Overhead Slides

Overhead Slides

- 10.1 Constant Differences
- 10.2 Sequences Defined by Formulae
- 10.3 Finding the Formula
- 10.4a Quadratic Sequences
- 10.4b Quadratic Sequences
- 10.5 Further Sequences
- 10.6 Finding the Limit of a Sequence

Sequences Defined by Formulae

A sequence is defined by the formula $u_n = 5n - 3$

u_1	=	5	X	1	—	3	
	=						
<i>u</i> ₂	=	5	X	••	•	_	3
	=						
<i>u</i> ₃	=						
	=						
u_4	=						
	=						
<i>u</i> ₂₀	=						
	=						
<i>u</i> ₁₀₀	=						
	=						

$$7 = \square \times 1 + c \implies c = \square$$

So the formula is

 $u_n =$

Determine a formula for this sequence:

40 37 34 31 28 25 The difference is , so the formula is

$$u_n = \boxed{n + c}$$

Use the first term to obtain c

So the formula is

$$u_n =$$

© The Gatsby Charitable Foundation

As the second differences are constant and all equal to 2, the sequence will have formula

$$u_n = n^2 +$$

Subtract n^2 from each term to obtain a new sequence

The formula for this sequence is

$$v_n =$$

Combining the two sequences gives:

$$u_n =$$

© The Gatsby Charitable Foundation

OS 10.4b

Determine the formula for the sequence

The sequence will have a formula

$$u_n = \boxed{n^2} +$$

Now form a new sequence as below:

This sequence has formula

$$v_n =$$

So the original sequence has formula

$$u_n =$$

© The Gatsby Charitable Foundation

Finding the Limit of a Sequence

What happens to the sequence

$$u_n = \frac{2n-3}{n+1}$$

as *n* becomes large?

Complete the following table, and comment on the results.

n	υ _n				
1					
2					
5					
10					
50					
100					
1000					
2000					
5000					
10 000					