Overhead Slides

10.1 Constant Differences

10.2 Sequences Defined by Formulae
10.3 Finding the Formula
10.4a Quadratic Sequences
10.4b Quadratic Sequences
10.5 Further Sequences
10.6 Finding the Limit of a Sequence

OS 10.1

Constant Differences

Use the differences to extend each sequence:

$\begin{array}{llllll}\text { A } & 3 & 10 & 17 & 24 & 31\end{array}$

$\forall / V / V / V /$
$\begin{array}{lllllll}\text { B } & 1 & 9 & 17 & 25 & 33\end{array}$
$\forall / V / V / V /$

$\begin{array}{llllll}\text { C } & 5 & 8 & 11 & 14 & 17\end{array}$

$\begin{array}{llllll}\mathrm{D} & 90 & 79 & 68 & 57 & 46\end{array}$
 $\forall / V / V / V /$

OS 10.2
Sequences Defined by Formulae

A sequence is defined by the formula $u_{n}=5 n-3$

$$
\begin{aligned}
u_{1} & =5 \times 1-3 \\
& = \\
& = \\
u_{2} & =5 \times \ldots-3 \\
& = \\
u_{3} & = \\
& = \\
u_{4} & \\
& = \\
u_{20} & = \\
& = \\
u_{100} & = \\
& =
\end{aligned}
$$

OS 10.3

Determine a formula for this sequence:
$\begin{array}{lllllll}7 & 12 & 17 & 22 & 27 & 32 & \ldots . .\end{array}$

The difference is \square, so the formula is

$$
u_{n}=\square n+c
$$

Use the first term to obtain c

$$
7=\square \times 1+c \Rightarrow c=\square
$$

So the formula is

$$
u_{n}=
$$

Determine a formula for this sequence:

The difference is \square, so the formula is

$$
u_{n}=\square n+c
$$

Use the first term to obtain c

$$
40=\square \times 1+c \Rightarrow c=\square
$$

So the formula is

$$
u_{n}=
$$

Determine the formula for the sequence:

5	11	19	29	41	55	71	$\ldots .$.

$\forall /$
V
V

As the second differences are constant and all equal to 2, the sequence will have formula

$$
u_{n}=n^{2}+
$$

Subtract n^{2} from each term to obtain a new sequence
$4 \quad 7$

The formula for this sequence is

$$
v_{n}=
$$

Combining the two sequences gives:

$$
u_{n}=
$$

OS 10.4b

Determine the formula for the sequence

The sequence will have a formula

$$
u_{n}=\square n^{2}+
$$

Now form a new sequence as below:

$$
{ }^{-2}{ }^{-6} \downarrow / \downarrow / \downarrow / V
$$

This sequence has formula

$$
v_{n}=
$$

So the original sequence has formula

$$
u_{n}=
$$

OS 10.5

Use differences to extend the following sequences:
1.

2
3
5
8
13
$\forall /$

2.

5
9
14 $\forall / V / V / V /$
3.

$\begin{array}{llll}\frac{3}{7} & \frac{4}{10} & \frac{5}{13} & \frac{6}{16}\end{array}$
$\forall / V / V / V$

What happens to the sequence

$$
u_{n}=\frac{2 n-3}{n+1}
$$

as n becomes large?

Complete the following table, and comment on the results.

n	u_{n}
1	
2	
5	
10	
50	
100	
1000	
2000	
5000	
10000	

