## 1.1 True or False

- 1. (a) Sometimes true
  - (b) False (the maximum number of days in a year on Earth is 366)
  - (c) Always true (d) False (they both have 30 days)
  - (e) Always true (f) True, for Games in recent years
  - (g) Sometimes true (century years are not leap years unless they can be divided by 400, e.g. 1900 was not a leap year but 2000 was a leap year)
- 2. (a) False (angles on a line add up to  $180^{\circ}$ ) (b) True (c) True
  - (d) True a square is a special type of rectangle. However, the converse is false, not every rectangle is a square.
  - (e) False (the circumference of a circle is only *approximately* 3 times the diameter)
  - (f) True
- 3. (a) True (b) False (for example, 5 3 = 2 but 3 5 = -2) (c) True
  - (d) False (for example,  $\frac{8}{2} = 4$  but  $\frac{2}{8} = 0.25$ )
  - (e) False (for example,  $(3 + 4)^2 = 49$  but  $3^2 + 4^2 = 25$ )
  - (f) False (for example  $(7-4)^2 = 9$  but  $7^2 4^2 = 33$ ) (g) True
  - (h) True (provided both sides are defined, i.e. provided  $y \neq 0$ )

## 1.2 Proof

1. If N is the first number then the other must be N + 1 because they are consecutive. Adding the two numbers gives N + (N + 1) = 2N + 1.

Being a multiple of 2, 2N must be even. Adding on 1 will give an odd total. This proves that the sum of the two consecutive numbers must be odd.

2. If *N* is the first number then the other must be N + 2 because they are consecutive odd numbers.

Adding the two numbers gives N + (N + 2) = 2N + 2 = 2(N + 1).

Being a multiple of 2, 2(N + 1) must be even.

This proves that the sum of two consecutive odd numbers must be even.

3. Being even, the first of the two consecutive numbers must be a multiple of 2. We can therefore write it as 2N, where *N* is a whole number. Being consecutive, the other even number must be 2N + 2.

Multiplying the two numbers gives a product equal to

 $2N \times (2N+2) = 2N \times 2(N+1) = 2 \times 2 \times N \times (N+1) = 4N(N+1)$ which is 4 times N(N+1).

This proves that the product of two consecutive even numbers must be a multiple of 4.

4. (a) If the first of the two consecutive odd numbers is x then x - 1 will be even.
This means that x - 1 = 2p where p is a whole number, so x = 2p + 1.
Since they are consecutive odd numbers, the other number must be

x + 2 = (2p + 1) + 2 = 2p + 3

Adding the two consecutive odd numbers gives a total of

$$(2p+1) + (2p+3) = 4p + 4 = 4(p+1)$$

which is 4 times (p + 1).

(

This proves that the sum of two consecutive odd numbers must be a multiple of 4.

(b) If the consecutive odd numbers are (2p + 1) and (2p + 3), as in part (a), then their product is

| $(2p+1)(2p+3) = 4p^2 + 2p + 6p + 3$ | ×          | 2 <i>p</i>   | +1    |
|-------------------------------------|------------|--------------|-------|
| $=4p^2+8p+3$                        | 2 <i>p</i> | $4p^2$       | + 2 p |
|                                     | + 3        | + 6 <i>p</i> | + 3   |

Adding on 1 gives  $(4p^2 + 8p + 3) + 1 = 4p^2 + 8p + 4 = 4(p^2 + 2p + 1)$  which is 4 times  $(p^2 + 2p + 1)$ .

This proves that if you multiply two consecutive odd numbers, and then add 1, the result must be a multiple of 4.

- 5. (a) The total is always 3 times the middle number.
  - (b) If N is the first number then the other two numbers must be N + 1 and N + 2. Adding gives a total of

N + (N + 1) + (N + 2) = 3N + 3 = 3(N + 1)

which is 3 times the middle number.

This proves that the sum of 3 consecutive numbers is always equal to 3 times the middle number.

#### 6. (a) The total is always 5 times the middle number.

(b) If N is the first number then the other four numbers must be N + 1, N + 2, N + 3 and N + 4.

Adding gives a total of

$$N + (N + 1) + (N + 2) + (N + 3) + (N + 4) = 5N + 10 = 5(N + 2)$$

which is 5 times the middle number.

This proves that the sum of 5 consecutive numbers is always equal to 5 times the middle number.

- 7. (a) The total is always even.
  - (b) If N is the first number then the other three numbers must be N + 1, N + 2 and N + 3.

Adding gives a total of

N + (N + 1) + (N + 2) + (N + 3) = 4N + 6 = 2(2N + 3)

which is 2 times (2N + 3), so must be even.

This proves that the sum of 4 consecutive numbers is always even.

- N.B. Unlike questions 5 and 6, the total is not a multiple of 4. It is, however, always equal to 4 times the mean of the two middle numbers.
- 8. If the numbers are N, N + 1 and N + 2 then

the sum of the squares 
$$= N^{2} + (N+1)^{2} + (N+2)^{2}$$
$$= N^{2} + (N^{2} + 2N + 1) + (N^{2} + 4N + 4)$$
$$= 3N^{2} + 6N + 5$$

so subtracting 2 from the sum of the squares gives

$$(3N^{2} + 6N + 5) - 2$$
  
= 3N<sup>2</sup> + 6N + 3  
= 3(N<sup>2</sup> + 2N + 1)

which is 3 times  $(N^2 + 2N + 1)$ .

This proves that 2 less than the sum of the squares of 3 consecutive numbers is always a multiple of 3.

N.B. The proof above for question 8 shows that, in fact, 2 less than the sum of the squares of 3 consecutive numbers is always equal to 3 times the square of the middle number.

| 9 |   |  |
|---|---|--|
| _ | • |  |

(a)

| Size of Pond (metres) | Number of Paving Slabs |
|-----------------------|------------------------|
| 1 × 1                 | 8                      |
| 2 × 2                 | 12                     |
| 3 × 3                 | 16                     |
| 4 × 4                 | 20                     |
| $5 \times 5$          | 24                     |
| 6 × 6                 | 28                     |
| 7 × 7                 | 32                     |
| 8 × 8                 | 36                     |
| 9 × 9                 | 40                     |
| $10 \times 10$        | 44                     |

- (b) The formula linking the number of tiles, *N*, to the side length, *L*, of the pond is N = 4L + 4
- (c) In the following figure, if the diagram on the left represents a pond with sides of length *L* then the slabs surrounding it consist of 2 'horizontal' strips of *L* slabs, 2 'vertical' strips of *L* slabs, and 4 corner slabs, Hence the total number of slabs is

$$N = L + L + L + L + 4 = 4L + 4$$





This proves that Roger's trick always works.

# 1.3 Algebraic Identities

1.

(a) 7(x-8) - 3(x-20) = 4(x+1)(A) If x = 1, LHS of (A) =  $7(1-8) - 3(1-20) = [7 \times (-7)] - [3 \times (-19)]$ = -49 + 57 = 8RHS of (A) =  $4(1+1) = 4 \times 2 = 8$ : statement (A) is true for x = 1. If x = 3, LHS of (A) =  $7(3-8) - 3(3-20) = [7 \times (-5)] - [3 \times (-17)]$ = -35 + 51 = 16RHS of (A) =  $4(3+1) = 4 \times 4 = 16$  $\therefore$  statement (A) is true for x = 3. If x = 5, LHS of (A)  $7(5-8) - 3(5-20) = [7 \times (-3)] - [3 \times (-15)]$ = -21 + 45 = 24RHS of (A) =  $4(5+1) = 4 \times 6 = 24$ 

 $\therefore$  statement (A) is true for x = 5.  $\therefore$  x = 1, x = 3 and x = 5 all satisfy equation (A). (b) *Proof of the statement*  $7(x-8) - 3(x-20) \equiv 4(x+1)$ (A) LHS of (A)  $\equiv 7(x-8) - 3(x-20)$ Proof = 7x - 56 - 3x + 60 (multiplying out the brackets)  $\equiv 4x + 4$ (collecting like terms) RHS of (A)  $\equiv 4(x+1)$  $\equiv 4x + 4$ (multiplying out the brackets) Since both sides of (A) simplify to 4x + 4, it follows that LHS of (A) = RHS of (A) for any value of x.  $\therefore$  7(x - 8) - 3(x - 20) = (4x + 1) 2. (a)  $x^3 - 9x^2 + 23x = 15$ (B) If x = 1. LHS of (B) =  $1^3 - 9 \times 1^2 + 23 \times 1 = 1 - 9 + 23 = 15 =$ RHS of (B)  $\therefore$  statement (B) is true for x = 1. If x = 3, LHS of (B) =  $3^3 - 9 \times 3^2 + 23 \times 3 = 27 - 81 + 69 = 15 =$ RHS of (B)  $\therefore$  statement (B) is true for x = 3. If x = 5, LHS of (B) =  $5^{3} - 9 \times 5^{2} + 23 \times 5 = 125 - 225 + 115 = 15 =$ RHS of (B) : statement (B) is true for x = 5.  $\therefore x = 1$ , x = 3 and x = 5 all satisfy equation (B). (b) If x = 4, LHS of (B) =  $4^3 - 9 \times 4^2 + 23 \times 4 = 64 - 144 + 92 = 12 \neq$  RHS of (B)  $\therefore$  statement (B) is not true for x = 4. Since we have found a value for which statement (B) is not true, statement (B) is not an identity. 3. (a) 8(p-q) + 3(p+q) = 2(p+2q) + 9(p-q)(C) If p = 10 and q = 5, LHS of (C) =  $8(10-5) + 3(10+5) = 8 \times 5 + 3 \times 15$ = 40 + 45 = 85

5

RHS of (C) = 
$$2(10 + [2 \times 5]) + 9(10 - 5) = 2 \times 20 + 9 \times 5$$
  
= 40 + 45 = 85  
 $\therefore$  statement (C) is true for  $p = 10$  and  $q = 5$ .  
(b) If  $p = 6$  and  $q = 4$ ,  
LHS of (C) =  $8(6 - 4) + 3(6 + 4) = 8 \times 2 + 3 \times 10$   
= 16 + 30 = 46  
RHS of (C) =  $2(6 + [2 \times 4]) + 9(6 - 4) = 2 \times 14 + 9 \times 2$   
= 28 + 18 = 46  
 $\therefore$  statement (C) is true for  $p = 6$  and  $q = 4$ .  
(c) Proof of the statement  $8(p - q) + 3(p + q) = 2(p + 2q) + 9(p - q)$  (C)  
Proof  
LHS of (C) =  $8(p - q) + 3(p + q)$   
=  $8p - 8q + 3p + 3q$  (multiplying out the brackets)  
=  $11p - 5q$  (collecting like terms)  
RHS of (C) =  $2(p + 2q) + 9(p - q)$   
=  $2p + 4q + 9p - 9q$  (multiplying out the brackets)  
=  $11p - 5q$  (collecting like terms)  
Since both sides of (C) simplify to  $11p - 5q$  it follows that  
LHS of (C) = RHS of (C) for any values of  $p$  and  $q$ .  
 $\therefore 8(p - q) + 3(p + q) = 2(p + 2q) + 9(p - q)$   
4. Proof of the statement  $x(m + n) + y(n - m) = m(x - y) + n(x + y)$  (D)  
Proof  
LHS of (D) =  $x(m + n) + y(n - m)$   
=  $xm + xn + yn - ym$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$   
=  $mx - my + nx + ny$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$   
=  $mx - my + nx + ny$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$   
=  $mx - my + nx + ny$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$   
=  $mx - my + nx + ny$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$   
=  $mx - my + nx + ny$  (multiplying out the brackets)  
RHS of (D) =  $m(x - y) + n(x + y)$ 

1.3

| -  |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | - (1)               |                    |                |           |
|----|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------|----------------|-----------|
| 5. | (a)          | ×                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 2             | (b)                 | ×                  | x              | - 5       |
|    |              | x                         | $x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +2x             |                     | x                  | $x^2$          | -5x       |
|    |              | +10                       | +10 <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 20            | 1                   | -4                 | -4x            | +20       |
|    |              | (x + 2)(x                 | $(+10) = x^2 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +12x + 2        | 20                  | (x-5)(x-           | $(-4) = x^2 -$ | 9x + 20   |
|    | (c) <i>P</i> | roof of the s             | tatement (:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (x + 2)(x)      | +10) - (x -         | (x-4) = 5          | $\equiv 21x$   | (E)       |
|    | <u>P</u>     | <u>roof</u>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                    |                |           |
|    | L            | HS of (E)                 | $\equiv (x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (x + 10) -      | (x-5)(x-5)          | - 4)               |                |           |
|    |              |                           | $\equiv \left[x^2 + 12x\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (x + 20] -      | $[x^2 - 9x +$       | 20] (from          | m parts (a)    | and (b))  |
|    |              |                           | $\equiv x^2 + 12x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 20 - 2        | $x^2 + 9x - 20$     | 0 (ren             | noving the l   | brackets) |
|    |              |                           | $\equiv 21x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                     | (col               | lecting like   | terms)    |
|    |              |                           | $\equiv$ RHS of (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E)              |                     |                    |                |           |
|    |              | (x+2)(x                   | +10) - (x + 10) - (x | - 5)(x -        | $4\big) \equiv 21x$ |                    |                |           |
| C  | (a) [        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                    |                |           |
| 0. | (a)          | ×                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +6              |                     |                    |                |           |
|    |              | x                         | $x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +6 <i>x</i>     |                     |                    |                |           |
|    |              | +8                        | +8x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +48             | SO                  | (x + 6)(x +        | $(-8) = x^2 +$ | 14x + 48  |
|    |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                    | ,              |           |
|    | (b) B        | y part (a), x             | $x^2 + 14x + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48 = (x + x)    | (x+8)(x+8)          |                    |                |           |
|    | If           | $x \neq -6$ , th          | en(x+6) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ± 0 so we       | e may divide        | e both sides b     | by $(x + 6)$   | to get    |
|    |              | $x^2$ +                   | -14x + 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (x+6)           | (x + 8)             | w 1 9              |                |           |
|    |              |                           | <i>x</i> + 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x               | + 6                 | $\lambda + \delta$ |                |           |
|    | :            | $\frac{x^2 + 14x}{x + 6}$ | $\frac{+48}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8, provid       | ed $x \neq -6$ .    |                    |                |           |
| 7. | (a) <i>P</i> | roof of the i             | dentity $a^2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $b^2 \equiv (a$ | (a-b)               | ) (F)              |                |           |
|    | Proof        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                    |                |           |

From the multiplication grid

RHS of (F) 
$$\equiv (a + b)(a - b)$$
  
 $\equiv a^2 + ab - ab - b^2$   
 $\equiv a^2 - b^2 = LHS$  of (F)  
 $\therefore a^2 - b^2 \equiv (a + b)(a - b)$ 

| ×          | а           | + <i>b</i> |
|------------|-------------|------------|
| а          | $a^2$       | + ab       |
| - <i>b</i> | - <i>ab</i> | $-b^2$     |

|    | (b) | (i) $81^2 - 80^2 = (81 + 80)(81 - 80) = 16$                                | $1 \times 1 = 161$        |                       |          |
|----|-----|----------------------------------------------------------------------------|---------------------------|-----------------------|----------|
|    |     | (ii) $101^2 - 99^2 = (101 + 99)(101 - 99) =$                               | $200 \times 2 = 400$      |                       |          |
|    |     | (iii) $2731^2 - 269^2 = (2731 + 269)(2731 - 2731)(2731 - 269)(2731) = 269$ | - 269) = 3000 ×           | 2462 = 73             | 86000    |
|    |     | (iv) $11.7^2 - 8.3^2 = (11.7 + 8.3)(11.7 - 8.3)$                           | $(3) = 20 \times 3.4 = 0$ | 58                    |          |
|    |     | (v) $999991^2 - 9^2 = (999991 + 9)(999991)$                                | 91 – 9)                   |                       |          |
|    |     | $= 1000000 \times 999982$                                                  | = 9999820000              | 00                    |          |
|    |     | (vi) $75.41^2 - 24.59^2 = (75.41 + 24.59)(7$                               | 5.41 - 24.59) =           | $100 \times 50.82$    | 2 = 5082 |
|    |     |                                                                            |                           | 100.0000              |          |
| 8. | (a) | Proof of the identity $m^2 - 1 \equiv (m+1)(\frac{Proof}{2})$              | m - 1)                    | (G)                   |          |
|    |     | From the multiplication grid                                               |                           |                       | _ 1      |
|    |     | RHS of (G) $\equiv (m+1)(m-1)$                                             | ×                         | <i>m</i>              | + 1      |
|    |     | $\equiv m^2 + m - m - 1$                                                   |                           | <i>m</i> <sup>2</sup> | + m      |
|    |     | $\equiv m^2 - 1 \equiv \text{LHS of (G)}$                                  | -1                        | - <i>m</i>            | - 1      |
|    |     | $\therefore m^2 - 1 \equiv (m+1)(m-1)$                                     |                           |                       |          |
|    | (b) | Proof of the identity $m^4 - 1 \equiv (m^2 + 1)(n + 1)$                    | $n^2 - 1$ )               | (H)                   |          |
|    |     | From the multiplication grid                                               |                           | 2                     |          |
|    |     | LHS of (H) $\equiv (m^2 + 1)(m^2 - 1)$                                     | ×                         | <i>m<sup>2</sup></i>  | +1       |
|    |     | $\equiv m^4 + m^2 - m^2 - 1$                                               | $m^2$                     | $m^4$                 | $+ m^2$  |
|    |     | $\equiv m^4 - 1 \equiv LHS \text{ of } (H)$                                | -1                        | $-m^2$                | - 1      |
|    |     | $\therefore m^4 - 1 \equiv (m^2 + 1)(m^2 - 1)$                             |                           |                       |          |
|    | (c) | Proof of the identity $m^4 - 1 \equiv (m^2 + 1)(n + 1)$                    | (m+1)(m-1)                | (I)                   |          |
|    |     | LHS of (I) $\equiv m^4 - 1$                                                |                           |                       |          |
|    |     | $\equiv (m^2+1)(m^2-1)$                                                    | (by part (b))             |                       |          |
|    |     | $\equiv (m^2+1)[(m+1)(m-1)]$                                               | (by part (a))             |                       |          |
|    |     | $\equiv (m^2 + 1)(m + 1)(m - 1)$<br>$\equiv \text{RHS of (I)}$             | (removing the e           | extra bracke          | ets)     |
|    |     | $\therefore m^4 - 1 \equiv (m^2 + 1)(m + 1)(m - 1)$                        | 1)                        |                       |          |
|    |     |                                                                            |                           |                       |          |

| 9.  | (a)                                   | Proof of the                                                                     | e identity (.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(x + y)^2 + (x)^2$   | $(x-y)^2 \equiv 2$      | $2(x^2 +$   | $y^2$ )   | (J)              |            |
|-----|---------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------|-----------|------------------|------------|
|     |                                       | <u>Proof</u>                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                     | + y                     |             | ×         | x                | - y        |
|     |                                       |                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x^2$                 | +xy                     |             | x         | $x^2$            | -xy        |
|     |                                       |                                                                                  | + y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + <i>xy</i>           | $+ y^{2}$               |             | - y       | - <i>xy</i>      | $+y^2$     |
|     |                                       |                                                                                  | $(x + y)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^2 = x^2 + 2x$      | $y + y^2$               |             | $(x-y)^2$ | $x^2 = x^2 - 2x$ | $xy + y^2$ |
|     |                                       | : LH                                                                             | S of (J) $\equiv (x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(+ y)^{2} + (x)^{2}$ | $(-y)^{2}$              |             |           |                  |            |
|     |                                       |                                                                                  | $\equiv \left[x^2\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x^2 + 2xy + y$       | $x^{2}$ ] + [ $x^{2}$ – | 2xy +       | $+ y^2$ ] |                  |            |
|     |                                       |                                                                                  | $\equiv 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{2} + 2y^{2}$       |                         |             | -         |                  |            |
|     |                                       |                                                                                  | ≡ 2(.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x^2 + y^2 = 1$       | RHS of (J)              | )           |           |                  |            |
|     |                                       | .:. (x                                                                           | $(x + y)^2 + (x)^2 + $ | $(-y)^2 \equiv 2(x)$  | $z^2 + y^2$             |             |           |                  |            |
|     | (b)                                   | (b) Proof of the identity $(x + y)^2 - (x - y)^2 \equiv 4xy$ (K)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |             |           |                  |            |
|     |                                       | <u>Proof</u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |             |           |                  |            |
|     |                                       | $\therefore$ LHS of                                                              | $(\mathbf{K}) \equiv (x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $y)^2 - (x - y)^2$    | $(v)^2$                 |             |           |                  |            |
|     |                                       | $\equiv \left[ x^{2} + 2xy + y^{2} \right] - \left[ x^{2} - 2xy + y^{2} \right]$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |             |           |                  |            |
|     |                                       | $\equiv x^{2} + 2xy + y^{2} - x^{2} + 2xy - y^{2}$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |             |           |                  |            |
|     | $\equiv 4xy \equiv \text{RHS of (K)}$ |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |             |           |                  |            |
|     |                                       | ∴ (x                                                                             | $(x+y)^2 - (x+y)^2 - (x+y$ | $(-y)^2 \equiv 4x$    | у                       |             |           |                  |            |
| 10. | (a)                                   | Proof of the                                                                     | e identity a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $a^3 - b^3 \equiv (a$ | $(-b)(a^2 +$            | <i>ab</i> + | $b^2$ )   | (L)              |            |
|     |                                       | <u>Proof</u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ;                       | ×           | $a^2$     | + ab             | $+ b^{2}$  |
|     |                                       | From the m                                                                       | ultiplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | grid                  |                         | a           | $a^3$     | $+a^2b$          | $+ab^2$    |
|     |                                       | RHS of (L)                                                                       | $\equiv (a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a^2 + ab + b^2$      | 2)                      | b           | $-a^2b$   | $-ab^2$          | $-b^3$     |
|     |                                       |                                                                                  | $\equiv a^3 + a^2 b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $+ab^2-a^2$           | $b-ab^2-$               | $b^3$       |           |                  |            |

$$\equiv a^3 - b^3 \equiv \text{LHS of (L)}$$
  
$$\therefore a^3 - b^3 \equiv (a - b)(a^2 + ab + b^2)$$

1.3

1.3

Answers

|    | (b) Proof of the identity $a^3 + b^3 \equiv (a+b)(a^2 - ab + b^2)$ (M)                          |
|----|-------------------------------------------------------------------------------------------------|
|    | Proof $\times$ $a^2$ $-ab$ $+b^2$                                                               |
|    | From the multiplication grid $a$ $a^3$ $-a^2b$ $+ab^2$                                          |
|    | RHS of (M) = $(a + b)(a^2 - ab + b^2) + b + a^2b - ab^2 + b^3$                                  |
|    | $\equiv a^{3} - a^{2}b + ab^{2} + a^{2}b - ab^{2} + b^{3}$                                      |
|    | $\equiv a^3 + b^3 \equiv \text{LHS of (M)}$                                                     |
|    | $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$                                                   |
|    | $\dots \ u + v = (u + v)(u - uv + v)$                                                           |
| G  | eometrical Proof                                                                                |
|    | Proof that $n = t$                                                                              |
| 1. | $p + s = 180^{\circ}$ (Corollary 3, angles on a line add to $180^{\circ}$ )                     |
|    | $t + u = 180^{\circ} \qquad (Corollary 3, angles on a line add to 180^{\circ})$                 |
|    | u = s (Theorem 5, alternate angles are equal)                                                   |
|    | $\therefore  t + s = 180^{\circ}$                                                               |
|    | $\therefore p + s = t + s$                                                                      |
|    | $\therefore p = t$                                                                              |
|    | N.B. The proofs that $q = u$ , $r = v$ and $s = w$ are similar.                                 |
|    |                                                                                                 |
| 2. | Proof that the angles of the quadrilateral EFGH add up to $360^{\circ}$                         |
|    | E<br>If EFGH is a quadrilateral, join the                                                       |
|    | vertices F and H, as in the diagram.                                                            |
|    | Н                                                                                               |
|    |                                                                                                 |
|    | F                                                                                               |
|    | Then G                                                                                          |
|    | $\angle$ EFH + $\angle$ FHE + $\angle$ HEF = 180° (by Theorem 6, angle sum in triangle = 180°)  |
|    | and                                                                                             |
|    | $\angle$ GFH + $\angle$ FHG + $\angle$ HGF = 180° (by Theorem 6, angle sum in triangle = 180°)  |
|    | Adding these two statements gives                                                               |
|    | $\angle$ EFH + $\angle$ FHE + $\angle$ HEF + $\angle$ GFH + $\angle$ FHG + $\angle$ HGF = 360°  |
|    | Rearranging and bracketing gives                                                                |
|    | $(\angle EFH + \angle GFH) + (\angle FHE + \angle FHG) + \angle HEF + \angle HGF = 360^{\circ}$ |
|    | 10                                                                                              |

#### MEP Pupil Text - Additional Material: Mathematical Proof

1.4

### Answers



11



#### MEP Pupil Text - Additional Material: Mathematical Proof

1.4

#### Answers



in the two triangles are equal. In particular, it follows that

(i) 
$$VX = WY$$
 (ii)  $\angle OVX = \angle OYW$  and (iii)  $\angle OXV = \angle OWY$ 



14

Q

1.4

## Answers

(c) In  $\triangle OBP$ , OB = OP(radii of circle)  $\therefore \Delta OBP$  is isosceles so by Theorem 7,  $\angle OBP = \angle OPB$ . These equal angles are labelled as angle y on the diagram. (d)  $\angle APB = \angle OPA + \angle OPB = x + y$ (e) By Theorem 6, the angles of triangle OAP add up to  $180^{\circ}$ .  $\angle AOP + \angle APO + \angle OAP = 180^{\circ}$ *:*. i.e.  $\angle AOP + x + x = 180^{\circ}$  $\therefore \angle AOP = 180^{\circ} - 2x$ Similarly, the angles of triangle OBP add up to 180°.  $\therefore \ \angle BOP + \angle BPO + \angle OBP = 180^{\circ}$ i.e.  $\angle BOP + y + y = 180^{\circ}$  $\therefore \angle BOP = 180^{\circ} - 2y$ (f) By Theorem 1, angles at a point add up to  $360^{\circ}$ .  $\therefore \ \angle AOP + \angle BOP + \angle AOB = 360^{\circ}$ i.e.  $(180^{\circ} - 2x) + (180^{\circ} - 2y) + \angle AOB = 360^{\circ}$ i.e.  $360^{\circ} + \angle AOB - (2x + 2y) = 360^{\circ}$  $\therefore \ \angle AOB - (2x + 2y) = 0^{\circ}$  i.e.  $\angle AOB = 2x + 2y$  $\angle AOB = 2x + 2y$ (by part (f))(g) = 2(x + y) (factorising)  $= 2 \times \angle APB$  (by part (d))  $\therefore \angle AOB = 2 \times \angle APB$ 11. Proof that OM is perpendicular to GH <u>Proof</u> In triangles OMG and OMH 0 OG = OH(radii of circle) OM = OM (common side) GM = HM (M is the midpoint G of GH, given) Μ  $\therefore \Delta OMG$  is congruent to  $\Delta OMH$  (SSS)

It follows that corresponding angles in the two triangles are equal. In particular, it follows that  $\angle OMG = \angle OMH$ .

15

Η

 $\angle OMG + \angle OMH = 180^{\circ}$  (Angles on a straight line add up to  $180^{\circ}$ , Corollary 3)  $\therefore \angle OMG + \angle OMG = 180^{\circ}$  i.e.  $2 \times \angle OMG = 180^{\circ}$  $\therefore \angle OMG = 90^{\circ}$  i.e. OM is perpendicular to GH.