m^{4}-1 \equiv\left(m^{2}+1\right)\left(m^{2}-1\right) \tag{I}
\end{equation*}
$$

(c) Proof of the identity $m^{4}-1 \equiv\left(m^{2}+1\right)(m+1)(m-1)$

Proof

LHS of $(\mathrm{I}) \equiv m^{4}-1$

$$
\begin{array}{rlrl}
& \equiv\left(m^{2}+1\right)\left(m^{2}-1\right) & & (\text { by part }(b)) \\
& \equiv\left(m^{2}+1\right)[(m+1)(m-1)] & & (\text { by part }(a)) \\
& \equiv\left(m^{2}+1\right)(m+1)(m-1) & & \text { (removing the extra brackets) } \\
& \equiv \mathrm{RHS} \text { of }(\mathrm{I}) & \\
\therefore & m^{4}-1 \equiv\left(m^{2}+1\right)(m+1)(m-1)
\end{array}
$$

9. (a) Proof of the identity $(x+y)^{2}+(x-y)^{2} \equiv 2\left(x^{2}+y^{2}\right)$

Proof

\times	x	$+y$
x	x^{2}	$+x y$
$+y$	$+x y$	$+y^{2}$

\times	x	$-y$
x	x^{2}	$-x y$
$-y$	$-x y$	$+y^{2}$

$$
(x+y)^{2}=x^{2}+2 x y+y^{2}
$$

$$
(x-y)^{2}=x^{2}-2 x y+y^{2}
$$

$$
\therefore \text { LHS of }(\mathrm{J}) \equiv(x+y)^{2}+(x-y)^{2}
$$

$$
\equiv\left[x^{2}+2 x y+y^{2}\right]+\left[x^{2}-2 x y+y^{2}\right]
$$

$$
\equiv 2 x^{2}+2 y^{2}
$$

$$
\equiv 2\left(x^{2}+y^{2}\right) \equiv \text { RHS of }(\mathbf{J})
$$

$$
\begin{equation*}
\therefore(x+y)^{2}+(x-y)^{2} \equiv 2\left(x^{2}+y^{2}\right) \tag{K}
\end{equation*}
$$

(b) Proof of the identity $(x+y)^{2}-(x-y)^{2} \equiv 4 x y$

Proof

$$
\begin{aligned}
& \therefore \text { LHS of }(\mathrm{K}) \equiv(x+y)^{2}-(x-y)^{2} \\
& \equiv\left[x^{2}+2 x y+y^{2}\right]-\left[x^{2}-2 x y+y^{2}\right] \\
& \equiv x^{2}+2 x y+y^{2}-x^{2}+2 x y-y^{2} \\
& \equiv 4 x y \equiv \operatorname{RHS} \text { of }(\mathrm{K}) \\
& \therefore(x+y)^{2}-(x-y)^{2} \equiv 4 x y
\end{aligned}
$$

10. (a) Proof of the identity $a^{3}-b^{3} \equiv(a-b)\left(a^{2}+a b+b^{2}\right) \quad$ (L)

Proof

From the multiplication grid

$$
\begin{aligned}
& \operatorname{RHS} \text { of }(\mathrm{L}) \equiv(a-b)\left(a^{2}+a b+b^{2}\right) \quad-b \\
& \equiv a^{3}+a^{2} b+a b^{2}-a^{2} b-a b^{2}-b^{3} \\
& \equiv a^{3}-b^{3} \equiv \text { LHS of (L) } \\
& \therefore a^{3}-b^{3} \equiv(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

\times	a^{2}	$+a b$	$+b^{2}$
a	a^{3}	$+a^{2} b$	$+a b^{2}$
$-b$	$-a^{2} b$	$-a b^{2}$	$-b^{3}$

(b) Proof of the identity $a^{3}+b^{3} \equiv(a+b)\left(a^{2}-a b+b^{2}\right)$

Proof

From the multiplication grid

$$
\begin{aligned}
& \operatorname{RHS} \text { of }(\mathrm{M}) \equiv(a+b)\left(a^{2}-a b+b^{2}\right)+b \\
& \equiv a^{3}-a^{2} b+a b^{2}+a^{2} b-a b^{2}+b^{3} \\
& \equiv a^{3}+b^{3} \equiv \text { LHS of (M) } \\
& \therefore a^{3}+b^{3} \equiv(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

\times	a^{2}	$-a b$	$+b^{2}$
a	a^{3}	$-a^{2} b$	$+a b^{2}$
$+b$	$+a^{2} b$	$-a b^{2}$	$+b^{3}$

1.4 Geometrical Proof

1. Proof that $p=t$

$$
\begin{array}{rlr}
& p+s=180^{\circ} & \left(\text { Corollary 3, angles on a line add to } 180^{\circ}\right) \\
& t+u=180^{\circ} & \left(\text { Corollary 3, angles on a line add to } 180^{\circ}\right) \\
\therefore & t+s=180^{\circ} & \\
\therefore & p+s=t+s & \\
\therefore \quad & p=t &
\end{array}
$$

N.B. The proofs that $q=u, r=v$ and $s=w$ are similar.
2. Proof that the angles of the quadrilateral EFGH add up to 360°

Proof
If EFGH is a quadrilateral, join the vertices F and H , as in the diagram.

Then

$\angle \mathrm{EFH}+\angle \mathrm{FHE}+\angle \mathrm{HEF}=180^{\circ} \quad\left(\right.$ by Theorem 6, angle sum in triangle $\left.=180^{\circ}\right)$ and
$\angle \mathrm{GFH}+\angle \mathrm{FHG}+\angle \mathrm{HGF}=180^{\circ} \quad\left(\right.$ by Theorem 6, angle sum in triangle $\left.=180^{\circ}\right)$
Adding these two statements gives
$\angle \mathrm{EFH}+\angle \mathrm{FHE}+\angle \mathrm{HEF}+\angle \mathrm{GFH}+\angle \mathrm{FHG}+\angle \mathrm{HGF}=360^{\circ}$
Rearranging and bracketing gives
$(\angle \mathrm{EFH}+\angle \mathrm{GFH})+(\angle \mathrm{FHE}+\angle \mathrm{FHG})+\angle \mathrm{HEF}+\angle \mathrm{HGF}=360^{\circ}$
so, combining gives
$\angle \mathrm{EFG}+\angle \mathrm{EHG}+\angle \mathrm{HEF}+\angle \mathrm{HGF}=360^{\circ}$
and reordering
$\angle \mathrm{HEF}+\angle \mathrm{EFG}+\angle \mathrm{HGF}+\angle \mathrm{EHG}=360^{\circ}$
i.e. $\angle E+\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}=360^{\circ}$
i.e. the angles of the quadrilateral EFGH add up to 360°.
3. Proof that $x+y=z$

Proof
Through E, draw a line EF,
parallel to AB and CD , as shown.

Then

$$
\begin{array}{ll}
\angle \mathrm{AEF}=x & (\text { by Theorem } 5, \text { alternate angles } A B \text { parallel to } F E) \\
\angle \mathrm{CEF}=y & (\text { by Theorem } 5, \text { alternate angles } C D \text { parallel to } F E)
\end{array}
$$

so adding, $\angle \mathrm{AEF}+\angle \mathrm{CEF}=x+y$
i.e. $\quad \angle \mathrm{AEC}=x+y, \quad$ i.e. $z=x+y$
4. Proof that $\alpha=\beta$

Proof
$\alpha=\angle \mathrm{RST}=\angle \mathrm{STU} \quad$ (by Theorem 5, alternate angle SR parallel to $U T$)
$\beta=\angle \mathrm{VUT}=\angle \mathrm{UTS} \quad$ (by Theorem 5, alternate angle UV parallel to $S T$)
Since both angles α and β equal angle $\angle \mathrm{UTS}$, it follows that $\alpha=\beta$.
5. (a) Proof that $\triangle \mathrm{EDA}$ and $\triangle \mathrm{ECB}$ are congruent

Proof
$A B C D$ is a square, so $\angle A D C=90^{\circ}$.
Triangle EDC is equilateral, so $\angle \mathrm{EDC}=60^{\circ}$.
Adding these together, $\angle \mathrm{EDA}=150^{\circ}$.
By the same reasoning, $\angle \mathrm{ECB}=150^{\circ}$.
In triangles EDA and ECB

$$
\begin{array}{ll}
\mathrm{ED}=\mathrm{EC} & \text { (sides of an equilateral triangle) } \\
\angle \mathrm{EDA}=\angle \mathrm{ECB} & \text { (both } 150^{\circ} \text { as shown above) } \\
\mathrm{DA}=\mathrm{CD} & \text { (sides of a square) } \tag{SAS}
\end{array}
$$

$\therefore \triangle \mathrm{EDA}$ is congruent to $\Delta \mathrm{ECB}$
(b) From the proof in part (a), we can conclude that corresponding sides and angles in the two triangles are equal. In particular, the remaining sides must be equal in length, i.e. $\mathrm{AE}=\mathrm{BE}$.
(c) Since $\mathrm{ED}=\mathrm{DC}$ (because $\triangle \mathrm{EDC}$ is equilateral) and $\mathrm{DC}=\mathrm{DA}$ (because ABCD is a square), it follows that $\mathrm{ED}=\mathrm{DA}$.

Therefore, $\triangle \mathrm{EDA}$ is an isosceles triangle with $\angle \mathrm{EDA}=150^{\circ}$.
Hence $\angle \mathrm{DAE}=\angle \mathrm{DEA}=\frac{1}{2}\left(180^{\circ}-150^{\circ}\right)=15^{\circ}$.
Applying the same reasoning to $\Delta \mathrm{ECB}, \angle \mathrm{CBE}=\angle \mathrm{CEB}=15^{\circ}$.
But $\angle \mathrm{DEC}=60^{\circ}$ because $\triangle \mathrm{EDC}$ is equilateral. So, subtracting

$$
\angle \mathrm{AEB}=\angle \mathrm{DEC}-\angle \mathrm{DEA}-\angle \mathrm{CEB}=60^{\circ}-15^{\circ}-15^{\circ}=30^{\circ} .
$$

But, as noted in part (b), $\mathrm{AE}=\mathrm{BE}$. Therefore $\triangle \mathrm{EAB}$ is isosceles.
Hence the remaining angles of $\triangle \mathrm{EAB}$ are equal, so

$$
\angle \mathrm{EAB}=\angle \mathrm{EBA}=\frac{1}{2}\left(180^{\circ}-30^{\circ}\right)=75^{\circ}
$$

The angles of $\triangle \mathrm{EAB}$ are therefore $75^{\circ}, 75^{\circ}$ and 30°.
6. (a) Proof that $p+q+r=360^{\circ}$

Proof

By Corollary 3, angles on a straight line add up to 180°.

This means that the angles of the triangle are $180^{\circ}-p$, $180^{\circ}-q$ and $180^{\circ}-r$.

But, by Theorem 6, the angles of a triangle add up to 180°.
$\therefore\left(180^{\circ}-p\right)+\left(180^{\circ}-q\right)+\left(180^{\circ}-r\right)=180^{\circ}$
$\therefore 540^{\circ}-(p+q+r)=180^{\circ}$
$\therefore p+q+r=360^{\circ}$
(b) Proof that the triangle is right-angled if, in addition, $p+q=3 r$

Proof
By part (a), $\quad p+q+r=360^{\circ}$
But,

$$
p+q=3 r
$$

Substituting the second equation into the first gives

$$
3 r+r=360^{\circ}
$$

i.e.

$$
4 r=360^{\circ}
$$

i.e.

$$
r=90^{\circ}
$$

\therefore the angle $\left(180^{\circ}-r\right)=90^{\circ}$, showing that the triangle is right-angled.
7. Proof that $a=b+c+d$

Proof

We mark three of the other angles in the diagram e, f and g, as shown.

By Theorem 6, the angles of a triangle add up to 180°.

$$
\therefore c+e+d=180^{\circ}
$$

and $b+f+g=180^{\circ}$
Adding these two equations together gives

$$
c+e+d+b+f+g=360^{\circ}
$$

Rearranging the order and bracketing gives

$$
b+c+d+(e+f)+g=360^{\circ}
$$

But angles on a straight line add up to 180° by Corollary 3, so

$$
e+f=180^{\circ} \text { and } a+g=180^{\circ} \text {, i.e. } g=180^{\circ}-a
$$

Substituting these two facts into equation (\#) gives

$$
b+c+d+180^{\circ}+\left(180^{\circ}-a\right)=360^{\circ}
$$

so

$$
b+c+d-a=0^{\circ} \quad \text { i.e. } a=b+c+d
$$

8. (a) Proof that \triangle VOX and
Δ WOY are congruent

Proof

In triangles VOX and WOY
$\mathrm{OX}=\mathrm{OW}$ (radii of small circle)
$\mathrm{OV}=\mathrm{OY}$ (radii of large circle)
$\angle \mathrm{VOX}=\angle \mathrm{YOW}$ (by Theorem 4, vertically opposite angles are equal)
$\therefore \Delta \mathrm{VOX}$ is congruent to $\Delta \mathrm{YOW}$

(b) From the proof in part (a), we can conclude that corresponding sides and angles in the two triangles are equal. In particular, it follows that
(i) $\mathrm{VX}=\mathrm{WY}$
(ii) $\angle \mathrm{OVX}=\angle \mathrm{OYW}$ and
(iii) $\angle \mathrm{OXV}=\angle \mathrm{OWY}$
9. Proof that $\beta=3 \theta$

Proof

In $\Delta \mathrm{KOL}$,

$$
\mathrm{KL}=\mathrm{OK} \quad \text { (given) }
$$

$\therefore \Delta \mathrm{KOL}$ is isosceles
$\therefore \angle \mathrm{KOL}=\angle \mathrm{KLO}=\theta$
By Theorem 6, the angles of a triangle add up to 180°.

$$
\begin{aligned}
& \therefore \angle \mathrm{KOL}+\angle \mathrm{KLO}+\angle \mathrm{OKL}=180^{\circ} \\
& \text { i.e. } \theta+\theta+\angle \mathrm{OKL}=180^{\circ} \quad \therefore \angle \mathrm{OKL}=180^{\circ}-2 \theta
\end{aligned}
$$

But angles on a straight line add up to 180° by Corollary 3 , so

$$
\begin{gathered}
\angle \mathrm{OKL}+\angle \mathrm{OKJ}=180^{\circ} \quad \text { i.e. }\left(180^{\circ}-2 \theta\right)+\angle \mathrm{OKJ}=180^{\circ} \\
\therefore \angle \mathrm{OKJ}=2 \theta
\end{gathered}
$$

Triangle OJK is isosceles because $\mathrm{OJ}=\mathrm{OK}=$ radii of the circle, so

$$
\angle \mathrm{OJK}=\angle \mathrm{OKJ}=2 \theta \quad \text { i.e. } \angle \mathrm{OJL}=2 \theta
$$

By Corollary 3, angles on a straight line add up to 180°, so

$$
\begin{aligned}
& \angle \mathrm{JON}+\angle \mathrm{JOL}=180^{\circ} \quad \text { i.e. } \beta+\angle \mathrm{JOL}=180^{\circ} \\
& \therefore \angle \mathrm{JOL}=180^{\circ}-\beta
\end{aligned}
$$

Adding the angles of Δ JOL now gives

$$
\angle \mathrm{JOL}+\angle \mathrm{JLO}+\angle \mathrm{OJL}=180^{\circ}
$$

i.e. $\left(180^{\circ}-\beta\right)+\theta+2 \theta=180^{\circ}$

$$
\begin{aligned}
& \therefore \quad 180^{\circ}+3 \theta-\beta=180^{\circ} \\
& \therefore 3 \theta-\beta=0^{\circ} \quad \text { i.e. } \beta=3 \theta
\end{aligned}
$$

10. (a) The construction is shown in the second diagram
(b) In \triangle OAP,
$\mathrm{OA}=\mathrm{OP} \quad$ (radii of circle)
$\therefore \triangle \mathrm{OAP}$ is isosceles so by Theorem 7

$$
\angle \mathrm{OAP}=\angle \mathrm{OPA}
$$

These equal angles are labelled as angle x on the diagram.

(c) In $\Delta \mathrm{OBP}$,
$\mathrm{OB}=\mathrm{OP} \quad$ (radii of circle)
$\therefore \Delta \mathrm{OBP}$ is isosceles
so by Theorem $7, \angle \mathrm{OBP}=\angle \mathrm{OPB}$.
These equal angles are labelled as angle y on the diagram.
(d) $\angle \mathrm{APB}=\angle \mathrm{OPA}+\angle \mathrm{OPB}=x+y$
(e) By Theorem 6, the angles of triangle OAP add up to 180°.
$\therefore \quad \angle \mathrm{AOP}+\angle \mathrm{APO}+\angle \mathrm{OAP}=180^{\circ}$
i.e. $\angle \mathrm{AOP}+x+x=180^{\circ} \quad \therefore \angle \mathrm{AOP}=180^{\circ}-2 x$

Similarly, the angles of triangle OBP add up to 180°.
$\therefore \quad \angle \mathrm{BOP}+\angle \mathrm{BPO}+\angle \mathrm{OBP}=180^{\circ}$
i.e. $\angle \mathrm{BOP}+y+y=180^{\circ} \quad \therefore \angle \mathrm{BOP}=180^{\circ}-2 y$
(f) By Theorem 1, angles at a point add up to 360°.
$\therefore \quad \angle \mathrm{AOP}+\angle \mathrm{BOP}+\angle \mathrm{AOB}=360^{\circ}$
i.e. $\left(180^{\circ}-2 x\right)+\left(180^{\circ}-2 y\right)+\angle \mathrm{AOB}=360^{\circ}$
i.e. $360^{\circ}+\angle \mathrm{AOB}-(2 x+2 y)=360^{\circ}$
$\therefore \quad \angle \mathrm{AOB}-(2 x+2 y)=0^{\circ}$ i.e. $\angle \mathrm{AOB}=2 x+2 y$
(g) $\quad \angle \mathrm{AOB}=2 x+2 y \quad($ by part $(f))$
$=2(x+y) \quad($ factorising $)$
$=2 \times \angle \mathrm{APB} \quad($ by part $(d))$
$\therefore \angle \mathrm{AOB}=2 \times \angle \mathrm{APB}$
11. Proof that OM is perpendicular to GH Proof

In triangles OMG and OMH

$$
\begin{array}{ll}
\mathrm{OG}=\mathrm{OH} & \text { (radii of circle) } \\
\mathrm{OM}=\mathrm{OM} & \text { (common side) } \\
\mathrm{GM}=\mathrm{HM} & \text { (M is the midpoint } \\
\text { of } \mathrm{GH}, \text { given) } \tag{SSS}
\end{array}
$$

$\therefore \Delta \mathrm{OMG}$ is congruent to $\Delta \mathrm{OMH}$
It follows that corresponding angles in the
two triangles are equal. In particular, it follows that $\angle \mathrm{OMG}=\angle \mathrm{OMH}$.

But
$\angle \mathrm{OMG}+\angle \mathrm{OMH}=180^{\circ} \quad\left(\right.$ Angles on a straight line add up to 180°, Corollary 3$)$
$\therefore \angle \mathrm{OMG}+\angle \mathrm{OMG}=180^{\circ} \quad$ i.e. $2 \times \angle \mathrm{OMG}=180^{\circ}$
$\therefore \angle \mathrm{OMG}=90^{\circ} \quad$ i.e. OM is perpendicular to GH .

