<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **1** | **Number cards** (or Cuisennaire rods)
Show me the number I am describing with number cards (or the correct Cuisennaire rod) when I say.
e.g. 1 quarter of 32 (8), 1 fifth of 40 (8), 1 quarter of 20 (5), 4 times 3 (12), 2 times 6 (12), 1 third of 9 (3), etc.
5 min |
| **2** | **Grouping by 3, with remainder**
T has pictures of 4 different kinds of fruit stuck or drawn on BB.
Let's count them. First let's put them into groups of 3.
Ps come out to circle the fruit in 3s and write a multiplication about it.
Class agrees/disagrees.
BB:
\[
\begin{align*}
2 \times 3 + 2 &= 8 \\
3 \times 3 + 1 &= 10 \\
2 \times 3 + 1 &= 7 \\
6 \times 3 + 1 &= 19
\end{align*}
\]
Who thinks it is easier to count the fruit in 3s than in 1s? Why?
10 min |
| **3** | **Book 2, page 89, Q.1**
Read: We are packing 22 balls into boxes. Show how many boxes we will need if we pack:
a) 3 balls in each box
b) 5 balls in each box.
Two Ps come out to circle the balls in 3s and in 5s. How many boxes could you fill? (7, 4) How many balls remain? (1, 2)
T chooses 2 more Ps to come out to BB to write multiplications with additions. Who agrees? Who thinks something else?
Who can come and write the matching division? Class agrees/disagrees.
15 min |
| **4** | **Book 2, page 89**
Q.2 Read: Four hens want to share out the eggs equally.
How many eggs will each hen get and how many will remain if there are 9 eggs, . . .
A, come and explain to us what the equations in part a) refer to.
Is A correct? Who thinks something else?
Let's see how many of these you can do! Check that your division is correct by writing a multiplication too.
Review at BB with whole class. Mistakes corrected.
(If problems, demonstrate with Ps at front of class.)
23 min |
| **5** | **Interlude**
Song or rhyme
25 min |
Activity

6 Logic Puzzle (**OHT 10**)

Look at this puzzle. What do you think the rule could be? (The number at the top or sides of each column or row is the sum of all the numbers in that column or row. The same colour means the same number.) I will give you another rule: all the missing numbers have only 1 digit.

What should we do first? Let’s say all the numbers the rectangles could be. ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’ (T writes in a vertical line on BB.) We have to work out which of these numbers each colour represents.

What gives us a clue? (the ‘key’ below the puzzle.) T (or P) reads it out: ‘twice the dark blue gives the dark green, twice the dark green gives the light green, twice the light green gives the orange.’ Which of the numbers we have written on the BB could these colours represent?

B, come and write in what you think the missing numbers in the key could be. Why did you write them? Who agrees? Let’s check. (If nobody knows, T gives hint.)

Dark blue has to be ‘1’, because it is the only one of the numbers which can be multiplied by 2 three times and still remain a 1-digit number. (Discuss the fact that 0 is impossible because if blue was zero, all the other 3 colours would be zero too, but they are all different.)

If dark blue is ‘1’ what must the dark green (light green, orange) be? Ps come out to write in the missing numbers. (2, 4, 8) Class agrees/disagrees.

What other clue are we given? (In 2nd row of ‘key’, 3 times the red gives the pink.) Elicit that the only number left (apart from zero which is again impossible) which can be multiplied by 3 and still remain a 1-digit number is ‘3’, so brown must be 3 and pink must be 9.

Where should we go next? (e.g. 1st column)

BB:
\[4 + 4 \times 2 + 2 \times 9 + 2 \times \text{violet} = 44,\]
\[4 + 8 + 18 + 2 \times \text{violet} = 44,\]
\[30 + 2 \times \text{violet} = 44, \text{so } 2 \times \text{violet} = 44 - 30 = 14, \text{so violet must be } 7.\]

Continue in this way until puzzle is completed (e.g. then 3rd column from right to get yellow, then last column to get light blue).

Let’s check that our solution is correct. Ps choose columns/rows at random and confirm that numbers add up to number at top/beginning.

Ps could make up own puzzles (e.g. 6 × 4 rectangles).

Extension

38 min

Book 2, page 89

Q.3 Read: Colour a route through the maze so that the numbers passed add up to 65.

Review at BB with whole class. Alternative solutions discussed.

e.g. \[35 + 5 + 4 + 6 + 8 + 3 + 4 = 65\]

or \[35 + 8 + 4 + 2 + 8 + 4 + 4 = 65\]

45 min

Notes

Whole class activity
If no OHP, use copy master, enlarged and coloured appropriately
In unison
Let Ps suggest method of solution throughout

Solution:

Dark Blue → 1
Dark Green → 2
Light Green → 4
Orange → 8
Red → 3
Pink → 9
Violet → 7
Yellow → 5
Light Blue → 6

Involve as many Ps as possible in discussion/solution
Ps could have own copies of puzzle to colour appropriately and fill in if they want.

(Other orders possible – Ps suggest where to go next)

Agreement, praising
(Practice in addition, subtraction, multiplication and division)

Checking, agreement
To do at home if Ps want to

© CIMT, Plymouth University
Lesson Plan 90

R: Mental operations
C: Decomposing numbers into sums and products
E: Problem solving. Inequality in context

Activity

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 | **Sequences**
T says the first few elements in a sequence. T points to Ps to continue it. What is the rule? What else do you notice about the numbers?
- T: ‘2, 5, 8, . . .’ (Ps: 11, 14, 17, . . .)
 Rule: increasing by 3. If divided by 3, remainder is 2.
 Rule: decreasing by 4. If divided by 4, remainder is 3.
(T gives hint about remainders if nobody notices.) | Whole class activity
In relay, at speed
Discussion, agreement |
| 2 | **Number snake**
T divides the class into 3 teams (A, B and C all with a roughly equal ability range). T gives each team a number, e.g. 24, 33 and 45. Ps from one team at a time come out in relay to BB to write out their ‘number snake’. e.g
A: 24 = 20 + 4 = 2 × 12 = 3 × 8 = 25 − 1 = 48 ÷ 2 = 3 × 7 + 3 = . . .
B: 33 = 30 + 3 = 20 + 12 = 3 × 7 − 2 = 40 − 7 = 66 ÷ 2 = . . .
C: 45 = 40 + 5 = 20 + 15 = 5 × 9 = 50 − 10 = 90 ÷ 2 = . . .
The winner is the team with the longest (correct) ‘snake’. | Whole class activity
T encourages creativity
At a good pace
Other two groups applaud what they think are ‘creative’ equations and point out incorrect or repeated ones.
Awards (stars/stickers) given |
| 3 | **Book 2, page 90**
Q.1 Read: Make up multiplications from the numbers in the bags and solve them. Choose the 1st number from Bag A and the 2nd number from Bag B.
How could we write them out in a logical order? (Start with the ‘3’ from Bag A multiplied by each of the numbers in Bag B, then the ‘4’ from Bag A, etc.)
Review at BB with whole class. Mistakes corrected.
How many multiplications are possible? (3 × 5 = 15, i.e. for each of the 3 numbers in Bag A, there are 5 possible numbers in Bag B.) | Individual work, monitored, helped
Initial discussion on strategy
Drawn on BB or use enlarged copy master or OHP
Agreement, checking, praising
(Or done as whole class activity with number cards in 2 opaque bags and numbers withdrawn one at a time) |
| 4 | **Interlude**
Relaxation with music playing | Whole class relaxing |
| 5 | **Book 2, page 90**
Q.2 Read Each number is the sum of the 2 numbers directly below it. Fill in the missing numbers.
Let Ps try without help first. Review at BB with whole class. Which number is at the top? (100) T writes in numbers as Ps dictate them.
P comes out to explain method of solution. (Start with 8 + 9 = 17)
(Or done as a whole class activity, with Ps coming out to write in numbers and explain reasoning.) | Individual work, monitored
Drawn on BB or use enlarged copy master or OHP
In unison
Agreement, checking, praising
Solution:

<table>
<thead>
<tr>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Lesson Plan 90

Notes

Whole class activity
Discussion, reasoning, agreement, checking, praising
BB: $9 \div 5 = 1$ (coin), remainder 4
so 2 coins needed, 1 p change
Check: $2 \times 5 - 1 = 9$

$28 \div 5 = 5$ (coins), remainder 3
so 6 coins needed, 2 p change
Check: $6 \times 5 - 2 = 28$

$49 \div 5 = 9$ (coins), remainder 4
so 10 coins needed, 1 p change
Check: $10 \times 5 - 1 = 49$
Ps put up hands if they know.

Whole class activity
Table drawn on BB or use enlarged copy master or OHP
Ps show amounts on number line and T writes the inequality
BB: $30 < \text{amount left} < 38$
Ps fill in table in their books
d too
At a good pace
Praising

Individual work, monitored (helped)
Drawn on BB or use enlarged copy master or OHP
Self-correction. Praising
BB: $2 \times 2 \times 6 = 24$
$3 \times 2 \times 4 = 24$
$3 \times 8 = 24$
$6 \times 4 = 24$
$2 \times 2 \times 3 = 24$

Whole class activity but Ps can write in Pbs too
At a good pace
Reasoning, agreement, checking, praising
Class reads out equations in unison
Lesson Plan 91

R: Mental calculation
C: Decomposing numbers into sums and products
E: Problem solving, Order of operations

Activity

1. Equations competition
 - T writes 3 numbers on left, middle and right of BB: 35, 42, 50
 - T divides class into 3 teams of equal ability, one for each number.
 - T says 'Start!' One P after another from each team comes to BB to write an equation describing their number. (Ps may have other turns if there is time.) After about 2 minutes, T says 'Stop!'.
 - Class reviews each team's equations. The team which has most correct, different equations wins! T gives a 'star' for the most creative equation.
 - Whole class activity
 - Use copy master, enlarged and cut out
 - At speed (3 Ps at a time working on BB)
 - (Develops creativity)
 - Agreement, checking, praising
 - Ps give '3 cheers' to winners
 - Whole class activity
 - (Develops concentration and mental visualisation)
 - T repeats question slowly
 - In unison
 - Discussion, agreement, checking, praising
 - BB: 13 = 3 × 4 + 1
 - 13 ÷ 3 = 4, remainder 1
 - Individual work, monitored, helped
 - Drawn on BB or use enlarged copy master or OHP
 - T writes what Ps dictate
 - Agreement, checking, praising
 - Solution:
 - 36
 - 29
 - 4
 - 59
 - 1
 - 14
 - 22
 - 5
 - 13
 - 42
 - 82
 - 1
 - 64
 - Whole class activity
 - Drawn on BB or use enlarged copy master or OHP
 - Discussion, agreement, checking, praising
 - Check:
 - 2 × 2 × 3 × 2 = 4 × 6 = 24
 - 3 × 3 × 2 × 5 = 9 × 10 = 90
 - (Or done as individual work if the majority of Ps want to try it alone. T monitors and helps those having difficulty)
 - Whole class activity
 - Drawn on BB or use enlarged copy master or OHP
 - Discussion, agreement, checking, praising
 - Check:
 - 2 × 2 × 3 × 2 = 4 × 6 = 24
 - 3 × 3 × 2 × 5 = 9 × 10 = 90
 - etc.
 - (Or done as individual work if the majority of Ps want to try it alone. T monitors and helps those having difficulty)

2. Problem
 - Listen carefully, do the calculation in your heads and show me the answer with number cards when I say.
 - I have 13 sweets in my pocket and want to divide them up equally among 3 pupils. How many sweets will be left for me?
 - Show me the answer . . . now! (1)
 - A, come and explain your answer. Who agrees? Who thinks something else? Demonstrate with Ps at front of class if necessary.
 - Repeat for other numbers: 22 ÷ 4, 33 ÷ 5, etc.
 - Whole class activity
 - (Develops concentration and mental visualisation)
 - T repeats question slowly
 - In unison
 - Discussion, agreement, checking, praising
 - BB: 13 = 3 × 4 + 1
 - 13 ÷ 3 = 4, remainder 1

3. Book 2, page 91
 - Q.1 Read Each number is the sum of the 2 numbers directly below it. Fill in the missing numbers.
 - Let Ps try without help first. Review at BB with whole class.
 - Which number is at the top? (100) etc.
 - Ps come out to explain methods of solution. (e.g. start with 5 + 9 = 14, or 1 + 4 = 5, or 4 + 5 = 9)
 - (Or done as a whole class activity, with Ps coming out to write in numbers and explain reasoning.)
 - Individual work, monitored, helped
 - Drawn on BB or use enlarged copy master or OHP
 - T writes what Ps dictate
 - Agreement, checking, praising
 - Solution:
 - a) 5
 - = 16
 - 32
 - = 12
 - 70
 - 21 = 7
 - = 24 16 40 28
 - = 60 18 16 30
 - Whole class activity
 - Drawn on BB or use enlarged copy master or OHP
 - Discussion, agreement, checking, praising
 - Check:
 - 2 × 2 × 3 × 2 = 4 × 6 = 24
 - 3 × 3 × 2 × 5 = 9 × 10 = 90
 - etc.
 - (Or done as individual work if the majority of Ps want to try it alone. T monitors and helps those having difficulty)
 - Whole class activity
 - Drawn on BB or use enlarged copy master or OHP
 - Discussion, agreement, checking, praising
 - Check:
 - 2 × 2 × 3 × 2 = 4 × 6 = 24
 - 3 × 3 × 2 × 5 = 9 × 10 = 90
 - etc.
 - (Or done as individual work if the majority of Ps want to try it alone. T monitors and helps those having difficulty)

4. Book 2, page 91, Q.2
 - Read The product of the 4 numbers in each row or column is equal to the number at the end. In each square, the same mark means the same number. Fill in the missing numbers.
 - a) Where should we start? (top row as all the numbers are the same)
 - Ps come out to fill in missing numbers and explain reasoning.
 - Class agrees/disagrees. Final check that all horizontal and vertical multiplications are correct.
 - b) As in a) but starting at the 3rd column.
 - Solutions:
 - a) 2 2 2 2 = 16
 - 4 2 2 2 = 32
 - 3 2 2 1 = 12
 - 2 1 5 7 = 70
 - 24 16 40 28
 - b) 2 × 3 × 2 × 3 = 36
 - 5 1 2 2 = 20
 - 3 3 2 5 = 90
 - 2 2 2 1 = 8
 - 60 18 16 30
 - Whole class activity
 - Drawn on BB or use enlarged copy master or OHP
 - Discussion, agreement, checking, praising
 - Check:
 - 2 × 2 × 3 × 2 = 4 × 6 = 24
 - 3 × 3 × 2 × 5 = 9 × 10 = 90
 - etc.
 - (Or done as individual work if the majority of Ps want to try it alone. T monitors and helps those having difficulty)

5. Interlude
 - Action song

28 min
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book 2, page 91, Q.3</td>
<td>Lesson Plan 91</td>
</tr>
<tr>
<td>Read: Fill in the missing numbers.</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Look at the first equation in part a). What do you think the LHS equals?</td>
<td>Written on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>B, come and write in the missing number. Who agrees? Who thinks something else? BB:</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>Talk about the order of calculating operations.</td>
<td>Discussion, demonstration</td>
</tr>
<tr>
<td>• If there are no brackets, always do the multiplications or divisions before the additions or subtractions.</td>
<td>BB:</td>
</tr>
<tr>
<td>• If there are brackets, do the operation inside the brackets first.</td>
<td>a) (2 \times 3 + 9 = 15)</td>
</tr>
<tr>
<td>T demonstrates the two situations by drawing in brackets around the</td>
<td>(4 \times 3 - 2 = 5 \times 2) (10)</td>
</tr>
<tr>
<td>(3 + 9) BB: (2 \times (3 + 9) = 2 \times 12 = 24)</td>
<td>(4 \times 7 - 12 = 4 \times 4) (16)</td>
</tr>
<tr>
<td>Are there brackets in any of the equations in this question? (No)</td>
<td>b) (16 \frac{8}{4} - 1 = 28 \div 4) (7)</td>
</tr>
<tr>
<td>So what should we calculate first? (multiplications and divisions)</td>
<td>(16 \frac{4}{6} + \frac{1}{4} = 15 \div 3) (5)</td>
</tr>
<tr>
<td>Ps come out to write value above RHS and LHS of equations. Other Ps come out to fill in the missing numbers, explaining reasoning.</td>
<td>(14 \frac{2}{4} + 1 = 32 \div 4) (8)</td>
</tr>
<tr>
<td>Class checks that they are correct.</td>
<td>Praising</td>
</tr>
<tr>
<td>35 min</td>
<td></td>
</tr>
</tbody>
</table>

7	Whole class discussion about shapes first
Book 2, page 91 Q.4	Use enlarged copy master or OHP for demonstration only!
Read: Measure the sides of the rectangles and fill in the missing lengths.	Individual work, monitored, helped for measuring
T reminds Ps how to measure accurately with rulers. Why are there only 2 missing lengths in A and D when they each have 4 sides? (In rectangles, opposite sides are equal.)	Demonstration
Why is there only 1 missing length in B and C? (B and C are also squares and have all 4 sides equal.)	BB: perimeter
Review lengths at BB with whole class. Mistakes corrected.	Individual work, monitored
Read: Write an equation for each rectangle to show the total length of its 4 sides.	Discussion, agreement, checking, praising
T talks about starting at one corner of A and walking all the way round the outside.	BB: A: perimeter =
This measurement is called the perimeter. (BB)	\(4 \text{ cm} + 3 \text{ cm} + 4 \text{ cm} + 3 \text{ cm} \)
Ps come out to BB to show perimeters of B, C and D.	\(= 2 \times (4 \text{ cm} + 3 \text{ cm}) \)
Ps write down equations for each of rectangles in Pbs.	\(= 14 \text{ cm} \) etc. for B, C, D
Review at BB with whole class. T chooses Ps who wrote the equations in different ways to demonstrate/explain on BB.	
Which way is correct? (all correct)	42 min
Which do you think is easiest? Why? (e.g. using brackets requires least number of calculations and is shortest)	

8	Whole class activity
Tessellation	T has cut-out rectangles from copy master ready for demonstration on BB (or Pbs have them on desks)
Which of these rectangles could we use to cover the other rectangles exactly? How many would we need? Deal with one rectangle at a time. Ask several Ps what they think.	Discussion, agreement, checking, praising
How could we make sure we are correct? (Demonstration with cut-out rectangles or by drawing on squared paper or by calculation.)	Preparation for area and combinatorics
Elicit that:	
A can be covered exactly by B (12) and D (2)	
B can be covered exactly by none	
C can be covered exactly by B (4)	
D can be covered exactly by B (6)	45 min
45 min	
Activity 1
Equal values
Tell me an addition, subtraction, multiplication or division which is equal to the number I am describing.

- **T** says ‘2 × 4’, **P₁** says ‘5 + 3’, **P₂** says ‘12 – 4’, **P₃** says 1 × 8, **P₄** says ‘24 ÷ 3’, etc.
- Repeat for 5 × 2, 4 × 5, 20 ÷ 4, 15 ÷ 5, etc.

8 min

Activity 2
Logic puzzle
The same shape means the same number. Let's fill in the missing numbers.

- **BB:**

 a) [Diagram of a puzzle]

 b) [Diagram of a puzzle]

Ps come out to write numbers in the shapes, explaining their reasoning. Class agrees/disagrees.

16 min

Activity 3
Book 2, page 92, Q.1
Read: *The missing values are either 2 or 4. The arrow points towards the value which is twice as much.*

Fill in the numbers and draw the missing arrows.

Let Ps try to solve it themselves through class discussion. Ps decide where to start and where to go next, with agreement of rest of class.

T gives hints only if necessary.

Solution:

- [Diagram of a puzzle]

Whole class activity

Activity 4
Interlude
Relaxation, with music playing

24 min

Activity 5
Sequences
T has 10 blank squared grids stuck to BB. Watch carefully while I colour the grids and see if you can notice what the rule is.

- **BB:**

 [Diagram of grids]

T colours in the first 3 elements. Who thinks they know which square should be coloured next? P comes out to BB to colour next 3 grids.

Are they correct? What is the rule? Let's write the position numbers below the grids. (1, 2, 3, 4, . . ., 10)

- Which numbers would be below this grid? (T points to each in turn.)
- Which grid would the 7th (8th, 9th, 12th, 15th, 18th, 26th, 32nd, 35th, 40th) be? Ps come out to point and explain.

Discussion about different remainders after division by 4.

30 min

© CIMT, Plymouth University
Bk2

Activity

<table>
<thead>
<tr>
<th>Lesson Plan 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book 2, page 92, Q.2</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Extension</td>
</tr>
</tbody>
</table>

6

Book 2, page 92, Q.2
Read: *Fill in the missing numbers.*
T revises the order of doing operations.
(If there are no brackets, do any multiplications or divisions first; if there are brackets, do the operation inside the brackets first.)
Ps come out to write value above RHS and LHS of equations.
Other Ps come out to fill in the missing numbers, explaining reasoning.
Class checks that they are correct.
Discuss the change in result if brackets were added. e.g.
b)
\[
\begin{align*}
4 \times (7 + 5) & = 5 \times 5 + 23 \\
\text{LHS: 48} &
\end{align*}
\]

Notes
Whole class activity
Written on BB – pre-prepared
Reasoning, agreement, checking praising
BB:
a)
\[
\begin{align*}
9 \times 2 & = 6 \times 3 \\
6 & \\
18 \div 3 & = 2 \times 3 \\
9 & \\
18 \div 2 & = 27 \div 3 \\
&
\end{align*}
\]

7

Book 2, page 92, Q.3
Read: *Fill in the missing numbers.*
Let's see how many of these you can do in 3 minutes!
Try to do them without looking at your multiplication table.
Review orally round the class. Mistakes corrected.
Notes
Individual work, monitored
Ps count how many correct out of 12 (3 × 4). Praising
Reasoning, agreement, checking, self-correction

8

Book 2, page 92, Q.4
Read: *Colour the small rectangles according to their answers.*
yellow: 1-digit and odd; green: 2-digit and odd; red: 1-digit and even; blue: 2-digit and even
Review at BB with whole class. Mistakes corrected.
(N.B.
\[
\begin{align*}
28 \div 2 & = 20 \div 2 + 8 \div 2 = 10 + 4 = 14 \\
&
\end{align*}
\]

Notes
Individual work, monitored (helped)
Drawn on BB or use enlarged copy master or OHP
Discussion, agreement, checking praising

Extension

(or to do at home)

Book 2, page 92, Q.5
Read:
I thought of a number, halved it, added 32 and subtracted 4 times 3. I ended up with 30.
What was the number I first thought of?
Ps come to BB to explain how they worked out the answer.
(Start with 30 and do the inverse operations,)
Check the answer by starting at 20 and following the original operations.

Notes
Individual work
Discussion at BB
Reasoning, agreement, checking, praising
BB:
\[
\begin{align*}
20 \div 2 & = 10 \\
+ 32 & = 42 \\
- 32 & = 12 \\
- 4 \times 3 & = 30 \\
&
\end{align*}
\]
Activity 1: Symmetry

Ps have mirrors, sheets of paper and scissors on desks. (If Ps are not happy using scissors, they can tear the paper.)

Fold your sheet in half, so that the edges meet exactly like this. (T demonstrates to class.) Cut out (or tear) a shape from the folded edge. Put your mirror along the fold (of both the piece cut out and the piece left). Open out the two pieces of paper. What do you notice?

Elicit that in both cases, the shapes on each side of the fold are exactly the same (as they would be seen in a mirror). Who knows what we call a shape in which two halves are the same? (symmetrical) (BB)

The fold shows the mirror line (or line of symmetry).

Who can tell me other shapes in the classroom which are symmetrical? Where would the mirror line (line of symmetry) be?

T calls some Ps out to front to hold up their shapes (if possible, choose Ps with very different shapes). T holds up what is left of their sheets in random order. Class decides which shape came from which sheet.

10 min

Activity 2: Mirror Image

Lay out the shapes I describe in a line on your desk.

- e.g. large, white, plain square, then large, black, plain circle, then large, black, triangle with centre point, etc:

 ![shapes](image)

 (1)

 (2)

Hold your mirror vertically after the last shape (mirror line 1). Lay out shapes from the other set of shape cards in the order you see in the mirror. This is called the mirror image. Ps read out shapes from mirror line to right: 'large, white, plain hexagon, large white pentagon with centre point', etc. Ps correct mistakes.

What do you notice? (shapes are in reverse order to original pattern, i.e. shape nearest the mirror line is also nearest it in the mirror image. What can we say about the whole pattern? (It is symmetrical.)

Ps gather up shapes in 'mirror image' and repeat exercise with the mirror held horizontally below the row of shapes (mirror line 2).

What do you notice? (shapes are upside down, i.e. points nearest the mirror are also nearest the mirror in the mirror image) N.B. This can only be seen from the triangle and pentagon but Ps could put a mark on the top of the other shapes and confirm in mirror.

16 min

Activity 3: Lines of Symmetry

T sticks some simple shapes or pictures on BB (drawn and coloured or cut out from magazines) or Ps can find on posters. Which of these are symmetrical? Where do you think the line of symmetry is? How can we check? (by folding or by using a mirror)? Is there another one?

Discuss the fact that some shapes or patterns can be symmetrical about different lines of symmetry (e.g. a square can be folded in half vertically, horizontally or diagonally).

20 min

Activity 4: Interlude

Song or rhyme

© CIMT, Plymouth University
<table>
<thead>
<tr>
<th>Activity</th>
<th>Book 2, page 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Q.1 Read: We reflected all the 1-digit numbers and got these pictures. Write the number we reflected below each picture. Draw in the mirror line. T explains what ‘reflected’ means. What numbers could they be? (0, 1, 2,..., 9) Do part a) with whole class first, with Ps coming to BB to write in numbers and draw mirror lines. Class agrees/disagrees. Then Ps do part b) in Ps. Review at BB with whole class. Discuss that ‘8’ has 2 possible mirror lines (lines of symmetry): horizontal and vertical.</td>
</tr>
<tr>
<td>6</td>
<td>Q.2 Read: Draw the mirror image of each shape. The dotted lines are mirror lines. What do you notice about the pictures? (The same shape each time but with 9 different mirror lines.) Deal with one shape at a time. Ps count the grid squares to help them do the drawing/shading. Let Ps try on their own first, then discuss solution at BB with whole class.</td>
</tr>
<tr>
<td>7</td>
<td>Q.3 Read: Practise calculation. Deal with one column at a time. Set a time limit for each. Review orally round the class, with Ps reading out the whole equation and explaining reasoning (especially in cases which involve crossing tens). Other Ps check the divisions and subtractions with multiplications and additions. Who was correct? Who made a mistake? What kind of mistake? Who did the same? Who made a different one? etc. If problems, demonstrate on BB (at number line, on multiplication table, with Ps at front, etc.).</td>
</tr>
</tbody>
</table>

Lesson Plan 93

Notes

Whole class activity to start

Drawn on BB or use enlarged copy master or OHP

In unison

Ps write in Pb too

Discussion, agreement

Individual work, monitored

Ps can check using mirrors and number cards if necessary

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Ps may use a mirror if necessary

Agreement, checking, self-correction, praising

Individual work, monitored (helped)

T takes note of common errors and individual misconceptions

Discussion, agreement, checking, self-correcting

Demonstration if necessary (if possible, a P who understands explaining to Ps who have made mistakes)

Praising
Activity

1. **Multiplication and division practice** (2, 3, 4, 5, 10)
 - a) T says a multiplication or division, P says product or quotient.
 - b) T says a number, P says a multiplication or division,
 e.g. T: '20, P: '4 times 5' or '2 times 10'; T: '9', P: '3 times 3' or '36 divided by 4'
 (Or done as a competition, with Ps standing at first and sitting down when they have answered correctly. Team with fewest Ps standing wins.)
 - 5 min

2. **Lines of symmetry**
 - Ps have 2 sheets of paper on desks (rectangle and square).
 a) Fold your rectangle in half so that the 2 opposite sides meet exactly and smooth down the fold. (T demonstrates with large sheet.)
 Open it out again. What does the fold show? (the mirror line or line of symmetry) See how many other lines of symmetry you can find.
 A, how many did you find? (2) Come and show us. Who agrees?
 b) Repeat for the square (4 lines of symmetry) (Ps hold up sheets.)
 - 10 min

3. **Logic set**
 - a) Lay out on your desk shapes which have exactly 3 lines of symmetry. B and C, what have you put out? Who agrees? Who thinks some thing else? (8 triangles: large or small, white or black, plain or with red centre point, i.e. $2 \times 2 \times 2 = 8$)
 T draws an equilateral triangle on BB. Ps come out to draw in the 3 lines of symmetry. Class agrees/disagrees
 - b) Hold up a shape which has exactly 5 (6) lines of symmetry.
 Show me . . . now! (pentagon, hexagon)
 T draws each on BB and Ps come out to draw in lines of symmetry.
 How many of these are in your shape card set? (all 8: as for triangles)
 - 10 min

Notes

Whole class activity
At speed. T chooses Ps at random (or Ps can choose Ps and ask the questions)
Class points out mistakes
Praise creative answers to part b)

Extension

- Paired work, monitored
- Discussion, agreement, checking, praising

Book 2, page 94, Q. 1

Read: **Which pictures are symmetrical?** Draw the possible mirror lines in blue. Write below each picture how many mirror lines you have drawn.

Discuss that normal squares would have 4 mirror lines but that the shading on these squares makes them different. Deal with one at a time. Ps come out one after another to BB to draw in a mirror line.
When class is agreed that all are drawn, T writes in total number.
(Ps can draw/write in their books too.

What part of each square is shaded? (1 quarter in first square, 1 half in all the others)

Extension

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Discussion, agreement, checking, praising
Lesson Plan 94

Activity 6

Book 2, page 94

Q.2 Read: *Put a mirror on the dotted line. Draw the mirror image of each shape.*

T tells Ps to count the squares in the grid to help them draw lines of the correct length. Review at BB with whole class. Call out 4 Ps finished first to draw in the shapes on BB too.

Class agrees/disagrees.

Solution:

![Mirror Images](image)

34 min

Activity 7

Book 2, page 94

Q.3 Read: *The total distance around the outside of a shape is called the perimeter.*

- Measure a side of each square and write its length in the box.
- Why do we only need to measure 1 side to work out the perimeter? (In a square, all the sides are of equal length.)
- Deal with one square at a time. Review at BB with whole class.
- Mistakes corrected.

Read: *Write an equation for each square to show the length of its perimeter.*

- What kind of equation will we write? (multiplication, by 4)
- Ps write equations in their books. Review at BB with class.
- Elicit that the squares are the same shape, but different sizes.
- Each square is similar to the others, (larger or smaller but the same shape).
- Show me 2 shapes from your shape card set which are similar to each other. (T shows more examples if necessary.)

Extension

Which squares can be used to cover exactly (tessellate) which others and how many would you need?

- Elicit that: A can be tessellated by B (4) and C (16)
- B can be tessellated by C (4)
- C can be tessellated by none
- D can be tessellated by C (9)

42 min

Activity 8

Book 2, page 94, Q.4

Listen carefully and show me the answer with number cards when I say. Write an equation in your books to help you.

A square has a perimeter of length 40 cm. What is the length of each side?

Show me . . . now! (10)

X, come and explain how you worked out the answer.

Demonstrate with diagram on BB if problems.

45 min

Notes

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, praising

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP (for demonstration only)

Discussion, agreement, checking, self-correcting

BB: A: 4 cm, B: 2 cm,
C: 1 cm, D: 3 cm
A: $4 \times 4 = 16$ cm
B: $4 \times 2 = 8$ cm
C: $4 \times 1 = 4$ cm
D: $4 \times 3 = 12$ cm
A, B, C and D are similar shapes

In unison

BB: tessellate

Discussion, visualisation, agreement, checking (by calculation, or drawing or demonstrating with cut-out squares)

Praising

Whole class activity

T (or P) repeats slowly

In unison

Reasoning, agreement, checking, praising

BB: $40 \div 4 = 10$ cm

Check: $10 \times 4 = 40$ cm
<table>
<thead>
<tr>
<th>Bk2</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson Plan 95</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>R: Practice in calculation</td>
<td>Whole class activity</td>
<td></td>
</tr>
<tr>
<td>C: Geometry: reflection, enlargement</td>
<td>Turnover of Ps and questioning done at speed</td>
<td></td>
</tr>
<tr>
<td>E: Creative problem</td>
<td>All in good humour!</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Practice in calculation</td>
<td>Whole class activity</td>
<td></td>
</tr>
<tr>
<td>Ps come out to front in groups of 4 or 5. T says an addition/subtraction/multiplication/division and Ps sit down if they are first to answer correctly. When one P is left, another 4 Ps come out to join him/her. Continue until all Ps have been out to front. Differentiate questions so that low ability Ps are not left at the end.</td>
<td>Turnover of Ps and questioning done at speed</td>
<td></td>
</tr>
<tr>
<td>1 Practice in calculation</td>
<td>All in good humour!</td>
<td></td>
</tr>
<tr>
<td>Ps come out to front in groups of 4 or 5. T says an addition/subtraction/multiplication/division and Ps sit down if they are first to answer correctly. When one P is left, another 4 Ps come out to join him/her. Continue until all Ps have been out to front. Differentiate questions so that low ability Ps are not left at the end.</td>
<td>Praise only. Encouragement of Ps who answer incorrectly</td>
<td></td>
</tr>
<tr>
<td>Mirror images using the logic set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place e.g. the large black triangle from 1 set on your desk like this. T demonstrates on BB. Use a pencil as the mirror line. (T draws in the mirror line on BB.) Now lay down its mirror image from the other set.. P comes out to show mirror image on BB. Discuss whether it is the correct shape, colour, size, orientation and distance from mirror line. Repeat for other shapes. 1st P in pair lays down a shape, 2nd P lays down its mirror image, then vice versa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Mirror images using the logic set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place e.g. the large black triangle from 1 set on your desk like this. T demonstrates on BB. Use a pencil as the mirror line. (T draws in the mirror line on BB.) Now lay down its mirror image from the other set.. P comes out to show mirror image on BB. Discuss whether it is the correct shape, colour, size, orientation and distance from mirror line. Repeat for other shapes. 1st P in pair lays down a shape, 2nd P lays down its mirror image, then vice versa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps have 2 sheets of coloured paper and scissors on desks. Ps fold 1st sheet in half and cut out (or tear) a shape from folded edge. Ps unfold paper and show to T on command. T chooses some 'creative' shapes for Ps show to class. Repeat for 2nd sheet but folded into quarters. Discuss not only symmetry of shapes but also of patterns. (2 lines of symmetry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Symmetry</td>
<td>Individual creativity</td>
<td></td>
</tr>
<tr>
<td>Ps have 2 sheets of coloured paper and scissors on desks. Ps fold 1st sheet in half and cut out (or tear) a shape from folded edge. Ps unfold paper and show to T on command. T chooses some 'creative' shapes for Ps show to class. Repeat for 2nd sheet but folded into quarters. Discuss not only symmetry of shapes but also of patterns. (2 lines of symmetry)</td>
<td>Individual creativity</td>
<td></td>
</tr>
<tr>
<td>Book 2, page 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q.1 Read: Colour 8 grid squares in different ways so that the shape is symmetrical. Draw the mirror line too.</td>
<td>Individual work, monitored, helped.</td>
<td></td>
</tr>
<tr>
<td>It might be easier for some Ps to draw the mirror line first. Quick, creative Ps can carry on in their exercise books. T chooses Ps to show their designs on grid on BB. Class decides whether or not the design is symmetrical.</td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
<td></td>
</tr>
<tr>
<td>Book 2, page 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q.1 Read: Colour 8 grid squares in different ways so that the shape is symmetrical. Draw the mirror line too.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It might be easier for some Ps to draw the mirror line first. Quick, creative Ps can carry on in their exercise books. T chooses Ps to show their designs on grid on BB. Class decides whether or not the design is symmetrical.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlude</td>
<td>Whole class in unison</td>
<td></td>
</tr>
<tr>
<td>Song, rhyme, exercises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similar shapes</td>
<td>Whole class activity</td>
<td></td>
</tr>
<tr>
<td>T sticks various pictures or shapes on BB, some similar (reductions, enlargements, differently coloured) and some completely different. Ps come out to join up those which are similar, explaining reasoning. Class agrees/disagrees. Revise that 'similar' in mathematics means 'the same shape' (i.e. smaller or larger but in the same proportion) Discussion on enlargement and reduction (e.g. maps, plans, photos)</td>
<td>Pictures photocoped from magazines or use copy master, enlarged, coloured and shapes cut out.</td>
<td></td>
</tr>
<tr>
<td>Similar shapes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T sticks various pictures or shapes on BB, some similar (reductions, enlargements, differently coloured) and some completely different. Ps come out to join up those which are similar, explaining reasoning. Class agrees/disagrees. Revise that 'similar' in mathematics means 'the same shape' (i.e. smaller or larger but in the same proportion) Discussion on enlargement and reduction (e.g. maps, plans, photos)</td>
<td>Discussion, reasoning, agreement, checking, praising</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 95

Notes
- Paired work to start, monitored, helped
- Use enlarged copy master or OHP for demonstration
- Discussion, agreement
- (If possible, T could have magnifying glass to check similarity of 3, 6 and 4, 5)
- In unison
- Praising

<table>
<thead>
<tr>
<th>Activity</th>
<th>Book 2, page 95</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Q.2 Read: Colour the similar shaped cupboards in the same colour.
Ps discuss with neighbours which cupboards to colour.
Review at BB with whole class, with pairs of Ps explaining reason for choice (e.g. 6 is similar to 1 or 3 (6 ~ 1, 6 ~ 3) as it is the same shape but smaller, 4 is similar to 5 (4 ~ 5) because it is the same shape but larger, 2 is on its own.)
Show me with number cards when I say the 2 cupboards which are exactly the same (identical).
Show me . . . now! (1 and 3) Let's check. (By measuring, tracing, cutting out, photocopying onto transparency)
35 min</td>
<td>Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP (or shapes enlarged, cut out from copy master and stuck to BB) for demonstration only
Discussion, reasoning, agreement, checking
(If possible, T (or Ps) could have magnifying glass to check similarity)</td>
</tr>
<tr>
<td>8</td>
<td>Q.3 Read: Colour similar shapes in the same colour.
Ps explain what 'similar' means in maths (same shape but could be smaller or larger; if smaller shape was enlarged, or larger shape was reduced, by the correct amount, it would fit over the other exactly.) Encourage Ps to work logically.
Review at BB with whole class, with Ps explaining reason for choice (e.g. 6 ~ 9 ~ 11 ~ 13 because all are squares; 3 ~ 4 ~ 10 because they are all triangles with 2 sides of equal length; 1 ~ 2 because they are rectangles which are twice as long as they are high; 8 and 12 are on their own, N.B. although both are triangles, they are not in the same proportion, so even if the smaller was magnified, it would never cover the other exactly.)
Show me with number cards when I say the 2 shapes which are exactly the same (identical).
Show me . . . now! (5 and 7) How can we check? (By counting the unit squares: $3 \times 2 = 2 \times 3 = 6$ unit squares, or by rotation, or by cutting out, etc.)
40 min</td>
<td>In unison
Discussion, checking, praising</td>
</tr>
<tr>
<td>9</td>
<td>Q.4 Let's see how many of these you can do correctly in 3 minutes! Start . . . now! . . . Stop! Review orally round the class.
Ask for the inverse operation as a check in some cases, e.g. $45 \div 5 = 9$, because $9 \times 5 = 45$)
Ps correct own (or neighbour's) work and count how many correct out of 24 ($6 \times 4 = 24$).
Who had all correct? Who made 1 mistake? What was it?
Who made the same mistake? Who made a different one? etc.
Who did not finish them all? How far did you get?
45 min</td>
<td>Individual work, monitored
(Can be done as a competition between teams)
Reasoning, agreement, checking, praising
T notes Ps having difficulties, e.g. working too slowly, insufficient knowledge of addition/multiplication facts
Praising, encouragement only</td>
</tr>
<tr>
<td>Activity</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| **1** Oral practice | Whole class activity
T says a number, e.g. 15 (36, 80). T chooses Ps to describe the number in different ways. Class agrees on validity of description.
At speed
Agreement, praising |
| **2** Logic set | Whole class activity
T asks Ps to find all the shapes in their set which are similar to the shape the T holds up. (circle, triangle, square, pentagon, hexagon)
Elicit that there are 8 of each shape. (small/large, white/black, plain/with centre point; i.e. $2 \times 2 \times 2 = 8$)
Demonstrate on BB too
Agreement, checking, praising |
| **3** Similar shapes | Whole class activity
Use copy master, enlarged, cut out and shapes stuck to BB
Ps come out to try. If P cannot do it, another P may help
Discussion, agreement, checking, praising only
(Or done as individual work, with each P having copies of shapes from copy master on desk)
Introduction to ratio
BB:
Ratio of area
$4 : 1$
Ratio of enlargement
$2 : 1$ |
| **4** Interlude | Whole class in unison
Song, rhyme, exercises |
| **5** Book 2, page 96, Q.1 | Whole class activity
Drawn on BB or use enlarged copy master or OHP.
Discussion, agreement, checking, praising
Ps colour in Pbs too.
Individual work, monitored
Agreement, checking, praising
Whole class activity
Symmetric shapes:
$1, 2, 3, 4, 5, 7, 8, 9, 11$
Discussion, agreement, praising |
Lesson Plan 96

Notes

Whole class activity
T has cut-out unit shapes already prepared
Discussion, agreement, checking, praising
(Or Ps have own unit shapes on desks cut from copy master)

6 Book 2, page 96
Q.2 Read: Colour each single shape in a different colour.
If you put similar shapes one on top of the other, colour the shape you would see from above.
T explains task and demonstrates. Do part a) with whole class on BB if Ps still do not understand.
Review at BB with whole class. Demonstrate if necessary with enlarged, coloured, cut-out shapes or overhead transparencies.

Solution: e.g.

a)

b)

Solution: e.g.

40 min

7 Book 2, page 96
Q.3 Let’s see how many of these you can do correctly in 3 minutes!
Start . . . now! . . . Stop! Review orally round the class.
Ask for the inverse operation as a check in some cases, e.g. 27 ∣ 3 = 9, because 9 ∙ 3 = 27.
Ps correct own (or neighbour’s) work and count how many correct out of 15 (3 ∙ 5 = 15).
Who had all correct? Who made 1 mistake? What was it?
Who made the same mistake? Who made a different one? etc.
Who did not finish them all? How far did you get?

Individual work, monitored, helped
Use copy master, enlarged, coloured and cut out, or OHP
Discussion, agreement, checking, praising

It will be easier to review if Ps all use the same colour for each single shape (agreed by class or instructed by T)

45 min
Activity 1

Problem

Listen carefully, picture the story in your head and think what calculation you would do to work out the answer.

In an amusement park, the best ride is a ferris wheel. The ferris wheel has 10 cabins, each able to hold 6 people at most. What is the greatest number of people who can ride on the ferris wheel at a time?

Who has seen a ferris wheel? Who has had a ride on one? (Talk about the 'London Eye'). Let's draw a diagram. (T draws on BB with Ps' help.)

A, come and write an equation about it on the BB. Who agrees?

Who thinks something else?

BB:

\[
6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 = 60 \\
10 \cdot 6 = 60
\]

What equation would we write if there was nobody on the big wheel?

BB:

\[
10 \cdot 0 = 0 \
0 \cdot 10 = 0
\]

5 min

Extension

Dividing up 18

T calls 18 Ps to stand in a long line holding hands at front of class. Now divide yourselves up into 2 equal groups.

Who can come and write an equation about it? Who agrees? Who thinks something else?

BB: e.g. 2 groups: \[2 \cdot 9 = 18, \quad 18 \div 2 = 9\]

Now divide yourselves up into 3 (6) equal groups.

3 groups: \[3 \cdot 6 = 18, \quad 18 \div 3 = 6\]

6 groups: \[6 \cdot 3 = 18, \quad 18 \div 6 = 3\]

What other way could we divide 18 up into equal groups? (18)

18 groups: \[18 \div 1 = 18, \quad 18 \div 18 = 1\]

15 min

Activity 3

Book 2, page 97

Q.1

Read: *The dog starts at 0 and jumps 6 units at a time. The cat also starts at 0 but jumps 3 units at a time. Draw their jumps on the number lines.*

Ps draw jumps in their books. How many jumps of 6 (3) units did you draw for the dog (cat)? (10, 20)

Read: *Fill in the table to show how far they have gone after these jumps.*

Ps come to BB one after another to fill in a column each and say the relevant multiplications, (e.g. \(2 \cdot 6 = 12\), and \(2 \cdot 3 = 6\)).

Read: *Who made shorter jumps (fewer jumps)?* (cat, dog)

How much shorter? How many fewer? Elicit that:

- The cat jumps half as far each time so needs twice as many jumps to cover the same distance as the dog, or
- The dog jumps twice as far so needs half as many jumps to cover the same distance as the cat.

Let \(D = \text{length of dog's jumps}\) and \(C = \text{length of cat's jumps}\)

Who can come and write an equation about the two rows in the table? Who agrees? Who can write it another way?

BB:

\[
D = 2 \times C \\
C = \text{half of } D
\]

(Class recites both in unison)

© CIMT, Plymouth University
Lesson Plan 97

Activity

4 Interlude
Song, rhyme, exercises 22 min

Notes

Whole class in unison

5 Book 2, page 97
Q.2 Read: A butterfly has 2 feelers and 6 legs.
Fill in the table. Compare the rows.

Ask Ps what each row of table means (middle row is 2 times top row; bottom row is 6 times top row or 3 times middle row).

Ps fill in table in their books. Review at BB with whole class.
Mistakes corrected. Let's compare the rows in the table.
Who can come and write the rule about the Legs (Feelers, Butterflies)? Who agrees? Who can write it in a different way?

BB: \[L = 6 \cdot B \quad F = 2 \cdot B \quad B = F \quad 2 \]
\[L = 3 \cdot F \quad F = L \quad 3 \quad B = L \quad 6 \]

28 min

Notes

Individual work, monitored helped

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, praising

Reasoning, agreement
Check with values from table
Praising only

6 Problems
a) T calls 6 girls out to front of class and gives each of them 7 pencils to hold. How many pencils do they have altogether? Ps come out to BB to write it as an addition and a multiplication. Who agrees?
b) Seven boys have 6 marbles each. How many marbles do they have altogether? Show me the answer with number cards . . . now! (42)
C, come and explain to us how you worked out the answer. Is C correct?
Demonstrate with 7 boys at front of class if necessary.

33 min

Notes

Whole class activity
Demonstration, reasoning, agreement, checking
BB: 6 \cdot 7 pencils = 42 pencils
In unison
Reasoning, agreement, checking
BB: 7 \cdot 6 marbles = 42 marbles
Praising

7 Multiplications and divisions
Let's make multiplications and divisions about the pictures.

BB:
\[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

What can you say about the picture in part a)? (6 rows of candles, 8 candles in each row, 48 candles altogether) Who can come and write a multiplication (division) about it? Who agrees? Who can think of another one? etc. Repeat in similar way for flowers in part b).

38 min

Notes

Whole class activity
Drawn on BB or use enlarged copy master or OHP

BB:
\[\begin{array}{cccc}
6 & 8 = 8 & 6 = 48 \\
48 & 6 = 8, 48 & 6 = 8 \\
6 & 9 = 9 & 6 = 54 \\
54 & 6 = 9, 54 & 9 = 6 \\
\end{array} \]

Praise if Ps think of other correct multiplications or divisions
e.g. 4 \cdot 12 = 48, 48 \div 2 = 24

8 Book 2, page 97
Q.3 Read: Write the multiples of 6 in the table in red.
Learn the multiples of 6 by heart.

Point to the row and column for 6 in your table. What do you notice? (Some numbers are already filled in because they are also multiples of 2, 3, 4, 5 or 10.)

Ps fill in the missing multiples of 6. Review at BB with whole class. Mistakes corrected. Ps given time to learn by heart.

Close your books and let's say the multiples of 6 together.

45 min

Notes

Whole class discussion at first
Drawn on BB or use enlarged copy master or OHT 7*
Ps come out to point and explain

Individual work, monitored
Agreement. T insists on quiet
In unison, in both directions
Activity

1. **Equations competition**

 R: Mental calculation

 C: Multiplication and division table for 6

 E: Relationship with the 2 and 4 times tables. Factorisation

 T divides the class into 3 teams (A, B and C all with a roughly equal ability range). T gives each team a number, e.g. 12, 25 and 30. Ps from all 3 teams come out in relay to BB to write operations beside (beneath) their number. T says ‘start’... and ‘stop’ after 2 minutes. e.g.

 \[
 \begin{align*}
 12 &= 2 \times 6 \\
 4 &= 2 \times 2 \\
 3 &= 2 + 1 \\
 10 &= 2 \times 5 \\
 7 &= 2 + 5 \dots
 \end{align*}
 \]

 The winner is the team with the most correct, different operations.

 Notes

 Whole class activity

 T encourages creativity

 At speed. Ps still seated point out incorrect or repeated equations to help their team

 Quick review/counting

 Stars/stickers, etc. awarded

 5 min

2. **Sequences relay**

 T starts a sequence and Ps continue it.

 a) 0, 6, 12, . . .

 b) 2, 8, 14, . . .

 c) 5, 11, 17, . . .

 d) 55, 49, 43, . . .

 e) 58, 52, 46, . . .

 f) 57, 51, 45, . . .

 Notes

 Whole class activity

 At speed in relay round class

 Self-correction

 Praising

 10 min

3. **Book 2, page 98**

 Q.1 Read: A dragonfly has 2 feelers, 4 wings and 6 legs.

 Complete the table. Compare the rows and write equations about them.

 Who can explain why the first column is all zeros? (If there are no dragonflies, then there are no feelers, wings or legs.)

 From 2nd column, elicit that 2nd row is twice 1st row, 3rd row is 4 times 1st row or 2 times 2nd row, and 4th row is 6 times top row or 3 times 2nd row).

 Do columns headed 4, 6 and 10 with the whole class. Ps come out to fill in a box and explain reasoning. Class agrees/disagrees.

 Ps fill in columns headed 9, 7, 5, and 1 in Pb s, using × table if necessary. Review at BB with whole class. Mistakes corrected.

 Ps fill in columns headed 3, 5, 7, and 9 in Pb s, using × table if necessary. Review at BB with whole class. Mistakes corrected.

 Ps fill in columns headed 1, 3, 5, and 7.

 Solution:

 Number of

 | Feelers | 0 | 2 | 4 | 6 | 8 | 10 | 9 | 7 | 5 | 3 | 1 | 10 | 9 | 8 | 7 | 6 | 4 | 2 | 1 | |
|---|
 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
 | 10 | 10| 10| 10| 10| 10| 10 | 10| 10| 10| 10| 10| 10 | 10 | 10| 10| 10| 10| 10| 10| 10|
 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
 | 10 | 10| 10| 10| 10| 10| 10 | 10| 10| 10| 10| 10| 10 | 10 | 10| 10| 10| 10| 10| 10| 10|
 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

 Let's compare the rows in the table.

 Who can come and write an equation about the Legs (Feelers, Wings, Dragonflies)? Who agrees? Who can write it in a different way?

 BB:

 \[
 L = D \times 6, \quad L = F \times 3, \quad (L = F + W)
 \]

 \[
 W = L - F, \quad W = 2 \times F, \quad W = 4 \times D
 \]

 \[
 D = L \div 6, \quad D = W \div 4, \quad D = F \div 2
 \]

 Notes

 Whole class activity to start

 Drawn on BB or use enlarged copy master or OHP

 BB:

 \[
 0 \times 2 = 0, \quad 4 \times 0 = 0, \quad 6 = 0
 \]

 Discussion, agreement

 Reasoning, agreement, checking, praising

 Individual work, monitored, helped. Self-correction

 Reasoning, agreement, checking, praising

 Ps complete table in their books

 Ps might notice patterns as columns are completed

 Discussion, agreement

 Check each suggestion with values from table

 Praising only

 Extra praise if Ps write the bracketed equations

 20 min

4. **Interlude**

 Relaxation with music playing

 Notes

 Whole class resting

 22 min
Activity

5

Problem
T has 24 flowers (real, plastic or paper) and 6 vases (or Ps) at the front of the class.
a) We want to put 6 flowers into each vase. How many vases will we fill? How could we do it? (Put 6 flowers in one vase, then 6 in another, until all the flowers are used up.)
A, come and fill the vases. How many vases has A filled? (4)
Who can come and write a division about it? Who agrees? Who thinks something else? How can we check it? (with a multiplication) Ps write equations in their exercise books too.
b) T collects flowers back into one bunch. This time we want to put the flowers in 6 vases so that there is an equal number of flowers in each vase. How could we do it? (Put 1 flower in each of the 6 vases, then another, then another until all the flowers are used up.)
Y, come and fill the vases. How many flowers has Y put in each? (4)
Who can come and write a division about it? Who agrees? Who thinks something else? How can we check it? (with a multiplication) Ps write equations in their exercise books too.

Lesson Plan 98

Notes
Whole class activity
(Or flowers could be brought into class by previous arrangement to add excitement!)
Ask several Ps
BB: 24 flowers \div 6 flowers = 4 (times)
Check: $4 \cdot 6$ flowers = 24 flowers
Ask several Ps what they think
BB: 24 flowers \div 6 = 4 flowers
Check: $6 \cdot 4$ flowers = 24 flowers
Praising

6

Book 2, page 98
Q.2 Read: Write the additions and subtractions in a shorter way. Write the answers too.
Deal with one part at a time. Do first row with whole class first, then Ps complete in their books. Review at BB with whole class.
BB: a) $6 + 6 + 6 + 6 + 6 + 6 = 6 \cdot 6 = 36$, etc.
b) $54 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 = 54 - 54 = 0$, etc.

33 min

7

Book 2, page 98
Q.3 a) Read: Divide the 42 coins equally among the 6 purses.
Ps can either join up one coin at a time to each purse in turn or colour the purses in different colours and then colour the coins to match the purses.
Review at BB with whole class. Demonstrate if necessary.
b) Read: Circle the coins in groups of 6 p. 6 p is contained in 42 p 'something' times.
Ps draw circles around coins in their books and write in answer.
Show me the answer with number cards . . . now! (7)
P who answered correctly explains to Ps who were wrong.

40 min

8

Factorisation
T revises what the 'factors' of a number are. (Numbers which multiply together to make that number) T writes '18' on the BB.
Let's break down this number into its lowest factors (other than 1, which is a factor of every number). Ps come out to show the 2 possible ways. We will draw a box round the number if it has no more factors (except 1 and itself). Note that both have the same end result: $2 \cdot 3 \cdot 3$, when the factors are put in increasing order. Repeat for 24 and 30 if time.

45 min
Lesson Plan 99

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **1** Chain operations | Whole class activity
(Exercises memory and concentration)
Wait until majority of Ps have nodded their heads
In unison. Reasoning, agreement, checking, praising
Involve several Ps. Praising |

T says a sequence of operations, pausing after each one. Ps nod their heads when they have calculated the result. Final answer shown with number cards on command.
e.g. T: '4 × 6...' | 2... '−5'... 6' = ?
Show me... now! (42) A, tell us how you got your answer.
What can you tell me about the number 42? (e.g. 2-digit, even, 2 more than 40, 3 less than 45, 4 × 10 + 2, 50 – 8, etc.)

| **2** Number strips (or Cuisennaire rods, or multilink cubes) | Whole class activity
Table drawn on BB and strips enlarged and cut out from Y1 copy master LP 7/3, or use enlarged copy master or OHP with differently coloured cut-out strips
If possible, Ps could have own sets on desks too as a check or in case there are problems
Reasoning, agreement, checking, praising
Demonstrate where necessary
Ask several Ps |

T has table headings prepared on BB and enlarged number strips (or large Cuisennaire rods) for demonstration.
BB:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>9</th>
<th>6</th>
<th>3</th>
<th>8</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>40</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>60</td>
<td>54</td>
<td>36</td>
<td>18</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

| 7 | 51 | 0 | 2 | 0 | 5 | 0 | 61 | 2 | 2 |

<table>
<thead>
<tr>
<th>8</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>40</th>
<th>28</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>36</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T explains columns by starting with the '1 unit' strip (rod).
T holds up each number strip in turn (continuing with 2, 3, 5, 7, 8) and Ps come out to stick on LHS of table in relevant row and write appropriate number in strip and in 1st column.
Ps come out to complete other columns, explaining their reasoning, e.g. '1 × 2 = 2', '2 × 2 = 4', '4 × 2 = 8', etc. Class points out errors.
Let's compare the rows. What do you notice? (e.g. 4th row is 2 times 2nd row, 3rd row is half of 6th row, etc.)

| **3** Book 2, page 99 | Individual work, monitored, helped
Discussion, agreement, checking, praising
Demonstration if necessary with empty cans (or pencils, etc.) tied in bundles of 6
If necessary, Ps could use items from their collection |

Q.1 Read: How many 6-pack cans of lemonade can you make from
a) 18 cans, b) 12 cans, c) 30 cans?
If possible, T could show such a pack to the class.
(If necessary, go over part a) with the whole class first.)
Review at BB with whole class. Mistakes corrected.
BB: a) 18 | 6 = 3 | Check: 3 × 6 = 18
b) 12 | 6 = 2 | Check: 2 × 6 = 12
c) 30 | 6 = 5 | Check: 5 × 6 = 30

| **4** Interlude | Whole class in unison |

Physical exercises

R: Mental calculation
C: Multiplication and division by 6
E: Relationship to 2 and 3 times tables
Lesson Plan 99

Notes

Whole class activity to start
Drawn on BB or use enlarged copy master or OHP
Demonstration, discussion
BB:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>24 (plums)</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
<tr>
<td>b)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
<tr>
<td>c)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
<tr>
<td>d)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
<tr>
<td>e)</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
<tr>
<td>f)</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Check:</td>
</tr>
</tbody>
</table>

Individual work, monitored (helped)
Class points out mistakes
Ps correct their errors
T asks for quiet so that everyone can concentrate
In unison, at speed
One P after another, at speed
In unison, at a good pace, with T's help. Praising

Individual work in checking/
colouring/learning facts
T monitors, checks individuals
Class answers in unison

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, praising
BB:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>6 \times 2 = 12, 12 \times 3 = 36</td>
</tr>
<tr>
<td></td>
<td>6 \times 6 = 36</td>
</tr>
<tr>
<td>b)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

Praise creativity

Individual work in checking/colouring/learning facts
T monitors, checks individuals
Class answers in unison

© CIMT, Plymouth University
Lesson Plan 100

R: Mental calculation
C: Multiplication and division by 6
E: Remainders. Order of operations (i)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **1** | **Logic set**
Take out all the hexagons from your set and count them.
How many are there altogether? (8) Let's put them in a logical order.
Which one should I start with? Ps suggest which to put next.
e.g. BB:
- How many sides (vertices, i.e. corners) does each hexagon have? (6)
- How many vertices do the large plain hexagons have altogether? (12)
- How many vertices and sides do the hexagons with centre points have altogether? (48)
- Which hexagons have 24 sides altogether? (4 of any description)
T (or P) writes multiplications/divisions on BB and Ps write in their exercise books. | Whole class activity
Class responds in unison
Ask several Ps what they think
Ps copy pattern on desks |
| **2** | **Finding the rule**
Look at these columns of numbers in the table. Who can tell us the rule?
(increasing by 6 each time)
What else do you notice about the numbers in each column?
(1st column are multiples of 6, i.e. divisible by 6 exactly; 2nd column have remainder 1 when divided by 6; 3rd column have remainder 2 when divided by 6, etc.) T gives hint if nobody notices.
Who can find other sequences in the table with other rules? (diagonal) | Whole class activity
Drawn on BB or use enlarged copy master or OHP
Ps come to BB to point/explain
Agreement, checking, praising |
| **3** | **Book 2, page 100**
Q.1 Read: Write in the missing numbers and signs.
Review at BB with whole class. Mistakes corrected.
What are these questions about? (replacing 1 operation with 2)
Who can think of other examples? | Individual work, monitored, helped
Written on BB or use enlarged copy master or OHP
Discussion, checking, agreement, praising |
| **4** | **Book 2, page 100, Q.2**
a) Read: Henry Hedgehog collected 25 strawberries.
He ate 7 of them but then found 3 more.
How many strawberries did he then have?
Ps come out to write missing numbers in the boxes:
Collected: 25
Ate: 7
Found: 3
Let's write the calculation together. What number should we begin with? (25) Then what should we do? (subtract 7, then add 3)
Calculation: \(25 - 7 + 3 = 18 + 3 = 21\)
If there are only additions and subtractions in an equation, we usually do the calculations in order from left to right. | Whole class activity
Ps read out question
Written on BB
Class agrees/disagrees
T writes what Ps dictate
Ps read equation in unison
T could give easy examples for Ps to calculate mentally; (e.g. 7 + 3 – 5. 15 – 5 + 2) |
Lesson Plan 100

Activity

b) Read: From Monday to Saturday, Holly Hedgehog collected 9 raspberries each day. On Sunday she ate half of them. How many raspberries did she then have?

Ps come out to write relevant numbers in the boxes:

Number of days: 6
Collected each day: 9

Collected altogether: $6 \times 9 = 54$
Ate: $27 \div 2$

Let's write it as one calculation. What number should we begin with? (6) Then what should we do? (multiply by 9, then divide by 2)

Calculation: $6 \cdot 9 \div 2 = 27$

If there are only multiplications and divisions in an equation, we usually do the calculations in order from left to right.

If Holly Hedgehog ate 27 raspberries, how many does she have left? (27: same as the number she ate; she ate half and half were left, so there is no need to do the calculation, $54 - 27 = 27$)

Interlude

Action song/rhyme

Book 2, Page 100

Q.3 Read: Practise calculation.

Let's see how quickly you can do these! Sit up with your arms folded when you have finished.

Review orally round class. Mistakes corrected at number line or using multiplication table.

Mental calculation

T has 12 cards stuck to side of BB. Ps come out to chose pairs of cards with same result, explaining reasoning.

Class agrees/disagrees.

Emphasise correct order of calculation.

Order of calculation

T has BB ready prepared. In which order would you do the calculations?

BB:

$38 + 17 + 12 = 8 \cdot 3 \cdot 2 = 27 + 14 + 26 =$
$29 + 37 - 17 = 15 \cdot 2 \div 3 = 56 - 26 - 17 =$
$52 - 17 + 15 = 8 \cdot 6 \div 4 = 42 - 35 + 36 =$
$95 - 38 - 15 = 60 \div 6 \div 2 = 37 + 23 - 13 =$

Revise usual order of operations but hint that sometimes it is easier to calculate in a different order. Go through each of the above in turn, asking Ps which order they think would be easiest, and then checking that the result is the same as that using the conventional order.

Conclusion:
The order of calculation may be varied as long as the result is the same as if it had been calculated from left to right.

Notes

Whole class activity
Ps read question

Written on BB
Class agrees/disagrees

T writes what Ps dictate
Ps read equation in unison
T could give easy examples for Ps to calculate mentally: (e.g. $2 \cdot 6 | 3, 10 | 5 \cdot 3$)

Discussion, agreement
Praising

Individual work, monitored
Encourage quick, accurate calculation and checking
Agreement, self-correction, Praising

Whole class in unison

Use copy master, enlarged and cut out
Reasoning, agreement, checking, Praising i.e. calculate from left to right

Whole class activity
Written on BB
(First optimal calculation underlined)

Ps suggest easiest order of calculation. Class agrees/disagrees.

Check result is the same done from left to right
Praise if Ps suggest correct optimal order of calculation
Lesson Plan

Bk2

R: Mental calculation
C: Multiplication and division table for 9
E: Relationship with the 3 and 6 times tables

Activity

1

Sequences

T starts a sequence and Ps continue it. T asks for rule in each case.

a) 0, 7, 14, 21, . . . (Rule: + 7)
b) 0, 8, 16, 24, . . . (Rule: + 8)
c) 0, 9, 18, 27, . . . (Rule: + 9)
d) 90, 81, 72, . . . (Rule: – 9)

Notes

Individual work, monitored
Keep to time limit! (Practice in quick, accurate calculation)
Some Ps may use number lines if necessary
Discussion, agreement, checking, praising
Extra praise if Ps notice this

2

Problem

Listen carefully and think about how you would calculate the answer.

Each of 4 children has 3 matchboxes and each matchbox contains 3 marbles. How many marbles do they have altogether?

(Demonstrate with 4 Ps at front of class if necessary.)

T writes equations on BB as dictated by Ps (or Ps come out to BB to write them) for total number of boxes, then total number of marbles.

Who can come and write it as one calculation? Who agrees? etc.

Answer: They have 36 marbles altogether.

Ps copy equation and answer into Ex Bks. (Heading: lesson number and date)

3

Book 2, page 101

Q.1 Read: Fill in the answers.

Let's see how many of these you can do in 3 minutes!

Review orally round class. Mistakes corrected at number line.

T asks two Ps who answered correctly to explain last two equations to Ps who answered incorrectly.

BB: 110 – 1 = 110 – 10 – 1 = 100 – 1 = 99
120 – 12 = 120 – 10 – 2 = 110 – 2 = 108

What do you notice about the subtractions? (the number of units subtracted is the same as the number of tens subtracted from.)

4

Comparison with 3 and 6

Look at this diagram. What shapes can you see? (triangle inside a hexagon) How many sides does the triangle (hexagon) have? (3, 6)

How many sides can you see altogether? (9) What could we do to show how many sides we could see if we had several such diagrams? (make a table)

T draws table on BB with help of Ps and Ps draw in exercise books (using rulers to draw the lines).

Ps come out one at a time to fill in the columns. Class agrees/disagrees.

What can you say about the rows? (e.g. numbers in 2nd row are multiples of 3, 3rd row multiples of 6, 4th row multiples of 9)

Let’s compare them. Use letters suggested by Ps to make writing the equations easier (or just do orally, e.g. 4th row = 3 · 2nd row)

Let \(D \) = number of diagrams, \(T \) = number of sides in triangles
\(H \) = number of sides in hexagons
\(A \) = number of sides altogether.

BB:

\[e.g. \quad D = A \div 9 \]
\[T = 3 \cdot D \]
\[H = 6 \cdot D = 2 \cdot T \]
\[A = T + H \]

etc.

Extra praise for Ps who write correct equations

© CIMT, Plymouth University
Lesson Plan 101

5 Interlude
Song or rhyme

6 Book 2, page 101, Q.2
Read: Complete the table. Look for connections between the rows.
What can you say about the picture? (10 rows, 10 circles in each row, in each row 9 circles are white and 1 is black)
Who can explain to us what the table has to do with the picture?
Ps come out to fill in the table, explaining reasoning. Class agrees/disagrees. Ps may complete table in Pbs too.
Elicit that 2nd row contains multiples of 10 and bottom row contains multiples of 9. Class recites them in unison.

7 Book 2, page 101
Q.3 Read: A blue strip measures 9 cm, a red strip 3 cm and a yellow strip 1 cm.
How many red and how many yellow strips would be needed to cover the same length as several blue strips laid end to end? Complete the table.
T demonstrates on BB with ready prepared strips (or multilink cubes). Make sure that Ps know what each row in table refers to.
Review at BB with whole class. Mistakes corrected
Solution. Number of:

<table>
<thead>
<tr>
<th>Blue strips</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>9</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red strips</td>
<td>3</td>
<td>9</td>
<td>21</td>
<td>6</td>
<td>15</td>
<td>12</td>
<td>24</td>
<td>27</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Yellow strips</td>
<td>9</td>
<td>27</td>
<td>63</td>
<td>18</td>
<td>45</td>
<td>36</td>
<td>72</td>
<td>81</td>
<td>54</td>
<td>90</td>
</tr>
</tbody>
</table>

Let’s compare the rows. Who can come and write an equation about one of the rows? Who agrees? etc.

8 Book 2, page 101
Q.4 Read: Write the multiples of 9 in the table in red.
Learn the multiples of 9 by heart.
Point to the row and column for 9 in your table. What do you notice? (Some numbers are already filled in because they are also multiples of 2, 3, 4, 5, 6 or 10.)
Ps fill in the missing multiples of 9. Review at BB with whole class. Mistakes corrected. Ps given time to learn by heart.
Close your Pbs and let’s say the multiples of 9 together.
T says a number and Ps find it in different places in the table.
Ps come out to point to its positions on copy master, saying the multiplication facts shown, e.g.
18 = 2 · 9 = 3 · 6 = 6 · 3 = 9 · 2
36 = 4 · 9 = 6 · 6 = 9 · 4

Notes

Whole class in unison

Whole class activity
Draw on BB or use enlarged picture or OHP
Reasoning, agreement, checking, praising
BB:
\[\bigcirc = \bigcirc \cdot 9 = R \cdot 9 \]
\[C = R \cdot 10 = \bigcirc \cdot 10 \]
\[R = \bigcirc = C \left| 10 = \bigcirc \right| 9 \]
\[C = \bigcirc + \bigcirc \cdot \bigcirc = C - \bigcirc \]

Individual work, monitored, helped
Ps can have strips (cubes) on desks too
Drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, checking, self-correcting
BB:
\[B = R \left| 3 = Y \right| 9 \]
\[R = 3 \cdot B = Y \left| 3 \right. \]
\[Y = 9 \cdot B = 3 \cdot R \]
\[Y \left| R = 3 \right. \text{ etc.} \]
Praising

Whole class discussion at first
Drawn on BB or use enlarged copy master or OHT 7 *
Ps come out to point and explain
Individual work, monitored
Agreement. T insists on quiet
In unison, in both directions
Class agrees/disagrees
Ps can choose the numbers too
Elicit that these numbers are factors of 18 (36)

Praising
Lesson Plan 102

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R: Calculation practice</td>
<td>Lesson Plan 102</td>
</tr>
<tr>
<td>C: Multiplication and division table for 9</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>E: Relationship with 3 and 6 times tables. Order of operations (ii)</td>
<td>At speed, in relay</td>
</tr>
</tbody>
</table>

Oral work
Tell me different ways to describe this number. e.g. 20 (72, 80)
(e.g. \(80 = 8 \cdot 10 = 9 \cdot 9 - 1 = 9 \cdot 8 + 8 = 3 \cdot 20 + 20\), etc).

Problems
Listen carefully and think about how you would calculate the answers.

a) *The farmer's wife had 8 eggs. Then the farmer brought her 9 boxes of eggs, 6 eggs in each box.*

How many eggs did the farmer's wife have then?

How many eggs did she have at first? How many eggs did the farmer give her? How many eggs did she then have?

BB:
- Had: 8 eggs
- Was given: 9 \(\times\) 6 = 54 eggs
- Then had: 54 + 8 = 62 eggs

How could we write it as one equation? T writes equation on BB as directed by Ps. Which calculation should we do first? Let's check that we have the correct answer. **Answer:** She then had 62 eggs.

b) *Edith had 80 p. Edith and each of her 8 friends put equal amounts of money into a kitty to spend on sweets. The kitty was 45 p.*

How much money did Edith have left?

How much money did Edith have at first? How much did she spend on the kitty? How much did she have left?

BB:
- Had: 80 p
- Spent: 45 p \(\div\) 9 = 5 p
- Had left: 80 p - 5 p = 75 p

How could we write it as one equation? T writes equation on BB as directed by Ps. Which calculation should we do first? Let's check that we have the correct answer. **Answer:** She had 75 p left.

T confirms that if an equation contains additions or subtractions and also multiplications or divisions, then the multiplications and divisions should be calculated first.

Book 2, page 102

Q.1 a) *Read: Divide the 27 coins equally among the 9 purses.*

Ps can either join up one coin at a time to each purse in turn or colour the purses in different colours and then colour the coins to match the purses.

Review at BB with whole class. Demonstrate if necessary.

b) *Read: Put the 36 coins into groups of 9.*

How many groups are there?

Ps draw circles around coins in their books and fill in numbers.

Show me the answer with number cards... now! (4)

P who answered correctly explains to Ps who were wrong.

Interlude
Ps close their eyes, lay heads on hands on desks and practice saying the multiples of 9 from 0 to 90, and then from 90 to 0 in their heads.

© CIMT, Plymouth University
Book 2, page 102

Q.2 Read: Aunt Sally has picked some strawberries from her garden. She shares them out equally among her 9 grandchildren. How many strawberries will each child get and how many will remain if Aunt Sally picked:

a) 36 strawberries,
b) 39 strawberries,
c) 40 strawberries?

a) How many strawberries will each child have? (4) How many strawberries remain? (none) B, come and write an equation about it? Who agrees? Who thinks something else? How can we check it? (with a multiplication)

Parts b) and c) done as individual work.

(Ps may use items from their collection, or multiplication tables, to help them if necessary.)

Review at BB with whole class. Ps come out to write equations, explaining reasoning. Mistakes discussed/corrected.

27 min

Book 2, page 102

Q.3 Read: Shorten the additions to a multiplication. Write a division about it too.

Deal with one part at a time. Do first row with whole class first, then Ps complete in Pbs. Review at BB with whole class.

BB: a) $9 + 9 + 9 + 9 + 9 + 9 + 9 = 7 \times 9 = 63$

$63 \div 9 = 7$ etc.

T uses mathematical names of components (product, dividend, divisor, quotient, remainder).

32 min

Factorising

T revises what the 'factors' of a number are. (Numbers which multiply together to make that number) T writes '72' on the BB.

Let's break down this number into its lowest factors (other than 1, which is a factor of all numbers).

Ps come out to write the factors on BB. Class agrees/disagrees.

Let's draw a circle round a number if it has no other factors apart from 1 and itself. Let's write out the factors in increasing order. (BB)

Ps copy into their exercise books. Repeat for other numbers if time. (e.g. 45, 90)

39 min

Problem

Listen carefully and think about how you would calculate the answer.

Ann has 4 dolls with 3 dresses each. Sarah has 9 dolls with 2 dresses each. How many dresses do their dolls have altogether?

Plan: Ann: $4 \times 3 = 12$ (dresses) Sarah: $9 \times 2 = 18$ dresses

How could we write it as one equation? What should we do first? (×)

Answer: Their dolls have 30 dresses altogether.

45 min
Activity

1. **Sequences**
 T says the first 3 terms of a sequence. Ps continue it. (Not past 100)
 0, 9, 18, . . . ; 3, 12, 21, . . . ;
 1, 10, 19, . . . ; 4, 13, 22, . . . ;
 2, 11, 20, . . . ; 5, 14, 23, . . . ;
 Let’s find these numbers in this table. What rule have we used? (+ 9)
 Elicit that numbers in 1st (2nd, 3rd, 4th, 5th.) column have remainder
 0, 1, 2, 3, 4, 5) when divided by 9.

2. **Number strips (or Cuisennaire rods, or multilink cubes)**
 T has table prepared on BB and enlarged number strips (or
 Cuisennaire rods or multilink cubes) for demonstration.
 If we laid several ‘9’ unit strips end to end in a long line, how many
 ‘1’, ‘3’, and ‘6’ unit strips would we need to cover (pave) them?
 Let’s show it in this table.
 BB:
<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>36</th>
<th>63</th>
<th>81</th>
<th>54</th>
<th>27</th>
<th>18</th>
<th>45</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>21</td>
<td>27</td>
<td>18</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
 T demonstrates 1st column of table with strips (rods). T sticks one ‘9 unit’
 rod on BB. Ps come out to pave with ‘1’ and ‘3’ strips (rods) and write
 number required in appropriate place in table. Discuss impossibility of
 paving 9 with ‘6’ strips! Let’s put a dash (–) in the table in this case.
 Ps come out to complete other columns by calculation, explaining
 their reasoning and writing a ‘–’ if it is not possible.
 Let’s compare the rows. What do you notice? (e.g. top row is 9 times
 bottom row, 3rd row is half of 2nd row, etc.)
 Add columns to table which have numbers filled in for ‘1’, ‘3’ or ‘6’
 strips instead of the ‘9’ strips.

Extension

Add columns to table which have numbers filled in for ‘1’, ‘3’ or ‘6’
strips instead of the ‘9’ strips.

3. **Book 2, page 103**
 Q.1 Read: Each box holds 9 chocolates. How many boxes will
 these chocolates fill?
 a) 20 chocolates b) 45 chocolates c) 50 chocolates?
 If possible, T could show such a box to the class.
 (If necessary, go over part a) with the whole class first.)
 Review at BB with whole class. Mistakes corrected.
 BB: a) 20 \(\div 9 = 2, \) remainder 2 \(\text{Check: } 9 \cdot 2 + 2 = 20 \)
 b) 45 \(\div 9 = 5 \) \(\text{Check: } 9 \cdot 5 = 45 \)
 c) 50 \(\div 9 = 5, \) remainder 5 \(\text{Check: } 9 \cdot 5 + 5 = 50 \)

4. **Interlude**
 Physical exercises

© CIMT, Plymouth University
Activity 5

Book 2, page 103

Q.2 Read: Write in the missing numbers. Learn and practise the 9 times table.

Deal with one column at a time. Review orally round class. Elicit that the answers to the multiplications (products) are the same as the first numbers in the divisions.

In the next 2 minutes try to learn the multiplications by heart and then we will try to say them without looking at the books!

Close your Pbs and let's say the 9 times table together. 'zero times nine equals zero, one times nine equals nine, . . .'

Let's say it another way in a relay, starting with '9 times zero'

How do the tens and units change? (tens go up 1 and units down 1)

Now let's say the divisions for 9: 'zero divided by nine equals zero, . . .'(Demonstrate this first division if necessary.)

Activity 6

Book 2, page 103

Q.3 Read: Do the calculations in the correct order. Multiply or divide first!

Do part a) with whole class first. Ps come out to write result above the multiplication or division indicated and then fill in answer, explaining reasoning. Class agrees/disagrees.

Part b) done as individual work, reviewed at BB with whole class. Mistakes discussed and corrected.

Activity 7

One operation instead of two

T has BB already prepared:

Ps come out to write in the missing numbers and signs, explaining reasoning. Class agrees/disagrees.

N.B. In b), T gives help if necessary in calculation of \(27 \times 3 = 81\),

\[
\begin{align*}
27 \cdot 3 &= 20 \cdot 3 + 7 \cdot 3 \\
&= 60 + 21 = 81
\end{align*}
\]

or

\[
\begin{align*}
27 \cdot 3 &= 27 + 27 + 27 \\
&= 81
\end{align*}
\]

Elicit that:

- dividing by 3 and then again by 3 is the same as dividing by 9,
- multiplying by 3 and then again by 3 is the same as multiplying by 9.

Activity 8

Multiplication Table

Look at your multiplication table. Check that you really know the products you have coloured. Colour any new products you are sure you know by heart.

Let's check! T says multiplications/divisions and class answer in unison.

Lesson Plan 103

Notes

Individual work, monitored (helped)

Class points out mistakes

Ps correct their errors

T asks for quiet so that everyone can concentrate

In unison, at speed

One P after another, at speed

Praise if Ps notice

In unison, at a good pace, with T's help. Praising

Whole class activity to start (or all done as individual work if Ps want to)

Written on BB or use enlarged copy master or OHP

Reasoning, agreement, checking, self-correcting

Praising

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, checking, praising

BB:

a) \(18 \div 3 = 6\), \(6 \div 3 = 2\)

\[
\begin{align*}
18 & \div 3 = 6 \\
6 & \div 3 = 2
\end{align*}
\]

b) \(9 \div 3 = 27\), \(27 \div 3 = 81\)

\[
\begin{align*}
9 & \div 3 = 27 \\
27 & \div 3 = 81
\end{align*}
\]

T asks Ps for other examples

Praise creativity

Individual work in checking/colouring/learning facts

T monitors, checks individuals

Rough feedback for T
Activity

1 Sequences
T says the first 3 terms of a sequence. Ps continue it.

- **a)** 6, 15, 24, . . .
- **b)** 96, 87, 78, . . .
- 7, 16, 25, . . .
- 8, 17, 26, . . .

Let's find the numbers in this table. What rule have we used?

a) increasing by 9 (+ 9)

b) decreasing by 9 (− 9)

What is their remainder when divided by 9?

6 min

2 Multiplication and division practice
T says, e.g. '4 × 8', P1 says '32'; T says '25 ÷ 5', P2 says '5', etc. Use mixed operations too, e.g. T says '9 × 4 ÷ 6', P3 says '6', etc.

10 min

3 Equations competition
T divides the class into 3 teams (A, B and C all with a roughly equal ability range). T gives each team a number, e.g. 55, 81 and 40.

Ps from all 3 teams come out in relay to BB to write operations beside (beneath) their number. T says 'start' . . . and 'stop' after 2 minutes. e.g.

- 81 = 5 · 8 + 41 = 9 · 9 = 9 · 10 − 9 = 10 · 8 + 1 = 100 − 19, . . .

The winner is the team with the most correct, different equations.

15 min

4 Book 2, page 104, Q.1
Read: Choose the easiest order of calculation.

T revises usual order of calculation (from left to right if only additions/subtractions or multiplications/divisions).

Ps come out one after another to say what they think is the easiest order and why. Class checks that the answer is correct.

- **BB:** e.g.

- **a)** 46 + 18 + 24 = 70 + 18 = 88
- **b)** 7 · 3 · 3 = 7 · 9 = 63
- 63 + 45 − 15 = 63 + 30 = 93
- 31 − 18 + 27 = 58 − 18 = 30
- 73 − 32 − 23 = 50 − 32 = 18

T points out that although it is easier sometimes to do such calculations in a different order, we must be careful! The result should be the same as if we had done it the usual way.

- **e.g.** 8 − 4 − 2 ≠ 8 − 2 and 20 | 10 | 2 ≠ 20 | 5

20 min

5 Interlude
Song, rhyme, exercises

22 min
Bk2

Activity 6

Inequalities

Which numbers make the inequality true? (BB already prepared)

BB:

Solutions:

a) \(9 \cdot 3 < a < 9 \cdot 4\)
 a: 28, 29, 30, 31, 32, 33, 34, 35

b) \(10 \cdot 6 > b > 9 \cdot 6\)
 b: 59, 58, 57, 56, 55

c) \(7 \cdot 5 \leq c \leq 8 \cdot 5\)
 c: 36, 37, 38, 39, 40

Deal with one part at a time. Class reads the inequality together.
Two Ps come out to write results above operations on LHS and RHS of inequality. Another P lists the numbers which make the inequality true. Class /disagrees. Solution checked on class number line.

28 min

Notes

Whole class activity

Written on BB

Discussion, agreement, checking praising
Ps write it in their exercise books too

Activity 7

Book 2, page 104

Q.2 Read: Practise calculation.

What do you notice about the equations? (3 columns, 8 in each column, 24 altogether; multiplying and dividing by 9; 12 multiplications and 12 divisions)

Deal with one column at a time. Set a time limit.

Review orally round the class, with Ps reading out the whole equation. Class points out errors.

Who had all correct? Who made a mistake? What kind of mistake? Who did the same? Who made a different one? etc.

36 min

Notes

Individual work, monitored, (helped)

Ps may use multiplication tables to help them

Agreement, checking, self-correction

Praising/encouragement only

Activity 8

Book 2, page 104

Q.3 Read: Colour the equal values in the same colour.

Reminds Ps that multiplications or divisions should be done before additions or subtractions.

Ps write in results and colour rectangles. Review at BB with whole class. Mistakes corrected.

(Praise if Ps notice that, e.g. \(3 \cdot 9 + 2 \cdot 9 = 5 \cdot 9 = 45\))

Solution:

\[
\begin{align*}
5 \cdot 10 - 5 &= 45 \\
5 \cdot 8 + 5 &= 45 \\
3 \cdot 9 + 2 \cdot 9 &= 45 \\
10 \cdot 9 - 1 \cdot 9 &= 81 \\
9 \cdot 2 + 9 \cdot 6 &= 72 \\
6 \cdot 9 - 9 &= 45 \\
4 \cdot 7 + 4 \cdot 2 &= 36 \\
10 \cdot 8 - 8 &= 72 \\
4 \cdot 9 + 4 \cdot 9 &= 72
\end{align*}
\]

40 min

Notes

Individual work, monitored, helped

Ps may use multiplication tables to help them

Agreement, checking, self-correction, praising

(Or done as whole class activity using copy master, enlarged, cut out and rectangles stuck to BB)

Activity 9

Book 2, page 104, Q.4

Read: Colour the shapes on the grid and write the numbers in the shapes.

The product of the numbers in each shape is 36.

T explains task. Ps come out one at a time to choose a shape and find it in the grid, writing and saying the multiplication.

Solution:

\[
\begin{align*}
2 \cdot 5 \cdot 7 &= 140 \\
2 \cdot 9 \cdot 3 &= 54 \\
7 \cdot 0 \cdot 1 &= 0 \\
6 \cdot 5 \cdot 3 &= 90 \\
6 \cdot 8 \cdot 9 &= 432 \\
4 \cdot 3 \cdot 3 &= 36
\end{align*}
\]

45 min

Notes

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Ps may work in Pbs too.

Reasoning, agreement, checking, praising

BB: \(2 \cdot 2 \cdot 9 = 36\)
\(6 \cdot 6 = 36\)
\(2 \cdot 3 \cdot 2 \cdot 3 = 36\)
\(3 \cdot 2 \cdot 6 = 36\)
\(4 \cdot 3 \cdot 3 = 36\)
\(4 \cdot 9 = 36\)
Lesson Plan 105

Activity

<table>
<thead>
<tr>
<th>R: Practice in calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Operations in context</td>
</tr>
<tr>
<td>E: Problem solving</td>
</tr>
</tbody>
</table>

1. Finger counting

Show me with your fingers twice as many as I show you with mine.

- e.g. T holds up 3 fingers. Show me...now! Ps hold up 6 fingers.
- Repeat for 3 times, one half, one third.
- Give impossible problems too! (e.g. one third of 5)

8 min

2. Problem 1

Listen carefully and try to picture the story in your head. Think how you could work out the answer.

Pooh Bear licked two thirds of the honey out of a jar. Only 5 litres of honey remained. How many litres of honey were in the jar to start with?

- What could we do first? (Draw a diagram)
- T draws on BB with suggestions from Ps.

Plan:

- Amount at first: 3 thirds
- Amount eaten: 2 thirds
- Amount left: 1 third = 5 litres

Who can come and write a calculation for 3 thirds, the whole amount?

- Who agrees? Who thinks something else? etc.

Answer: There were 15 litres of honey in the jar to start with.

13 min

3. Problem 2

Listen carefully and try to picture the story in your head. Think how you could work out the answer.

Peter reads 2 pages each day from his book. He finishes the book in 17 days. How many pages are in his book?

- Who can suggest how to work out the answer? Who agrees? etc.

BB:

1 day → 2 pages;

17 days → 2 + 2 + 2 + 2 + ... + 2 = 2 • 17 = 17 + 17 = 34 pages

(or 2 • 17 = 2 • 10 + 2 • 7 = 20 + 14 = 34 pages)

Answer: There are 34 pages in Peter’s book.

18 min

4. Interlude

Song or rhyme

20 min

5. Book 2, page 105

Q.1 Read: *Three friends are collecting stamps. Rob has 36 stamps. Alex has twice as many as Rob and Tom has half as many as Rob.*

How many stamps does Alex and Tom each have?

Plan:

- R: 36
- A: twice R
- T: half of R

Calculation:

- A: 2 • 36 = 36 + 36 = 72 stamps
- T: 36 ÷ 2 = 20 ÷ 2 + 16 ÷ 2 = 10 + 8 = 18 stamps

Answer: Alex has 72 stamps and Tom has 18 stamps.

25 min

Notes

- Whole class activity
- Quick feedback for T
- Ps show in unison on command
- For fun!

Whole class activity

- T repeats slowly. P repeats in own words.
- Discussion, reasoning, agreement, checking, praising
- Ps draw/write in *Ex. Bks* too.
- BB:

 5 litres + 5 litres + 5 litres = 15 litres

 3 • 5 litres = 15 litres

 Check: 15 litres | 3 = 5 litres

Whole class activity

- T repeats slowly and asks Ps to repeat in own words.
- Discussion on strategy for solution. Involve several Ps
- Reasoning, agreement, checking, praising
- Ps write calculation in their exercise books too

Whole class in unison

- Individual work, monitored helped
- Review at BB with whole class
- Reasoning, agreement, checking, praising

[Practice in and of 2-digit numbers]
Lesson Plan 105

Activity

<table>
<thead>
<tr>
<th>Book 2, page 105, Q.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read: Three friends live in the same street. Alec’s house is 52 m from Colin’s house and Brett’s house is 23 m from Colin’s house. How far away is Brett’s house from Alec’s house?</td>
</tr>
<tr>
<td>Look at the diagram. Who can come and point to Alec’s (Colin’s) house? Who can come and point to where they think Brett’s house could be? Who agrees? Who thinks somewhere else? Elicit that there are 2 possible positions. Let’s call them B1 and B2.</td>
</tr>
<tr>
<td>BB:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A to B1: 52 m – 23 m = 28 m or A to B2: 52 m + 23 m = 75 m</td>
</tr>
<tr>
<td>Answer: Brett’s house is 28 m from Alec’s house, or Brett’s house is 75 m from Alec’s house.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book 2, page 105, Q.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read: Jenny had 47 p. She spent 18 p on a hairslide. Then she was given another 36 p by her Dad. How much money does she have now?</td>
</tr>
<tr>
<td>Plan: Had: 47 p Spent: 18 p Got: 36 p</td>
</tr>
<tr>
<td>Calculation: 47 – 18 + 36 = 29 + 36 = 65</td>
</tr>
<tr>
<td>Answer: Jenny has 65 p now.</td>
</tr>
<tr>
<td>Make up a problem where the calculation would be: a) 47 + 36 – 18 b) 36 – 18 + 47.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book 2, page 105, Q.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read: Mrs Squirrel takes acorns home twice a day. She can carry only 4 acorns at a time. How many acorns has she taken home after 6 days?</td>
</tr>
<tr>
<td>Plan: Each trip: 4 acorns Each day: 2 trips No. of days: 6</td>
</tr>
<tr>
<td>Calculation: 4 ⋅ 2 ⋅ 6 = 8 ⋅ 6 = 48 or 6 ⋅ (4 + 4) = 6 ⋅ 8 = 48</td>
</tr>
<tr>
<td>Answer: After 6 days she has taken home 48 acorns.</td>
</tr>
<tr>
<td>Make up a problem where the calculation would be: a) 2 ⋅ 6 ⋅ 4 b) 6 ⋅ 2 ⋅ 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book 2, page 105, Q.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read: In Lee’s piggy bank, there was 38 p. Lee put in 7 p each day for the next 6 days. How much money does Lee have now?</td>
</tr>
<tr>
<td>Plan: Had: 38 p Each day: 7 p No. of days: 6</td>
</tr>
<tr>
<td>Calculation: 38 + 7 ⋅ 6 = 38 + 42 = 80</td>
</tr>
<tr>
<td>Answer: Lee has 80 p now.</td>
</tr>
<tr>
<td>Think of another problem which would result in this calculation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Whole class activity</td>
</tr>
<tr>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Ask several Ps what they think (Some Ps might think that more information is needed.)</td>
</tr>
<tr>
<td>Demonstrate with 3 Ps at front of class if necessary</td>
</tr>
<tr>
<td>Discussion, reasoning, agreement, checking,</td>
</tr>
<tr>
<td>Extra praise if Ps realise without help that there are 2 possible answers.</td>
</tr>
<tr>
<td>Ps draw/write in their books too.</td>
</tr>
<tr>
<td>Individual work, monitored helped</td>
</tr>
<tr>
<td>Review at BB with whole class</td>
</tr>
<tr>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>Whole class discussion</td>
</tr>
<tr>
<td>Praise for good contexts and if Ps notice that the results are all the same.</td>
</tr>
<tr>
<td>Individual work, monitored helped</td>
</tr>
<tr>
<td>Review at BB with whole class</td>
</tr>
<tr>
<td>P explains reasoning. Class agrees/disagrees. Discuss alternative methods and any mistakes made. Praising only</td>
</tr>
<tr>
<td>Whole class discussion</td>
</tr>
<tr>
<td>Praise for good contexts and if Ps notice that the results are all the same.</td>
</tr>
<tr>
<td>Individual work, monitored helped</td>
</tr>
<tr>
<td>Review at BB with whole class</td>
</tr>
<tr>
<td>P explains reasoning. Class agrees/disagrees. Discuss any mistakes made. Praising only</td>
</tr>
<tr>
<td>Whole class discussion</td>
</tr>
<tr>
<td>Praise for good contexts</td>
</tr>
<tr>
<td>Activity</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1 Sequences</td>
</tr>
<tr>
<td>Whoever I throw the ball to must say the</td>
</tr>
<tr>
<td>• next element in the 2 times table. e.g. T throws ball to P saying: '2, 4, 6, 8, . . . ' P throws ball back to teacher saying '10'.</td>
</tr>
<tr>
<td>• previous element in the 3 times table. e.g. T throws ball to P saying: '30, 27, 24, . . . ' P throws ball back to teacher saying '21'.</td>
</tr>
<tr>
<td>Repeat for other multiplication tables. (4, 5, 6, 9 and 10).</td>
</tr>
<tr>
<td>2 Problem</td>
</tr>
<tr>
<td>Listen carefully and think how you would work out the answer.</td>
</tr>
<tr>
<td>Nine peaches weigh 1 kg. How many kg would 81 peaches weigh?</td>
</tr>
<tr>
<td>T writes on BB as dictated by Ps.</td>
</tr>
<tr>
<td>Plan: 9 peaches → 1 kg 81 peaches → 9 kg</td>
</tr>
<tr>
<td>How many groups of 9 peaches are there in 81 peaches? Who can come and write a calculation about it? Who agrees? etc.</td>
</tr>
<tr>
<td>Calculation: 81 (peaches) / 9 (peaches) = 9 (groups)</td>
</tr>
<tr>
<td>9 · 1 kg = 9 kg</td>
</tr>
<tr>
<td>Answer: 81 peaches would weigh 9 kg.</td>
</tr>
<tr>
<td>3 Book 2, page 106</td>
</tr>
<tr>
<td>Q.1 a) Read: Andrew has £63, which is £9 more than Ben. How much money does Ben have?</td>
</tr>
<tr>
<td>Review at BB with whole class. e.g.</td>
</tr>
<tr>
<td>Plan: A = £63 o> B</td>
</tr>
<tr>
<td>Calculation: B = 63 − 9 = 54</td>
</tr>
<tr>
<td>Answer: Ben has £54.</td>
</tr>
<tr>
<td>b) Read: Rachel has 63 postcards, which is 9 times more than Sarah has. How many postcards does Sarah have?</td>
</tr>
<tr>
<td>Review at BB with whole class. e.g.</td>
</tr>
<tr>
<td>Plan: R = 63 = 9 · S Calculation: S = 63 / 9 = 7</td>
</tr>
<tr>
<td>Answer: Sarah has 7 postcards.</td>
</tr>
<tr>
<td>What do you notice about the two problems? (Compare the wording, numbers involved and operations required.)</td>
</tr>
<tr>
<td>4 Interlude</td>
</tr>
<tr>
<td>Exercises or action song</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5 Problem</td>
</tr>
<tr>
<td>Listen carefully and picture the problem in your head.. Draw a diagram if you need to and write a plan in your Ex. Bks.</td>
</tr>
<tr>
<td>Write out the calculation, solve it and write the answer in a sentence.</td>
</tr>
<tr>
<td>There are 5 tables in the school hall. There are 6 books on each table. How many books are on the 5 tables altogether?</td>
</tr>
<tr>
<td>Review at BB with whole class. Demonstrate at front of class if necessary.</td>
</tr>
</tbody>
</table>

© CIMT, Plymouth University
Q. 2 a) Read: I have 20 grapes. Some of the grapes are red and 4 times as many are green. How many green grapes do I have?

What should we do first? (Draw a diagram.)

BB:

Elicit that for each grape coloured red, 4 grapes would need to be coloured green, i.e. we need to find how many groups of 5 (1 red and 4 green) are in 20 grapes.

T writes calculations as dictated by Ps.

Calculation: 20 (grapes) \(\div \) 5 (grapes) = 4 (groups)

Red grapes = 4 \(\cdot \) 1 = 4, Green grapes = 4 \(\cdot \) 4 = 16

Check: 16 + 4 = 20

Answer: I have 16 green grapes.

b) Read: I have 20 grapes. There are 4 more red grapes than green grapes. How many green grapes do I have?

What should we do first? (Draw a diagram.)

BB:

Let's colour the 4 more red grapes first. How many grapes are left? (16) Elicit that the 16 grapes remaining must have equal numbers of green and red grapes.

T writes calculation as dictated by Ps. e.g.

Calculation: 20 – 4 = 16, 16 \(\div \) 2 = 8

or (20 – 4) \(\div \) 2 = 8

T points out the use of brackets to show the calculation which has to be done first.

Red grapes = 8 + 4 = 12, Green grapes = 8

Check: 12 + 8 = 20, 12 – 8 = 4

Answer: I have 8 green grapes.

[N.B. Other methods of solution possible but not as efficient]

35 min

7

Book 2, page 106

Q. 3 and Q.4 Let's see if you can solve these problems on your own! Deal with one at a time. Review at BB with whole class. Discuss and evaluate methods of solution. Class agrees on 'best' method.

Q.3 Calculation: 4 \(\cdot \) 6 + 3 \(\cdot \) 6 = 24 + 18 = 42,
or (4 + 3) \(\cdot \) 6 = 7 \(\cdot \) 6 = 42 (Brackets needed)

Answer: Sue had 42 marbles altogether.

Q.4 Plan: £54 \(\rightarrow \) 6 children, so £9 \(\rightarrow \) 1 child

Calculation: 54 \(\div \) 6 = 9, 9 + 15 = 24,
or 54 \(\div \) (6 + 15 = 9 + 15 = 24 (Brackets not needed)

Answer: Each grandchild now has £24.

Lesson Plan 106

Notes

Whole class activity

Discussion on methods of solution. Ps suggest what to draw.

Ps come out to draw diagram (with T's help)

Discussion (with hints from T if needed) Ps come out to colour grapes and then circle in groups of 5 (1 red, 4 green) (Ps draw/write in their exercise books too)

Agreement, checking, praising

Demonstrate with coloured cubes/balls if necessary

Whole class activity

Discussion on methods of solution. Ps suggest what to draw.

Ps come out to draw diagram (with T's help)

Discussion (with hints from T if needed) Ps come out to colour the 4 red grapes first and then 8 red and 8 green (Ps draw/write in Ex. Bks too)

Agreement, checking, praising

Demonstrate with coloured cubes/balls if necessary

Class discusses/evaluates any other methods suggested by Ps (e.g. trial and error)

Individual trial, monitored, helped if necessary

Practice for Ps to read, understand and solve problems on their own (or in pairs)

Discussion, agreement, checking, praising

Demonstrate with Ps at front of class if necessary

Discuss with Ps when brackets are needed and when they are not, i.e. conventional order used.
<table>
<thead>
<tr>
<th>Bk2</th>
<th>R: Calculation</th>
<th>Lesson Plan 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Operations in context</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>E: Brackets</td>
<td>Whole class activity</td>
<td>At speed, in relay</td>
</tr>
<tr>
<td></td>
<td>Praise creativity</td>
<td></td>
</tr>
</tbody>
</table>

Activity 1

Oral work
Tell me different ways to describe this number. e.g. 41 (82, 18)
(e.g. 41 = 4 \cdot 10 + 1 = 50 – 10 = 9 \cdot 5 – 3 = 1 + 20 + 20, etc).

5 min

Activity 2

Chain operations
T says a sequence of operations, pausing after each one. Ps nod their heads when they have calculated the result. Ps show final answer with number cards on command.

- T: '60 \div 6 + 20 \div 5 + 12 \div 9 = ?'
 - Show me . . . now! (9) A, tell us how you got your answer. Who agrees? etc.
 - Let’s write it out on the BB:

 BB: 60 \div 6 + 20 \div 5 + 12 \div 9 = 10 + 4 + 12 = 26 – 9 = 17

 - Look very carefully at the way I have written it. Is it correct? (No, because the divisions would have to be done first.) Let’s see if this would give a different answer.

 BB: (60 \div 6 + 20 + 5 \div 12 \div 9) = 10 + 20 + 18 = 26 + 9 = 36

 - What must we do to make sure we do the operations in the original order? (Draw brackets.) Ps discuss where they should be drawn.

 Let’s check that we get the answer 9.

 BB: (60 \div 6 + 20) \div 5 + 12 \div 9 = (10 + 20) \div 5 + 12 = 30 \div 5 + 12 = 6 + 12 – 9 = 18 – 9 = 9

 - 12 min

Activity 3

Problem 1
Listen carefully and think how you would work out the answer

I had 41 football cards. Then I collected another 15 football cards but gave away 7 of them. How many football cards do I have now?

- T writes on BB as dictated by Ps.

 Plan:
 - Had: 41
 - Collected: 15
 - Gave away: 7

 Who can come and write it as one equation?

 Calculation: 41 + 15 – 7 = 49, (or 41 + 15, or 15 + 7 + 41)

 Answer: I have 49 football cards now.

 - 17 min

Activity 4

Problem 2
Listen carefully and think how you would work out the answer

Mrs Rabbit had grown 18 lettuces and 26 carrots for her family. The rabbit family have already eaten 11 lettuces and 17 carrots. How many vegetables are left in the garden altogether?

- T writes on BB as dictated by Ps.

 Plan:
 - Had: 18 + 26 = 44
 - Ate: 11 + 17 = 28
 - Had left: 42 – 28 = 16

 Who can come and write it as one equation?

 Calculation: 18 + 26 – 11 – 17 = 18 – 11 + 26 – 17 = 16
 - Discuss need for brackets here otherwise answer would be 42 – 11 + 17 = 38, which is wrong

 Answer: There are 14 vegetables left in the garden.

 - 22 min
Lesson Plan 107

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Interlude</td>
<td>Whole class relaxing</td>
</tr>
</tbody>
</table>

Relaxation with music playing

24 min

6 Book 2, page 107

Q.1 Read: There are 15 balloons. Each child is given 3 balloons. How many children are there?

- Ps circle or colour each group of 3 balloons and draw the children.
- Then they write the calculation, check it and write out their answer as a sentence. Review at BB with whole class.

Calculation: $15 \div 3 = 5$ (times)

Check: $5 \times 3 = 15$

Answer: There are 5 children holding 15 balloons.

29 min

7 Book 2, page 107

Q.2 Read: Sammy Squirrel had 47 acorns. He gave 25 acorns to Susy Squirrel but later asked for 8 back. How many acorns does Sammy Squirrel have now?

- Colour the calculation which answers the question.
- Review at BB with the whole class. T points to each equation in turn and asks who chose it and why.

Solution: $47 - 25 + 8 = 30$

but also accept $47 - (25 - 8) = 30$ with the correct reasoning, i.e. Sammy in the end only really gave $47 - 8$ acorns to Susy.

Who worked out the answers to all the equations?

Who chose the correct equation without working out the answer?

Tell us how you did it. Who thought the same?

36 min

8 Book 2, page 107

Q.3 Read: There are 4 rows of fruit in the shop window. In each row there are 5 pears and 3 apples. How many pieces of fruit are there in the window altogether? Do the calculation in 2 different ways.

- Let Ps try to write in missing numbers without help first.
- Review at BB with whole class. Mistakes corrected.

Solution:

a) Number of rows: 4
 Pieces of fruit in each row: $5 + 3$
 Pieces of fruit in 4 rows: $4 \times (5 + 3) = 4 \times 8 = 32$

b) Number of pears: 4×5
 Number of apples: 4×3
 Number of pieces of fruit altogether:
 $4 \times 5 + 4 \times 3 = 20 + 12 = 32$

Answer: There are 32 pieces of fruit altogether.

42 min

9 Problem

Listen carefully and show me the answer with number cards when I say. How many sides do 4 triangles, 4 squares and 4 pentagons have altogether?

Show me . . . now! (48) BB: $4 \times (3 + 4 + 5) = 4 \times 12 = 48$

45 min
Lesson Plan 108

Activity

1 Multiplication table practice

Let's say the multiples of 2 in increasing (decreasing) order to (from) 20, but every 2nd number we will say silently in our heads and clap instead. e.g. '0', clap, '4', clap, '6', clap, . . .

Repeat for some other multiplication tables (3, 4, 5, 6, 9 or 10).

6 min

2 Brackets

T has two purses stuck on BB and 6 equations on cards stuck randomly to side of BB.

Which equations belong to which purse? Ps come out to choose a card and stick beneath the appropriate purse, explaining reasoning and writing in the answer. Class agrees/disagrees.

Solution:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 \cdot 10 + 3 \cdot 2 = 36</td>
<td>3 \cdot (20 + 5) = 75</td>
<td></td>
</tr>
<tr>
<td>3 \cdot (10 + 2) = 36</td>
<td>3 \cdot 10 + 2 = 32</td>
<td></td>
</tr>
</tbody>
</table>

Do not match either purse!

12 min

3 Jumps along the number line

a) Squirrel is jumping along the number line. He jumps 4 units 3 times and then 6 units 3 times.

BB:

A. come and draw in his jumps. Which number did you reach? (30)

B. come and write an equation about it. Who agrees? Who thinks something else? etc.

b) Rabbit is jumping along the number line too. He jumps 4 units, then another 6 units, 3 times altogether.

BB:

C. come and draw in his jumps. Which number did you reach? (30)

D. come and write an equation about it. Who agrees? Who thinks something else? Let’s compare their jumps.

18 min

4 Interlude

Action song or rhyme

20 min

Notes

Whole class activity

- In unison, at speed
- In good humour, praising only
- Other actions can be used too, e.g. knocking on desks

Whole class activity

- Use copy master, enlarged and cut out
 (or drawn on BB and Ps join up equations to correct purse)

Reasoning, agreement, checking, praising

Which coins could be in purses matching each of the other two equations?

Whole class activity

Use enlarged copy master or OHP

Ps can use individual number lines to check Ps at BB are correct.

Agreement, checking, praising

Ps write calculations in their exercise books too

BB:

a) \(3 \cdot 4 + 3 \cdot 6 = 30\)
\[\frac{12}{18}\]

b) \(3 \cdot (4 + 6) = 30\)
\[\frac{10}{18}\]

Discussion, agreement that

\(3 \cdot 4 + 3 \cdot 6 = 3 \cdot (4 + 6)\)
Activity 5
Book 2, page 108
Q.1 a) Read: Who has more fish? Do the calculations and write in the correct sign.
Peter has 5 fish tanks, with 5 fish in each tank.
Steve has 3 fish tanks, with 8 fish in each tank.
Review at BB with whole class. Mistakes corrected.
Answer: Peter has more fish. (1 more)
b) Read: Who has more bags? Do the calculations and write in the correct sign.
John has 60 marbles, with 6 marbles per bag.
Tim has 48 marbles, with 6 marbles per bag.
Review at BB with whole class. Mistakes corrected.
Answer: John has more bags. (2 more)
Do you think we could have written the signs without doing the calculations? (Difficult in a) but possible in b) because the same number of marbles are in each bag.)

Book 2, page 108
Q.2 Read: On market day the farmer collected 37 eggs from his hens. How many egg-boxes will he fill to sell at the market if each egg-box can hold 6 eggs?
Ps may draw the egg-boxes and eggs in Pbs if they want to.
Review at BB with whole class. Mistakes corrected.
Calculation: 37 (eggs) ÷ 6 (eggs) = 6 (times), remainder 1 (egg)
Check: 6 × 6 + 1 = 37
Answer: The farmer will fill 6 egg boxes.
Discuss the fact that the farmer would actually need 7 boxes to hold all the eggs but he could only sell full boxes at the market.

Book 2, page 108
Q.3 Read: A shop had 21 kg of oranges, packed in 3 kg bags.
If 9 kg were sold, how many bags of oranges were left?
Underline the calculation which answers the question.
Review at BB with the whole class. T points to each equation in turn and asks who chose it and why. (4 equations possible) e.g.
Calculation: 21 ÷ 3 – 9 = 3 = 3 – 3 = 4, so 4 bags were left.
Check: 4 · 3 kg = 12 kg, 12 kg + 9 kg = 21 kg
Also accept 21 – 9 = 4 · 3, (21 – 9) ÷ 3 = 4 and 21 ÷ 3 – 4 = 9 ÷ 3 and discuss the reasoning behind each.

Book 2, page 108, Q.4
Read: Anne has 50 p. How much money should she give to Donna so that they both have the same amount, if Donna already has:
a) 40 p, b) 36 p, c) 42 p?
Review at BB with whole class. Class agrees on a general solution:
BB: (A – D) ÷ 2 = p Check it is true for other amounts too.

Notes
Individual work, monitored helped
Discussion at BB
Agreement, checking, praising
BB: Peter
5 · 5 = 25 ≥ 3 · 8 = 24
Discussion at BB
Agreement, checking, praising
BB: John
60 ÷ 6 = 10 ≥ 48 ÷ 6 = 8
Demonstrate if necessary with Ps at front of class.
Discussion, agreement
Extra praise if Ps notice

Individual work, monitored helped
Only rough drawings needed
Reasoning, agreement, checking, self-correction
Praising
Demonstrate with egg boxes and plastic eggs or cubes if there are problems.

Individual trial, monitored helped
Equations written on BB or use enlarged copy master or OHP
Reasoning, agreement, checking, praising
or 21 kg ÷ 3 kg = 7 (times)
9 kg ÷ 3 kg = 3 (times)
7 – 3 = 4 (bags)
Demonstrate if necessary with 7 bags, each labelled ‘3 kg’

Paired work, monitored, helped
Ps use real or cardboard coins
BB: a) 50 p – 40 p = 10 p
10 p = 2 = 5 p
Check: A: 50 p – 5 p = 45 p
D: 40 p + 5 p = 45 p
Similarly for b) 7 p, c) 4 p
Activity 1: Multiples of 7

What do the following have in common?
- Snow White and the seven dwarfs
- The story about a 7-headed dragon
- The 7 dots on a ladybird's back
- The days of the week

(All contain 7 of something: 7 dwarfs, 7 heads, 7 dots, 7 days)

- Let's count up in 7s from 0:
 - '0, 7, 14, 21, . . .' (as far as Ps are able)
- Let's count back in 7s from 84:
 - '84, 77, 70, . . .' (to zero – or into negative numbers if Ps are able)

Whole class activity

Notes
- T could ask Ps for other examples of 7 of something
- T chooses Ps at random
- Ps may use their number lines
- Praising only

Activity 2: Book 2, page 109, Q.1

Read: Kangaroo starts from 0 and jumps along the number line 7 units at a time. Draw his jumps on the number line. Complete the table.

P comes out to BB to draw in Kangaroo's jumps and rest of Ps recite the numbers landed on. How many jumps were needed to reach 70? (10)

Let's complete the table to show where Kangaroo has reached after different numbers of jumps. Ask Ps to explain the first 2 columns in table.

Ps come to BB one after another to fill in a column each and say the relevant multiplication, e.g. $3 \times 7 = 21$.

Let's read out the bottom row of the table as fast as we can! What are these numbers? (multiples of 7)

Whole class activity

Notes
- Use enlarged copy master or OHP
- Ps draw jumps in Pbs too
- Reasoning, agreement, checking praising
- BB:

<table>
<thead>
<tr>
<th>Number of jumps</th>
<th>0</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>49</th>
<th>56</th>
<th>63</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number reached</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
</tr>
</tbody>
</table>

In unison, at speed. Praising only

Activity 3: Making equations

Study these pictures carefully. (T has BB already prepared.)

1) How many dots can you see in each picture? Do the calculations in your exercise books.

- **BB:**
 - a) $3 \times 7 = 21$
 - b) $3 \times 7 + 3 \times 7 = 21 + 21 = 42$
 - c) $2 \times 7 + 2 \times 7 + 2 \times 7 = 14 + 14 + 14 = 42$

Review at BB with whole class. Ps come to BB to write equations and explain reasoning. Who agrees? Who did it a different way? etc.

2) How many ladybirds have a) 14 b) 28 dots? Do the calculations in your exercise books. (Ps can use the table from Activity 2 to help)

BB:
- a) 14 (dots) $\div 7$ (dots) $= 2$
- b) 28 $\div 7 = 4$

Extra praise

Notes
- Individual work in their books, monitored, helped
- Pictures drawn on BB or use enlarged copy master or OHP
- Discussion, reasoning, agreement, checking, praising

Activity 4: Interlude

Rhyme or song

Whole class in unison

© CIMT, Plymouth University
Lesson Plan 109

Activity

5 Book 2, page 109
Q.2 Read: Draw pictures to show the equations.
T explains task. Encourage neat, small, simple drawings
(circles, crosses, dots, stars, etc.), with lines drawn to separate
the different parts of each equation.
Review at BB with whole class. T chooses Ps to come out to
show drawings, e.g.
BB:

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Class decides whether they match the equations.
Calculations checked. Mistakes corrected
Elicit that, e.g. 4 \times 7 + 1 \times 7 = 5 \times 7.

6 Book 2, page 109. Q.3
Read: Each girl puts 7 plums into a bag. How many bags will each
girl need? Write it as an equation.
T chooses 3 Ps to be Julie, Kate and Laura (or replace names with
those of actual Ps). Ps come out to circle their plums in groups of 7
and to write an equation about it. Class agrees/disagrees.
T chooses another 3 Ps to come out to check with multiplications.
A, you have 35 plums. How many bags will you need? (5) B, check
whether A is correct. Repeat with other Ps and other multiples of 7.

7 Book 2, page 109
Q.4 Read: Write the missing multiples of 7 in the table.
Learn the multiples of 7 by heart.
Who can be first to tell me how many boxes are still to be filled
in the table? Can you write it as an equation? (4 \times 4 = 16)
Ps fill in the missing multiples of 9. Review at BB with whole
class. Mistakes corrected. Ps given time to learn by heart.
Close your Pb.s and let’s say the multiples of 9 together.
Who can be first to tell me how many boxes are still to be filled
in now? Can you write it as one equation? (4 + 2 \times 2 + 1 = 9)

8 Constructing multiplications and divisions
a) Write different multiplications about this flower.
Each time start with the 7 in the centre.
Do the calculation and write in the result.
Review at BB with the whole class. e.g. 7 \times 3 = 21, etc.
b) Write different divisions about this flower.
Each time start with a number on the petals.
Do the calculation and write in the result.
Review at BB with the whole class. e.g. 42 \div 7 = 6, etc.
T encourages listing in logical order. Let’s read them out together.

Notes

Individual work, monitored, helped
Ps draw the larger shapes first before adding the 7 elements
Discussion, checking, agreement, praising
BB:

a) 4 \times 7 + 1 \times 7 = 35
 28 \div 7 = 35

b) 1 \times 7 + 2 \times 7 = 21
 7 \times 14

Whole class activity
Plums drawn (or stuck) on BB
or use enlarged copy master or OHP
BB: Julie: 21 \div 7 = 3
 Kate: 14 \div 7 = 2
 Laura: 28 \div 7 = 4
Orally, at speed. Praising

Individual work, monitored, helped
Praising
Use enlarged copy master/OHP
Agreement. T insists on quiet
In unison, in both directions
Extra praise

Individual work in exercise
books monitored (helped if needed)
Drawn on BB or use enlarged
copy master or OHP
Ps may use their \times tables
Discussion, agreement, checking with inverse operation,
self-correction, praising
In unison, at speed

© CIMT, Plymouth University
Activity 1

Completing statements

T has BB already prepared. Which numbers make the statements true?

- **BB:** $6 \cdot \square + 13 = 55$
 $\square = (7)$
- **b)** $6 \cdot \square + 13 < 55$
 $\square = (6, 5, 4, 3, 2, 1, 0)$ (less than 7)
- **c)** $6 \cdot \square + 13 > 55$
 $\square = (8, 9, 10, \ldots)$ (greater than 7)

Notes

- Whole class activity
- Written on BB, or use enlarged copy master or OHP
- In unison.
- Ps have own number lines on desks too.
- Discussion, agreement, checking, praising
- Ps write in exercise books too
- (Heading: Lesson number and date)
- Discussion about the fact that parts b) and c) can be determined from part a)
- Reasoning, agreement, checking, praising

Writing equations

Let’s write equations about the picture.

BB:

- $\star \star \star \star \star \star \star = 5 \cdot 7 = 35$
- $7 + 7 + 7 + 7 + 7 = 35$
- $\star \star = 7 \cdot 5 = 35$
- $5 + 5 + \ldots + 5 + 5 = 35$
- $\star \star \star \star \star \star \star \star \star \star = 35 \div 5 = 7$
- $2 \cdot 7 + 3 \cdot 7 = 35$
- $\star \star = 35 \div 7 = 5$
- $1 \cdot 7 + 4 \cdot 7 = 35$
- etc.

Ps come to BB to write equations and explain reasoning. Rest of class writes equations in their exercise books at same time.

Book 2, page 110

Q.1 Read: Complete the table. Compare the rows by writing equations.

Let’s recite the days of the week. How many are there? (7)

T makes sure that Ps know relationship between rows in table.

Review at BB with whole class. Mistakes corrected.

Let’s compare the rows. B and C, come and write equations for the number of weeks and days. Who agrees? Who thinks something else? Let’s check with values from the table.

T refers to large calendar and talks about days, weeks, months.

Who can write an equation comparing weeks and normal months (months and years)? Who can think of another one?

Extension

Individual work, monitored, helped
- Drawn on BB or use enlarged copy master or OHP
- (or stick 35 copies of an interesting picture on BB)
- Ps write equations in their exercise books
- Ps applaud creativity
- Agreement, checking, praising

Interlude

Action song

Whole class in unison
Activity 5

Problem

Listen carefully and try to picture the story in your head. Think how you could work out the answer.

Three 7-headed dragons are going to have lunch. They want to share out 42 pears equally.

a) How many pears will each dragon have?

Who can suggest how to work out the answer? Who agrees? etc.

BB: 3 dragons: 42 pears

1 dragon: 42 (pears) \(\div \) 3 = \(\frac{42}{3} \) = 14

Check: 3 \(\cdot \) 14 = 3 \(\cdot \) 10 + 3 \(\cdot \) 4 = 20 + 12 = 42

Answer: Each dragon will have 14 pears.

b) How many pears will each head have?

Who can suggest how to work out the answer? Who agrees? Who can think of another way? etc.

E.g. BB: 7 heads: 14 pears

1 head: 14 pears \(\div \) 7 = 2 pears

Check: 2 \(\cdot \) 7 = 14

or Number of heads = 3 \(\cdot \) 7 = 21

21 heads: 42 pears, 1 head: 42 pears \(\div \) 21 = 2 pears

Check: 2 \(\cdot \) 21 = 2 \(\cdot \) 20 + 2 \(\cdot \) 1 = 40 + 2 = 42

Answer: Each head will have 2 pears.

Book 2, page 110

Q.2

Read: **Write in the missing numbers.**

 Learn and practise the 7 times table.

Deal with one column at a time. Review orally round class.

Elicit that the products and dividends are the same numbers.

In the next 2 minutes try to learn the multiplications by heart and then we will try to say them without looking at the books!

Ps close *Ps* and recite the columns together, with *T*’s help.

Book 2, page 110, Q.3

Read: **Snow White was baking cakes. She gave the same number of cakes to each of the 7 dwarfs. How many cakes did each dwarf get and how many remained for Snow White? Complete the table.**

T (or *P*) explains what each row of table means using the column already completed. (Middle row is top row divided by 7, bottom row is the remainder, top row is 7 times the middle row plus the bottom row.

Ps come out to complete the columns. Class points out errors. Alternative answers to final column could be done orally by Ps in 3s.

Ps close *Ps* and recite the columns together, with *T*’s help.

Book 2, page 110

Q.4

Read: **Which is more? Write in the correct sign.**

Revise order of operations. (brackets, then \(\cdot \) or \(\div \), then + or –)

Ps write result below first calculation, then above RHS and LHS, before writing in the correct sign.

Review at BB with whole class. Mistakes corrected

Notes

Whole class activity

T repeats slowly and asks Ps to repeat in own words.

Discussion on strategy for solution. Involve several Ps

Reasoning, agreement

Checking with multiplication

Discussion on strategy for solution. Involve several Ps

Reasoning, agreement

Checking with multiplication

Ps can write calculations in their exercise books too

Individual work, monitored (helped)

Class points out mistakes

Ps correct their errors

T asks for quiet so that everyone can concentrate

At speed, in unison (or relay)

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Initial discussion

At speed. *Ps* give details only where necessary

Agreement, checking, praising

Demonstrate if problems

Individual work, monitored, helped

BB: 14

\[\frac{14}{3} = \frac{7 \cdot 2}{2} = \frac{7 \cdot \frac{56}{7}}{2} \]

\[\frac{14}{3} = \frac{7 \cdot 2}{2} = \frac{7 \cdot \left(\frac{7 - 2}{5}\right)}{5} \]

1 Number strips (or Cuisennaire rods or multilink cubes)

T sticks/draws on BB an 8 cm strip. How many 4 cm (2 cm) strips laid end to end are needed to cover the same length? (2, 4) (BB)

Let's calculate the total length of several such strips in this table.

<table>
<thead>
<tr>
<th>Strips</th>
<th>Bold numbers already given.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4 cm strips</td>
</tr>
<tr>
<td>1</td>
<td>0 2 4 6 8 10 12 14 16 18 20</td>
</tr>
<tr>
<td>2</td>
<td>0 4 8 12 16 20 24 28 32 36 40</td>
</tr>
<tr>
<td>3</td>
<td>0 8 16 24 32 40 48 56 64 72 80</td>
</tr>
</tbody>
</table>

Ps come out to fill in the columns, saying the relevant multiplication. Class checks and points out errors. (Or class dictates what T should write.)

Let's compare the rows. (e.g. 2nd row is 1 quarter of bottom row, 3rd row is twice 2nd row, etc.)

Let's say the numbers in the last row and point to them on our number lines. (T points on class number line too.)

10 min

2 Book 2, page 111

Q. 1 Read: A spider has 8 legs. Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiders</td>
</tr>
<tr>
<td>Legs</td>
</tr>
</tbody>
</table>

Talk about spiders being special because most insects have only 6 legs. What else is special about spiders? (Spin webs to catch flies, etc.)

Make sure Ps realise that 2nd row is 8 times top row.

Review at BB with whole class. Mistakes corrected. Ps give details of some columns if necessary, e.g. $8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 8 \times 8 = 64$

What are the numbers in the bottom row of the table? (multiples of 8) Let's check them on our multiplication table (or OHT 7 *).

Read: Compare the rows.

Who could write an equation about a row in the table? Who agrees? Who could write another? Check with values from table.

18 min

3 Book 2, page 111

Q. 2 Read: Write different equations about the picture.

Who can tell us something about the picture? (e.g. 7 dominoes, each domino has 8 dots with 4 dots (2 rows of 2 dots) in each half; 56 dots altogether)

Review at BB with whole class Deal with all cases.

BB: e.g. $7 \cdot 8 = 56$

$8 \cdot 7 = 56$

$8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 56$

$3 \cdot 8 + 4 \cdot 8 = 24 + 32 = 56$, etc.

23 min

4 Interlude

Song, rhyme, exercises

25 min

Notes

Whole class activity
(Ps could havestrips/ rods on desks too and work in pairs)

BB:

<table>
<thead>
<tr>
<th>8 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 cm</td>
</tr>
<tr>
<td>4 cm</td>
</tr>
</tbody>
</table>

$8 \text{ cm} = 2 \cdot 4 \text{ cm} = 4 \cdot 2 \text{ cm}$

Ps fill in rest

8 cm drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, checking, praising

Involve several Ps. Praising

In unison, in both directions

Whole class discussion about spiders. Involve several Ps

Individual work, monitored

Drawn on BB or use enlarged copy master or OHP

Agreement, checking, self-correcting, praising

Read out in unison

BB: Let number of:

$\text{Spiders} = S$, $\text{Legs} = L$

$L = S \div 8$

Agreement, checking, praising

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correction

T and Ps applaud creative equations

Whole class in unison

© CIMT, Plymouth University
Activity 5

Building 8-unit cubes

T holds up a unit cube. Who can make a large cube from 8 unit cubes? P comes out to build cube and class keeps count of unit cubes used. Class decides whether final shape is indeed a cube.

a) How many unit cubes will we need to build 2 (8, 9) large cubes like this one?

What kind of operation should we use? (multiplication, or addition)

Let's use multiplication as it is shorter. Ps dictate what to write.

T writes on BB, Ps in their exercise books.

b) How many larger cubes can be built from 40 (44, 50) unit cubes?

What kind of operation should we use? (division)

Ps dictate what to write. T writes on BB, Ps in Ex. Bks.

How can we check the divisions? (With multiplications + additions)

Demonstrate with unit cubes if necessary.

Notes

Whole class activity

Demonstration, agreement, praising

Discussion, agreement, checking, praising

BB:

a) 8 \(\times \) 2 = 16
 8 \(\times \) 8 = 64
 8 \(\times \) 9 = 72

b) 40 \(\div \) 8 = 5
 44 \(\div \) 8 = 5, remainder 4
 50 \(\div \) 8 = 6, remainder 2

Check: e.g. 6 \(\times \) 8 + 2 = 50

Praising

Lesson Plan 111

Notes

Individual work, monitored, helped.

Drawn on BB or use enlarged copy master or OHP

Discussion at BB

Agreement, checking, praising

Go through the difficult calculations on BB, e.g.

16 \(\times \) 4 = 16 + 16 + 16 + 16
 = 64, or

16 \(\times \) 4 = 10 \(\times \) 4 + 6 \(\times \) 4
 = 40 + 24 = 64

Agreement, checking

Book 2, page 111

Q.3 Read: Fill in the missing numbers and signs.

T tells Ps to follow the middle, straight arrows first, writing in the missing numbers. Then Ps write the missing signs on the curved arrows.

Deal with one part at a time. Review at BB with whole class.

Solution:

```
  4
 2 \( \times \) 2
 4 \( \times \) 2
 8
```

Elicit that:

- multiplying (dividing) by 2 twice is the same as multiplying (dividing) by 4;
- multiplying (dividing) by 2 three times is the same as multiplying (dividing) by 8.

Notes

Individual work, monitored, helped.

Drawn on BB or use enlarged copy master or OHP

Discussion at BB

Agreement, checking, praising

Go through the difficult calculations on BB, e.g.

16 \(\times \) 4 = 16 + 16 + 16 + 16
 = 64, or

16 \(\times \) 4 = 10 \(\times \) 4 + 6 \(\times \) 4
 = 40 + 24 = 64

Agreement, checking

Book 2, page 111

Q.4 Read: Write the new multiples of 8 in the table.

Learn the multiples of 8 by heart.

Who can be first to tell me how many boxes we still have to fill?

(5) Which are they? (8 \(\times \) 0, 8 \(\times \) 1, 8 \(\times \) 8, 0 \(\times \) 8, 1 \(\times \) 8)

Ps fill in the missing multiples of 9. Review at BB with whole class. Mistakes corrected. Ps given time to learn by heart.

Close your *Pb*s and let’s say the multiples of 8 together.

Who can be first to tell me how many boxes are still to be filled in now? (4) What are they? (0 \(\times \) 0, 0 \(\times \) 1, 1 \(\times \) 0, 1 \(\times \) 1)

Notes

Individual work, monitored, helped

Praising

Use enlarged copy master/OHP

Agreement. T insists on quiet

In unison, in both directions Ps may fill these in now if they are sure they know them

Comparing equations

Which is more? How many more?

BB:

<table>
<thead>
<tr>
<th>4 (\times) 8 = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (\times) 8 = 40</td>
</tr>
</tbody>
</table>

Ps come out to write result beside each shape, then write the missing sign and number between them.

Notes

Whole class activity

Drawn on BB or use enlarged copy master

Agreement, checking, praising
Lesson Plan 112

Activity

1

Equations

Which numbers are missing from these equations to make them correct?

<table>
<thead>
<tr>
<th>BB:</th>
<th>a) $5 \times \Box = 40$</th>
<th>b) $3 \times \Box + 7 = 31$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c)</td>
<td>$7 = 6$</td>
<td>d) $\Box + 9 = 7 + 1$</td>
</tr>
</tbody>
</table>

Ps come out to BB to write in missing numbers, explaining reasoning and using inverse operations, while other Ps write in Ex. Bks.

Solutions:

| a) 8 | b) 8 | c) 42 | d) 72 |

| e.g. | b) $3 \times \Box = 31 - 7 = 24$, 24 $\div 3 = 8$ |

Check:

$3 \times 8 + 7 = 31 \checkmark$

| 5 min |

2

Problem

Listen carefully, picture the story in your head and calculate the answer in your exercise books. Use what you like or draw a diagram to help if you need it.

At a birthday party there were 32 cakes on a plate. The 8 children at the party ate equal amounts. How many cakes did each child eat?

Show me the answer with your fingers . . . now! (4)

A, come and explain how you got your answer. Who agrees? Who thinks something else? Who made a mistake? What kind of mistake?

Plan:

8 children: 32 cakes, 1 child: 32 cakes $\div 8$

Calculation:

$32 \div 8 = 4$

Answer: Each child ate 4 cakes.

| 10 min |

3

Table of zeros

What is this animal? (snail) Who can tell me something about it? How many legs does it have? (0) How many shells does it have? (1)

Let's fill in the table for several snails.

<table>
<thead>
<tr>
<th>BB:</th>
<th>Number of:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>legs</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>shells</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Ps come out to complete each column, saying the relevant multiplication.

| e.g. 'five times zero equals zero', 'five times 1 equals five', etc. |

Let's find the rows and columns for 0 and 1 in the multiplication table.

Elicit that:

- any number multiplied by zero and zero times any number is zero.
- any number multiplied by 1 and 1 times any number is the number itself.

Let's read out the multiplication tables for 0 and 1.

$0 \times 0 = 0$, $0 \times 1 = 0$, $1 \times 0 = 0$, $1 \times 1 = 1$, . . .

| 18 min |

4

Interlude

Action song

| 20 min |

© CIMT, Plymouth University
Lesson Plan 112

Activity 5

Book 2, page 112

Q.2 Read: **Fill in the missing numbers.**

Learn and practise the 8 times table.

Deal with one column at a time. Review orally round class.
Elicit that the products and dividends are the same numbers.
In the next 2 minutes try to learn the multiplications by heart and then we will try to say them without looking at the books!
Ps close _Pbs_ and recite the columns together, with T’s help.
Let’s find the row and column for 8 in our multiplication tables and say them in increasing (decreasing) order.
T says a multiplication, e.g. 8·6, P comes out to point to 64; T points to a multiple of 8, e.g. 32, P says 8·4, etc.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Individual work, monitored (helped)</td>
</tr>
<tr>
<td></td>
<td>Class points out mistakes</td>
</tr>
<tr>
<td></td>
<td>Ps correct their errors</td>
</tr>
<tr>
<td></td>
<td>T asks for quiet so that everyone can concentrate</td>
</tr>
<tr>
<td></td>
<td>At speed, in unison (or relay)</td>
</tr>
<tr>
<td></td>
<td>Use OHT 14 (or copy master), Ps can use own tables</td>
</tr>
<tr>
<td></td>
<td>At a good pace. Praising</td>
</tr>
</tbody>
</table>

Extension

Whole class activity

Drawn on _BB_ or use enlarged copy master or _OHP_

Initial discussion

At a good pace. Ps say the relevant multiplication e.g. 18 = 2·8+2, 6·8+2 = 50, etc.

Agreement, checking, praising

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Individual work, monitored, helped.</td>
</tr>
<tr>
<td></td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Discussion, agreement, checking, praising</td>
</tr>
<tr>
<td></td>
<td>BB: 2·28 = 2·20+2·8 = 40+16 = 56</td>
</tr>
<tr>
<td></td>
<td>Whole class or individual work. Agreement, praising</td>
</tr>
</tbody>
</table>

Activity 6

Book 2, page 112

Q.3 Read: **Fill in the missing numbers and signs.**

Deal with one part at a time. Review at _BB_ with whole class.

Elicitation:

<table>
<thead>
<tr>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 7·4 28 2 56</td>
</tr>
<tr>
<td>b) 5 2 10 4 40</td>
</tr>
</tbody>
</table>

Elicitation:

If the arrows were pointing in the opposite direction, what would the numbers and signs be?

<table>
<thead>
<tr>
<th>Extension</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 min</td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Initial discussion</td>
</tr>
<tr>
<td></td>
<td>At a good pace. Ps say the relevant multiplication e.g. 18 = 2·8+2, 6·8+2 = 50, etc.</td>
</tr>
<tr>
<td></td>
<td>Agreement, checking, praising</td>
</tr>
</tbody>
</table>

Activity 7

Book 2, page 112, Q.3

Read: **Minnie Mouse takes home some worms for her 8 babies.**
She gives each baby mouse an equal number of worms.

How many worms does each baby get and how many remain for Minnie? Complete the table.

T (or P) explains what each row of table means. (Middle row is top row divided by 8 or 1 eighth of top row, bottom row is the remainder, top row is 8 times the middle row plus the bottom row.)
Ps come out to complete the columns. Class points out errors. Ps can fill in table in their books. Demonstrate columns where there are difficulties.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 min</td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Initial discussion</td>
</tr>
<tr>
<td></td>
<td>At a good pace. Ps say the relevant multiplication e.g. 18 = 2·8+2, 6·8+2 = 50, etc.</td>
</tr>
<tr>
<td></td>
<td>Agreement, checking, praising</td>
</tr>
</tbody>
</table>

Activity 8

Mental practice

T calls 2 pairs of Ps at a time to front of class. 1st P of one pair says an operation, 2nd P of same pair says another and 2nd pair must say another 2 operations which have the same result, e.g. _1st pair_: P₁:’4·8’, P₂:’2’; _2nd pair_: P₃:’6·4’, P₄:’+6’;
Class calculates mentally and either applauds or shows thumbs down.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 min</td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>More able Ps in 2nd pair</td>
</tr>
<tr>
<td></td>
<td>T writes calculations on BB: 4·8−2 = 6·4+6 = 30</td>
</tr>
<tr>
<td></td>
<td>Repeat for other pairs if time</td>
</tr>
</tbody>
</table>

Activity 9

Book 2, page 112

Q.4 Let Ps read question and work out answer without help first.
Review solution at _BB_, using inverse calculations. Do a check.

| BB: 8·8 = 64, 64−24 = 40, 40 | 8 = 5 |

<table>
<thead>
<tr>
<th>Extension</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 min</td>
<td>Individual (or paired) work, monitored</td>
</tr>
<tr>
<td></td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td></td>
<td>BB: 5·8+24 8 = 8</td>
</tr>
</tbody>
</table>