19 Similarity

19.1 Enlargement

An enlargement increases or decreases the size of a shape by a multiplier known as the scale factor. The angles in the shape will not be changed by the enlargement.

Example 1

Which of the triangles below are enlargements of the triangle marked A ? State the scale factor of each of these enlargements.

Solution

B is an enlargement of A, since all the lengths are doubled.
The scale factor of the enlargement is 2 .

C is not an enlargement of A .

D is an enlargement of A , since all the lengths are halved.
The scale factor of the enlargement is $\frac{1}{2}$.

E is not an enlargement of A .

F is an enlargement, since all the lengths are trebled.
The scale factor of the enlargement is 3 .

Example 2

Ameer has started to draw an enlargement of the quadrilateral marked A. Copy and complete the enlargement.

Solution

The diagram shows the completed enlargement.

All the lengths have been increased by a factor of $1 \frac{1}{2}$.
We say that the scale factor of the enlargement is $1 \frac{1}{2}$.

Exercises

1. Which of the following shapes are enlargements of shape A ? State the scale factor of each of these enlargements.

2. Which of the following triangles are not enlargements of the triangle marked A ?

3. The diagram below shows four enlargements of rectangle A. State the scale factor of each enlargement.

		,				-															
		A																			
								B	3												
																	C				
	D																				
								E													

4. Which two signs below are not enlargements of sign A ?

5. Which two of the leaves shown below are enlargements of leaf A ?

6. Which of the flags below are enlargements of flag A ?

7. Draw enlargements of the rectangle shown with scale factors:
(a) 2
(b) 4
(c) $\frac{1}{2}$
(d) 3

8. Draw enlargements of the triangle shown with scale factors:
(a) 2
(b) 3
(c) $1 \frac{1}{2}$

9. Denise has started to draw an enlargement of the shape below. Copy and complete her enlargement.

10. Kristian has started to draw an enlargement of the shape below. Copy and complete his enlargement.

19.2 Similar Shapes

Similar shapes are those which are enlargements of each other; for example, the three triangles shown below are similar:

It is possible to calculate the lengths of the sides of similar shapes.

Example 1

The following diagram shows two similar triangles:
C

Calculate the lengths of the sides B C and D F.

Solution

Comparing the sides AB and D E gives:
$A B=4 \times D E$
So, all the lengths in the triangle A B C will be 4 times the lengths of the sides in the triangle DEF.
$B C=4 \times E F$
$=4 \times 3$
$=12 \mathrm{~cm}$
$\mathrm{AC}=4 \times \mathrm{DF}$
$10=4 \times$ DF
D F $=\frac{10}{4}$
$=2.5 \mathrm{~cm}$

Example 2

The following diagram shows 2 similar triangles:

Calculate the lengths of the sides A C and D E.

Solution

Comparing the lengths B C and E F gives:
$\mathrm{EF}=2.5 \times \mathrm{BC}$
So the lengths in the triangle D E F are 2.5 times longer than the lengths in the triangle ABC.
$\mathrm{DE}=2.5 \times \mathrm{AB}$

$$
=2.5 \times 5
$$

$$
=12.5 \mathrm{~cm}
$$

$D F=2.5 \times \mathrm{AC}$
$7.5=2.5 \times \mathrm{AC}$
$\mathrm{AC}=\frac{7.5}{2.5}$
$=3 \mathrm{~cm}$

Example 3

In the following diagram, the sides AE and B C are parallel.

(a) Explain why ADE and CDB are similar triangles.
(b) Calculate the lengths DE and CD .

Solution

(a) $\angle \mathrm{ADE}$ and $\angle \mathrm{CDB}$ are opposite angles and so are equal. Because AE and BC are parallel, $\angle \mathrm{DBC}=\angle \mathrm{DEA}$ and $\angle \mathrm{EAD}=\angle \mathrm{BCD}$.

As the triangles have angles the same size, they must be similar.
(b) Comparing AE and BC shows that the lengths in the larger triangle are 3 times the lengths of the sides in the smaller triangle, so

$$
\begin{aligned}
\mathrm{DC} & =3 \times \mathrm{AD} \\
& =3 \times 3 \\
& =9 \mathrm{~cm}
\end{aligned}
$$

and
$B D=3 \times D E$
$12=3 \times D E$
$D E=\frac{12}{3}$

$$
=4 \mathrm{~cm}
$$

Exercises

1. The following diagram shows two similar rectangles:

Determine the length of the side C D.
2. The following diagram shows two similar triangles:

Calculate the lengths of:
(a) AB
(b) E F
3. Two similar isosceles triangles are shown in the diagram below:

(a) What is the length of DE ?
(b) What is the length of A C ?
(c) Calculate the length of B C.
4. The following diagram shows two similar triangles:

Calculate the lengths of the sides G E and F G.
5. The following diagram shows three similar triangles:

Calculate the length of:
(a) E G
(b) H J
(c) E F
(d) AB
6. The following diagram shows 3 similar triangles:

Calculate the length of the sides:
(a) HI
(b) B C
(c) A C
(d) DF
7. The following diagram shows two similar shapes:

The length of the side AB is 6 cm and the length of the side IJ is 4 cm .
(a) If $\mathrm{AH}=12 \mathrm{~cm}$, calculate the length I P.
(b) If $\mathrm{BC}=3 \mathrm{~cm}$, calculate the length J K.
(c) If $\mathrm{DE}=\mathrm{BC}$, determine the length L M .
(d) Calculate the lengths F G and N O.
(e) If $\mathrm{MN}=3 \mathrm{~cm}$, determine the length EF .
8. In the diagram below, the lines AE and CD are parallel.

(a) Copy and complete the following statements:

$$
\begin{aligned}
& \angle \mathrm{ABE}=\angle \\
& \angle \mathrm{BAE}=\angle \\
& \angle \mathrm{AEB}=\angle
\end{aligned}
$$

(b) Calculate the lengths of AB and B E.
9. In the diagram shown below the lines B E and CD are parallel.

(a) Explain why the triangles A B E and A C D are similar.
(b) If the length of AB is 4.4 cm , calculate the lengths of AC and BC.
(c) If the length of AD is 13.5 cm , determine the lengths of AE and DE.
10. In the diagram shown, the lines A B, GD and FE are parallel.
(a) If the length of CE is 15 cm , calculate the lengths of AC, CD and DE.
(b) If the length of BC is 10.8 cm , calculate the length of F G.

19.3 Line, Area and Volume Ratios

In this section we consider what happens to the area and volume of shapes when they are enlarged.

Example 1

The rectangle shown is enlarged with scale factor 2 and scale factor 3 .

What happens to the area for each scale factor?

Solution

The area of the original rectangle is

$$
\begin{aligned}
\text { area } & =5 \times 2 \\
& =10 \mathrm{~cm}^{2}
\end{aligned}
$$

For an enlargement scale factor 2 , the rectangle becomes:

$$
\begin{aligned}
\text { area } & =10 \times 4 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

The area has increased by a factor of 4, or 2^{2}. \square
10 cm
For an enlargement scale factor 3 , the rectangle becomes:

$$
\begin{aligned}
\text { area } & =15 \times 6 \\
& =90 \mathrm{~cm}^{2}
\end{aligned}
$$

The area has increased by a factor of 9 , or 3^{2}.

Note

If a shape is enlarged with scale factor k, its area is increased by a factor k^{2}.

Example 2

A hexagon has area $60 \mathrm{~cm}^{2}$.
Calculate the area of the hexagon, if it is enlarged with scale factor:
(a) 2
(b) 4
(c) 10

Solution

In each case the area will increase by the scale factor squared.
(a) New area $=2^{2} \times 60$

$$
\begin{aligned}
& =4 \times 60 \\
& =240 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) New area $=4^{2} \times 60$

$$
\begin{aligned}
& =16 \times 60 \\
& =960 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) New area $=10^{2} \times 60$

$$
\begin{aligned}
& =100 \times 60 \\
& =6000 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 3

A cuboid has sides of lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .

Calculate the volume of the cuboid, if it is enlarged with scale factor:
(a) 2
(b) 10

Solution

(a) The dimensions of the cuboid now become, $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm .

New volume $=6 \times 8 \times 10$

$$
=480 \mathrm{~cm}^{3}
$$

Note that the volume of the original cuboid was $60 \mathrm{~cm}^{3}$, so the volume has increased by a factor of 8 , or 2^{3}.
(b) The dimensions of the cuboid now become,
$30 \mathrm{~cm}, 40 \mathrm{~cm}$ and 50 cm.
New volume $=30 \times 40 \times 50$

$$
=60000 \mathrm{~cm}^{3}
$$

Note that this is 1000 , or 10^{3}, times bigger than the volume of the original cuboid.

Note

If a solid is enlarged with scale factor k, its volume is increased by a factor k^{3}.

Example 4

A sphere has a volume of $20 \mathrm{~cm}^{3}$. A second sphere has 4 times the radius of the first sphere. Calculate the volume of the second sphere.

Solution

The radius is increased by a factor of 4 .
The volume will be increased by a factor of 4^{3}.

$$
\begin{aligned}
\text { Volume } & =20 \times 4^{3} \\
& =20 \times 64 \\
& =1280 \mathrm{~cm}^{3}
\end{aligned}
$$

Exercises

1. Two rectangles are shown below:

(a) Calculate the area of each rectangle.
(b) How many times longer are the sides in rectangle B than those in rectangle A ?
(c) How many times bigger is the area of rectangle B ?
2. Calculate the area of the rectangle shown if it is enlarged with a scale factor of:
(a) 2
(b) 3
(c) 6
(d) 10

3. The following table gives information about enlargements of the triangle shown, which has an area of $6 \mathrm{~cm}^{2}$.

Copy and complete the table.

Length of Sides Base Height		Scale Factor	Area	Area Factor
3 cm	4 cm	1	$6 \mathrm{~cm}^{2}$	1
		2		
	12 cm			
	16 cm			
15 cm				
		6		
30 cm	40 cm		$600 \mathrm{~cm}^{2}$	100
4.5 cm				

4. The parallelogram shown has an area of $42 \mathrm{~cm}^{2}$.

The parallelogram is enlarged with a scale factor of 5 .
Calculate the area of the enlarged parallelogram.
5. The area of a circle is $50 \mathrm{~cm}^{2}$. A second circle has a radius that is 3 times the radius of the first circle. What is the area of this circle?
6. Two similar rectangles have areas of $30 \mathrm{~cm}^{2}$ and $480 \mathrm{~cm}^{2}$. Describe how the length and width of the two rectangles compare.
7. (a) Determine the volume of each of the following cuboids:

(b) The larger cuboid is an enlargement of the smaller cuboid. What is the scale factor of the enlargement?
(c) How many of the smaller cuboids can be fitted into the larger cuboid?
(d) How many times greater is the volume of the larger cuboid than the volume of the smaller cuboid?
8. A cuboid has dimensions as shown in the diagram.
The cuboid is enlarged to give larger cuboids. Copy and complete the following table:

Dimensions			Scale Factor	Volume	Volume Factor
Width	Length	Height		$36 \mathrm{~cm}^{3}$	1
3 cm	6 cm	2 cm			
6 cm			2		
			4		
		10 cm			
30 cm					

9. A tank has a volume of $32 \mathrm{~m}^{3}$. It is enlarged with scale factor 3 . What is the volume of the enlarged tank?
10. A cylinder has height 10 cm and volume $42 \mathrm{~cm}^{3}$. An enlargement of the cylinder has height 25 cm . Calculate the volume of the enlarged cylinder.

19.4 Maps and Scale Models

The ideas of how areas and volumes change with enlargement were considered in section 19.3. Here we apply these ideas to maps and scale models.

If a map has a scale $1: n$, then: lengths have a scale of $1: n$ and areas have a scale of $1: n^{2}$.

If a model has a scale of $1: n$, then lengths have a scale of $1: n$ areas have a scale of $1: n^{2}$
and volumes have a scale of $1: n^{3}$.

	Note on units
1 km	$=1000 \mathrm{~m}$
	$=100000 \mathrm{~cm}$
$1 \mathrm{~m}^{2}$	$=10000 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{3}$	$=1000000 \mathrm{~cm}^{3}$

Example 1

On a map with a scale of $1: 20000$, a garden has an area of $5 \mathrm{~cm}^{2}$. Calculate the actual area of the garden.

Solution

$$
\begin{aligned}
\text { Actual area } & =5 \times 20000^{2} \\
& =2000000000 \mathrm{~cm}^{2} \\
& =200000 \mathrm{~m}^{2} \quad(\text { dividing by } 10000) \\
& \left.=0.2 \mathrm{~km}^{2} \quad \text { (dividing by } 1000000\right)
\end{aligned}
$$

Example 2

A map has a scale of $1: 500$. A small public garden on the map has an area of $14 \mathrm{~cm}^{2}$. Calculate the actual area of this garden.

Solution

$$
\begin{aligned}
\text { Actual area } & =14 \times 500^{2} \\
& =3500000 \mathrm{~cm}^{2} \\
& =350 \mathrm{~m}^{2}
\end{aligned}
$$

Example 3

A model car is made on a scale of $1: 20$.
The length of the model is 24 cm .
The area of the windscreen of the model is $32 \mathrm{~cm}^{2}$.
The volume of the boot of the model is $90 \mathrm{~cm}^{3}$.
Calculate the actual:
(a) length of the car,
(b) area of the windscreen,
(c) volume of the boot.

Solution

(a) Actual length $=24 \times 20$

$$
\begin{aligned}
& =480 \mathrm{~cm} \\
& =4.8 \mathrm{~m}
\end{aligned}
$$

(b) Actual area $=32 \times 20^{2}$

$$
\begin{aligned}
& =12800 \mathrm{~cm}^{2} \\
& =1.28 \mathrm{~m}^{2}
\end{aligned}
$$

(c) Actual volume $=90 \times 20^{3}$

$$
\begin{aligned}
& =720000 \mathrm{~cm}^{3} \\
& =0.72 \mathrm{~m}^{3}
\end{aligned}
$$

Exercises

1. A model boat is made to a scale of $1: 10$.

The length of the model is 40 cm .
The area of the hull of the model is $500 \mathrm{~cm}^{2}$.
The volume of the hull of the model is $3200 \mathrm{~cm}^{3}$.
Calculate the actual:
(a) length of the boat,
(b) area of the hull,
(c) volume of the hull.
2. A map has a scale of $1: 50000$. On the map the area of a lake is $50 \mathrm{~cm}^{2}$. Calculate the actual area of the lake in:
(a) cm^{2}
(b) m^{2}
(c) km^{2}
3. A model of a tower block is made with a scale of $1: 60$. The volume of the model is $36000 \mathrm{~cm}^{3}$. Calculate the volume of the actual tower block in m^{3}.
4. A plot of land is represented on a map by a rectangle 2 cm by 5 cm . The scale of the map is $1: 40000$. Calculate the area of the plot of land in:
(a) cm^{2}
(b) m^{2}
(c) km^{2}
5. A model of a house is made to a scale of $1: 30$.

The height of the model is 20 cm .
The area of the roof of the model is $850 \mathrm{~cm}^{2}$.
The volume of the model house of $144400 \mathrm{~cm}^{3}$.
Calculate the actual:
(a) height of the house in m,
(b) area of the roof in m^{2},
(c) volume of the house in m^{3}.
6. An aeroplane has a wingspan of 12 m . A model of this plane has a wingspan of 60 cm .
(a) Calculate the scale of the model.
(b) The volume of the model is $3015 \mathrm{~cm}^{3}$. Calculate the volume of the actual aeroplane, in m^{3}.
(c) A badge on the model has area $2 \mathrm{~cm}^{2}$. Calculate the area of the actual badge, in cm^{2} and m^{2}.
7. A forest has an area of $4 \mathrm{~cm}^{2}$ on a map with a scale of $1: 200000$.

Calculate the actual area of the forest, in km^{2}.
8. An estate has an area of $50 \mathrm{~km}^{2}$. What would be the area of the estate on a map with a scale of $1: 40000$?
9. An indoor sports stadium has 5000 seats surrounding a playing area with an area of $384 \mathrm{~m}^{2}$. The total volume of the stadium is $3840 \mathrm{~m}^{3}$. A model is made to a scale of $1: 80$.
(a) How many seats are there in the model?
(b) What is the area of the playing surface in the model, in cm^{2} ?
(c) What is the volume of the model, in cm^{3} ?
10. A lake has an area of $5 \mathrm{~km}^{2}$. On a map it is represented by an area of $20 \mathrm{~cm}^{2}$. What is the scale of the map?

