| 1 | a) Draw **half** the number of shapes in the picture.
 ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ☒️ ☒️ ☒️ ☒️
b) Draw **one third** of the number of shapes in the picture.
 ☒️ ☒️ ☒️ ☒️ ☒️ ☒️
c) Draw **one quarter** of the number of shapes in the picture.
 △ △ △ △ △ △ △ △ △ |
|---|---|
| 2 | There are 6 bananas in this bunch. Draw the bananas and fill in the number.
a) **1 half** of the bunch ☒️ ☒️ ☒️ ☒️ ☒️ ☒️
b) **1 third** of the bunch ☒️ ☒️ ☒️ ☒️ ☒️
c) **1 sixth** of the bunch ☒️ ☒️ ☒️ |
| 3 | Where will the parachutes land? Join them up to the correct hills.

![Diagram of parachutes and hills]

| 4 | Draw how many dumplings there are and write the amount in the box if:
a) ☐ ☐ ☐ ☐ ☐ is **1 half** of ☐
b) ☐ is **1 fifth** of ☐
c) ☐ ☐ ☐ is **1 third** of ☐
d) ☐ ☐ is **1 quarter** of ☐ |
| 5 | Draw a line 12 cm long and divide it into **thirds**. Each **third** is 4 cm.

![Diagram of a line divided into thirds]
1

Four mice have found a lump of cheese.
Draw where they should cut it so that they each have an equal amount.

Each mouse has \(\ldots \cdot \frac{1}{4} \ldots \cdot \) of the cheese.

2

Write below each shape what part of it is shaded.

\begin{align*}
\text{a)} & \quad \text{1 half} \\
\text{b)} & \quad \text{1 half} \\
\text{c)} & \quad \text{1 quarter} \\
\text{d)} & \quad \text{3 quarters} \\
\text{e)} & \quad \text{1 eighth} \\
\text{f)} & \quad \text{3 eighths}
\end{align*}

3

a) We have planted \emph{red} roses in \textbf{2 eighths} of the garden. Colour it \emph{red}.

b) We have planted \emph{blue} forget-me-nots in \textbf{3 eighths} of the garden. Colour it \emph{blue}.

c) We have planted grass in \textbf{2 eighths} of the garden. Colour it \emph{green}.

d) Our house is built on the remaining part of the garden. Draw it in.

What part of the garden does the house take up? \(\ldots \cdot \frac{1}{8} \ldots \cdot \)

4

Tortoise and Snail are having a race. Colour the animal who is ahead.

\begin{align*}
\text{Tortoise} & \quad \text{has covered} \quad \textbf{1 quarter} \text{ of 1 metre}: \ldots \cdot \frac{1}{4} \ldots \cdot \text{25 cm} \\
\text{Snail} & \quad \text{has covered} \quad \textbf{3 fifths} \text{ of 50 cm}: \ldots \cdot \frac{3}{5} \ldots \cdot \text{30 cm}
\end{align*}
These things belong to a clown.

Colour:

a) 1 half of his coat yellow

b) 3 quarters of his stick green

c) 1 half of the pair of shoes blue and the other half red

d) 5 eighths of his cake brown.

Complete the sentences by drawing or writing.

a) 🔻 🔻 🔻 is 1 third of 6 rabbits

b) ♠️ ♠️ ♠️ is three quarters of ♠️ ♠️ ♠️ ♠️

c) 🍎 🍎 🍎 is one half of 🍎 🍎 🍎 🍎 🍎 🍎

drank 24 litres of water.

drank 3 quarters of that amount.

How much water did they drink altogether?

Calculation:

\[
\begin{align*}
G: & \quad 24 \text{ litres} \div 4 \times 3 = 18 \text{ litres} \\
E + G &= 24 \text{ litres} + 18 \text{ litres} \\
&= 42 \text{ litres}
\end{align*}
\]

Answer: 42 litres

Draw a line of length 8 cm. Draw over 3 quarters of it in red.
1. Colour:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 thirds</td>
<td>1 quarter</td>
<td>2 sixths</td>
<td>3 quarters</td>
</tr>
</tbody>
</table>

2. Draw how many nuts there are if:

a) \(\frac{1}{4} \) is 1 quarter

b) \(\frac{3}{8} \) is 3 eighths

c) \(\frac{2}{6} \) is 2 sixths

3. Join up the values to the corresponding points on the number line.

- 1 fifth of 15
- 2 times 8
- 2 halves of 6
- 2 quarters of 8
- 1 half of 0
- 3 quarters of 20

4. Compare the shaded parts. Which is more? Write in the correct sign.

- 1 third of a half
- 1 half of a third
1. Sally and Susy Squirrel want to divide up the acorns they collected so that they both have an equal amount. How could they do it? Complete the table.

<table>
<thead>
<tr>
<th>Number of acorns</th>
<th>10</th>
<th>8</th>
<th>11</th>
<th>15</th>
<th>18</th>
<th>7</th>
<th>16</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>each</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>remaining</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2. We want to put 3 flowers into each vase. How many vases will we fill and how many flowers will remain? Fill in the missing numbers.

\[12 = 3 \times \square + \triangle \]
\[13 = 3 \times \square + \triangle \]
\[14 = 3 \times \square + \triangle \]

3. A toy shop bought 35 teddy bears. The shop assistant could fit only 3 bears on each shelf. She put the remainder in the window. How many shelves were used? How many bears were put in the window?

\[35 \div 3 = 11, \text{ remainder } 2 \]

Answer: 11 shelves were used. 2 bears were put in the window.

4. Fill in the missing numbers.

a) \[40 + \square = 60 \]
b) \[3 \square + 50 = 80 \]
c) \[30 + \square = 50 \]
\[46 + \square = 66 \]
\[3 \square + 50 = 85 \]
\[38 + \square = 58 \]
\[40 + \square = 69 \]
\[3 \square + 57 = 87 \]
\[3 \square + 28 = 58 \]
\[70 - \square = 41 \]
\[6 \square - 36 = 24 \]
\[9 \square - 48 = 42 \]
\[66 - \square = 45 \]
\[6 \square - 6 = 58 \]
\[92 - \square = 84 \]
\[75 - \square = 46 \]
\[6 \square - 36 = 28 \]
\[9 \square - 48 = 44 \]
What do the pictures tell us? Write equations about them.

1. a) \[3 \times 3 + 2 = 11 \]
 \[11 \div 3 = 3, \text{ remainder } 2 \]
 \[(11-2) \div 3 = 3 \]

 b) \[3 \times 2 + 1 = 7 \]
 \[7 \div 2 = 3, \text{ remainder } 1 \]
 \[(7-1) \div 2 = 3 \]

 c) \[2 \times 4 + 1 = 9 \]
 \[9 \div 4 = 2, \text{ remainder } 1 \]
 \[(9-1) \div 4 = 2 \]

2. Alice has been given some flowers. She wants to put 3 flowers in each vase. How many vases will she fill and how many flowers remain?

 a) 13 flowers
 \[13 \div 3 = 4, \text{ remainder } 1 \]
 \[13 = 4 \times 3 + 1 \]

 b) 14 flowers
 \[14 \div 3 = 4, \text{ remainder } 2 \]
 \[14 = 4 \times 3 + 2 \]

 c) 15 flowers
 \[15 \div 3 = 5 \]
 \[15 = 5 \times 3 \]

3. A photo album can hold only 4 photos on each page. How many pages will be filled and how many photos will remain if there are:

 a) 24 photos
 \[24 \div 4 = 6 \]
 \[24 \text{ remainder } 0 \]
 \[6 \text{ pages} \]

 b) 25 photos
 \[25 \div 4 = 6 \text{ remainder } 1 \]
 \[6 \text{ pages} \]

 c) 26 photos
 \[26 \div 4 = 6 \text{ remainder } 2 \]
 \[6 \text{ pages} \]

 d) 27 photos
 \[27 \div 4 = 6 \text{ remainder } 3 \]
 \[6 \text{ pages} \]

4. a) \[27 + 35 = 28 + 3 \]
 \[34 + 39 = 43 + 9 \]
 \[68 + 19 = 69 + 18 \]

 b) \[73 - 47 = 74 - 4 \]
 \[92 - 35 = 82 - 2 \]
 \[85 - 49 = 82 - 4 \]
1 Write in the missing numbers. Draw pictures to match the calculations.

a) \(3 \times 5 + 1 = \square\) \[16\]
b) \(3 \times 5 + 4 = \square\) \[19\]
c) \(3 \times 5 + 3 = 18\)

\[
\begin{array}{ccc}
16 \div 5 &=& 3 \\
& & \text{remainder} & 1 \\
19 \div 5 &=& 3 \\
& & \text{remainder} & 4 \\
18 \div 5 &=& 3 \\
& & \text{remainder} & 3 \\
\end{array}
\]

2 Grandad wants to put his 35 rabbits into hutches, with an equal number of rabbits in each hutch. Complete the table.

<table>
<thead>
<tr>
<th>Number of per hutch</th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>hutches</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>remaining</td>
<td>17</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

3 The children were playing a game and had to stand in rows. If they stood 2, 3 or 4 in a row, there was always 1 child left out.

What was the smallest possible number of children who played the game? Try these numbers. Write a \(\times\) or a \(\checkmark\) to show whether they are possible.

\[
\begin{array}{cccccccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\times & \times & \checkmark \\
\end{array}
\]

Answer: \(13\)

4 Fill in the missing numbers.

a) \(65 + 30 = 95\)
b) \(70 - 20 = 50\)
c) \(68 - 43 = 25\)

\[
\begin{array}{ccc}
35 + 14 &=& 49 \\
60 - 30 &=& 30 \\
48 - 16 &=& 32 \\
72 + 4 &=& 76 \\
85 - 30 &=& 55 \\
92 - 11 &=& 81 \\
\end{array}
\]
1. A school was taking its pupils on a trip on a steam railway.
 The carriages in the train were so small that they could seat only 6 people.
 Complete the table to show how many carriages were needed.

<table>
<thead>
<tr>
<th>Number of Children</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full carriages</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Children remaining</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

2. How many weeks and days are there in each month? Fill in the table.

<table>
<thead>
<tr>
<th>Months</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days</td>
<td>31</td>
<td>28/29</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Number of weeks</td>
<td>4</td>
</tr>
<tr>
<td>plus extra days</td>
<td>3</td>
<td>0/1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3. A train had carriages which could seat 8 people. Three carriages were full
 and the 4th carriage was half full.
 How many passengers were on the train?

 Calculation: 3 × 8 + 4 = 28

 Answer: There were 28 passengers on the train.

4. Practise calculation.
 a) 18 + 6 = 24
 b) 6 × 4 = 24
 c) 24 + 12 = 36
 36 + 8 = 44
 3 × 7 = 21
 18 + 36 = 54
 48 + 5 = 53
 9 × 6 = 54
 42 − 24 = 18
 54 − 9 = 45
 24 ÷ 6 = 4
 56 − 18 = 38
 36 − 8 = 28
 35 ÷ 5 = 7
 27 ÷ 7 = 3
 60 − 4 = 56
 48 ÷ 6 = 8
 72 ÷ 8 = 9
In a farmyard there are hens and rabbits. They have 52 legs altogether. How many hens and how many rabbits could there be in the farmyard?

Complete the table. Write calculations for some of the columns.

<table>
<thead>
<tr>
<th>Number of</th>
<th>12</th>
<th>6</th>
<th>10</th>
<th>2</th>
<th>0</th>
<th>4</th>
<th>14</th>
<th>8</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>16</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hens</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Rabbits</td>
<td></td>
</tr>
</tbody>
</table>

Calculations:
E.g. \(12 \times 2 + 7 \times 4 = 52\) \(6 \times 2 + 10 \times 4 = 52\)
\(10 \times 2 + 8 \times 4 = 52\) \(2 \times 2 + 12 \times 4 = 52\) \(0 \times 2 + 13 \times 4 = 52\)

Match up the dogs to their bones. Join them up or colour them.

 Practise multiplication.

a) \(9 \times 9 = \boxed{81}\) b) \(10 \times 8 = \boxed{80}\) c) \(1 \times 8 = \boxed{8}\)
\(6 \times 5 = \boxed{30}\) \(3 \times 2 = \boxed{6}\) \(9 \times 7 = \boxed{63}\)
\(8 \times 8 = \boxed{64}\) \(1 \times 4 = \boxed{4}\) \(2 \times 9 = \boxed{18}\)
\(10 \times 7 = \boxed{70}\) \(5 \times 5 = \boxed{25}\) \(4 \times 5 = \boxed{20}\)
\(7 \times 8 = \boxed{56}\) \(7 \times 7 = \boxed{49}\) \(21 \times 3 = \boxed{63}\)

 Practise addition and subtraction.

a) \(56 + 7 = \boxed{63}\) b) \(26 + 9 = \boxed{35}\) c) \(35 - 7 = \boxed{28}\)
\(26 + 8 = \boxed{34}\) \(15 + 72 = \boxed{87}\) \(81 - 6 = \boxed{75}\)
\(39 + 5 = \boxed{44}\) \(4 + 38 = \boxed{42}\) \(76 - 9 = \boxed{67}\)
\(7 + 68 = \boxed{75}\) \(92 - 5 = \boxed{87}\) \(57 - 8 = \boxed{49}\)
\(5 + 48 = \boxed{53}\) \(52 - 4 = \boxed{48}\) \(48 - 9 = \boxed{39}\)
Write in the suitable signs. (+, −, ×, ÷)

E.g:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 40 ÷ 4 ÷ 5 = 2</td>
<td>b) 40 + 4 + 5 = 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 ÷ 4 + 5 = 15</td>
<td>40 ÷ 4 × 5 = 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 ÷ 4 − 5 = 5</td>
<td>40 − 4 − 5 = 31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the connection between the shapes? Complete the table. Write the rule in different ways.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>⭐</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>⌂</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>⌝</td>
<td>18</td>
<td>18</td>
<td>10</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>⭐ = 2 × ⭐</td>
<td>⭐ + 2 × ⭐</td>
<td>⭐ = ⌂ ÷ 2 − ⌂</td>
<td>⌂ = ⌝ ÷ 2 − ⌝</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practise addition and subtraction.

<table>
<thead>
<tr>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 + 18 = 5 4</td>
<td>76 + 16 = 9 2</td>
<td>65 − 29 = 3 6</td>
</tr>
<tr>
<td>25 + 29 = 5 4</td>
<td>33 + 29 = 6 2</td>
<td>52 − 36 = 1 6</td>
</tr>
<tr>
<td>56 + 17 = 7 3</td>
<td>44 + 28 = 7 2</td>
<td>57 − 19 = 3 8</td>
</tr>
<tr>
<td>47 + 35 = 8 2</td>
<td>72 − 35 = 3 7</td>
<td>48 − 29 = 1 9</td>
</tr>
<tr>
<td>34 + 29 = 6 3</td>
<td>61 − 27 = 3 4</td>
<td>86 − 38 = 4 8</td>
</tr>
<tr>
<td>29 + 39 = 6 8</td>
<td>83 − 58 = 2 5</td>
<td>94 − 77 = 1 7</td>
</tr>
</tbody>
</table>

Practise multiplication.

<table>
<thead>
<tr>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 = 6 × 9</td>
<td>30 = 10 × 3</td>
<td>0 = 2 × 0</td>
</tr>
<tr>
<td>20 = 10 × 2</td>
<td>0 = 0 × 9</td>
<td>3 = 1 × 3</td>
</tr>
<tr>
<td>10 = 10 × 1</td>
<td>32 = 4 × 8</td>
<td>0 = 0 × 4</td>
</tr>
<tr>
<td>36 = 6 × 6</td>
<td>48 = 8 × 6</td>
<td>35 = 5 × 7</td>
</tr>
<tr>
<td>14 = 7 × 2</td>
<td>9 = 1 × 9</td>
<td>21 = 7 × 3</td>
</tr>
<tr>
<td>0 = 3 × 0</td>
<td>2 = 2 × 1</td>
<td>50 = 10 × 5</td>
</tr>
</tbody>
</table>
1. I am going to toss a coin once. How certain can I be of the result? Join up the statements on the left to the correct labels on the right.

- I will throw a head. **Certain**
- I will throw a tail. **Possible, but not certain**
- I will throw a head and a tail. **Impossible**
- I will throw a head or a tail.

2. Throw a dice on your desk 10 times. Keep a tally of the numbers thrown in the table. Fill in the last column to show how often you threw each number.

<table>
<thead>
<tr>
<th>Throws</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

3. I am going to throw a dice once. How certain can I be of the result? Join up the statements at the sides to the correct labels in the middle.

- I will throw a 4. **Certain**
- I will throw a 2 or a 6. **Possible, but not certain**
- I will throw a 1 and a 5. **Impossible**
- I will throw a 7. **Impossible**
- I will throw a number < 3.
- I will throw a number < 1.
- I will throw an even number.
- I will throw a number < 9.

4. I am going to toss a coin twice. Write the possible results in the table.

<table>
<thead>
<tr>
<th>Throws</th>
<th>1st throw</th>
<th>2nd throw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Head</td>
<td>Tail</td>
</tr>
<tr>
<td>Tail</td>
<td>Head</td>
<td>Tail</td>
</tr>
</tbody>
</table>
There are 2 white, 2 black and 2 striped marbles in a bag. The bag is tied with cord and you cannot see inside.

Join up the the statements on the left to the labels on the right.

How certain can I be that if, with my eyes shut:

a) I take out 1 marble, it will be black.
 Certain

b) I take out 2 marbles, they will be the same colour.
 Possible but not certain

c) I take out 2 marbles, they will be different colours.
 Impossible

d) I take out 5 marbles, at least 2 of them will be the same colour.

e) I take out 4 marbles, they will all be different colours.

a) If we were to throw 2 dice at the same time, how many different results could there be? . . . 36 .
 Continue writing them out, with A's number first.

1 + 6, 1 + 5, 1 + 4, 1 + 3, 1 + 2, 1 + 1, 2 + 6, 2 + 5, 2 + 4, 2 + 3, 2 + 2, 2 + 1,
3 + 6, 3 + 5, 3 + 4, 3 + 3, 3 + 2, 3 + 1, 4 + 6, 4 + 5, 4 + 4, 4 + 3, 4 + 2, 4 + 1
5 + 6, 5 + 5, 5 + 4, 5 + 3, 5 + 2, 5 + 1, 6 + 6, 6 + 5, 6 + 4, 6 + 3, 6 + 2, 6 + 1

b) Which total is: i) the smallest possible \[1 + 1 = 2\]
 ii) the largest possible? \[6 + 6 = 12\]

We have put 5 red, 5 yellow and 5 green marbles into a bag. The bag is tied with cord and you cannot see inside.

If you take out some marbles with your eyes closed, what is the smallest number of marbles you should take out to make certain that you have at least:

a) 1 red marble 11
 b) 1 yellow marble 11

c) 2 green marbles 12

d) 3 marbles of the same colour? 7
 2 R + 2 Y + 2 G = 6
 Next marble is R, Y or G, making 7 in total
Mrs Hedgehog and Mrs Squirrel always take the same number of strawberries home for their babies.

There are 8 baby hedgehogs and 4 baby squirrels. How many strawberries will each baby get? Complete the table.

<table>
<thead>
<tr>
<th>taken home</th>
<th>8</th>
<th>24</th>
<th>40</th>
<th>32</th>
<th>48</th>
<th>16</th>
<th>56</th>
<th>80</th>
<th>72</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>per baby</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td>14</td>
<td>20</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>per baby</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Write a division about each picture. Check with a multiplication.

a) ![Picture](image1)

\[
7 \div 2 = 3, \text{ remainder } 1 \\
3 \times 2 + 1 = 7
\]

b) ![Picture](image2)

\[
9 \div 4 = 2, \text{ remainder } 1 \\
2 \times 4 + 1 = 9
\]

c) ![Picture](image3)

\[
13 \div 3 = 4, \text{ remainder } 1 \\
4 \times 3 + 1 = 13
\]

Colour the amount asked for in each picture.

a) 1 half
b) 1 third
c) 4 sixths
d) Draw 10 marbles. Colour 2 fifths of them red.
Fill in the missing numbers and signs. (+, −, ×, ÷)

a) 7 ÷ 6 ÷ 3 ÷ 14 ÷ 2 ÷ 7 ÷ 14 ÷ 3 ÷ 21 3 6

b) 9 ÷ 4 ÷ 2 ÷ 3 ÷ 9 ÷ 2 ÷ 6 ÷ 36 ÷ 6 4

Pete has 48 stamps, 8 times more than the number Laura has.

a) How many stamps does Laura have?

Calculation:

Answer: Laura has 6 stamps.

b) How many stamps do they have altogether?

Calculation:

Answer: They have 54 stamps altogether.

Practise division. Check with multiplication.

a) 17 ÷ 2 = 8 remainder 1
 Check: 8 × 2 + 1 = 17

22 ÷ 2 = 11 remainder 0
 Check: 11 × 2 = 22

14 ÷ 2 = 7 remainder 0
 Check: 7 × 2 = 14

b) 28 ÷ 3 = 9 remainder 1
 Check: 9 × 3 + 1 = 28

36 ÷ 3 = 12 remainder 0
 Check: 12 × 3 = 36

18 ÷ 3 = 6 remainder 0
 Check: 6 × 3 = 18

c) 41 ÷ 4 = 10 remainder 1
 Check: 10 × 4 + 1 = 41

32 ÷ 4 = 8 remainder 0
 Check: 8 × 4 = 32

0 ÷ 4 = 0 remainder 0
 Check: 0 × 4 = 0
Each number is the product of the 2 numbers directly below it. Fill in the missing numbers.

\[
\begin{array}{c}
48 \\
6 \times 8 \\
3 \times 2 \times 4 \\
3 \times 1 \times 2 \times 2
\end{array}
\]

Join up the equal pairs.

\[
\begin{align*}
42 \div 6 + 1 &= 7 \\
3 \text{ quarters of 12} &= 3 \\
26 \div 2 - 3 &= 10 \\
1 \text{ half of 8} &= 4
\end{align*}
\]

3 quarters of 12

Practise division. Check with multiplication.

\[
\begin{align*}
a) \quad 16 \div 5 &= 3 \\
& \text{remainder 1} \\
& \text{Check} 3 \times 5 + 1 = 16 \\
60 \div 5 &= 12 \\
& \text{remainder 0} \\
& \text{Check} 12 \times 5 = 60 \\
40 \div 5 &= 8 \\
& \text{remainder 0} \\
& \text{Check} 8 \times 5 = 40 \\
b) \quad 34 \div 6 &= 5 \\
& \text{remainder 4} \\
& \text{Check} 5 \times 6 + 4 = 34 \\
48 \div 6 &= 8 \\
& \text{remainder 0} \\
& \text{Check} 8 \times 6 = 48 \\
66 \div 6 &= 11 \\
& \text{remainder 0} \\
& \text{Check} 11 \times 6 = 66 \\
c) \quad 14 \div 7 &= 2 \\
& \text{remainder 0} \\
& \text{Check} 2 \times 7 = 14 \\
57 \div 7 &= 8 \\
& \text{remainder 1} \\
& \text{Check} 8 \times 7 + 1 = 57 \\
77 \div 7 &= 11 \\
& \text{remainder 0} \\
& \text{Check} 11 \times 7 = 77
\end{align*}
\]

Compare the results. Write the correct sign between them (<, >, =)

\[
\begin{align*}
a) \quad 14 \times 6 &= 10 \times 6 + 4 \times 6 \\
b) \quad 32 \times 3 &> 30 \times 3 + 2 \\
9 \times 14 &= 9 \times 7 + 9 \times 7 \\
17 \times 4 &> 8 \times 4 + 8 \times 4
\end{align*}
\]
1. Each number is the **product** of the 2 numbers directly below it. Fill in the missing numbers. For example:

 a)
 \[
 \begin{array}{ccc}
 & 16 & \\
 4 & & 4 \\
 2 & & 2 \\
 2 & 1 & 2 & 1
 \end{array}
 \]

 b)
 \[
 \begin{array}{ccc}
 & 32 & \\
 4 & & 8 \\
 2 & & 2 & 4 \\
 2 & 1 & 2 & 2
 \end{array}
 \]

 c)
 \[
 \begin{array}{ccc}
 & 64 & \\
 8 & & 8 \\
 4 & & 2 & 4 \\
 2 & 2 & 1 & 4
 \end{array}
 \]

2. Four ladybirds are sharing 22 leaves so that they all have an equal amount. How many leaves will each ladybird get and how many will remain?

 \[
 \begin{array}{c}
 22 \div 4 = \frac{22}{4} = 5 \text{ remainder } 2
 \end{array}
 \]

 Check: \[4 \times 5 + 2 = 22\]

 Answer: Each ladybird will get 5 leaves. 2 leaves will remain.

3. Practise division. Check with multiplication.

 a) \[26 \div 8 = 3 \text{ remainder } 2\]

 Check: \[3 \times 8 + 2 = 26\]

 b) \[39 \div 9 = 4 \text{ remainder } 3\]

 Check: \[4 \times 9 + 3 = 39\]

 c) \[49 \div 8 = 6 \text{ remainder } 1\]

 Check: \[6 \times 8 + 1 = 49\]

 d) \[72 \div 8 = 9 \text{ remainder } 0\]

 Check: \[9 \times 8 = 72\]

 e) \[81 \div 9 = 9 \text{ remainder } 0\]

 Check: \[9 \times 9 = 81\]

 f) \[99 \div 9 = 11 \text{ remainder } 0\]

 Check: \[11 \times 9 = 99\]

4. In which order will the cars pass the finishing line? Write the position numbers in the boxes. The car with the highest value will be 1st!

 Write the values in **decreasing** order.

 \[\ldots 23 > \ldots 22 > \ldots 12 > \ldots 11 > \ldots 7 > \ldots 4 > \ldots 3 > \ldots 0 \ldots\]
1. Write these numbers in the correct places in the two tables.

 33, 39, 42, 56, 60, 72, 89, 100, 121, 110, 137, 143, 159, 164, 177, 181, 199, 200

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>31</td>
<td>33</td>
<td>39</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>21</td>
<td>42</td>
<td>55</td>
<td>56</td>
<td>60</td>
<td>62</td>
<td>72</td>
<td>89</td>
<td>99</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>31</td>
<td>81</td>
<td>110</td>
<td>137</td>
<td>143</td>
<td>159</td>
<td>164</td>
<td>177</td>
<td>181</td>
<td>199</td>
<td>200</td>
</tr>
</tbody>
</table>

a) How many 10's are in 100? 10
b) How many 100's are in 200? 2

2. Join up the amounts in the middle to the matching numbers.

 one hundred
 two hundred
 three hundred
 four hundred
 five hundred
 six hundred
 seven hundred
 eight hundred
 nine hundred
 one thousand

<table>
<thead>
<tr>
<th></th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

 1 \times 100 = 100
 2 \times 100 = 200
 3 \times 100 = 300
 4 \times 100 = 400
 5 \times 100 = 500
 6 \times 100 = 600
 7 \times 100 = 700
 8 \times 100 = 800
 9 \times 100 = 900
 10 \times 100 = 1000

3. Colour in the number you think is the odd one out. Why did you choose it?

 a) E.g.: 24 98 137 67 45

 137 is the only number > 100;
 137 is the only 3-digit number.

 b) E.g.: 137 210 150 111 156

 210 is the only number > 200.
1. Write in the missing numbers.

a) 197 198 199
 202 201 200

b) 398 400 401 402 403 404

2. At which numbers have we written the letters? Write them in the boxes.

 a)
 0 1 2 3 4 5 6 7 8 9 10

 a) 3
 b) 6
 c) 8
 d) 9

 b) 0 1 2 3 4 5 6 7 8 9 100

 a) 30
 b) 60
 c) 80
 d) 90

 c) 0 1 2 3 4 5 6 7 8 9 1000

 a) 300
 b) 600
 c) 800
 d) 900

3. Write additions about the pictures.

 a) Had 1 1 1
 Was given 1 1
 3 + 2 = 5

 b) Had 10 10 10 10
 Was given 10 10 10 10
 3 0 + 2 = 5 0

 c) Had 100 100 100 100
 Was given 100 100 100 100
 3 0 0 + 2 0 0 = 5 0 0

 d) Had 1 1 1 1 1 1
 Was given 1 1 1 1 1 1
 4 + 5 = 9

 e) Had 10 10 10 10
 Was given 10 10 10 10
 4 0 + 5 0 = 9 0

 f) Had 100 100 100 100
 Was given 100 100 100 100
 4 0 0 + 5 0 0 = 9 0 0

4. Join up the numbers to the number line.

 130 140 170 190
 110 120 150 180

Page 130
1. Write subtractions about the pictures.
 a) Had 5 4 Spent 1
 \[5 - 4 = 1 \]
 b) Had 10 10 10 10 Spent 10 10 10
 \[50 - 40 = 10 \]
 c) Had 100 100 100 100 100 Spent 100 100 100
 \[500 - 400 = 100 \]
 d) Had 6 3 Spent 3
 \[6 - 3 = 3 \]
 e) Had 10 10 10 10 10 10 10 10 Spent 10 10 10 10 10
 \[60 - 30 = 30 \]
 f) Had 100 100 100 100 100 100 100 100 100 Spent 100 100 100 100
 \[600 - 300 = 300 \]

2. Join the picture to the corresponding point on the number line. Write the numbers below the number line.

3. Fill in the missing numbers. Use the number line to help you.
 \[270 + 30 = 300 \]
 \[340 + 60 = 400 \]
 \[420 + 80 = 500 \]
 \[270 + 70 = 340 \]
 \[340 + 80 = 420 \]
 \[420 + 90 = 510 \]

4. Write these numbers using digits.
 a) one hundred and forty 140
 four hundred 400
 b) two hundred and ten 210
 five hundred 500
1 Fill in the missing numbers.

\[100 + 10 \]
\[130 + 80 \]
\[200 + 150 \]
\[110 + 40 \]
\[100 + 170 \]
\[220 + 160 \]

2 Colour the items we can pay for exactly with only 10 p coins.

- 10 p
- 15 p
- 70 p
- 78 p
- 90 p
- 100 p (£1)
- 105 p (£1 and 5 p)
- 170 p (£1 and 70 p)
- 178 p (£1 and 78 p)
- 190 p (£1 and 90 p)

3 Practise addition and subtraction.

a) \[100 + 80 = \]
\[100 + 8 = \]
\[100 + 88 = \]
\[100 + 55 = \]
\[300 + 67 = \]
\[300 + 84 = \]
\[130 + 20 = \]
\[130 + 2 = \]

b) \[130 − 20 = \]
\[230 − 20 = \]
\[147 − 7 = \]
\[147 − 40 = \]
\[147 − 47 = \]
\[134 − 34 = \]
\[256 − 56 = \]
\[100 + 50 + 3 = \]
1

Complete the table.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Units</th>
<th>Number in digits</th>
<th>Number in words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>26</td>
<td>twenty-six</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>126</td>
<td>one hundred and twenty-six</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>226</td>
<td>two hundred and twenty-six</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>10</td>
<td>326</td>
<td>three hundred and twenty-six</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>526</td>
<td>five hundred and twenty-six</td>
</tr>
</tbody>
</table>

2

Show different ways we could we pay these amounts.

<table>
<thead>
<tr>
<th>10p</th>
<th>50p</th>
<th>£1</th>
<th>£10</th>
<th>£20</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>£2</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>£2</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>£23</td>
<td>–</td>
<td>–</td>
<td>23</td>
<td>–</td>
</tr>
<tr>
<td>£23</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>£23</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>2</td>
</tr>
</tbody>
</table>

There are many correct answers; some are given in the table.

3

Which of these could you buy? Draw pictures and write additions.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 apple</td>
<td>£1</td>
</tr>
<tr>
<td>2 bananas</td>
<td>50 p</td>
</tr>
<tr>
<td>1 hot dog</td>
<td>70 p</td>
</tr>
<tr>
<td>1 packet crisps</td>
<td>20 p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 apple</td>
<td>£1</td>
</tr>
<tr>
<td>2 bananas</td>
<td>50 p</td>
</tr>
<tr>
<td>1 hot dog</td>
<td>70 p</td>
</tr>
<tr>
<td>3 packets crisps</td>
<td>70 p + 70 p = £2 10 p</td>
</tr>
<tr>
<td>1 apple</td>
<td>50 p + 70 p = £1 20 p</td>
</tr>
</tbody>
</table>

There are many other correct answers.
Complete the table. Write the total at the bottom of each column.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Units</th>
<th>Number in digits</th>
<th>Number in words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>21</td>
<td>twenty-one</td>
</tr>
<tr>
<td>100 100 100</td>
<td>1</td>
<td>1 1</td>
<td>304</td>
<td>three hundred and four</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>1 1 1</td>
<td>113</td>
<td>one hundred and thirteen</td>
</tr>
<tr>
<td>100 100 100 100</td>
<td></td>
<td></td>
<td>350</td>
<td>three hundred and fifty</td>
</tr>
<tr>
<td>Total</td>
<td>700</td>
<td>80</td>
<td>8</td>
<td>788</td>
</tr>
</tbody>
</table>

Colour as many 100's, 10's and 1's as the number at the bottom shows.

a)
![Image of circles showing 300, 20, 5]

b)
![Image of circles showing 300, 90, 0]

c)
![Image of circles showing 300, 20, 7]

d)
![Image of circles showing 300, 18, 6]

Find the rule. Complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th></th>
<th>106</th>
<th>245</th>
<th>200</th>
<th>180</th>
<th>250</th>
<th>150</th>
<th>400</th>
<th>356</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 ten</td>
<td>2 hundreds</td>
<td>1 ten</td>
<td>2 hundreds</td>
<td>2 hundreds</td>
<td>5 hundreds</td>
<td>11 tens</td>
<td>5 tens</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>445</td>
<td>210</td>
<td>380</td>
<td>450</td>
<td>650</td>
<td>510</td>
<td>406</td>
</tr>
</tbody>
</table>

= ⭐ + ⏰
= ⏰ ⭐
= ⭐ - ⏰
1. Write the total amount below each column.
 a) \[
 \begin{array}{ccc}
 \hline
 \text{100} & \text{10} & \text{1} \\
 \text{10} & \text{1} & \text{1} \\
 \text{1} & \text{1} & \text{1} \\
 \text{1} & \text{1} & \text{1} \\
 \hline
 \end{array}
 \]
 \[= 5 \quad 2 \quad 3\]
 b) \[
 \begin{array}{ccc}
 \hline
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{0} & \text{1} \\
 \text{0} & \text{1} & \text{1} \\
 \text{1} & \text{1} & \text{1} \\
 \hline
 \end{array}
 \]
 \[= 2 \quad 4 \quad 5\]
 c) \[
 \begin{array}{ccc}
 \hline
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{0} & \text{1} \\
 \text{1} & \text{1} & \text{1} \\
 \hline
 \end{array}
 \]
 \[= 4 \quad 0 \quad 2\]
 d) \[
 \begin{array}{ccc}
 \hline
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{0} & \text{0} \\
 \text{1} & \text{1} & \text{1} \\
 \hline
 \end{array}
 \]
 \[= 5 \quad 4 \quad 0\]

2. Join up the equal numbers.
 - one hundred and thirty-six
 - 136
 - one hundred and sixty-three
 - 316
 - one hundred and thirty
 - 163
 - three hundred and sixteen
 - 211
 - three hundred and one
 - 130
 - one hundred and twelve
 - 103
 - one hundred and three
 - 301
 - two hundred and eleven
 - 112

3. Join up the equal amounts.
 - 500 + 130
 - 630
 - 100
 - 120 + 90
 - 850 – 300
 - 790
 - 120
 - 520 – 100
 - 800 – 10
 - 550
 - 210
 - 100 + 20
 - 300
 - 420

4. Complete the table. The rule is: △ − □ = ◯.

<table>
<thead>
<tr>
<th></th>
<th>£1</th>
<th>£3</th>
<th>90 p</th>
<th>2 litres</th>
<th>1 m 20 cm</th>
<th>3 m</th>
<th>1 kg</th>
<th>£9 10 p</th>
<th>4 litres 30 cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△</td>
<td>10 p</td>
<td>70 p</td>
<td>20 p</td>
<td>1 litre 80 cl</td>
<td>20 cm</td>
<td>60 cm</td>
<td>200 g</td>
<td>£8</td>
<td>1 litres 30 cl</td>
</tr>
<tr>
<td>◯</td>
<td>90 p</td>
<td>£2 30 p</td>
<td>70 p</td>
<td>20 cl</td>
<td>1 m 2 m 40 cm</td>
<td>800 g</td>
<td>£1 10 p</td>
<td>3 litres</td>
<td></td>
</tr>
</tbody>
</table>

△ = □ − ◯ □ = △ + ◯
Bob has only £5 notes in his wallet. He is thinking of buying one of these.

£4 £7 20 p £15 90 p £6 10 p £9 30 p

Buying which item would give him
a) most change back? racket and shuttlecock Change £20 = £15.90 p = £4.10 p
b) least change back? car Change £10 = £9.30 p = 70 p

Write the additions and subtractions in a shorter way. Write the answers too.

E.g:

a) 80 + 80 + 80 = 3 × 80 = 240
b) 25 + 25 + 25 + 25 + 25 + 25 + 25 = 7 × 25 = 175
c) 70 + 70 = 2 × 70 = 140
d) 100 + 100 + 100 + 100 = 4 × 100 = 400
e) 250 + 250 = 2 × 250 = 500
f) 120 − 30 − 30 − 30 = 120 − 3 × 30 = 30
g) 150 − 50 − 50 − 50 = 150 − 3 × 50 = 0

Write in the missing numbers.

a) 60 + 20 → 80 → −10 → 70 → +70 → 140 → −50 → 90
b) 56 + 28 → 84 → −15 → 69 → +70 → 139 → −50 → 89
c) 170 − 30 → 140 → −60 → 80 → +50 → 130 → −80 → 50
d) 176 − 30 → 146 → −60 → 86 → +80 → 166 → −50 → 116

How many 40 cl jars can be filled from a 3 litre 20 cl tub of honey?

320 ÷ 40 = 8

Answer: 8 jars
Which of the numbers 2, 5 or 10 does each shape represent?

The same shape means the same number.

The arrows point to the multiplication which has twice the value.

Practise multiplication.

a) \(\begin{array}{c}
6 \\
27 \\
0 \\
5 \\
10 \\
34
\end{array} \times \begin{array}{c}
1 \\
3 \\
0 \\
5 \\
2 \\
2
\end{array} = 6 \times 1 \)
\(\begin{array}{c}
24 \\
40 \\
0 \\
40 \\
9 \\
46
\end{array} \times \begin{array}{c}
8 \\
5 \\
6 \\
10 \\
3 \\
23
\end{array} = 3 \times 8 \)
\(\begin{array}{c}
12 \\
24 \\
0 \\
5 \\
10 \\
34
\end{array} \times \begin{array}{c}
4 \\
4 \\
0 \\
0 \\
2 \\
5
\end{array} = 3 \times 4 \)

Practise division.

a) \(\begin{array}{c}
12 \\
27 \\
35 \\
63 \\
100 \\
72
\end{array} \div \begin{array}{c}
2 \\
3 \\
7 \\
9 \\
10 \\
8
\end{array} = 6 \div 2 \)
\(\begin{array}{c}
6 \\
9 \\
5 \\
7 \\
10 \\
9
\end{array} \div \begin{array}{c}
3 \\
5 \\
8 \\
7 \\
8 \\
4
\end{array} = 2 \div 3 \)
\(\begin{array}{c}
56 \\
15 \\
40 \\
70 \\
8 \\
20
\end{array} \div \begin{array}{c}
7 \\
5 \\
8 \\
7 \\
8 \\
4
\end{array} = 8 \div 7 \)

List the numbers which make the statements true.

a) 6 tens and 5 units < 6 tens and \[\begin{array}{c}
\square \\
\square
\end{array} \] units \[: 6, 7, 8, 9 \ldots \ldots \ldots \]

b) 7 tens and 6 units \[\geq \begin{array}{c}
\bigcirc \\
\bigcirc
\end{array} \] tens and 6 units \[: 7, 6, 5, 4, 3, 2, 1, 0 \ldots \]

c) 2 hundreds, 3 tens and 7 units > \[\begin{array}{c}
\bigtriangleup \\
\bigtriangleup
\end{array} \] hundreds, 3 tens and 7 units \[: 0, 1 \ldots \ldots \ldots \]
In a bag, there are 10 white and 8 black marbles. What is the smallest number of marbles you must take out of the bag (with your eyes closed) to make certain that you have taken out at least:

a) 1 white marble

b) 1 black marble

c) 5 white marbles

d) 5 black marbles

e) 1 white and 1 black marble?

Colour the equal amounts in the same colour.

Do the calculations in the correct order.

One side of the paper strip is white and the other side is black. Continue colouring the parts of the paper strips which should be black.
1 Colour the odd one out. Write the reason for your choice.

<table>
<thead>
<tr>
<th>1 third of twelve</th>
<th>1 half of 8</th>
<th>1 quarter of 16</th>
<th>1 sixth of 6</th>
</tr>
</thead>
</table>

Reason: 1 sixth of 6 = 1. All other answers = 4.

2 Fill in the missing numbers.

a) $6 \times \square = 48$
 \[3 \times 9 = 27\]
 \[5 \times 5 = 25\]
 \[4 \times 7 = 28\]
 \[10 \times 6 = 60\]
 \[9 \times 9 = 81\]

b) $5 \times 8 = 40$
 \[9 \times 10 = 90\]
 \[2 \times 4 = 8\]
 \[6 \times 9 = 54\]
 \[1 \times 8 = 8\]

\[4 \times 5 = 20\]
\[5 \times 0 = 0\]
\[8 \times 8 = 64\]
\[10 \times 7 = 70\]

\[7 \times 5 = 35\]

3 Fill in the missing numbers.

a) $9 \div 3 = 3$
 \[25 \div 5 = 5\]
 \[4 \div 1 = 4\]

b) $25 \div 5 = 5$
 \[48 \div 6 = 8\]
 \[81 \div 9 = 9\]

\[36 \div 6 = 6\]
\[100 \div 10 = 10\]

\[70 \div 10 = 7\]
\[80 \div 10 = 8\]
\[18 \div 2 = 9\]

\[72 \div 9 = 8\]
\[0 \div 6 = 0\]
\[24 \div 8 = 3\]

\[18 \div 6 = 3\]
\[14 \div 7 = 2\]
\[45 \div 9 = 5\]

4 Write the value, in acorns, of each squirrel's store of food, if:

\[\begin{align*}
\text{So 1 } & \text{ acorn} = 3 \text{ acorns} \\
\text{So 4 acorns} = & \text{ 12 acorns and 1 acorn} = 3 \text{ acorns} \\
\text{So 1 } & \text{ acorn} = 3 \text{ acorns} = 3 \times (3 \text{ acorns}) = 9 \text{ acorns}
\end{align*}\]

a)

\[\begin{array}{c}
\includegraphics[width=0.1\textwidth]{squirrel1.png} \\
= \begin{array}{c}
\includegraphics[width=0.1\textwidth]{acorns1.png}
\end{array}
\end{array}\]

\[= 48\]

b)

\[\begin{array}{c}
\includegraphics[width=0.1\textwidth]{squirrel2.png} \\
= \begin{array}{c}
\includegraphics[width=0.1\textwidth]{acorns2.png}
\end{array}
\end{array}\]

\[= 48\]
1. We have put some of these shapes one on top of the other to give the shape on the right. Colour the shapes we have used in the correct colour.

2. The length of a room is 4 m 30 cm and the width is 2 m 70 cm. What is the difference between them?

 Length: $4 \text{ m } 30 \text{ cm} = 430 \text{ cm}$
 Width: $2 \text{ m } 70 \text{ cm} = 270 \text{ cm}$

 $430 - 270 = 160 \text{ cm} = 1 \text{ m } 60 \text{ cm}$

3. On a farm, each hen lays 1 egg per day. Complete the table.

<table>
<thead>
<tr>
<th>Number of hens</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Number of eggs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>20</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

4. Do the calculations in the correct order.

 a) $12 + 24 \div 6 - 4 = 12$
 b) $(12 + 24) \div 6 - 4 = 2$

 $12 + 24 \div (6 - 4) = 24$
 $(12 + 24) \div (6 - 4) = 18$

 $12 + (24 \div 6 - 4) = 12$
 $12 + (24 \div 6 - 4) = 12$

5. In a card game, the cards have pictures of apples, pears, cherries and bananas. The rules are:

 $3 \text{ pears} = 1 \text{ apple}$,
 $6 \text{ cherries} = 1 \text{ apple}$,
 $2 \text{ bananas} = 1 \text{ apple}$

 How many bananas are equal to an apple? Answer: $1 \text{ apple} = 36 \text{ bananas}$