Bk2

Activity

1. **Logic puzzle** *(OHT 12 *, LHS)*

 OHT 12 in MEP Transparency Collection at http://www.cimt.org.uk/projects/mepres/primary/ohptrans/transmen.htm

 Study this puzzle. What do you think the rule could be? (The number in the middle of each triangle is the product of the 3 numbers around it. The same colour means the same number.)

 Where should we start? (e.g. at the triangle with product 7) **A**, come and write in the missing number and explain why you think so. (1 × 1 × 7 = 7) Who agrees? **A**, write ’7’ in all the blue circles.

 Where should we go next? (e.g. triangle with product 14) **B**, come and write in the missing number and explain why you think so. (1 × 7 × 2 = 14, so orange = 2) **B**, write ’2’ in all the orange circles.

 Continue in this way until puzzle is completed.

 Let’s check that our solution is correct. Ps choose triangles at random and confirm that the 3 numbers multiply to give product in middle.

 Ps could make up own puzzles.

 Extension

 113

 Lesson Plan

 Notes

 Whole class activity

 If no OHP, use copy master, enlarged and coloured appropriately

 Let Ps suggest where to start and how to continue.

 Solution:

 Blue → 7
 Orange → 2
 Green → 5
 Pink → 3
 Red → 4

 Agreement, checking, praising

2. **Recognising half**

 Study these pictures. **BB:**

 What do they have in common? (Only half of the pictures have been drawn.)

 Ps come out to draw in the other half. **Class** agrees/disagrees.

 Elicit that 2 halves make a whole. **BB:** 1 half + 1 half = 1 whole

 13 min

3. **Book 2, page 113**

 Q.1 a) **Read:** Draw half the number of shapes in the picture.

 Ps count the stars and draw half the number in Pbs.

 Review at BB with whole class. How many stars are there? (10) How many did you draw? (5) How did you know how many to draw? (Divide 10 by 2) Let’s write it on the BB.

 b) **Read:** Draw one third the number of shapes in the picture.

 Ps count the circles and draw 1 third of the number in their books.

 Review at BB with whole class. How many circles are there? (6) How many did you draw? (2) How did you know how many to draw? (Divide 6 by 3) Let’s write it on the BB.

 c) **Read:** Draw one quarter of the number of shapes in the picture.

 Ps count the triangles and draw 1 quarter of the number in Pbs.

 Review at BB with whole class. How many triangles are there? (12) How many did you draw? (3) How did you know how many to draw? (Divide 12 by 4) Let’s write it on the BB.

 What would you have to do to find 1 sixth of the number of triangles? (Divide by 6) What is 1 sixth of 18 (30)? (3, 5)

 18 min

© CIMT, Plymouth University
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan 113</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 4 | **Book 2, page 113**
Q.2 Read: *There are 6 bananas in this bunch. Draw the bananas and fill in the numbers.*

 a) 1 half of the bunch

 b) 1 third of the bunch

 c) 1 sixth of the bunch.
Review at BB with whole class. T tells class that when we say 'a half', 'a third' we really mean '1 half', '1 third', etc
How many bananas would be in 2 thirds (3 sixths, 5 sixths)?
BB: 1 third of 6 = 6 ÷ 3 = 2, so 2 thirds of 6 = 2 × 2 = 4
Who could write it as one equation? Who agrees? etc. | Individual work, monitored, helped
Discussion, agreement, checking, praising
Self-correction
Demonstrate with 6 Ps at front of class if necessary
BB: (Note brackets)
2 thirds of 6 = 2 × (6 ÷ 3) = 4
3 sixths of 6 = 3 × (6 ÷ 6) = 3
5 sixths of 6 = 5 × (6 ÷ 6) = 5 |
| 5 | **Interlude**
Song or rhyme | Whole class in unison |
| 6 | **Book 2, page 113, Q.3**
Read: *Where will the parachutes land? Join them up to the correct hills.*
T explains task. (If problems, T could relate the whole '12' to bags of 12 oranges the parachutists were given to put in their backpacks. Some of them did not have room for the whole bag of oranges in their packs and had to leave some oranges in the plane.)
Ps come out to choose a parachute and join up to matching fraction, explaining reasoning. Class agrees/disagrees. T writes equations on BB with Ps' help.
BB: 3 parts of 12 = 1 quarter because 12 ÷ 4 = 3
6 parts of 12 = 1 half because 12 ÷ 2 = 6
4 parts of 12 = 1 third because 12 ÷ 3 = 4
12 parts of 12 = 1 whole because 12 ÷ 1 = 12
2 parts of 12 = 1 sixth because 12 ÷ 6 = 2
Which parachute do you think will land first? Why? (All land at once) | Whole class activity
Drawn on BB or use enlarged copy master or OHP
BB: 1 whole = 12 parts (bag) (oranges)
Ps can join up parachutes to hills in Ps too.
Agreement, reasoning, checking, praising
Demonstrate with 12 Ps at front of class if necessary
Discussion about gravity. Experiment by dropping 2 objects of very different mass |
| 7 | **Book 2, page 113**
Q.4 Read: *Draw how many dumplings there are and write the amount in the box if.*
Deal with one part at a time. Make sure Ps know that the dumplings already drawn are only part (a fraction) of the total amount and that Ps have to draw the whole amount on RHS, not just the extra required, so drawings should be small!
Review at BB with whole class. Demonstrate if necessary.
(Or done as a whole class activity with Ps as the dumplings.) | Individual work, monitored, helped
Discussion, agreement, checking, praising
BB: part or fraction
a) 10 ÷ 2 = 5 or 5 × 2 = 10
b) 5 ÷ 5 = 1 or 1 × 5 = 5
c) 12 ÷ 3 = 4 or 4 × 3 = 12
d) 8 ÷ 4 = 2 or 2 × 4 = 8 |
| 8 | **Book 2, page 113**
Q.5 Read: *Draw a line 12 cm long and divide it into thirds.*
T revises how to draw a certain length of line accurately.
Ps draw 12 cm line first. Discuss how to divide it into thirds.
BB: 3 thirds (1 whole) = 12 cm, 1 third = 12 cm ÷ 3 = 4 cm
Ps mark with short, vertical lines every 4 cm from LHS. | Ps have rulers on desks
Individual work, monitored, helped
Discussion, agreement, checking, praising accuracy
BB:

<table>
<thead>
<tr>
<th>4 cm</th>
<th>4 cm</th>
<th>4 cm</th>
</tr>
</thead>
</table>

Discussion, agreement, checking, praising accuracy
Check: 3 × 4 cm = 12 cm |
Activity

1 Logic puzzle (OHT 12, RHS)

Study this puzzle. What do you think the rule could be? (The number in the middle of each shape (diamond) is the product of the 4 numbers around it. The same colour means the same number.)

Where should we start? (At the diamond with product 7 because the numbers are small.) A, come and write in the missing numbers and explain why you think so. (1 × 1 × 1 × 7 = 7) Who agrees? A writes ‘1’ in all the yellow squares and ‘7’ in all the pink ones.

Where should we go next? (e.g. diamond with product 63) B, come and write in the missing number and explain why you think so. (1 × 7 × 9 = 63, but 9 = 3 × 3, so violet = 3) B writes ‘3’ in all the violet squares.

Continue in this way until puzzle is completed.

Let’s check that our solution is correct. P choose diamonds at random and confirm that the 4 numbers multiply to give product in the middle.

Ps could make up own puzzles for their neighbours to solve.

Extension

Ps could make up own puzzles for their neighbours to solve.

Lesson Plan

Notes

Whole class activity

If no OHP, use copy master, enlarged and coloured appropriately

Let Ps suggest where to start and how to continue.

Solution:

- **Yellow** → 1
- **Pink** → 7
- **Violet** → 3
- **Green** → 2
- **Orange** → 5

Agreement, checking, praising

(Could be done at home)

2 Number sets

T has number cards stuck (or written) on BB.

Let’s put the numbers in the correct set.

Class reads labels on sets.

T explains meaning of each set by choosing, e.g. first the ‘6’ and then the ‘19’ cards.

6: Half of 6 = 6 ÷ 2 = 3 (3 is a whole number or integer (BB), so 6 belongs to the LH set.) P points to both 6 and 3 on class number line.

19: Half of 19 = 19 ÷ 2 = 9, remainder 1, or 9 and a half ‘9 and a half’ is not a whole number (integer), so where should it go? (In set on RHS) Where do you think ‘9 and a half’ would be on the number line? (halfway between 9 and 10) P comes out to point.

Let’s see if you are clever enough to put the rest of the numbers in the correct set. Ps come out to choose a card and stick in the correct set, explaining reasoning.

What kind of numbers are in each set? (LHS: even, RHS: odd)

If we labelled the sets ‘a quarter’ instead of ‘half’, would the numbers stay in the same set? (Elicit that only multiples of 4 would be in LH set: 4, 12, 16, 24; the others would be in RH set, because there would be remainders (quarters) when divided by 4, e.g. 19 ÷ 4 = 4, remainder 3)

3 Book 2, page 114

Q.1 Read: Four mice have found a lump of cheese. Draw where they should cut it so that they each have an equal amount.

Review at BB with whole class. Cut up a copy of ‘cheese’ to check.

Solution: Each mouse has 1 quarter of the cheese.

What fraction of the cheese would 3 mice have altogether? (3 quarters)
Bk2 Lesson Plan 114

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Whole class listening, resting</td>
</tr>
<tr>
<td>5</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>6</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>7</td>
<td>Individual work but class kept together, monitored</td>
</tr>
<tr>
<td>8</td>
<td>Whole class activity. Ps dictate answers. Agreement, checking, praising. BB:</td>
</tr>
</tbody>
</table>

Activity 4: Interlude
- Relaxation, with music playing

Activity 5: Sixths
- The mouse family (Mum, Dad and 4 children) found this bar of chocolate and want to share it out equally. How many equal parts should it be divided into? (2 adults + 4 children = 6 people altogether)
- Where should they cut the chocolate bar?

Activity 6: Book 2, page 114
- **Q.2** Read: Write below each shape what part of it is shaded.
 - T tells Ps to think about, for each shape:
 - How many parts has the shape been divided into?
 - What is each part called?
 - How many of them are shaded?
 - Review at BB with whole class. Discuss mistakes made.

Activity 7: Book 2, page 114, Q.3
- T explains task. This is a plan of a garden. Into how many parts is the garden divided? (8)
- What is each part called? (1 eighth)
- a) Read: We have planted red roses in 2 eighths of the garden. Colour it red.
 - Ps work in their books and T (or P) works on the BB. Does it matter which 2 squares we colour red? (No, any 2 squares will do.)
 - Repeat for parts b) to d). Who could equations about the story?

Activity 8: Book 2, page 114, Q.4
- Read: Tortoise and Snail are having a race. Colour the animal who is ahead.
 - Ps suggest strategies for solution (with T's help). T draws diagrams on BB with help from Ps.
 - Tortoise: 1 metre = 100 cm, 100 cm ÷ 4 = 100 cm ÷ 2 ÷ 2 = 25 cm
 - Snail: 1 fifth: 50 cm ÷ 5 = 10 cm, 3 fifths: 3 x 10 cm = 30 cm
 - Answer: Snail is ahead (by 5 cm).
Bk2

<table>
<thead>
<tr>
<th>R: Practice of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Fractions: half, quarter, three quarters, etc.</td>
</tr>
<tr>
<td>E: Half, third of 2-digit numbers using the multiplication table.</td>
</tr>
</tbody>
</table>

Activity

<table>
<thead>
<tr>
<th>1 Logic puzzle (OHT 13 *, LHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study this puzzle. What do you think the rule could be? (The number in the middle of each large square is the product of the 4 numbers around it. The same colour means the same number.) Where should we start? (At the square with product 16 because all 4 missing numbers are the same colour.) Which number multiplied by itself 4 times equals 16? A, come and write in the missing numbers and explain why you think so. (2 × 2 × 2 × 2 = 16) Who agrees? A writes '2' in all the green squares. Where should we go next? (e.g. square with product 8) B, come and write in the missing number and explain why you think so. (2 × 2 × 2 = 8, so orange must be '1'). B writes '1' in all the orange squares. Continue in this way until puzzle is completed. Let's check that our solution is correct. Ps choose squares at random and confirm that the 4 numbers multiply to give product in the middle.</td>
</tr>
<tr>
<td>8 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Number cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show me with number cards when I say:</td>
</tr>
<tr>
<td>• half of 14, 20, 36, 42, 68, 50, 72, etc. (7, 10, 18, 21, 34, 25, 36) Ps with correct responses explain how they did the calculation. e.g. 36 ÷ 2 = 20 ÷ 2 + 16 ÷ 2 = 10 + 8 = 18 (or 68 ÷ 2 = 6 tens ÷ 2 + 8 units ÷ 2 = 3 tens + 4 units = 34)</td>
</tr>
<tr>
<td>• 1 third of 24, 30, 18, 42, etc. (8, 10, 6, 14) Ps with correct responses explain their calculations. e.g. 42 ÷ 3 = 21 ÷ 3 + 21 ÷ 3 = 7 + 7 = 14</td>
</tr>
<tr>
<td>14 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Book 2, page 115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1 Read: These things belong to a clown. Colour:</td>
</tr>
<tr>
<td>a) half of his coat yellow</td>
</tr>
<tr>
<td>b) 3 quarters of his stick green</td>
</tr>
<tr>
<td>c) 1 half of the pair of shoes blue and the other half red</td>
</tr>
<tr>
<td>d) 5 eighths of his cake brown.</td>
</tr>
<tr>
<td>Review at BB with whole class. Who made a mistake? What kind of mistake? (Class discusses all cases.) What fraction of the clown's coat, stick, shoes, cake are not coloured? (half, 1 quarter, none, 3 eighths)</td>
</tr>
<tr>
<td>20 min</td>
</tr>
</tbody>
</table>

Extension

<table>
<thead>
<tr>
<th>4 Interlude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action song</td>
</tr>
<tr>
<td>22 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen carefully and think about how you would work out the answer. Len and Sam shared out some bars of chocolate equally between them. If Len got 1 and a half bars, how many bars of chocolate did they share? What should we do first? (Draw diagram) T writes calculation on BB. BB: 1 and a half + 1 and a half = 1 + 1 + half + half = 2 + 1 = 3 Answer: They shared 3 bars of chocolate. (Demonstrate if needed.)</td>
</tr>
<tr>
<td>25 min</td>
</tr>
</tbody>
</table>

© CIMT, Plymouth University
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan 115</th>
</tr>
</thead>
</table>
| 6 | **Book 2, page 115**
Q. 2 Read: *Complete the sentences by drawing or writing.*
T explains task and makes sure that Ps know what to do for each part, i.e. draw in a) and write in b) and c). Drawings need only be rough (and small).
Review at BB with whole class. Ps come out to explain to class.
BB:
a) 2 rabbits is 1 third of 6 rabbits
b) 3 cards is 3 quarters of 4 cards
c) 2 and a half apples is half of 5 apples
33 min
Notes
Individual trial, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Discussion, agreement, checking, praising
Demonstrate with Ps as rabbits, cards, apples at front of class. (half shown by P bent over) |
| 7 | **Book 2, page 115. Q.3**
T has enlarged pictures of the elephant and giraffe stuck to BB.
Who can tell me something about one of these animals? Who has seen one drink water? Where? How do they drink? etc. (Refer to keepers in a zoo needing to know how much water they need to bring for the animals.)
Read: *Elephant drank 24 litres of water. Giraffe drank 3 quarters of that amount. How much water did they drink altogether?*
What should we do first? Who agrees? Who thinks something else? etc.
Plan:
E: 24 litres
G: 3 quarters of 24 litres
Calculation:
G: 24 litres ÷ 4 × 3 = 6 litres × 3 = 18 litres
(or 1 quarter of 24 litres = 24 litres ÷ 4 = 6 litres
3 quarters of 24 litres = 6 litres × 3 = 18 litres
E + G = 24 litres + 18 litres = 42 litres
Diagram:
24 litres
6 litres
6 litres
6 litres
18 litres
(or draw 4 × 6 litre buckets)
Answer: Altogether they drank 42 litres of water.
38 min
Notes
Whole class activity
Use copy master, enlarged and animals cut out
Discussion involving many Ps in unison
Ps suggest what T should write
Agreement, checking, praising |
| 8 | **Book 2, page 115**
Q.4 Read: *Draw a line of length 8 cm. Draw over 3 quarters of it in red.*
T revises how to draw a certain length of line accurately. Ps draw 8 cm line first. Discuss what to do next.
Either:
• divide the line into quarters.
BB: 1 quarter of 8 cm = 8 cm ÷ 4 = 2 cm
Ps mark with short, vertical lines every 2 cm from LHS, then draw over 3 of the quarters in red
or
• Do the whole calculation first:
BB: 3 quarters of 8 cm = 8 cm ÷ 4 × 3 = 6 cm
Ps mark with a short, vertical line 6 cm from LHS, then draw over LH segment in red.
43 min
Notes
Ps have rulers on desks
Individual work, monitored, helped
Discussion, agreement, checking
Check: 4 × 2 cm = 8 cm
BB:
8 cm
2 cm
2 cm
2 cm
Praise accurate, neat work |
| 9 | **Mental practice**
T says describes a number, e.g. 3, as a fraction, e.g. '1 quarter of 12'
P describes same number with another fraction, e.g. 'half of 6'.
45 min
Notes
Whole class activity
At speed round class
Praising/encouraging only |
Activity

1 Logic puzzle (OHT 13 * Centre)

Study this puzzle. What do you think the rule could be? (The number in the middle is the product of the 4 numbers around it. The same colour means the same number.)

Where should we start? (At the shape with product 6 because the numbers are small.) Elicit that 2 numbers are the same and zero is impossible. What could the two *violet* numbers be? (1 or 2; 3 is too big)

If *violet* is 2, the other 2 numbers are impossible, so *violet* must be 1.

A, come and write ‘1’ in all the *violet* circles.

If *violet* is 1, what must the other two numbers be? (2 and 3) Let’s check: $1 \times 2 \times 3 = 6$, but which of 2 and 3 should be *orange* and which *green*? Let’s check with the numbers around 12: $12 = 1 \times 2 \times 2 \times 3$ but $12 \neq 1 \times 2 \times 3 \times 3$, so the *green* circles must be 3 and the *orange* circles must be 2. Let’s fill in all the *green* and *orange* circles.

Where should we go next? (e.g. shape with product 30 as there is only one unknown number) B, come and write in the missing number and explain why you think so. (1 × 2 × 3 × 5 = 30, so *pink* must be ‘5’. B writes ‘5’ in all the *pink* circles.

Continue in this way until the puzzle is solved.

10 min

2 Secret number

I am thinking of a number. I will give you 4 clues. Listen carefully and after the last clue you should know the number I am thinking of.

1. The number is more than 30 and less than 40. (i.e. 31, 32, . . ., 39)
2. Half of the number is a whole number. (i.e. even)
3. A quarter of the number is NOT a whole number. (i.e. not 32 or 36)
4. Twice the number is more than 70. (i.e. not 34)

Show me with number cards the number I am thinking of . . . now! (38)

C, tell us how you worked out the answer. Who agrees? etc.

16 min

3 Book 2, page 116

Q.1 Read: Colour 2 thirds, 1 quarter, 2 sixths, 3 quarters.

For each picture, Ps count the elements, write the calculation either above the picture (or in their exercise books); colour appropriately.

BB:

- 2 thirds of 9 cups = $9 \div 3 \times 2 = 3 \times 2 = 6$ cups
- 1 quarter of 8 glasses = $8 \div 4 = 2$ glasses
- 2 sixths of 6 spoons = $6 \div 6 \times 2 = 1 \times 2 = 2$ spoons
- 3 quarters of 12 forks = $12 \div 4 \times 3 = 3 \times 3 = 9$ forks

22 min

4 Interlude

Song or rhyme

24 min
Lesson Plan 116

Activity

5

Book 2, page 116

Q.2 Read: Draw how many nuts there are if

a) 2 is 1 quarter
b) 3 is 3 eighths
c) 4 is 2 sixths?

What kind of nuts are these? (walnuts) Who has tasted one? (T could have some real walnuts to show and crack open.)

If walnuts are too difficult for you to draw, just draw circles.

Review orally round class. Ps come out to write calculations on BB. Mistakes corrected. (Demonstrate with Ps as walnuts at front of class if necessary.)

30 min

6

Book 2, page 116

Q.3 Read: Join up the values to the corresponding points on the number line.

T explains task. Let’s read out the labels together. Ps write numbers above relevant labels before joining to points on the number line. Review at BB with whole class.

Calculations written on BB where necessary, e.g. BB: 2 quarters of 8 = 8 ÷ 4 × 2 = 2 × 2 = 4

(or 2 quarters of 8 = half of 8 = 4)

35 min

7

Book 2, page 116, Q.4

Read: Compare the shaded parts. Which is more?

Write in the correct sign.

What can you say about the rectangles? (each has 6 rows of 3 squares = 18 squares, with 3 squares shaded in) Which do you think has more squares shaded? (Both the same, so missing sign must be ‘=’.)

Who can come and explain why the LH rectangle has ‘1 third of a half’ to describe the 3 shaded squares? P comes out to show the 2 halves separated by the bold line (9 squares in each), then the 3 squares out of 9 shaded (1 third). Who can write it as one calculation? Who agrees? Who thinks something else? etc.

Who can come and explain why the RH rectangle has ‘1 half of a third’ to describe the 3 shaded squares? P comes out to show the 3 thirds separated by the bold lines (6 squares in each), then the 3 squares out of 6 shaded (1 half). Who can write it as one calculation? Who agrees? Who thinks something else? etc.

Who can think of another fraction to describe the 3 shaded squares? (1 sixth, because 18 ÷ 6 = 3)

40 min

8

Problems in context

Who can think up a problem for this diagram and plan?

BB:

Plan:

40 m ÷ △ = △ m

45 min

Notes

Individual work, monitored, helped
Initial whole-class discussion
Reasoning, agreement, checking praising
BB: a) 2 × 4 = 8 or \[\frac{8}{4} = 2\]
b) \[\frac{3}{3} × \frac{8}{8} = 8\] or \[\frac{8}{8} × \frac{3}{3} = 3\]
c) \[\frac{4}{2} × \frac{6}{6} = 12\] or \[\frac{12}{6} × \frac{2}{2} = 4\]

Individual work, monitored
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, checking, praising
Demonstrate where necessary, especially ‘2 halves of 6’ and ‘1 half of 0’

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Discussion, agreement
Reasoning, agreement, checking praising
BB: LHS: 1 third of a half
18 ÷ 2 ÷ 3 = 9 ÷ 3 = 3
Reasoning, agreement, checking praising
BB: RHS: 1 half of a third
18 ÷ 3 ÷ 2 = 6 ÷ 2 = 3
BB: 1 third of a half = 1 half of a third = 1 sixth

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Ps suggest questions and solutions (with T’s help).
Agreement, checking
Praise creativity
R: Practice of operations
C: Division with remainders in context
E: Division with quotient larger than 10

Lesson Plan

Activity

1. **Logic puzzle (OHT 13 *, RHS)**

 Study this puzzle. What do you think the rule could be? (The number in the middle is the product of the 4 numbers around it. The same colour means the same number.)

 Where should we start? (At the shape with product 9 because the numbers are small.) Elicit that there are 2 pairs, each with both numbers the same and that 0 is impossible. What could the two numbers be? (1, 2 or 3; 4 is too big)

 If the numbers in one pair are 1, then what must the numbers in the other pair be? (3, because $1 \times 1 \times 3 \times 3 = 9$)

 If the numbers in one pair are 2, the other pair is impossible, as $2 \times 2 = 4$ cannot be multiplied by another whole number to make 9. So the only possible numbers are 1 and 3.

 But which of 1 and 3 should be pink and which yellow? Let's check with the numbers around 27: $27 \neq 1 \times 1 \times 1 \times 3$ but $27 = 3 \times 3 \times 3 \times 1$, so the pink circles must be 1 and the yellow circles must be 3.

 Let's fill in all the pink and yellow circles.

 Where should we go next? (e.g. shape with product 63 as there is only one unknown number) B, come and write in the missing number and explain why you think so. (1 \times 3 \times 3 \times 7 = 63, so blue must be 7). Are there any other blue circles in the puzzle? (No)

 Continue in this way until the puzzle is solved.

 Notes

 Whole class activity

 If no OHP, use copy master, enlarged and coloured appropriately

 Let Ps suggest where to start and how to continue.

 Solution:

 Pink → 1
 Yellow → 3
 Blue → 7
 Green → 4
 Turquoise → 2
 Red → 5

 Reasoning, agreement, checking, praising

 Ps choose shapes at random to check that solution is correct

2. **Divisibility by 2**

 T has numbers on cards and stuck to the side of the BB:

 BB: 27, 4, 3, 25, 11, 23, 10, 9, 29, 5, 24, 28

 Which of these numbers can be divided exactly by 2 (with no remainder)?

 Ps come out to choose cards and stick to middle of BB in increasing order

 Let's put the next nearest whole numbers beside them:

 BB: 3, 4, 5, 9, 10, 11, 23, 24, 25, 27, 28, 29

 What do you notice if you divide these next nearest numbers by 2? There is a remainder of 1 (or a whole number + a half), e.g.

 BB: $3 \div 2 = 1$, remainder 1 (or $3 \div 2 = 1$ and a half)

 Notes

 Whole class activity

 Use copy master, enlarged and cut out (or write on BB)

 Agreement, checking, praising

 Discussion about whole numbers, even, odd, divisible by 2, indivisible by 2

3. **Book 2, page 117**

 Q.1 Read:

 Sally and Susy Squirrel want to divide up the acorns they collected so that they both have an equal amount. How could they do it? Complete the table.

 P explains what each row of table means using the column already completed. (Middle row is top row divided by 2, bottom row is the remainder, top row is 2 times the middle row plus the bottom row.)

 Review at BB with whole class. Mistakes corrected.

 T uses expressions such as dividend (number being divided), divisor (number doing the dividing), quotient (answer), remainder.

 Notes

 Individual work, monitored (helped)

 Drawn on BB or use enlarged copy master or OHP

 Discussion, agreement, checking, praising

 If problems, Ps write equations on BB. Class agrees/disagrees.

 BB: e.g.

 $15 \div 2 = 7$, remainder 1

 Check: $7 \times 2 + 1 = 15$

4. **Interlude**

 Song or rhyme

 Notes

 Whole class in unison

© CIMT, Plymouth University
<table>
<thead>
<tr>
<th>Book 2, page 117</th>
<th>Lesson Plan 117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 5</td>
<td>Notes</td>
</tr>
<tr>
<td>Q.2 Read: We want to put 3 flowers into each vase. How many vases will we fill and how many flowers will remain? Fill in the missing numbers.</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>What kind of flowers are in the pictures? (daisy, tulip, harebell) Ps circle the flowers in groups of 3 (or colour in 3’s), count the groups and write in missing numbers in Pbs. Review at BB with whole class. Mistakes corrected. How could we have worked it out without circling in 3s? (by division) Ps come out to BB to write a division for each picture Class agrees/disagrees.</td>
<td>Drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, self-correction BB: 12 = 3 × 4 + 0, 12 ÷ 3 = 4 13 = 3 × 4 + 1, 13 ÷ 3 = 4, remainder 1 14 = 3 × 4 + 2, 14 ÷ 3 = 4, remainder 2</td>
</tr>
<tr>
<td>30 min</td>
<td></td>
</tr>
</tbody>
</table>

Book 2, page 117, Q.3 Read: A toy shop bought 35 teddy bears. The shop assistant could fit only 3 bears on each shelf. She put the remainder in the window. How many shelves were used? How many bears were put in the window? What should we do first? Who agrees? Who thinks something else? etc.	Whole class activity (Demonstrate if necessary with enlarged, cut-out bears or Ps at front of class)	
Plan: Number of bears: 35 Each shelf: 3 bears Calculation: 35 ÷ 3 = 30 ÷ 3 + 5 ÷ 3 = 10 + 1, remainder 2 = 11, remainder 2	Ps suggest what to write Ps can work in their books too Discussion, agreement, checking, praising BB:	
Answer: 11 shelves were used and 2 bears were put in the window.		
35 min		

<table>
<thead>
<tr>
<th>Practice in Ps’ exercise books</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T draws pictures on BB and Ps write a multiplication and addition, and a division and addition about each, e.g. BB:</td>
<td>Individual work, monitored (helped)</td>
</tr>
<tr>
<td>a) △ △ △ △ △</td>
<td>Heading: Lesson number and date</td>
</tr>
<tr>
<td>b) ● ● ● ● ●</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>Review at BB with whole class, Mistakes corrected. T writes a multiplication/division + addition on BB and Ps draw a picture to match.</td>
<td>BB: e.g.</td>
</tr>
<tr>
<td>Extension</td>
<td>a) 3 × 2 + 1 = 7</td>
</tr>
<tr>
<td></td>
<td>7 ÷ 2 = 3, remainder 1</td>
</tr>
<tr>
<td></td>
<td>b) 2 × 3 + 2 = 8</td>
</tr>
<tr>
<td></td>
<td>8 ÷ 3 = 2, remainder 2</td>
</tr>
<tr>
<td>40 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book 2, Page 1β17</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.4 Read: Fill in the missing numbers Let’s see how quickly you can do these! Sit up with your arms folded when you have finished. Review orally round class. Mistakes corrected at number line.</td>
<td>Individual work (or as a competition)</td>
</tr>
<tr>
<td></td>
<td>Encourage quick, accurate calculation and checking Agreement, self-correction, praising</td>
</tr>
<tr>
<td>45 min</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 118

Activity

<table>
<thead>
<tr>
<th>1</th>
<th>Oral work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell me numbers which have a remainder of 1 (2) when divided by 3. e.g. 1, 4, 7, 10, 13, . . . (2, 5, 8, 11, . . .) Are there any numbers which have a remainder of 3 when divided by 3? (No, because if there are 3 remaining, there is enough to make another group of 3, e.g. we do not say 12 ÷ 3 is '3, remainder 3' but rather 12 ÷ 3 = 4, with no remainder.)</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Whole class activity

T chooses Ps at random

At speed

Agreement, checking, praising

<table>
<thead>
<tr>
<th>2</th>
<th>Book 2, page 118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1</td>
<td>Read: What do the pictures tell us? Write equations about them. Review at BB with whole class. Mistakes corrected.</td>
</tr>
</tbody>
</table>
| BB: | a) \(3 \times 3 + 2 = 11 \)
\(11 \div 3 = 3, \text{ remainder 2} \)
Ps think of a problems in context for each of the pictures.
Class discusses whether or not they match the pictures. |
| Q.2 | Read: *Alice has been given some flowers. She wants to put 3 flowers in each vase. How many vases will she fill and how many flowers remain?*
Draw in the flowers and write equations about the pictures, if she had:
\(13 \div 3 = 4, \text{ remainder 1} \)
\(14 \div 3 = 4, \text{ remainder 2} \)
\(15 \div 3 = 5 \)
\(13 \div 4 \times 3 + 1 \) |

<table>
<thead>
<tr>
<th>3</th>
<th>Book 2, page 118</th>
</tr>
</thead>
</table>
| Q.2 | Read: *A photo album can hold only 4 photos on each page. How many pages will be filled and how many photos will remain if there are:*
\(24 \text{ photos, } 25 \text{ photos, } 26 \text{ photos, } 27 \text{ photos?} \)
T explains task by showing a real photo album to class. (Ps could talk about their own family photo albums).
Let's see how quickly you can write the divisions!
Review orally with whole class. Ps give answer in context.
We have worked out how many pages we can fill, but how many pages will we need for the photos? (6, 7, 7, 7) |
| Q.3 | Read: *A photo album can hold only 4 photos on each page. How many pages will be filled and how many photos will remain if there are:*
\(24 \text{ photos, } 25 \text{ photos, } 26 \text{ photos, } 27 \text{ photos?} \)
T explains task by showing a real photo album to class. (Ps could talk about their own family photo albums).
Let's see how quickly you can write the divisions!
Review orally with whole class. Ps give answer in context.
We have worked out how many pages we can fill, but how many pages will we need for the photos? (6, 7, 7, 7) |

Notes

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correction

Answers:

a) Alice will fill 4 vases, and 1 flower will remain
b) Alice will fill 4 vases, and 2 flowers will remain
c) Alice will fill 5 vases, and no flowers will remain

<table>
<thead>
<tr>
<th>4</th>
<th>Interlude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action song</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Whole class in unison

<table>
<thead>
<tr>
<th>5</th>
<th>Book 2, page 118</th>
</tr>
</thead>
</table>
| Q.3 | Read: *A photo album can hold only 4 photos on each page. How many pages will be filled and how many photos will remain if there are:*
\(24 \text{ photos, } 25 \text{ photos, } 26 \text{ photos, } 27 \text{ photos?} \)
T explains task by showing a real photo album to class. (Ps could talk about their own family photo albums).
Let's see how quickly you can write the divisions!
Review orally with whole class. Ps give answer in context.
We have worked out how many pages we can fill, but how many pages will we need for the photos? (6, 7, 7, 7) |
| Q.3 | Read: *A photo album can hold only 4 photos on each page. How many pages will be filled and how many photos will remain if there are:*
\(24 \text{ photos, } 25 \text{ photos, } 26 \text{ photos, } 27 \text{ photos?} \)
T explains task by showing a real photo album to class. (Ps could talk about their own family photo albums).
Let's see how quickly you can write the divisions!
Review orally with whole class. Ps give answer in context.
We have worked out how many pages we can fill, but how many pages will we need for the photos? (6, 7, 7, 7) |

Notes

Individual work, monitored, helped

Discussion, agreement, checking, praising

Refer to *Copy Master 118/1* (multiples of 4)

BB:

a) \(35 \div 4 = 8, \text{ remainder 3} \)
Check: \(8 \times 4 + 3 = 35 \)
b) \(25 \div 4 = 6, \text{ remainder 1} \)
Check: \(6 \times 4 + 1 = 25 \), etc.

Praising
Activity 6

Problem

Listen carefully, picture the story in your head and work out the answer in your exercise books. Let's see if you can write a plan, do the calculation and write the answer as a sentence.

In a class, each girl was wearing a pair of earrings. One of the girls lost an earring at playtime and the girls in the class now have only 35 earrings altogether. How many girls are in the class?

A, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.

BB:
Plan: Each girl: 2 earrings
Earrings now: 35
Calculation:
\[35 \div 2 = 20 \div 2 + 10 \div 2 + 5 \div 2\]
\[= 10 + 5 + 2, \text{ remainder } 1\]
\[= 17, \text{ remainder } 1\]

or
Plan: Each girl: 2 earrings
Earrings at first: 35 + 1 = 36
Calculation:
\[36 \div 2 = 20 \div 2 + 10 \div 2 + 6 \div 2\]
\[= 10 + 5 + 3\]
\[= 18\]

Answer: There are 18 girls in the class. (Only 17 are wearing a pair of earrings, the 18th girl is wearing only 1 earring, as 1 has been lost)

Problems in context

Who can think up a problem for this division?
BB: 43 ÷ 3 = ?
Ps suggest contexts and class chooses the best one.
(e.g. 43 marbles were packed into bags, with 3 marbles in each bag.
How many bags were filled and how many marbles were left over?)
Let's work out the answer together on the BB.

BB:
43 ÷ 3 = 30 ÷ 3 + 13 ÷ 3 = 10 + 4, remainder 1
= 14, remainder 1

Answer: 14 bags were filled and 1 marble was left over.

Book 2, Page 118

Q.4 Look carefully at the equations. What do you notice?
(No need to work out the LHS first, because as LHS = RHS:
28 is 1 more than 27, so missing number must be 1 less than 35,
24 is 10 less than 34, so missing number must be 10 more than 39, etc.)
Let's see how quickly you can do them! Sit up with your arms folded when you have finished.

Review orally round class. Mistakes corrected at number line.

Notes

- Individual work in exercise books, closely monitored, helped.
- T repeats slowly
- Discussion, reasoning, agreement, checking, praising
- (or 35 ÷ 2 = 20 ÷ 2 + 15 ÷ 2)
Check: 2 × 17 + 1 = 35
- (or 36 ÷ 2 = 20 ÷ 2 + 16 ÷ 2)
Check: 2 × 18 − 1 = 35
- Extra praise for Ps who calculated correct answer without help
- Whole class activity
Involve several Ps.
T repeats unclear problems correctly. Praise creativity
Class agrees/disagrees
T writes what Ps dictate
Agreement, checking:

BB:
43 ÷ 3 = 30 ÷ 3 + 13 ÷ 3 = 10 + 4, remainder 1
= 14, remainder 1

Answer: 14 bags were filled and 1 marble was left over.

- Individual work, monitored, (helped)
- Discussion, agreement
- Praising if Ps notice, but T gives hint otherwise
- Agreement, checking, self-correction, praising
Activity 1

What is the rule?

Study the picture carefully. BB:

What numbers could be missing from the leaves?

Ps come out to write in the missing numbers, explaining reasoning.

What could the rule be? (increasing by 3)

What else do you notice about the numbers? (If divided by 3, there is a remainder of 1; or they are all multiples of 3, plus 1.)

Who can write the sum of the leaf numbers in the flower? (91)

5 min

Activity 2

Division by 2, 3

Put 11 unit cubes (counters, items from Ps’ collection) on your desk.

• Arrange them in groups of 2. How many groups of 2 are there? How many are left over? Write equations about it in your exercise books. (Heading: Lesson number and date)

A, come and show us what you wrote. Who agrees? Who wrote a different equation? Let’s check, etc.

• Now let’s put the 11 cubes in groups of 3. (Repeat as above.)

12 min

Activity 3

Book 2, page 119

Q.1 Read: Write in the missing numbers. Draw pictures to match the calculation.

Deal with one part at a time. Ps do top calculation first, then draw enough simple (small!) shapes to match the answer, then circle the shapes in the appropriate groups, then fill in the numbers missing from the calculation below.

Review at BB with whole class. Mistakes corrected

BB: a) \(3 \times 5 + 1 = 16 \) b) \(3 \times 5 + 4 = 19 \) c) \(3 \times 5 + 3 = 18 \)

\[
\begin{align*}
16 \div 5 & = 3, \text{ remainder } 1 \\
19 \div 5 & = 3, \text{ remainder } 4 \\
18 \div 5 & = 3, \text{ remainder } 3
\end{align*}
\]

22 min

Activity 4

Interlude

Song, rhyme, exercises

24 min

Activity 5

Book 2, page 119, Q.2

Read: Grandad wants to put his 35 rabbits into hutches, with an equal number of rabbits in each hutch. Complete the table.

Who has a pet rabbit? How many do you have? Where do you keep it? What is a hutch? What do you need to put inside it? (food, water, sawdust) Talk about the size of hutches: the larger it is, the more rabbits it can hold.

T (or P) explains meaning of each row in table by completing the first column. (3rd row is top row divided by 2nd row, bottom row is the remainder) Ps come out to complete the columns, explaining reasoning. Class points out errors.

Which of these hutches do you think would be best for Grandad’s rabbits? (e.g. those which hold 5 or 7 rabbits, so that no rabbit will be on its own)

30 min
Lesson Plan 119

Activity

6

Problem

Listen carefully, picture the story in your head and think how you would work out the answer.

Aunt Julia cut out 37 scones from the dough she had made.

a) She put them on a baking sheet, 3 in a row.

How many rows of scones did she make?

B, how would you work out the answer? Who agrees? Who would do it another way? etc.

BB:

- **Plan:** No. of scones: 37
 - In each row: 3

- **Calculation:**
 \[
 37 \div 3 = 12 \text{ remainder } 1
 \]

- **Answer:** She made 13 rows of scones. (12 full rows and only 1 scone in the 13th row)

b) If Aunt Julia could fit only 5 rows on a baking sheet, how many baking sheets did she need?

C, how would you work out the answer? Who agrees? Who would do it another way? etc.

BB:

- **Plan:** No. of rows: 13
 - Each baking sheet: 5 rows

- **Calculation:**
 \[
 13 \div 5 = 2 \text{ remainder } 3
 \]

- **Answer:** She needed 3 baking sheets. (2 full baking sheets and one with only 3 rows of scones)

7

Book 2, page 119, Q.3

Read:

The children were playing a game and had to stand in rows. If they stood 2, 3, or 4 in a row, there was always 1 child left out.

What was the smallest possible number of children who played the game? Try these numbers. Write a cross or a tick to show whether they are possible.

Why do the numbers 2 and 3 already have a cross? (Not enough to make a row of 4, so not possible)

How could we solve it? Ps suggest ways: e.g.

- try out each number in turn with Ps at front of class, or with counters on desks; or
- if 2 in a row, there was always 1 over, so number must be odd, so put a cross below all even numbers, try out the odd numbers; or
- as rows of 2, 3 and 4 (plus 1) are possible, we need a number which is 1 more than the smallest multiple of 2, 3 and 4.

Elicit that the smallest multiple of 2, 3 and 4 is 12. (Ps may use their \(\times \) tables if necessary) \(12 + 1 = 13 \). Let's check it.

Answer: 13 was the smallest number possible.

Which method do you think is best? Why?

8

Book 2, page 119

Q.4 Read:

Fill in the missing numbers.

Let's see who can solve them all in 4 minutes!

Review orally round class. Who had them all correct? Who made a mistake? What kind of mistake? etc.

Notes

Whole class activity

T repeats slowly

Discussion, reasoning, agreement, checking, praising

Ps suggest plan /calculation

Check: \(12 \times 3 + 1 = 37 \)

Discussion about answer.

Ps copy into Ex. Bks.

Whole class activity

(Or done as individual trial, monitored, helped, if Ps wish)

Table drawn on **BB** or use enlarged copy master or OHP

Ask several Ps what they think

Discussion, agreement, trying out, checking, praising

BB

2 3 4 5 6 7 8 9 10 11 12 13 14 15
\[\times \]

T gives hints if necessary

BB:

- \(13 = 2 \times 6 + 1 \)
- \(13 = 3 \times 4 + 1 \)
- \(13 = 4 \times 3 + 1, \) so ✔

Discussion, agreement: last bullet point is quickest / uses mathematical logic best

Individual work, monitored

Agreement, checking, self-correcting, praising

Quick discussion of problems at BB.
| Bk2 | **R:** Practice of calculation
C: Division with remainder: in context
E: Problem solving |
|---|---|

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 | **Divisibility**
Tell me numbers which are divisible by 2 (3, 4).
Tell me numbers which have a remainder of:
• 1 when divided by 2
• 1 (2) when divided by 3
• 1 (2, 3) when divided by 4.
| **Lesson Plan**
120 |

| Notes | **R:** Practice of calculation
C: Division with remainder: in context
E: Problem solving |
|---|---|

| Book 2, page 120 | **Notes**
Whole class activity
At speed. Involve all Ps
Agreement, checking, praising |

| 2 | **Q.1 Read:** A school was taking its pupils on a trip on a steam railway. The carriages in the train were so small that they could seat only 6 people.
Complete the table to show how many carriages were needed.
Elicit that middle row is top row divided by 6, bottom row is the remainder.
Review at BB with whole class. Mistakes corrected.
Which of these numbers of children do you think would be best for the school to take on the trip? Why? (24 or 30, so that nobody will be on their own and everyone will know each other.)
| **Notes**
Individual work, monitored, (helped)
Table drawn on BB or use enlarged copy master or OHP
(Ps may use their \(\times \) tables.)
Discussion, agreement, checking, self-correcting
Praising
Discussion, agreement |

| 3 | **Problem**
Listen carefully, picture the story in your head and work out the answer in your exercise books. Let’s see if you can write a plan on your own, do the calculation and write the answer as a sentence.
On a parachute jump, the parachutists jumped from the aeroplane and floated to the ground, joined up in groups of 3.
41 parachutists jumped from the aeroplane.
How many groups were there? Did anyone jump alone?
A, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.
| **Notes**
Individual work in exercise books, closely monitored, helped.
T repeats slowly
BB: parachutist |

| 4 | **Interlude**
Song, rhyme, exercises
| **Notes**
Whole class in unison |
Bk2

Activity

5

Book 2, page 120

Q.2 Read: *How many weeks and days are there in each month? Fill in the table.*

- Revise number of days in a week and normal years, e.g. 2000 and 1999.
- Talk about leap years and normal years, e.g. 2000.
- Let's fill in the table for a normal year. (e.g. 1999)
- T (or P) explains table by completing first 2 columns.
- (Middle row is top row divided by 7, bottom row is the remainder, Check: top row is middle row times 7, plus bottom row)
- Ps complete the rest of table in Pbs, with help of calendar.
- Review at BB with whole class. Mistakes corrected

31 min

6

Book 2, page 120

Q.3 Read: *A train had carriages which could seat 8 people. Three carriages were full and the 4th carriage was half full. How many passengers were on the train?*

- X, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.
- BB: *Plan:* Each carriage: 8 passengers
 - 3 full carriages: 3 × 8 passengers
 - 1 half full carriage: 8 ÷ 2 passengers
- *Calculation:* 3 × 8 + 8 ÷ 2 = 24 + 4 = 28
- How could we check it? (with a division)
- *Check:* 28 ÷ 8 = 3, remainder 4 (so 4 carriages, 3 full with 8 people each and 4th half full with 4 people)
- *Answer:* There were 28 passengers on the train

35 min

7

Problem

Listen carefully and think how you would solve this problem

Some children were playing a game and had to stand in rows.

- If they stood 2 in a row, then 1 child was left out.
- If they stood 3 in a row, then 2 children were left out.
- If they stood 4 in a row, then 3 children were left out.

What was the smallest possible number of children playing the game?

Who can suggest what we should do? Who agrees? Who thinks something else? (If nobody knows, T gives hints about using mathematical reasoning:

- number must be equal to, or more than, 7 (as 4 in row + 3 possible)
- if 2 in a row, there was 1 over, so number must be odd
- if 3 in a row, there were 2 over, so 7, 9, 13, 15 not possible.

- Only number left is 11. Let's check it is possible for 4 in a row, plus 3.
- *Answer:* 11 was the smallest number possible.

40 min

8

Book 2, page 120

Q.4 Read: *Practise calculation.*

- Let's see who can solve them all in 4 minutes!
- Review orally round class. Mistakes discussed/corrected.

45 min
R: Mental calculation
C: Revision and practice
E: 0 and 1 in multiplication and division

Activity

1 Logic puzzle
Let's fill in the grid with the numbers 2, 5 or 10, so that the product of the 3 numbers in each row or column is the number shown.

\[
\begin{array}{ccc}
\times & \div & = \\
2 & 5 & 10 \\
\end{array}
\]

Where should we start? (e.g. 1st row because 8 is the smallest product.) A, come and write in the missing numbers, giving your reasoning. Who agrees? etc. (All 3 numbers must be '2' because 5 and 10 would be too big.) Check:

\[
2 \times 2 \times 2 = 8
\]

Where should we go next? (e.g. 3rd column: 2 \times 20 = 2 \times 2 \times 10 = 40) But where should we put the 2 and 10? (If we put 10 in middle square, the other 2 squares in the middle row would need a product of 5, which is impossible, so '2' must go in the middle square).

5 min

2 Multiplication and division
T writes the numbers 0, 1, 2 and 3 on LHS of BB and 0, 1, 5 on RHS.

a) Let's make multiplications with a number from each side. How many different multiplications can we make? (Each number on LHS can multiply the 3 numbers on RHS: 4 \times 3 = 12)

BB:

\[
\begin{array}{ccc}
0 \times 0 & = 0 & 0 \\
0 \times 1 & = 0 & 0 \times 5 = 0 \\
1 \times 0 & = 0 & 1 \times 1 = 1 \\
1 \times 5 & = 5 & 2 \times 0 = 2 \\
2 \times 1 & = 2 & 2 \times 10 = 20 \\
3 \times 0 & = 0 & 3 \times 1 = 3 \\
3 \times 5 & = 15 & 5 \times 0 = 0
\end{array}
\]

What do you notice about these multiplications?
- Zero times (multiplied by) any number is zero.
- 1 times (multiplied by) any number is the number itself.

b) Let's make divisions, with a number from LHS as the dividend and a number from RHS as the divisor. But be careful!

BB:

\[
\begin{array}{ccc}
0 \div 0 & = \text{impossible} & 0 \div 1 = 0 \\
0 \div 5 & = 0 & 1 \div 0 = \text{impossible} \\
1 \div 1 & = 1 & 1 \div 5 = \text{1 fifth} \\
2 \div 0 & = \text{impossible} & 2 \div 1 = 2 \\
2 \div 5 & = 2 \text{ fifths} & 3 \div 0 = \text{impossible} \\
3 \div 1 & = 3 & 3 \div 5 = 3 \text{ fifths}
\end{array}
\]

What do you notice about these divisions? (T gives hints if necessary.)
- Zero divided into any number of parts is still zero.
- Dividing by zero, i.e. dividing a number into groups of zero, is impossible;
- Any number divided by 1 is the number itself.

5 min

3 Book 2, page 121, Q.1

Read: In a farmyard there are hens and rabbits. They have 52 legs altogether. How many hens and how many rabbits could there be in the farmyard?

Complete the table. Write calculations for some of the columns.

Ps come out to choose a column and fill in missing number, explaining reasoning and writing equations on BB.

Class checks that they are correct. If problems, T leads Ps through by asking relevant questions: e.g. 1st column: How many hens? 12 How many hens' legs? 24 How many rabbits legs? 28 How many rabbits? 7

23 min

Lesson Plan

Notes

Whole class activity (or individually in exercise books if Ps wish)

Drawn on BB or use enlarged copy master or OHP

Ps suggest what to do Reasoning, agreement, checking

BB:

\[
\begin{array}{ccc}
2 & 2 & = 8 \\
5 & 5 & = 50 \\
2 & 5 & = 100 \\
20 & 50 & 40
\end{array}
\]

Praising

Whole class activity

BB:

\[
\begin{array}{ccc}
0 & 2 & 1 \\
0 & 5 \end{array}
\]

T writes Ps' suggestions in logical order on BB and underlines those containing '0' or '1'

Discussion, agreement, checking, praising

T reminds Ps which number is dividend and which is divisor

If necessary, T writes on BB:

\[
3 \div 0 = \text{impossible}, as 0 \times 0 = 3 \div 3 = \text{impossible}, as 3 \times 0 = 3
\]

Discussion, agreement, checking, praising

Ps recite bullet points in unison (Quick mental practice round class as consolidation)

Whole class activity

Table drawn on BB or use enlarged copy master or OHP

At a good pace. Reasoning, agreement, checking, praising

BB: e.g. 1st column:

\[
12 \times 2 = 24, \quad 52 \div 24 = 28, \quad 28 \div 4 = 7
\]

or

\[
12 \times 2 + 7 \times 4 = 52
\]

or

\[
(52 \div 12 \times 2) \div 4 = 7
\]
Lesson Plan 121

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlude</td>
<td>25 min</td>
</tr>
<tr>
<td>Song or rhyme</td>
<td>Whole class in unison</td>
</tr>
<tr>
<td>Book 2, page 121</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>Q.2 Read: Match up the dogs to their bones. Join them up or colour them.</td>
<td>Draw on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Review at BB with whole class. Deal with all mistakes.</td>
<td>Discussion at BB</td>
</tr>
<tr>
<td>BB:</td>
<td>Agreement, checking, praising</td>
</tr>
<tr>
<td>$49 = 9 \times 5 + 4 = 100 – 51 = 8 \times 6 + 1$</td>
<td></td>
</tr>
<tr>
<td>$32 = 8 \times 4 = 100 – 68 = (36 – 20) \times 2 = 16 \times 2 = 2 \times 12 + 8$</td>
<td></td>
</tr>
<tr>
<td>Draw another bone, with a different label, for each dog.</td>
<td></td>
</tr>
<tr>
<td>Book 2, page 121</td>
<td>Individual work, monitored</td>
</tr>
<tr>
<td>Q.3 Read: Practise multiplication.</td>
<td>T notes Ps having problems</td>
</tr>
<tr>
<td>Let’s see how quickly you can do these! You may use your multiplication tables if you need them but try to answer without them first. Sit up with your arms folded when you have finished.</td>
<td>Quick checking, agreement, self-correcting, evaluation</td>
</tr>
<tr>
<td>Review orally round class. Who had all correct? Who made a mistake? Who needed to look at their multiplication tables? Try to learn these facts at home.</td>
<td>Praising, encouragement only</td>
</tr>
<tr>
<td>Operations</td>
<td>Whole class activity (or team competition)</td>
</tr>
<tr>
<td>T sticks two pictures on BB, each containing a number. e.g. BB:</td>
<td>Pictures drawn or stuck to BB (use enlarged, cut-out copy master, or pictures cut out from magazines with numbers written or stuck on)</td>
</tr>
<tr>
<td>27</td>
<td>At a good pace</td>
</tr>
<tr>
<td>$11 + 16$</td>
<td>Agreement, checking, praising</td>
</tr>
<tr>
<td>$52 – 25$</td>
<td>(If competition, stars/stickers etc. could be awarded)</td>
</tr>
<tr>
<td>3×9</td>
<td></td>
</tr>
<tr>
<td>$81 \div 3$</td>
<td></td>
</tr>
<tr>
<td>$19 + 45$</td>
<td></td>
</tr>
<tr>
<td>$100 – 36$</td>
<td></td>
</tr>
<tr>
<td>8×8</td>
<td></td>
</tr>
<tr>
<td>$64 \div 1$</td>
<td></td>
</tr>
<tr>
<td>Who can tell me an operation (+, −, ×, ÷) for each dolphin?</td>
<td></td>
</tr>
<tr>
<td>T chooses Ps at random. P says an operation. T writes it beside relevant picture on BB. Class agrees or points out errors or repeats. (Or done as a quick team competition, with Ps coming out one after another to write on BB. Team with most correct, different equations in a set time limit is the winner.)</td>
<td></td>
</tr>
<tr>
<td>Book 2, page 121</td>
<td>Individual work, monitored</td>
</tr>
<tr>
<td>Q.4 Read: Practise addition and subtraction</td>
<td>T notes Ps having problems</td>
</tr>
<tr>
<td>Let’s see how quickly you can do these! You may use your number lines if you need them but try to answer without them first. Sit up with your arms folded when you have finished.</td>
<td>Quick checking, agreement, self-correcting</td>
</tr>
<tr>
<td>Review orally round class. Who had all correct? Who made a mistake? What kind of mistake? Who needed to look at their number line?</td>
<td>Praising, encouragement only</td>
</tr>
<tr>
<td>Which equation is the odd one out? Why? (e.g. $15 + 72$ is the only equation with two 2-digit numbers on the LHS.)</td>
<td>Discussion, agreement</td>
</tr>
</tbody>
</table>
Lesson Plan 122

Activity 1

Number cards

Show me with number cards when I say the number which is:

- 5 more than 20
 Show me . . . now!
 \[25 \]
 \[20 + 5 = 25 \]

- 5 times 20
 Show me . . . now!
 \[100 \]
 \[5 \times 20 = 100 \]

- 5 less than 20
 Show me . . . now!
 \[15 \]
 \[20 - 5 = 15 \]

- A fifth of 20
 Show me . . . now!
 \[4 \]
 \[20 \div 5 = 4 \]

- 2 fifths of 20
 Show me . . . now!
 \[8 \]
 \[20 \div 5 \times 2 = 8 \]

Notes

- Whole class activity
- Number cards shown in unison
- Quick feedback
- If problems, write equations on BB
- Praising

Activity 2

Book 2, page 122, Q.1

T has equations written (or stuck) on BB. What do you notice about the equations? (All have the same numbers on LHS.) Ps come out to fill in missing signs, explaining reasoning. Class checks that they are correct. T gives hints only if necessary.

BB:

- a) \[40 \div 4 \div 5 = 2 \]
- b) \[40 + 4 + 5 = 49 \]
- \[40 \div 4 \times 5 = 50 \]
- \[40 + 4 \times 5 = 60 \]
- \[40 - 4 - 5 = 31 \]

Make up your own equations using 40, 4 and 5 on the LHS.

Notes

- Whole class activity
- Written on BB or use enlarged copy master
- Reasoning, agreement, checking, praising
- Ps can write in their books too
- e.g. \[40 - 4 \times 5 = 20 \]
- Praise creativity

Activity 3

Book 2, page 122

Q.2 Read: What is the connection between the shapes? Complete the table. Write the rule in different ways.

Study the 3 columns already done. What could the rule be? T gives hint if nobody knows but give Ps time to think first. (Agree on one form of the rule, even if expressed only in words, e.g. 'the star plus the sun equals half of the moon', or 'the bottom row equals twice the sum of the top and middle rows'.) Let's use this rule to complete the table. Review at BB with whole class. Mistakes corrected. (Final column can have many answers – deal with all cases. Class agrees/disagrees.)

How could we write the rule? T writes with help from Ps, saying the equation in words too. Could we write it another way? Ps suggest different ways. T (or Ps) writes on BB, Ps in Pbs.

BB:

\[
\begin{array}{cccccccc}
\star & 5 & 6 & 1 & 7 & 3 & 6 & 1 & 8 & 1 & 0 \\
\odot & 4 & 3 & 4 & 1 & 3 & 2 & 9 & 3 & 2 & 1 \\
\bigcirc & 18 & 18 & 10 & 16 & 12 & 16 & 20 & 22 & 6 & 2 \\
\end{array}
\]

Rule:

\[\bigcirc = (\star + \odot) \times 2, \quad \odot = \bigcirc \div 2 - \bigcirc, \quad \star = \bigcirc \div 2 - \star \]

Notes

- Whole class introduction
- Drawn on BB or use enlarged copy master or OHP
- Ask several Ps what they think
- Individual work, monitored, helped
- Agreement, checking, praising
- Discussion, reasoning, agreement, checking, praising

Activity 4

Interlude

Physical exercises to music

Notes

- Whole class in unison
Lesson Plan 122

Activity

5

One operation instead of 2

Study these diagrams. What is missing from them?

- **BB:**

 36 + 40

 \[\begin{array}{c}
 \hline
 a) 36 + 40 \\
 \hline
 - \ 2 \\
 \hline
 \end{array} \]

 91 - 50

 \[\begin{array}{c}
 \hline
 b) 91 - 50 \\
 \hline
 + \ 6 \\
 \hline
 \end{array} \]

 9

 \[\begin{array}{c}
 \hline
 c) 9 \\
 \hline
 54 \\
 \hline
 27 \\
 \hline
 \end{array} \]

 12

 \[\begin{array}{c}
 \hline
 d) 12 \\
 \hline
 3 \\
 \hline
 24 \\
 \hline
 \end{array} \]

Elicit that:

- a) adding 40 and subtracting 2 is the same as adding 38;
- b) subtracting 50 and adding 6 is the same as subtracting 44;
- c) multiplying by 6 and then dividing by 2 is the same as multiplying by 3;
- d) dividing by 4 and then multiplying by 8 is the same as multiplying by 2.

Which do you think is easier? Why?

6

Problem

Listen carefully, picture the story in your head and think how you would work out the answer.

Pooh Bear has 1 litre 20 cl of honey and wants to put it into two jugs so that one jug contains twice as much as the other. How much honey will he put in each jug?

Think about how many equal parts the honey should be divided into.

BB:

- **Plan:** Honey: 1 litre 20 cl = 120 cl
 No of equal parts: 3

 - Calculation: \(120 \div 3 = 12 \text{ tens} \div 3 = 4 \text{ tens} = 40 \)

 \(\text{or } 120 \div 3 = 30 \div 3 + 30 \div 3 + 30 \div 3 + 30 \div 3 \)

 1st jug: 40 cl
 2nd jug: \(2 \times 40 \text{ cl} = 80 \text{ cl} \)

Answer: He will put 40 cl in one jug and 80 cl in the other jug.

7

Book 2, page 122

Q.3 Read: *Practise addition and subtraction*

Let's see how quickly you can do these! Sit up with your arms folded when you have finished. Check them if you have time.

Review orally round class. Mistakes corrected. If problems, Ps show calculation on BB. How many correct out of 18?

8

Book 2, page 122

Q.4 Read: *Practise multiplication.*

Let's see how many of these you can do in 4 minutes!

Review orally round class. Who had all correct? Who made a mistake? What kind of mistake? etc.

Let's check each one with a division.

Notes

- Whole class activity
- Drawn on BB or use enlarged copy master or OHP

Ps come out to write in the missing numbers and operation signs, saying the equation.

Class points out errors

Discussion, agreement, checking, praising

T could ask Ps for other examples of each type

Discussion. Involve several Ps

<table>
<thead>
<tr>
<th>Q.3</th>
<th>Q.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read: Practise addition and subtraction</td>
<td>Read: Practise multiplication.</td>
</tr>
<tr>
<td>Let's see how quickly you can do these!</td>
<td>Let's see how many of these you can do in 4 minutes!</td>
</tr>
<tr>
<td>Sit up with your arms folded when you have finished. Check them if you have time.</td>
<td>Review orally round class. Who had all correct? Who made a mistake? What kind of mistake? etc.</td>
</tr>
<tr>
<td>Review orally round class. Mistakes corrected. If problems, Ps show calculation on BB. How many correct out of 18?</td>
<td>Let's check each one with a division.</td>
</tr>
</tbody>
</table>

© CIMT, Plymouth University
Lesson Plan 123

Activity 1

Logic puzzle

Let's find ways through the maze so that the product of the numbers passed through is a) 24, b) 72, c) 1, d) 0. The same shape means the same number. We can only move along the lines given.

BB:

What should we do first? (Write appropriate numbers in all the shapes, e.g. 1 in all the circles, 2 in all the triangles, etc.)

Ps come out to show routes and class keeps check.

Solution:

a) several routes possible, e.g. $1 \times 3 \times 1 \times 2 \times 1 \times 2 \times 1 \times 1 \times 1 \times 1 = 24$

b) several routes possible, e.g. $1 \times 2 \times 1 \times 2 \times 1 \times 2 \times 3 \times 3 \times 1 \times 1 \times 1 \times 1 = 72$

c) route for ‘1’ is impossible, as it would need all the numbers to be ‘1’.

d) any route which contains 0.

Notes

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Ps could each have a copy of puzzle on desks.

Discussion, agreement, checking, raising

Ps show different routes for parts a) and b)

Discussion, agreement

Extra praise if Ps notice without T’s help

10 min

Activity 2

Tossing coins

Ps each have a coin (real or model) on desk. Make sure that Ps know which side is heads and which is tails.

T explains table on BB and Ps copy into Ex. Bks.

BB:

<table>
<thead>
<tr>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Ps toss coins on command from T, note whether it lands heads up or tails up and tick the appropriate box in column headed ’1st’ in their tables. (Make sure Ps know to write only one ‘tick’ per column!) Hands up those who threw a ‘head’ (‘tail’). T counts and writes total in table on BB. Continue in similar way for 10 (or 5) throws.

Ps count up their individual totals for heads and tails and write in final column in table in their exercise books. T can use a calculator to obtain totals for class, shows each total to Ps and writes in table on BB.

How can we check whether we have added up correctly? (Ps’ totals for heads and tails should sum to 10 and T’s totals for class should sum to 10 times number of Ps in the class.) What do you notice?

18 min

Activity 3

Book 2, page 123

Q.1 Read: *I am going to toss a coin once. How certain can I be of the result? Join up the statements on the left to the correct labels on the right.*

Class reads out one statement at a time and Ps join it up to correct label in their books. Review with whole class. After discussion, class agrees that each side of coin has equal chance of occurring.

24 min
Lesson Plan 123

Whole class activity

Whole class in unison

Book 2, page 123, Q.2
Let's do another experiment! T reminds them of previous 'experiment' and encourages care and accuracy. You keep note of your own results in your books and I will keep note of the class's results on the BB.

How many dots are on the sides of your dice? (1, 2, 3, 4, 5, 6) Which numbers are opposite each other? (1 and 6, 2 and 5, 3 and 4) Let's practice throwing it so that it lands on your desk (and not on the floor!) Which number is facing up? Where can you find it in the table? (Ps come out to point.)

Read: *Throw a dice on your desk 10 times. Keep a tally of the numbers thrown in the table. Fill in the last column to show how often you threw each number.*

Ps throw dice on command from T, note the number facing up and write a tick (or a |) in the appropriate box in the tables in their books. Hands up those who threw a '6' ('5', . . . '1'). T counts and writes total in class table on BB. Continue in a similar way for 10 throws.

Ps count up number of ticks and write totals in boxes at end of each row in their tables. T can use a calculator to obtain totals for class, shows each total to Ps and writes in table on BB.

How can we check whether we have added up correctly? (Ps' totals for own data should sum to 10 and T's totals for class data should sum to 10 times number of Ps in the class, as the dice was thrown 10 times.)

Let's draw a bar chart to show the results more clearly. Ps write numbers 1 to 10 on LHS of their copies then draw and colour bar charts for their own data.

T writes appropriate numbers on LHS of class bar chart on BB and completes with help of Ps. What do you notice?

Book 2, page 123, Q.3
Read: *I am going to throw a dice once. How certain can I be of the result? Join up the statements at the sides to the correct labels in the middle.*

Class reads out one statement at a time and Ps join it up to correct label in Pbs. Review with whole class. Demonstrate by throwing the dice if necessary.

After discussion, class agrees that each side of dice has equal chance of occurring. Demonstrate if necessary.

Book 2, page 123, Q.4
Read: *I am going to toss a coin twice. Write the possible results in the table.*

T explains table. On my first throw, what could the outcome be? (Either Head or Tail) T points to relevant column in table. If I threw a 'Head' on the first throw, what could I throw on my second throw? (Head or Tail) T writes in table on BB, Ps in their books. Repeat for 'Tail'.

We could also show it like this. (BB) This is called a tree diagram.

Individual work, but class kept together

Discussion, reasoning, agreement, checking, praising

BB: I will throw a
4: Possible but not certain
2 or 5: Possible but not certain
1 and 5: Impossible (1 throw)
7: Impossible (not on dice)

45 min

Individual work in recording

BB: e.g.

<table>
<thead>
<tr>
<th>Throes</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>43</td>
<td>45</td>
<td>43</td>
<td>46</td>
<td>46</td>
<td>45</td>
<td>48</td>
<td>270</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checking, correcting
Ps each have copy of *Copy Master 123/5b*. T uses enlarged copy on BB

Discussion: elicit that class data are more uniform. Why?

41 min

Individual work, but class kept together

Discussion, reasoning, agreement, checking, praising

BB: I will throw a
4: Possible but not certain
2 or 5: Possible but not certain
1 and 5: Impossible (1 throw)
7: Impossible (not on dice)

45 min

Whole class activity

Table drawn on BB or use enlarged copy master or OHP

Ps have dice on desks.
Familiarisation with dice

T emphasises importance of care and accuracy in 'experiments' like this!

Ps throw dice and raise hands in unison

41 min

Book 2, page 123

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Interlude</td>
</tr>
<tr>
<td></td>
<td>Action song</td>
</tr>
<tr>
<td></td>
<td>26 min</td>
</tr>
<tr>
<td>5</td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Table drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Ps have dice on desks.</td>
</tr>
<tr>
<td></td>
<td>Familiarisation with dice</td>
</tr>
<tr>
<td></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Table drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Ps have dice on desks.</td>
</tr>
<tr>
<td></td>
<td>Familiarisation with dice</td>
</tr>
<tr>
<td></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Table drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Ps have dice on desks.</td>
</tr>
<tr>
<td></td>
<td>Familiarisation with dice</td>
</tr>
<tr>
<td></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Table drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Ps have dice on desks.</td>
</tr>
<tr>
<td></td>
<td>Familiarisation with dice</td>
</tr>
<tr>
<td></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Table drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td></td>
<td>Ps have dice on desks.</td>
</tr>
<tr>
<td></td>
<td>Familiarisation with dice</td>
</tr>
</tbody>
</table>
Lesson Plan
Bk2

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R: Calculation</td>
<td>Lesson Plan 124</td>
</tr>
<tr>
<td>C: Revision and practice. Probability (games with dice)</td>
<td>Whole class activity (or white/red cubes into a box)</td>
</tr>
<tr>
<td>E: Problems about probability</td>
<td>Discussion, reasoning, agreement</td>
</tr>
</tbody>
</table>

1
Probable outcomes

T puts 3 white and 3, e.g. red, marbles into a bag. A is going to take out 3 marbles from the bag with his eyes closed. What do you think the outcomes will be? Is A more likely to take out
- 3 marbles all the same colour, or
- 3 marbles all different colours, or
- 3 marbles, some white and some coloured?

Let's see what really happens! Repeat with several other Ps taking out 3 marbles. T keeps tally of outcomes on BB.

Class agrees that 1st outcome is possible, though not likely, 2nd is impossible (not 3 colours in the bag), 3rd outcome is most probable.

8 min

2
Book 2, page 124, Q.1

Read: There are 2 white, 2 black and 2 striped marbles in a bag. The bag is tied with cord and you cannot see inside.

How certain can I be that if, with my eyes shut: . . .

T reads out one statement at a time and Ps show what they think with cards on command. Show me . . . now!

C, why did you choose it? Who agrees? Who thinks something else?

Solution:
- a), b), c) Possible (but not certain)
- d) Certain (only 4 needed to be sure of 2 the same colour)
- e) Impossible (there are not 4 colours in the bag)

16 min

3
Book 2, page 124

Q.2 a) Read: If we were to throw 2 dice at the same time, how many different results could there be?

Continue writing them out, with A’s number first.

T explains task and encourages logical listing, referring to the first 3 already given. (If Dice A shows 1 facing up, what are all the possibilities for Dice B?)

If T thinks class do not understand, do the next few on the BB with the whole class first.) Rest done as individual work.

Review at BB with whole class. T writes what Ps dictate in order on BB. How many different results are possible? (For each of the 6 numbers on Dice A, there are 6 possible numbers on Dice B, so number of results = 6 x 6 = 36)

b) Read: Which total is:
- i) the smallest possible
- ii) the largest possible?

Ps write in Pbs, then show answer with number cards on command. (smallest: 1 + 1 = 2; largest: 6 + 6 = 12)

Discus the chance of certain totals occurring.

24 min

4
Interlude

Rhyme or song

26 min

Whole class in unison

© CIMT, Plymouth University
Bk2

<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan 124</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Notes</td>
</tr>
<tr>
<td>Book 2, page 124</td>
<td>Individual (or paired) trial</td>
</tr>
<tr>
<td>Q.3 Read: We have put 5 red, 5 yellow and 5 green marbles into a bag. The bag is tied with cord and you cannot see inside.</td>
<td>Each pair could have coloured counters in a box on desk</td>
</tr>
<tr>
<td>If you take out some marbles with your eyes closed, what is the smallest number of marbles you should take out to make certain that you have at least:</td>
<td>Otherwise Ps colour marbles in picture in Pbs to help them</td>
</tr>
<tr>
<td>a) 1 red marble</td>
<td>Deep discussion reasoning, agreement, checking</td>
</tr>
<tr>
<td>b) 1 yellow marble</td>
<td>Extra praise for Ps who reason clearly and correctly and can demonstrate to class</td>
</tr>
<tr>
<td>c) 2 green marbles</td>
<td>Solution:</td>
</tr>
<tr>
<td>d) 3 marbles of the same colour?</td>
<td></td>
</tr>
<tr>
<td>Review with whole class. Ps give answers with reasoning. Class agrees/disagrees. Pairs of Ps demonstrate each part.</td>
<td></td>
</tr>
<tr>
<td>6 Throwing 2 dice</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>Look at your results for Question 2. How many different results did we write down? (36)</td>
<td>BB: 1 + 6, 1 + 5, 1 + 4, 1 + 3,</td>
</tr>
<tr>
<td>If we think of, e.g. (2 + 3) and (3 + 2) as being the same because we are adding the same numbers together, how many different results would there be then?</td>
<td>1 + 2, 1 + 1, 2 + 6, 2 + 5,</td>
</tr>
<tr>
<td>Ps draw brackets around (or cross out) the 2nd of each such pair and count all those left.</td>
<td>2 + 4, 2 + 3, 2 + 2, 3 + 6,</td>
</tr>
<tr>
<td>Show me the answer with number cards . . . now! (21) Let's check.</td>
<td>3 + 5, 3 + 4, 3 + 3, 4 + 6,</td>
</tr>
<tr>
<td></td>
<td>4 + 5, 4 + 4, 5 + 6, 5 + 5,</td>
</tr>
<tr>
<td></td>
<td>6 + 6</td>
</tr>
<tr>
<td>7 Problem</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Listen carefully and think about what we have done in this lesson.</td>
<td>T repeats slowly</td>
</tr>
<tr>
<td>a) How likely do you think this is? If I choose any 8 children in the class, at least 2 of them were born on the same day of the week.</td>
<td>Ps use cards from Activity 2</td>
</tr>
<tr>
<td>Do you think it is certain, possible but not certain, or impossible? Show me with one of your cards . . . now! (Certain)</td>
<td>In unison</td>
</tr>
<tr>
<td>X, explain your answer. Who agrees? etc. (The first 7 children could have been born on each of the 7 days of the week, but the 8th child must have been born on one of these days too.)</td>
<td>Reasoning (with T's help), agreement, checking , praising</td>
</tr>
<tr>
<td>b) What is the smallest number of children I should choose to be certain that at least 2 of them were born on the same date in any month?</td>
<td>T repeats slowly</td>
</tr>
<tr>
<td>Show me with number cards . . . now! (32)</td>
<td>Ps use cards from Activity 2</td>
</tr>
<tr>
<td>Y, explain your answer. Who agrees? etc. (The most number of days in a month is 31, and the first 31 children could have been born on each of these dates, but the 32nd pupil must have been born on one of these dates too.)</td>
<td>In unison</td>
</tr>
<tr>
<td></td>
<td>Reasoning (with T's help), agreement, checking , praising</td>
</tr>
<tr>
<td>Bk2</td>
<td>Lesson Plan 125</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>R: Practice addition, subtraction, multiplication</td>
<td>Notes</td>
</tr>
<tr>
<td>C: Division by 2, 3, . . . , 9</td>
<td>Whole class activity (or working in pairs)</td>
</tr>
<tr>
<td>E: Brackets</td>
<td>Grouping as instructed by T</td>
</tr>
</tbody>
</table>

Activity 1

Logic set

Let’s use our logic set. How many elements are in the set? (40)

- Lay them out on your desk in matching pairs. (e.g. with/without centre point) How many pairs have you made? Write a division about it in your exercise books and check it with a multiplication. *(Heading: Lesson number and date) Review at BB.*
- Make 2 equal groups, one on each side of your desk (e.g. big/small) Write a division about it in your exercise books. Check it with a multiplication. Review at BB.
- Make 4 equal groups (e.g. small black/large black/small white / large white) Ps write equations as above.
- Repeat for groups of 5 (circles/triangles/squares/pentagons/hexagons), (and groups of 8 and 10 if there is time) Ps write equations as above. Agreement, checking, praising

Activity 2

Book 2, page 125

Q.1 Read: *Mrs Hedgehog and Mrs Squirrel always take the same number of strawberries home for their babies. There are 8 baby hedgehogs and 4 baby squirrels. How many strawberries will each baby get? Complete the table.*

P explains what each row of table means using the column already completed. (Middle row is top row divided by 4 (or 2 times bottom row), bottom row is top row divided by 8 (or middle row divided by 2), top row is 4 times middle row (or 8 times bottom row.)

Review at BB with whole class. Mistakes corrected.

Activity 3

Book 2, page 125

Q.2 Read: *Write a division about each picture. Check with a multiplication.*

Deal with one part at a time. Review at BB with whole class.

<table>
<thead>
<tr>
<th>BB: a) 7 ÷ 2 = 4, remainder 1</th>
<th>b) 9 ÷ 4 = 2, remainder 1</th>
<th>c) 13 ÷ 3 = 4, remainder 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 2 + 1 = 7</td>
<td>2 × 4 + 1 = 9</td>
<td>4 × 3 + 1 = 13</td>
</tr>
</tbody>
</table>

Ps think of a problem in context for each part. Class decides whether or not they match the pictures.

Activity 4

Interlude

Song, rhyme

Whole class in unison
Lesson Plan 125

Notes
Individual work, monitored, helped
Discussion at BB (If necessary, use enlarged copy master or demonstrate with Ps at front of class.)
Reasoning, agreement, checking, praising

Activity

Problem 1
Listen carefully, picture the story in your head and think how you would work out the answer.

If 28 apples were shared equally among 4 children, how many apples would each child get?
Write a division about it in your exercise books and check with a multiplication.
Review at BB with whole class. A, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.
BB: 28 apples \(\div 4 = 7 \) apples, Check: 7 apples \(\times 4 = 28 \) apples
Answer: Each child would get 7 apples.

Problem 2
Listen carefully, picture the story in your head and think how you would work out the answer.

Sam has 14 fish in his garden pond. Before he can clean the pond, he has to lift the fish out into a bucket of water.
His little net can hold only 3 fish at a time. What is the least number of times that Sam will have to use his net to lift out the fish?
Write a division about it in your exercise books and check with a multiplication.
Review at BB with whole class. B, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.
BB: Calculation: 14 fish \(\div 3 \) fish = 4 (times), remainder 2 fish
Check: 4 \(\times 3 \) fish + 2 fish = 14 fish
Answer: Sam will have to use his net at least 5 times. (4 times to lift out 3 fish each time and the 5th time to lift out the remaining 2 fish)

Book 2, page 125

Q.3 Read: Colour the amount asked for in each picture.

a) 1 half, b) 1 third, c) 4 sixths
Count how many elements there are in the whole picture. Then think how many equal groups you are dividing them into. Then think how many of these groups you will colour.
Review at BB with whole class. Ps come out to explain reasoning and write equation on BB. Class agrees/disagrees.
What is 1 half of 8 boats (1 third of 12 ice-creams, 4 sixths of 18 mushrooms? (4, 4, 12)
Read: Draw 10 marbles. Colour 2 fifths of them red.
Show me with your fingers how many you coloured red . . . now! (4) What fraction have you not coloured? (3 fifths = 6)

Brackets
T has BB already prepared. Revise order of operations.

BB: a) \(6 \times 7 - 3 = \) b) \((3 + 5) \times 9 = \) c) \(10 + 7 \times 2 = \)
\(6 \times (7 - 3) = \) \(3 + 5 \times 9 = \) \((10 + 7) \times 2 = \)
\(8 \times (2 + 8) = \) \(13 - 4 \times 3 = \) \((20 - 1) \times 2 = \)
\(8 \times 2 + 5 = \) \((13 - 4) \times 3 = \) \(20 - 1 \times 2 = \)
Lesson Plan 126

Activity 1

Logic puzzle
Each number is the product of the 2 numbers directly below it.

BB: 24

(Bold numbers already given)

3 2 2

3 1 2 1

Let's fill in the missing numbers.

Ps come out to BB to write in numbers, explaining reasoning. Class agrees/disagrees.

5 min

Activity 2

Book 2, page 126, Q.1

Read: Fill in the missing numbers and signs. (+, –, ×, ÷)

Ps come out to BB to choose an arrow, fill in the missing number or sign and say the division. Class agrees/disagrees. T writes difficult equations on BB and class suggests how to calculate them, e.g.

a) 42 ÷ 14 = (28 + 14) ÷ 14 = 28 ÷ 14 + 14 ÷ 14 = 2 + 1 = 3
 42 ÷ 3 = (21 + 21) ÷ 3 = 21 ÷ 3 + 21 ÷ 3 = 7 + 7 = 14

b) 36 ÷ 18 = (18 + 18) ÷ 18 = 18 ÷ 18 + 18 ÷ 18 = 1 + 1 = 2
 36 ÷ 12 = (24 + 12) ÷ 12 = 24 ÷ 12 + 12 ÷ 12 = 2 + 1 = 3

12 min

Activity 3

Problem 1

Listen carefully, picture the story in your head and work out the answer in your exercise books. (Heading: Lesson number and date)

George has 63 books and he wants to put an equal number of books on each of the 7 shelves in his bookcase. How many books should George put on each shelf?

Write a division about it in your exercise books and check with a multiplication.

Review at BB with whole class. A, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.

BB: 63 books ÷ 7 = 9 books, Check: 7 × 9 books = 63 books

Answer: George should put 7 books on each shelf.

17 min

Activity 4

Problem 2

Listen carefully, picture the story in your head and show me the answer with a number card when I say.

We are arranging flowers in bunches of 5. How many bunches can we make from 45 flowers?

Show me the answer with number cards . . . now! (9)

B, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.

BB: 45 flowers ÷ 5 flowers = 9 (times),
 Check: 9 × 5 flowers = 45 flowers

Answer: We can make 9 bunches.

22 min

Activity 5

Interlude

Ps have heads on desk and eyes closed and say the multiples of 9 from 0 to 90 and 90 to 0 in their heads.

24 min
Activity

6
Book 2, page 126

Q.2 Read: *Pete has 48 stamps, 8 times more than the number Laura has.*

- a) How many stamps does Laura have?
- b) How many stamps do they have altogether?

Do the calculations and write the answer as sentences.

Review at BB with whole class. Who had both answers correct? Who made a mistake? What kind of mistake? etc.

30 min

7
Fractions

a) T calls 8 Ps to stand in a line facing the class. T whispers to 7 of them to smile and one of them to frown.

What fraction of the whole group is frowning (smiling)? (1 eighth, 7 eighths)

b) T calls out 9 Ps to stand in a line facing the class. T gives, e.g. a soft toy, to 3 of them to hold.

What fraction of the whole group is holding a toy? (e.g. 3 ninths)

Who can think of another fraction? (e.g. 1 third) (BB)

What fraction of the group is not holding a toy? (6 ninths, or 2 thirds)

c) T calls 10 Ps to stand in a line facing the class. T gives each of them a balloon to hold (2 of the balloons should be e.g. red)

What fraction of the balloons are red? (e.g. 2 tenths) Who can think of another fraction? (e.g. 1 fifth) (BB)

What fraction of the balloons are not red? (8 tenths, or 4 fifths)

d) T calls 12 Ps to stand in a line facing the class (6 girls and 6 boys).

What fraction of the whole group are girls? (e.g. 1 half) Who can think of another fraction? (e.g. 6 twelfths, 2 quarters) (BB)

What fraction of the whole group are boys? (1 half, 6 twelfths, etc.)

36 min

8
Book 2, page 126

Q.3 Read: *Practise division. Check with multiplication.*

Review orally round class. Mistakes corrected. If problems, Ps write equations on BB. (Demonstrate where necessary.)

E.g. $0 \div 4 = 0$, remainder 0 Check: $0 \times 4 + 0 = 0$

How many had all correct? Who made a mistake? What kind of mistake? etc.

41 min

9
Brackets

T has BB already prepared. Revise order of operations first.

BB:

\[
\begin{align*}
15 - 3 \times 3 + 2 &= (15 - 9 + 2 = 8) \\
(15 - 3) \times 3 + 2 &= (12 \times 3 + 2 = 38) \\
15 - 3 \times (3 + 2) &= (15 - 3 \times 5 = 0) \\
(15 - 3) \times (3 + 2) &= (12 \times 5 = 60) \\
15 - (3 \times 3 + 2) &= (15 - 11 = 4)
\end{align*}
\]

45 min

Lesson Plan 126

Notes

Individual work, monitored

Reasoning, agreement, checking, self-correcting

BB:

a) $48 \div 8 = 6$

Laura has 6 stamps.

b) $6 + 48 = 54$

They have 54 stamps altogether

Whole class activity to demonstrate fractions (other situations may be used instead)

At a good pace!

BB:

a) $1 = 1$ eighth of 8

b) $3 = 3$ ninths of 9

$= 1$ third of 9

c) $2 = 2$ tenths of 10

$= 1$ fifth of 10

d) $6 = 6$ twelfths of 12

$= 2$ quarters of 12

$= 1$ half of 12

Demonstrate each fraction by dividing up the group

Agreement, checking, praising

Individual work, monitored, helped

Can use enlarged copy master

Some Ps may need \times tables

Discussion, agreement, checking, self-correcting

Praising, encouragement only

Whole class activity (or individually if Ps wish)

Ps come out to BB to write answer and explain reasoning.

Class agrees/disagrees

Praising

Note the effect of the brackets
Lesson Plan

Activity 1

Shopping

T has real items, with prices attached, on table at front of class, or pictures cut from magazines or copy master stuck to BB: e.g.

T calls Ps in pairs to front of class, one to be the shopkeeper, the other to be the customer.

Customer chooses an item and pays with:

a) only 2 p and 1 p coins, but using not more than one 1 p coin.

T (or P) writes equation on the BB. Class agrees/disagrees.

(Use items costing 19 p, 15 p, 14 p, 11 p)

b) only 5 p and 1 p coins, but using not more than four 1 p coins.

T (or P) writes equation on the BB. Class agrees/disagrees.

(Use items costing 19 p, 15 p, 37 p, 38 p)

c) only 10 p and 1 p coins, but using not more than nine 1 p coins.

T (or P) writes equation on the BB. Class agrees/disagrees.

(Use items costing 19 p, 28 p, 37 p, 60 p)

At each part, involve different pairs of Ps choosing different items.

Notes

- Whole class activity (or paired work)
- Use copy master (enlarged and cut out)
- Use real or model money (either in purses or stuck to side of BB) and Ps choose what they need
- Agreement, checking, praising

BB: e.g.

a) \(19 \ p = 9 \times 2 \ p + 1 \times 1 \ p\)

b) \(19 \ p = 3 \times 5 \ p + 4 \times 1 \ p\)

c) \(19 \ p = 1 \times 10 \ p + 9 \times 1 \ p\)

Activity 2

Book 2, page 127

Q.1 Read: *Each number is the product of the 2 numbers directly below it. Fill in the missing numbers.*

Deal with one part at a time. Ps may use their \(\times\) tables.

Review at BB with whole class. Ps come out to fill in each pair of numbers, explaining reasoning. Class agrees/disagrees.

Solution:

<table>
<thead>
<tr>
<th>48</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Activity 3

Book 2, page 127, Q.2

Read: *Join up the equal pairs.*

T could have the pencils cut out and stuck to each side of BB. Ps come out to choose a pair, explain reasoning and write value on BB. Class agrees/disagrees.

BB: \(42 \div 6 + 1 = 1\) third of \(24 = 8\)

3 quarters of \(12 = 2\) thirds of \(15\), minus \(1 = 9\)

26 \(\div 2 - 3 = 1\) quarter of \(40 = 10\)

1 half of \(8 = 35 \div 7 - 1 = 4\)

Who can think of other pencils of equal value?

Activity 4

Interlude

Physical exercises

© CIMT, Plymouth University
Problem 1

Listen carefully, picture the story in your head and think how you would work out the answer.

In Baby Jane's cot there are 12 soft toys and a third as many rattles. How many rattles are there? How many toys are in the cot altogether?

Do the calculations in your exercise books and write the answer as a sentence.

Review at BB with whole class. A, come and tell us how you worked out the answer. Who agrees? Who did it another way? etc.

BB:

<table>
<thead>
<tr>
<th>Soft toys: 12</th>
<th>Rattles: 12</th>
<th>[\div]</th>
<th>3</th>
<th>[=]</th>
<th>4</th>
</tr>
</thead>
</table>

Altogether: 12 + 4 = 16

Answer: There are 4 rattles. There are 16 toys altogether.

Problem 2

Listen carefully, picture the story in your head and think how you would work out the answer.

3 boys share 28 buns equally. How many buns does each boy get?

Z, what do you think we should do? Who agrees? etc.

BB: 3 boys: 28 buns Each boy: 28 ÷ 3 = 9, remainder 1

How can they share the extra bun equally? (1 ÷ 3 = 1 third)

Answer: Each boy gets 9 whole buns and 1 third of a bun.

Notes

Individual work, monitored, helped

T repeats slowly and a P repeats in own words

Ps may use × tables to help them

Discussion at BB

Reasoning, agreement, checking, praising

Demonstrate only if needed

Q.3 Read: Practise division. Check with multiplication.

Deal with one part at a time. Review at BB with whole class.

Mistakes corrected. Write 'difficult' calculations in detail on BB:

e.g. 60 ÷ 5 = 50 ÷ 5 + 10 ÷ 5 = 10 + 2 = 12

66 ÷ 6 = 60 ÷ 6 + 6 ÷ 6 = 10 + 1 = 11, etc.

Q.4 Read: Compare the results. Write the correct sign between them.

Look carefully at the statements. Do we need to work out the LHS and RHS first? (No, because, e.g.

a) LHS = 14 × 6 = (10 + 4) × 6 = 10 × 6 + 4 × 6 = RHS;

LHS = 9 × 14 = 9 × (7 + 7) = 9 × 7 + 9 × 7 = RHS

b) LHS = 32 × 3 = (30 + 2) × 3 = 30 × 3 + 2 × 3 = RHS;

LHS = 17 × 4 = (8 + 9) × 4 = 8 × 4 + 9 × 4 = RHS.

Let's see how quickly you can do these! If you think that the LHS (RHS) is bigger, hold up your left (right) hand, if LHS = RHS, hold up both hands, when I say.

T writes on BB: 16 × 5 10 × 5 + 6 × 5 Show me . . . now! (=)

X, tell us how you got the answer. Who agrees? etc.

Let's see who is clever enough to do this one!

T writes on BB: 19 × 5 20 × 5 1 × 5. Show me . . . now! (<)

Y, tell us how you got the answer. Who agrees? etc.

Q.5 Read: 3 boys share 28 buns equally. How many buns does each boy get?

Z, what do you think we should do? Who agrees? etc.

BB: 3 boys: 28 buns Each boy: 28 ÷ 3 = 9, remainder 1

How can they share the extra bun equally? (1 ÷ 3 = 1 third)

Answer: Each boy gets 9 whole buns and 1 third of a bun.

Q.6 Read: Compare the results. Write the correct sign between them.

Look carefully at the statements. Do we need to work out the LHS and RHS first? (No, because, e.g.

a) LHS = 14 × 6 = (10 + 4) × 6 = 10 × 6 + 4 × 6 = RHS;

LHS = 9 × 14 = 9 × (7 + 7) = 9 × 7 + 9 × 7 = RHS

b) LHS = 32 × 3 = (30 + 2) × 3 = 30 × 3 + 2 × 3 = RHS;

LHS = 17 × 4 = (8 + 9) × 4 = 8 × 4 + 9 × 4 = RHS.

Let's see how quickly you can do these! If you think that the LHS (RHS) is bigger, hold up your left (right) hand, if LHS = RHS, hold up both hands, when I say.

T writes on BB: 16 × 5 10 × 5 + 6 × 5 Show me . . . now! (=)

X, tell us how you got the answer. Who agrees? etc.

Let's see who is clever enough to do this one!

T writes on BB: 19 × 5 20 × 5 1 × 5. Show me . . . now! (<)

Y, tell us how you got the answer. Who agrees? etc.

Q.7 Read: 3 boys share 28 buns equally. How many buns does each boy get?

Z, what do you think we should do? Who agrees? etc.

BB: 3 boys: 28 buns Each boy: 28 ÷ 3 = 9, remainder 1

How can they share the extra bun equally? (1 ÷ 3 = 1 third)

Answer: Each boy gets 9 whole buns and 1 third of a bun.

Notes

Individual work, monitored, helped

T repeats slowly and a P repeats in own words

Ps may use × tables to help them

Discussion at BB

Reasoning, agreement, checking, praising

Demonstrate only if needed

Whole class activity

Written on BB

Ps come to BB to write in missing signs

Discussion, reasoning (with T's help), agreement, checking

Or as above if T thinks Ps still do not understand

In unison

Reasoning, agreement, checking, praising

In unison

Reasoning, agreement, checking, praising

Whole class activity

Ps repeat in own words

Ps suggest what to write

Discussion. Ask several Ps

BB: 1 \[\frac{1}{3} \] 1 \[\frac{1}{3} \] 1 \[\frac{1}{3} \]

Agreement, checking, praising
<table>
<thead>
<tr>
<th>Activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secret numbers</td>
<td>Lesson Plan</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T divides class into 6 teams, calls a P from each team out to front of class and gives each a number written on a card which they hold against their chest so that the rest of the class cannot see. The rest of the Ps in each team ask questions in turn to determine their number. The P at the front can answer only 'yes' or 'no'. T keeps a tally of number of questions asked by each team. e.g. 14: is it less than 50? (Yes) Is it even? (Yes) Does it have 2 digits? (Yes) Is it more than 20? (No) Is it divisible by 4? (No) Is it more than 15? (No) Is it 14? (Yes) The winning team deduces their number with the least questions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Whole class activity</td>
<td>Whole class introduction</td>
<td>Whole class activity (or individual work if Ps wish)</td>
<td>Whole class in unison</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>Notes</td>
<td>Teams should be of roughly equal ability</td>
<td>Use enlarged copy master/OHP Reasoning, agreement, checking, praising</td>
<td>Drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, praising</td>
<td>Whole class in unison</td>
<td>Discussion at BB Agreement, checking, praising</td>
</tr>
<tr>
<td>Notes</td>
<td>Encourage Ps to ask logical questions and keep in mind clues already given</td>
<td>N.B. Other solutions possible</td>
<td>Accept ‘5 leaves each and 2 leaves left over’. Elicit that: 1 quarter of 22 = 5 and a half</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Rest of class applauds the winning team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 128

Activity 6

Book 2, page 128

Q.3 Read: *Practise division. Check with multiplication.*

Deal with one part at a time. Review at BB with whole class. Mistakes corrected. Write 'difficult' calculations in detail on BB:

- e.g. \(99 \div 9 = 10 + 1 = 11 \)

BB:
- a) \(26 \div 8 = 3 \) remainder 2
- \(49 \div 8 = 6 \) remainder 1
- \(72 \div 8 = 9 \)
- \(3 \times 8 + 2 = 26 \)
- \(6 \times 8 + 1 = 49 \)
- \(9 \times 8 = 72 \)
- b) \(39 \div 9 = 4 \) remainder 3
- \(81 \div 9 = 9 \) remainder 0
- \(99 \div 9 = 11 \)
- \(4 \times 9 + 3 = 39 \)
- \(9 \times 9 = 81 \)
- \(11 \times 9 = 99 \)

Notes

Individual work, monitored, helped

Written on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correction

Praising, encouragement only

- **38 min**

Activity 7

Book 2, page 128

Q.4 Read: *In which order will the cars pass the finishing line? Write the position numbers in the boxes. The car with the highest value will be 1st!*

Ps first calculate the value of each car and write at the side. Review with whole class. Calculations which caused problems written in detail on BB, e.g.

- \(44 \div 2 = 20 \div 2 + 20 \div 2 + 4 \div 2 = 10 + 10 + 2 = 22 \)
- \(69 \div 3 = 30 \div 3 + 30 \div 3 + 9 \div 3 = 10 + 10 + 3 = 23 \)

(\(or 69 \div 3 = 6 \text{tens} \div 3 + 9 \text{units} \div 3 = 2 \text{tens} + 3 \text{units} = 23 \))

Then Ps write the position numbers (1st, 2nd, 3rd, etc.) in the boxes on the cars. Colour the winning car red.

Who can think of another way to describe the value of the red car? (e.g. \(23 = 100 - 77 = 4 \times 5 + 3 = 30 \div 3 + 13, \text{etc.}\))

Read: *Write the values in decreasing order.*

Ps write out values in decreasing order to check their position numbers. Let's read them out together. Mistakes corrected.

- **45 min**

Notes

Individual work, monitored, helped

Use enlarged copy master or OHP

Discussion, agreement, checking, praising

Involve several Ps. Encourage creativity. Praising

BB:

- \(23 > 22 > 12 > 11 > 7 > 4 > 3 > 0 \)

In unison
Activity

1 Numbers beyond 100

T has BB already prepared. Who can count the sweets?

BB:

![Diagram of sweets]

Ps come out to BB to count. (e.g. in 10s, 20's or 40s, Let's write it as an addition on the BB:

\[40 + 40 + 40 + 10 = 80 + 40 + 10 = 100 + 20 + 10 = 100 + 30 = \ldots \]

Who knows how to write 130? Who agrees? etc.

How can we write it in words? (Ps come to BB to try)

BB: 130 = one hundred and thirty

T calls Ps out to write other 3-digit numbers in numbers and in words:

110, 120, (111, 112, 126)

e.g. BB:

110 = one hundred and ten

126 = one hundred and twenty six

Ps write as numbers and words in their books too

6 min

2 Book 2, page 129, Q.1

What can you tell me about these diagrams?

(Two squares, each with 10 rows of 10 columns; 1st square shows numbers 1 to 100, 2nd square shows numbers 101 to 200; some numbers are missing.)

Read: Write these numbers in the correct places in the two tables.

T says number, Ps come out in relay to write numbers in squares.

Class agrees/disagrees. Ps write numbers in Pbs too.

Read: a) How many 10s are in 100? (10 rows of 10: 10 \times 10 = 100)

b) How many 100’s are in 200? (2 \times 100 = 200)

How many 10s are in 200? (20 rows of 10: 2 \times 10 = 20)

- T says a 3-digit number and Ps come out to point to it on number square or to where they think it is on the 100s number line.

- T could model some 3-digit numbers using toy money.

(e.g. 100 p = £1, 150 p = £1 and 50 p, 200 p = £2, etc.)

18 min

3 Counting beyond 100

- Let’s count together from 93 to 104 (117 to 126; 278 to 283) etc.

Who can show us where they are on the number line?

- Let's count in 100s from 0 to 1000. T points to 100s on number line.

(If problems, Ps could have blank strips on desks to write on the numbers.)

23 min

4 Interlude

Song or rhyme

25 min
Activity 5

Book 2, page 129

Q.2 Read: *Join up the amounts in the middle to the matching numbers.*

Let’s read all the hundreds in increasing (decreasing) order.

What do you notice about the 2 columns? (They are of equal value but on LHS numbers are written in words and on RHS numbers are shown as a multiplication of 100.)

Ps first calculate the total value of each shape in the middle and write it above shape. Then they join the shapes to the labels.

Review at BB with whole class. Mistakes corrected.

30 min

Activity 6

Number line

Join up each amount to the corresponding point on the number line.

BB:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

Talk about the number line segments first. Elicit that each represents a different part of the number line (0 to 10, 0 to 100, 0 to 1000).

Ps come out to choose an amount, say and write its total value and join up to the number line. Class agrees/disagrees.

Compare the 3 parts. Show that a) is an enlarged part of b) and that a) and b) are enlarged segments of the number line in c).

Elicit that:

- c) is 10 times b) and 100 times a);
- b) is 10 times a) and 1 tenth of c);
- a) is 1 tenth of b) and 1 hundredth of c).

35 min

Extension

Book 2, page 129

Q.3 Read: *Colour in the number you think is the odd one out. Why did you choose it?*

Review orally with whole class. Deal with all cases. Class decides whether reasons are valid, e.g.

- a) 137 (only 3-digit number)
- b) 210 (only number >100)

40 min

Activity 8

Reading numbers

- T writes 3-digit numbers (e.g. 310) on BB and Ps read them out.
- T says a 3-digit number and Ps come out to write on BB in digits. Point to the hundreds (tens, units) digit. Class agrees/disagrees.

45 min

Notes

Individual work, monitored, helped

Use enlarged copy master or OHP

BB: $4 \times 50 = 200$

$4 \times 100 = 400$

$3 \times 200 = 600$

$2 \times 500 = 1000$

Discussion, agreement, checking, praising

Whole class activity

Use enlarged copy master or OHP

Ps might notice the connection between each part without help

Discussion, agreement

Reasoning, agreement, checking, praising

Discussion

Extra praise if Ps deduce this without help

Individual work, monitored

Discussion, reasoning, agreement, checking

Accept any other valid reason

Praising

Whole class activity

(or Ps write in *Ex. Bks*)

At a good pace

Praising, encouragement only

© CIMT, Plymouth University
Lesson Plan 130

Bk2

Activity 1

Book 2, page 130, Q.1

Read: *Write in the missing numbers.*

Deal with one part at a time. Ps come out to fill in the numbers.

Let's continue the numbers forwards (backwards).

5 min

Activity 2

Number line 1

T has BB already prepared. Which numbers are shown by the dots?

BB:

- \(<200<\)
- \(<350<\)
- \(<450<\)
- \(<750<\)
- \(<850<\)
- \(<950<\)

Ps come out to point to a dot on the number line and write the relevant number below it. (350, 200, 450, 850, 750, 950) Then they point to and fill in the next nearest hundreds in the inequality and read it aloud.

Who agrees? Who thinks something else? etc.

- What is special about the number 1000? (smallest 4-digit number)
- Which is the biggest (smallest) 3-digit number? (999, 100)

12 min

Activity 3

Book 2, page 130

Q.2 Read: *At which numbers have we written the letters? Write them in the boxes.*

Deal with one part at a time. T tells Ps to note the beginning and end number on each number line and then to try out possible numbers by counting along the line, pointing to each tick before writing in the missing numbers.

Review at BB with whole class. Mistakes corrected.

Discuss the relationship between parts a), b) and c). Use the words '10 times', '100 times', '1 tenth', '1 hundredth')

18 min

Activity 4

Interlude

Exercises or action song

20 min

Activity 5

Number line 2

BB:

Let's read out the numbers marked on the number line. 'zero, forty, one hundred, one hundred and fifty, . . . , six hundred and twenty'

Which numbers are missing from the large 'ticks'? Ps come out to write them on the number line. (200, 600)

What does every small (medium, large) 'tick' show? (10s, 50s, 100s)

25 min
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Books</td>
<td>Individual work under T's instruction but class kept together</td>
</tr>
<tr>
<td>Let's draw a number line in 100s from 0 to 1000 in your Ex. Bks. (Heading: Lesson number and date)</td>
<td>Monitored, helped</td>
</tr>
<tr>
<td>What should we do first? How long should we make the line so that it fits in your Ex. Bks? (e.g. 10 cm) How far away from each other should we put the hundreds? (e.g. 1 cm) how should we label the ticks? (0, 100, 200, . . ., 1000)</td>
<td>Ps suggest what to do, with hints from T if necessary</td>
</tr>
<tr>
<td>T demonstrates each step on the BB using a BB ruler (or plastic ruler and an OHP). Ps copy T, drawing and measuring using own rulers.</td>
<td>Encourage care and accuracy</td>
</tr>
<tr>
<td>Step 1 Draw a horizontal line 10 cm long.</td>
<td>Make sure that the 'ticks' are the same distance apart</td>
</tr>
<tr>
<td>Step 2 Draw a short vertical line (tick) at LHS of line and label '0'.</td>
<td>Ps can extend horizontal lines if drawn too short at first</td>
</tr>
<tr>
<td>Step 3 Lay your ruler along the number line so that the zeros match up and mark every cm so that there are 10 marks.</td>
<td>Praising, encouragement only</td>
</tr>
<tr>
<td>Step 4 Draw short vertical lines (ticks) at each dot and label from 100 to 1000. Draw an arrowhead at RHS of number line.</td>
<td></td>
</tr>
<tr>
<td>BB:</td>
<td></td>
</tr>
<tr>
<td>Mark these numbers with a large dot on your number line: 200, 900, 100, 600, 500</td>
<td>Individual work, monitored</td>
</tr>
<tr>
<td>Write them in increasing order. (100 < 200 < 500 < 600 < 900)</td>
<td>T reads and also writes on BB</td>
</tr>
<tr>
<td>Ps recite in unison. Praising</td>
<td>Ps recite in unison. Praising</td>
</tr>
<tr>
<td>Book 2, page 130</td>
<td></td>
</tr>
<tr>
<td>Q.3 Read: Write additions about the pictures.</td>
<td></td>
</tr>
<tr>
<td>Deal with one part at a time. Review at BB with whole class.</td>
<td></td>
</tr>
<tr>
<td>What do you notice about the answers? (e.g. The amounts in the middle pictures are 10 times more than the amounts on the LHS and 1 tenths of the amount on the RHS, etc).</td>
<td></td>
</tr>
<tr>
<td>• If you had 100 p, what single coin would you have? (£1)</td>
<td></td>
</tr>
<tr>
<td>• If you had £10 in 1 p coins, how many coins would you have? (1000)</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
</tr>
<tr>
<td>Addition</td>
<td></td>
</tr>
<tr>
<td>Let's calculate these sums. T writes on BB and class say them in unison, or T says them and Ps write on BB.</td>
<td></td>
</tr>
<tr>
<td>BB: 100 + 100 = 200 100 + 200 = 300 200 + 300 = 500 100 + 40 = 140 520 + 80 = 600 930 + 70 = 1000</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Ps come out to show each answer on number square or number line.</td>
<td>T writes in answers as dictated by Ps</td>
</tr>
<tr>
<td>Ps copy into Ex. Bks too</td>
<td></td>
</tr>
<tr>
<td>Book 2, page 130</td>
<td></td>
</tr>
<tr>
<td>Q.4 Read: Join up the numbers to the number line.</td>
<td></td>
</tr>
<tr>
<td>Review at BB with whole class. Mistakes corrected. At each number T asks, 'How many is it from100 (to 200)? Who can show us where the number 105 (195) would be on the number line? Ps come out to point. Class agrees/disagrees.</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored, helped</td>
<td></td>
</tr>
<tr>
<td>Drawn on BB or use enlarged copy master or OHP</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking praising</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© CIMT, Plymouth University
Lesson Plan 131

R: Mental calculation
C: Extending the number line. Counting beyond 100
E: Addition and subtraction with hundreds and tens

Activity 1

Jumping along the number line.

T has BB already prepared.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
</tr>
</tbody>
</table>

- a) Study this number line. Think what size the jumps are. Who can come and draw more jumps of equal value? Ps come out to BB to draw jumps and write and say the number landed on.
- What value is each jump? (50) How many jumps did we need? (6)
- Repeat in similar way for b) and c).

Writing numbers

Write these numbers with digits in your exercise books. *(Heading: Lesson number and date)* T writes on BB and says, e.g.

- a) Two hundred and seventy Ps write: (270)
- b) Three hundred and forty (340)
- c) Five hundred and ten (510)
- d) Nine hundred and ninety (990)

Review at BB with whole class. Ps show each on number square and/or number line. Let's say say them in increasing order.

Book 2, page 131

Q.1 Read: *Write subtractions about the pictures.*

- Deal with one part at a time. Review at BB with whole class.
- What do you notice about the answers? (e.g. The amounts in the middle pictures are 10 times more than the amounts on the LHS and 1 tenth of the amount on the RHS, etc.)
 - If you had £4, how many 1 p (10 p) would you have? (400, 40)
 - If you had 600 1 p coins, how many £s is that? (£6)

Interlude

Hands on heads on desks, counting in 100s to 1000 and back to zero.

Oral work

Tell me the next nearest numbers to: 151, (347, 715, 102, etc.)

Repeat for next nearest tens (hundreds). Use the number line if needed.

Notes

- Whole class activity
- Drawn on BB or use enlarged copy master or OHP
- Class points out errors
- With T's help
- Class agrees/disagrees
- Agreement, checking, praising
- Individual work, monitored, helped
- Discussion at BB
- Agreement, checking praising
- Individual work, monitored (helped with the hundreds)
- Drawn on BB or use enlarged copy master or OHP
- Agreement, checking, praising
- Whole class counting mentally
- Whole class activity
- T chooses Ps at random
- BB: 150 < 151 < 152, etc.
- Praising only
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan 131</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Notes</td>
</tr>
<tr>
<td>Book 2, page 131</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>Q.2 Read: Join the picture to the corresponding point on the number line. Write the numbers below the line.</td>
<td></td>
</tr>
<tr>
<td>T tells Ps to write the values below the rectangles first of all. Review quickly with whole class. Mistakes corrected. Elicit that the ticks mark every 10 from 100 to 200. Ps join up pictures to number line and write in numbers. Review a BB with whole class.</td>
<td></td>
</tr>
<tr>
<td>Who could tell me an addition for each picture? (e.g. 100 + 20 = 120, 100 + 60 = 160, etc.)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Notes</td>
</tr>
<tr>
<td>Book 2, page 131, Q.3</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Read: Fill in the missing numbers. Use the number line to help you.</td>
<td></td>
</tr>
<tr>
<td>Which equation do these jumps show? (270 + 70 = 340)</td>
<td></td>
</tr>
<tr>
<td>A, come and explain the 1st column to us. Who agrees? Who thinks something else? (First jump 30 to next nearest hundred, 300, then jump another 40 to 340.)</td>
<td></td>
</tr>
<tr>
<td>Ps come out in pairs to point to numbers, draw the jumps and write numbers on number line and in equations. Class agrees/disagrees.</td>
<td></td>
</tr>
<tr>
<td>How many would I have to jump to get from from 90 to 120? (10 + 20 = 30)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Notes</td>
</tr>
<tr>
<td>Book 2, page 131</td>
<td>Individual work, monitored</td>
</tr>
</tbody>
</table>
| Q.4 Read: *Write these numbers using digits.*
 a) one hundred and forty; four hundred
 b) two hundred and ten; five hundred |
| Review at BB with whole class. Mistakes corrected. How far is from 140 to 210? How could we calculate it? Who could come and show us on the BB? Who agrees? Who thinks something else? |
| Repeat for 140 to 400 (210 to 500) if Ps understand. (BB: 140 + 60 + 200 = 400, 210 + 90 + 200 = 500) |
| **Extension** | Agreement, self-correction |
| **Notes** | Whole class discussion |
| Ps suggest what to do |
| BB: 140 + 60 + 10 = 210 |
| or 140 + 70 = 210, etc. |
| Praising only |
Lesson Plan 132

Activity 1

Secret numbers

Which number am I thinking of?

a) Its next nearest hundreds are 200 and 300. It is 10 more than the smaller of these. What is my number? Show me . . . now! (210)

b) Its next nearest tens are 360 and 370. It is 2 less than the bigger of these. What is my number? Show me . . . now! (368)

c) Its next nearest hundreds are 100 and 200. It is bigger than 198. What is my number? Show me . . . now! (199)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 min</td>
<td>Odd one out</td>
</tr>
</tbody>
</table>

T has BB already prepared.

BB:

- 100 + 50
- 70 + 80
- 60 + 90
- 110 + 40
- 80 + 80

(e.g. 80 + 80 = 160, but all the others sum to 150)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Book 2, page 132, Q.1</td>
</tr>
</tbody>
</table>

Read: *Fill in the missing numbers.*

What can you tell me about this number line? (100 to 400, large ticks mark the hundreds, small ticks mark the tens)

Ps come out to BB to choose an addition, write number below number line and complete the addition. Ps say the whole equation, e.g. 100 + 10 = 110, 130 + 80 = 210, etc.) Class agrees/disagrees.

T writes additions in detail on BB, e.g. 130 + 70 + 10 = 130 + 80 = 210

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 min</td>
<td>Interlude</td>
</tr>
</tbody>
</table>

Physical exercises (to music)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 min</td>
<td>Inequality</td>
</tr>
</tbody>
</table>

Let's solve this inequality. BB: 100 + 250 < < 370 – 10

What should we do first? (Calculate values of RHS and LHS)

Ps come out to write in values. Class agrees/disagrees.

What numbers could the rectangle be? T asks several Ps

BB:

: 351, 352, 353, 354, 355, 356, 357, 358, 359

T writes what Ps dictate

Show on number line if possible

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 min</td>
<td>Ordering 3-digit numbers</td>
</tr>
</tbody>
</table>

T has 3-digit numbers written (or stuck) on BB:

- 340
- 260
- 758
- 521
- 819
- 695

Let's put these numbers in increasing order. Pupils come out to write (arrange) one number at a time. Ps write them in your exercise books too.

(Elicit that Ps should look at hundreds digit first, then tens digit, then units digit to decide which number is smallest/biggest.)

© CIMT, Plymouth University
Activity 7

Lesson Plan 132

Book 2, page 132

Q.2 Read: *Colour the items we can pay for exactly with only 10 p coins.*

- Talk about each picture in turn. Which do you like best (least)?
- Where (when) would you buy them?

T explains task. How many 10 p coins are equal to £1? (10)

Review at BB with whole class. Model with coins if problems.

Lesson Plan 132

Notes

Whole class discussion first, then individual work, monitored, helped

Use enlarged copy master/OHP

Discussion, agreement, checking, praising

Activity 8

Lesson Plan 132

Book 2, page 132

Q.3 Read: *Practice addition and subtraction.*

- Let’s see how many of these you can do in 5 minutes!
- Review orally round class. Mistakes corrected.

(Or done orally as whole class activity, with T writing what Ps dictate on BB)

Lesson Plan 132

Notes

Individual work, monitored, helped

Agreement, self-correcting

Do not expect too much!

Praising, encouragement only
Activity

<table>
<thead>
<tr>
<th>Bk2</th>
<th>Lesson Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>R: Mental calculation</td>
<td>Notes</td>
</tr>
<tr>
<td>C: Hundreds, tens and units (using money)</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>E: Writing 3-digit numbers</td>
<td>Involve several Ps in the discussion</td>
</tr>
</tbody>
</table>

1 Money

What is our money like? What coins (notes) do we have?

- T discusses with class, using real coins and bank notes if possible, or toy money. Ps could have set of toy money on desks if possible.
- Elicit that standards units used are pounds (£) and pence (p)

BB: £1 = 100 p, £1 = 10 ten pence coins

\[
10 \times 10 \text{p} = 100 \text{p} = £1
\]

- Coins: 1 p, 2 p, 5 p, 10 p, 20 p, 50 p, £1, £2
- Notes: £5, £10, £20, £50, £100

- T (or P) says an amount and Ps come out to choose correct coins.
- T (or P) hold up some coins and Ps say the amount.

6 min

2 Book 2, page 133, Q.1

Read: Complete the table.

- T explains what each column in table means. Ps come out to fill in missing items and explain reasoning, one row at a time. Class agrees/disagrees. Ps may write in Pbs too.

(Numbers in 4th column are: 26, 126, 226, 326, 526).

- Which row is missing? (426, but also 626, ...)
- What would we write and draw if we made a row for 426 (626, ...)?

14 min

3 Operations

- T has BB already prepared. What has changed? How has it changed?

BB:

\[
a) \quad £1 = 100 \text{p}, \\
\quad 100 \text{p} - 60 \text{p} = 40 \text{p}
\]

\[
b) \quad 60 \text{p} + 50 \text{p} = 110 \text{p} = £1 \text{and } 10 \text{p}
\]

Deal with one part at a time. Ps come out to BB to write equations, explaining reasoning. Class agrees/disagrees. Demonstrate with real or model money if there are prolems.

20 min

4 Interlude

- **Song or rhyme**

22 min

5 Paying amounts

- **In how many different ways could we pay these amounts?**

 a) A, how could you pay £1? (e.g. a £1 coin) How else could we pay £1?

 BB: e.g. £1 = \(2 \times 50 \text{p} = 5 \times 20 \text{p} = 10 \times 10 \text{p} = 20 \times 5 \text{p} = 50 \times 2 \text{p} = 50 \text{p} + 20 \text{p} + 20 \text{p} + 10 \text{p}, \text{etc.} \)

 b) B, how could you pay 80 p? (e.g. \(4 \times 20 \text{p} \)) How else could we pay 80 p?

 BB: e.g. 80 p = \(4 \times 20 \text{p} = 8 \times 10 \text{p} = 10 \times 5 \text{p} + 3 \times 10 \text{p} = 50 \text{p} + 20 \text{p} + 10 \text{p}, \text{etc.} \)

28 min

© CIMT, Plymouth University
Activity 6

Book 2, page 133

Q.2 Read: *Show different ways we could pay these amounts. Complete the table.*

T (or P) explains table using the first 2 rows already completed. (e.g. 1st column on LHS shows amount to be paid; 1st row shows one way of paying £2 and 2nd row shows a different way; a dash means that none of this amount was used.)

Review at BB with whole class. T (or Ps) write equations on BB as a check. Deal with all cases. Demonstrate if necessary with model money.

Possible solution:

<table>
<thead>
<tr>
<th></th>
<th>£20</th>
<th>£10</th>
<th>£5</th>
<th>£2</th>
<th>£1</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ps can write extra ways of paying the amounts in their exercise books. Which way uses least (most) coins?

Extension

Book 2, page 133, Q.3

Read: *Which of these could you buy? Draw pictures and write additions.*

T has sets of cut-out items with prices attached stuck to BB and purses containing coins totalling each of the 4 amounts shown in Pbs. T talks about each item first. When would you eat them? Which is good for you? Which is your favourite? Why?

X, come and choose a purse. X counts the money in his purse, chooses the items he can buy and sticks in unlabelled box drawn on BB. How much money has X in his purse? (e.g. £1 20 p) T labels box.

What else could X have bought with his money? Who agrees? Who can think of other items X could have bought? etc.

Repeat with 3 other Ps choosing from the 3 remaining purses. T (or Ps) writes equations on BB as a check.

Ps can choose own way and draw/write in their books too.

Extension

Book 2, page 133, Q.4

Read: *Which numbers does this part of the number line show? (100 to 800)*

BB:

Which numbers does this part of the number line show? (100 to 800)

<table>
<thead>
<tr>
<th></th>
<th>£20</th>
<th>£10</th>
<th>£5</th>
<th>£2</th>
<th>£1</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>£23</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ps come out to choose a 'cloud' and join it to the corresponding point on the number line, saying the whole equation. Class agrees/ disagrees.

Notes

Whole class explanation followed by individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP (or coins stuck to BB)

Reasoning, agreement, checking, praising

BB: e.g.

£2 = 200 p = 20 \times 10 p, or

£2 = 200 p = 4 \times 50 p

etc.

£23 = 1 \times £20 + 3 \times £1, or

£23 = £10 + 6 \times 50 p

etc.

The more solutions found, the more praise given.
Whole class discussion

Extension

Whole class activity

Use items from copy master enlarged, coloured, cut out and stuck to BB (or use whole copy master and Ps draw items in boxes)

At a good pace

Ask several Ps what they think BB: e.g.

70 p + 20 p = 90 p

£1 + 50 = £1 50 p

70 p + 70 p + 70 p = £2 10 p

70 p + 50 p = £1 20 p

Reasoning, agreement, checking, praising

Ps writes result above the operation first

Class can think of other operations with the same result

© CIMT, Plymouth University
Lesson Plan 134

R: Mental calculation

C: Hundreds, tens and units

E: Writing 3-digit numbers

Activity

1 Revision of mass

T has a pair of scales and one or two items to weigh. (Try to choose objects weighing between 600 g and 800 g, previously weighed by T)

What does this tool measure? (mass or weight) What standard units does it use? (g, kg) How many g are in one kg? (1000) (BB)

Ps come out to choose an item, weigh on scales, read the value and write on BB. Which item is heaviest (lightest)?

5 min

2 Function machine

T has BB already prepared. Who can tell us what the machine is doing? (Ask several Ps what they think.)

BB:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>205</td>
<td>3 hundreds</td>
<td>1 hundred</td>
</tr>
<tr>
<td>658</td>
<td>-</td>
<td>362</td>
</tr>
</tbody>
</table>

Ps explain what is happening using the column already completed. (e.g. the rectangle is the sum of the black and white circles.)

Let’s complete the table. Ps come out to choose a column and fill in the missing numbers or words. Class agrees/disagrees.

Who can write the rule in a mathematical way? Who can write it another way? etc. Let’s check with values from the table.

12 min

3 Book 2, page 134

Q.1 Read: Complete the table.

T (or P) explains meaning of table. Do first row with the whole class first, writing a ‘dash’ in the hundreds column to show that there are no hundreds. Ps fill in the other rows in their books.

Review at BB with whole class. Mistakes corrected.

Elicit that a ‘dash’ meaning there are no tens or units is shown in the number by zero, e.g. 304 = 3 hundreds + 0 tens + 4 units, 350 = 3 hundreds + 5 tens + 0 units

Read: Write the total at the bottom of each column.

Do each column together, drawing coins and writing numbers in digits or in words, T on the BB and Ps in Pbs.

T points to one of the numbers (digits or words) and class reads it together. (T points to relevant coins as they are read.)

BB:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Number in digits</th>
<th>Number in words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>twenty-one</td>
</tr>
<tr>
<td>304</td>
<td></td>
<td></td>
<td>three hundred and four</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>one hundred and thirteen</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td>three hundred and fifty</td>
<td></td>
</tr>
<tr>
<td>788</td>
<td></td>
<td></td>
<td>seven hundred and eighty eight</td>
<td></td>
</tr>
</tbody>
</table>

20 min

Notes

Whole class activity
At a good pace
Discussion, agreement
P comes out to read the scale
BB: 1 kg = 1000 g (10 hundred)
Discussion, agreement, praising

Whole class activity

Reasoning, agreement, checking, praising

BB: Rule:

\[
\begin{align*}
\bullet + \bigcirc &= \blacksquare \\
\blacksquare - \bigcirc &= \bullet \\
\blacksquare - \bullet &= \bigcirc
\end{align*}
\]

Whole class activity

Drawn on BB or use enlarged copy master or OHP (or real box with relevant shape cards)

At a good pace

Whole class introduction followed by individual work, monitored, helped

Drawn (or coins stuck) on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correcting, praising

Whole class activity, with Ps dictating what to write/draw

In unison. At a good pace
With T's help. Praising

[Preparation for vertical addition and place value.

T can write numbers again as below and Ps can point to the hundreds (tens, units) digits]

BB: 2 1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 0 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 3</td>
<td></td>
</tr>
<tr>
<td>3 5 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 8 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© CIMT, Plymouth University
Lesson Plan 134

Whole class in unison

Book 2, page 134
Q.2 Read: Colour as many 100s, 10s and 1s as the number at the bottom shows.

T explains task. Do part a) with the whole class first.

a) Let's all read the number at the bottom of the column: 'three hundred and twenty five'.

A, come and point to the hundreds column. How many hundreds should we colour in? (3) Who agrees? A colours in 3 of the hundreds on BB and Ps colour in their books

B, come and point to the tens column. How many tens should we colour in? (2) Who agrees? B colours in 2 of the tens on the BB and Ps colour in their books.

C, come and point to the units column. How many units should we colour in? (5) Who agrees? C colours in 5 of the units on the BB and Ps colour in their books.

Parts b) to d) done as individual work. Deal with one part at a time. Review at BB with whole class. Mistakes corrected.

Let's read out the numbers in increasing (decreasing) order.
(Elicit that Ps should look at the hundreds first, then the tens, then the units to decide which number is bigger/smaller.)

Individual work, monitored, helped. Self-correction

In unison, at a good pace
BB: 186 < 207 < 325 < 940

Book 2, page 134
Q.3 Read: Find the rule. Complete the table. Write the rule in different ways.

T (or P) explains what each row of table means using the columns already completed. (Top row + middle row = bottom row; bottom row – middle row = top row, etc.)

Ps complete table in books. Review at BB with whole class. Mistakes corrected. Which number is biggest (smallest)?

BB: 245 + 200 = 445

Individual work, monitored, helped

Table drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, checking, praising

Rule: \[\bullet = \star + \star \]
\[\star = \star - \star \]

Check: 245 + 200 = 445

Oral work
Revise standard units of measure: length, money, capacity.
• How many cm are in 4 m 26 cm (3 m 17 cm)? (426 cm, 317 cm)
• How many pence are in £1 40 p (£1 45 p)? (140 p, 145 p)
• How many centilitres are in 2 litres 81 cl (4 litres 40 cl)? (281 cl, 440 cl)

How many g are there in 1 kg? (1000 g = 100 hundred g)
• How many kg in 2000 g (5000 g)? (2 kg, 5 kg)

Whole class activity
BB: 1 m = 100 cm
1 litre = 100 cl
At speed round class.
T reverses questions too, e.g.
How many m in 500 cm? (5)
BB: 1 kg = 1000 g
Activity 1

Chain calculation

Listen carefully, do each calculation in your heads and show me the final answer when I say. (Ps nod heads after step to show they have done it.) Ps can write the final answer (in large digits) on sheets of scrap paper. Ps can have ‘100s’ number line on desks to help them.

- T: ‘120 + 10’ . . . ‘− 20’ . . . ‘+ 100’ . . . ‘+ 30’
- Write the answer on your sheet and show me . . . now! (240)
- A, explain to us how you got your answer. Who agrees? Who thinks something else?
- Repeat using other numbers and operations.

Activity 2

Number line

Let’s fill in the missing numbers according to their position on the number line.

```
<table>
<thead>
<tr>
<th>200</th>
<th>570</th>
<th>690</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350</td>
<td>710</td>
</tr>
</tbody>
</table>
```

- B, come and choose a truck. Which number is it joined up to on the number line? (e.g. 180) What do you think the missing number is? (20) Why do you think that? (Because 200 − 20 = 180) Who agrees? Who thinks something else? etc.
- Repeat with other Ps until all missing numbers are filled in.

Activity 3

Book 2, page 135

Q. 1 Read: Write the total amount below each column.

- T leads Ps through part a) first:
 - How many 100s are there? (5) Write 5 in the box below the hundreds. (T writes on BB) How many 10s are there? (2) Write ‘2’ in the box below the tens. (T writes on BB) How many 1s are there? (3) Write ‘3’ in the box below the 1s (units).
 - (T writes on BB) What 3-digit number have we written? (523)
 - Ps do parts b) to d) in their books. Review at BB with whole class. Ps read their numbers and explain their reasoning. Mistakes corrected. Discuss importance of writing ‘0’ when no tens (units).
 - **Solution:** a) 523, b) 245, c) 402, 540)
Lesson Plan 135

Activity

4 Paying amounts

T has one 10 p, one 20 p, three 50 p and two £1 coins stuck to BB.

We have these coins in our purse. Which of these amounts could we pay exactly (i.e. with no change needed)? How could we do it?

BB: 60 p YES 50 p + 10 p = 60 p
90 p NO

£1 30 p YES e.g. £1 + 20 p + 10 p
£2 30 p YES e.g. £1 + £1 + 20 p + 10 p = £2 30 p
£4 NO, because total amount of all the coins is
£1 + £1 + 50 p + 50 p + 50 p + 20 p + 10 p = £3 80 p
£3 80 p < £4

T points to each and class shouts ‘Yes’ or ‘No’. Ps come out to confirm whether answers are correct by choosing the relevant coins. Who can think of another way we could pay it? Who agrees? etc.

- How could we pay 90 p if we were allowed to receive change?
- How much more money would we need to pay £4? (20 p)

5 Interlude

Song, rhyme, exercises

25 min

Notes

Whole class activity

BB: 10 p 20 p
90 p 90 p 50 p £1 £1

Or T has a purse containing real coins and Ps choose coins from it.

Agreement, reasoning, checking, praising

e.g. pay £1, and get 10 p change
£3 80 p + 20 p = £3 + £1 = £4

3 Interlude

Song, rhyme, exercises

27 min

Notes

Whole class in unison

Individual work, monitored, helped

Use enlarged copy master/OHP

Agreement, checking, praising

2 Book, page 135

Q.2 Read: Join up the equal amounts.

Ps read numbers in relay round class first. Ps join up in their books too.

Review at BB with whole class. Mistakes corrected.

32 min

Notes

Whole class discussion

Draw on BB or use enlarged copy master or OHP

In unison

BB: clockwise
anticlockwise

Discussion, checking, agreement, praising

3 Book, page 135

Q.3 Read: Join up the equal amounts.

What is this creature? (octopus) Where do you find it? (in the sea) How many legs does it have? (8) (relate to octagon)

Let’s all say the numbers on the octopus’s legs, starting at 100 and reading clockwise (anti-clockwise). (BB)

Ps write values beside rectangles and join up to octopus in their books.

Review at BB with whole class. Deal with all mistakes.

If problems, write equation on BB or show on number line (square).

38 min

Notes

Whole class discussion

Draw on BB or use enlarged copy master or OHP

In unison

BB: clockwise
anticlockwise

Discussion, checking, agreement, praising

4 Book, page 135

Q.4 Read: Complete the table. The rule is: the square minus the triangle equals the circle.

What do you notice about the table? (Values shown are quantities of measure: money, mass, capacity) Revise standard units used.

Ps come out to show which are which. Ps complete table in Pbs.

Review at BB with whole class. Mistakes corrected.

Who can write the rule in another way? Who agrees?

Is there another way? Check with values from the table.

45 min

Notes

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, checking, praising

Whole class discussion

Rule: \(\bigtriangleup - \square = \bigtriangleup \)
\(\square = \bigtriangleup + \bigtriangleup \)
<table>
<thead>
<tr>
<th>Activity</th>
<th>Bk2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secret money</td>
<td>Lesson Plan 136</td>
</tr>
<tr>
<td>I have an amount of money in this purse (T holds up). How much is in the purse? I will give you a clue to work it out. Write the amount on a sheet of paper and show it to me when I say.</td>
<td>Notes</td>
</tr>
<tr>
<td>• In the purse there are: one £10 note, two £1 coins and three 10 p coins. Show me the amount ... now! (£12 30 p)</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>A, explain to us how you worked it out. Let's check. A takes out the £10 note and coins and sticks them on the BB as a check.</td>
<td>T has purse already prepared with model (or real) £10 note and coins</td>
</tr>
<tr>
<td>• I had this note and these coins (£12 30 p) in my purse and I bought some things in a shop. I now have only one of these left. What amount could I have paid to the shop assistant?</td>
<td>Class show answer in unison</td>
</tr>
<tr>
<td>Elicit that:</td>
<td>Ps dictate solutions</td>
</tr>
<tr>
<td>If £10 note remains, amount paid was £2 + 30 p = £2 30 p</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>If £1 coin remains, amount paid was £10 + £1 + 30 p = £11 30 p</td>
<td>Ask several Ps what they think</td>
</tr>
<tr>
<td>If 10 p coin remains, amount paid was £10 + £2 + 20 p = £12 20 p</td>
<td>Demonstrate each case in logical order on BB</td>
</tr>
<tr>
<td>Book 2, page 136</td>
<td>Praising</td>
</tr>
<tr>
<td>Q.1 Read: Bob has only £5 notes in his wallet. He is thinking of buying one of these. Buying which item would give him: a) most change back, b) least change back?</td>
<td>Individual or paired work, monitored, helped</td>
</tr>
<tr>
<td>Talk about each picture first. T writes names above each (or can use letters A, B, C, D, E) to make it easier for Ps to specify in their books.</td>
<td>Ps could have toy money on desks to help them</td>
</tr>
<tr>
<td>For each item, think about how many £5 notes you would give the shop assistant and how much change you would receive.</td>
<td>Discussion about how to solve the problem</td>
</tr>
<tr>
<td>Deal with one part at a time. Review at BB with whole class. Ask several Ps what they think.</td>
<td>T gives hints if necessary</td>
</tr>
<tr>
<td>BB:</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
</tbody>
</table>
| $\begin{array}{|c|c|}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball</td>
<td>Bag</td>
</tr>
<tr>
<td>£5 – £4 = £1</td>
<td>£10 – £7 20 p = £2 80 p</td>
</tr>
<tr>
<td>Badminton set</td>
<td>Slippers</td>
</tr>
<tr>
<td>£20 – £15 90 p = £4 10 p</td>
<td>£10 – £6 10 p = £3 90 p</td>
</tr>
<tr>
<td>a) Most change</td>
<td>b) Least change</td>
</tr>
<tr>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>£10 – £9 30 p = 70 p</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>Demonstrate with notes and coins with whole class if necessary.</td>
</tr>
<tr>
<td>Listen carefully, picture the story in your head and think how you would work out the answer.</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>a) How much do 3 pens cost if one pen costs 40 p?</td>
<td>Ps suggest what to do</td>
</tr>
<tr>
<td>C, how would you work out the answer? Who agrees? Who would do it another way? etc.</td>
<td>Agreement, checking</td>
</tr>
<tr>
<td>Plan: 1 pen: 40 p 3 pens: 3 × 40 p</td>
<td>T writes on BB and Ps write in their books</td>
</tr>
<tr>
<td>Calculation: 3 × 40 p = 120 p = £1 20 p</td>
<td>Praising</td>
</tr>
<tr>
<td>Answer: 3 pens cost £1 20 p.</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 136

Notes

Whole class activity
Ps suggest what to do
Reasoning, agreement, checking
T writes on BB and Ps copy in their exercise books
Or from a), 3 pens: £1 20 p
6 pens: 2 × £1 20 p = £2 40
Praising

Activity

b) *How many pens can be bought for £2 40 p?*

D, how would you work out the answer? Who agrees? Who would do it another way? etc.

Plan:

Total cost: £2 40 p = 240 p
Each pen: 40 p

Calculation:

\[\times \ 40 \ p = 240 \ p, \quad 240 \ p = 40 p = 6 \]

or \[40 p + 40 p = 240 p. \]

so \[6 \times 40 p = 240 p \]

Answer: 6 pens can be bought for £2 40 p.

Interlude

Song, rhyme, exercises

Book 2, page 136

Q.2 Read: *Write the additions and subtractions in a shorter way. Write the answers too.*

Do parts a) and b) with whole class first to show Ps what to do.

Then Ps do parts c) to g) in their books. Review at BB with whole class. Mistakes corrected.

Solutions:

a) \[80 + 80 + 80 = 3 \times 80 = 240 \]

b) \[\frac{25 + 25 + 25 + 25 + 25 + 25}{100} = \frac{100 + 75}{75} = 175 \]

c) \[70 + 70 = 2 \times 70 = 140 \]

d) \[100 + 100 + 100 + 100 = 4 \times 100 = 400 \]

e) \[250 + 250 = 2 \times 250 = 500 \]

f) \[120 – 30 – 30 – 30 = 120 – 3 \times 30 = 120 – 90 = 30 \]

g) \[150 – 50 – 50 – 50 = 150 – 3 \times 50 = 150 – 150 = 0 \]

Operations

T writes these numbers on the BB: 240 2 10 5 48 120.

How can we make 24 from any two of these numbers? What operation should we use? (division) T writes on BB and Ps in exercise books.

Solutions:

b) \[7 \times 25 = 7 \times (20 + 5) = 7 \times 20 + 7 \times 5 = 140 + 35 = 175 \]

e) \[2 \times 250 = 2 \times (200 + 50) = 2 \times 200 + 2 \times 50 = 400 + 100 = 500 \]

Book 2, page 136

Q.3 Read: *Write in the missing numbers.*

Deal with one part at a time. Review on BB with whole class.

Mistakes corrected. (Ps may use number lines if necessary.)

(Or done as mental practice. Ps showing final answer with n/cards.)

Book 2, page 136

Q.4 Read: *How many 40 cl jars can be filled from a 3 litre 20 cl tub of honey?*

Ps write plan, do calculation in Pbs and write answer in relevant box.

Review at BB with whole class (or Ps can show with number cards).

© CIMT, Plymouth University
R: Calculation practice
C: Revision and practice. Puzzles and challenges
E: Relational topics. Transposition. Rotation

Lesson Plan 137

Notes

Whole class activity
T chooses Ps at random, first P₁ to give opposite name and then P₂, P₃ to give examples
Class agrees/disagrees
Ps could think of opposites too
T could introduce the word infinite (BB) here.
Discussion, agreement, checking on number line/square. Praising

Activity 1

Opposites
- Tell me the opposite of what I say and think of an example for each. e.g.
 - T: Ps: Examples:
 - even number: odd number (4, 5)
 - addition: subtraction (14 + 2 = 16, 18 – 7 = 11)
 - multiplication: division (5 × 4 = 20, 20 ÷ 4 = 5)
 - divisible by 3: not divisible by 3 (12, 35)
 - true statement: false statement (6 > 5, 8 < 4)
 - 1-digit number: more than 1 digit number (7, 26, 141, etc.)

- How many even numbers are there? unlimited number or > 0)
- How many 1-digit numbers are there? (10)
- How many 2-digit numbers are there? (90)

Activity 2

Revision of Mass

How can we work out what these fruits weigh?

BB:

- A, what do we know from the picture? (1 plum = 20 g) Who can tell us what to do next? B, come and explain what you think. Who agrees? etc.

Solution: e.g.

- **LH balance:**
 - 6 plums = 2 lemons, so 3 plums = 1 lemon. 3 × 20 g = 60 g
 - 1 lemon weighs 60 g

- **Middle balance:**
 - 3 lemons = 1 apple + 1 plum. 3 × 60 g = 1 apple + 20 g
 - so 1 apple = 180 g – 20 g = 160 g
 - 1 apple weighs 160 g

- **RH balance:**
 - 1 apple + 2 plums = 1 pear, 160 g + 2 × 20 g = 160 g + 40 g = 200 g
 - 1 pear weighs 200 g

8 min

Activity 3

Book 2, page 137

Q.1 Read: Which of the numbers 2, 5 or 10 does each shape represent? The same shape means the same number. The arrows point to the multiplication which has twice the value.

Let Ps try to solve it individually (or in pairs) first.

Ps come out to BB to explain reasoning.

Class agrees/disagrees.

Individual trial, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Discussion at BB

Reasoning, agreement, checking, praising

Check: 2 × 10 = 20
2 × 20 = 40
What would the arrows show if they pointed the other way? (half)
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Interlude</td>
<td>Whole class in unison</td>
</tr>
<tr>
<td>Song, rhyme, exercises</td>
<td></td>
</tr>
<tr>
<td>5 Book 2, page 137</td>
<td>Individual work, monitored</td>
</tr>
<tr>
<td>Q.2 Read: Practise multiplication.</td>
<td>Keep to time limit</td>
</tr>
<tr>
<td>Let's see how many of these you can do in 3 minutes! Try to do it without looking at your multiplication table! Of course you may look at it if you are stuck. Review orally round class. Mistakes corrected. Who had them all correct? Who made a mistake? What kind of mistake? Who did the same? etc. Write problem equations on BB. (e.g. $35 \times 2 = 30 \times 2 + 5 \times 2 = 60 + 10 = 70$)</td>
<td>T notes Ps who need to use \times tables</td>
</tr>
<tr>
<td>6 Book 2, page 137</td>
<td>Agreement, checking, self-correcting, praising</td>
</tr>
<tr>
<td>Q.3 Read: Practise division.</td>
<td></td>
</tr>
<tr>
<td>Let's see how many of these you can do in 3 minutes! Try to do it without looking at your multiplication table! Of course you may look at it if you are stuck. Review orally round class. Mistakes corrected. Who had them all correct? Who made a mistake? What kind of mistake? Who did the same? etc. Demonstrate with Ps at front of class if necessary.</td>
<td></td>
</tr>
<tr>
<td>7 Book 2, page 137</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>Q.4 Read: List the numbers which make the statements true.</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
</tbody>
</table>
| Deal with one part at a time. Review at BB with whole class. For each part, Ps read out inequality and come to write their numbers on BB, explaining reasoning and showing on class number line or square. Class agrees/disagrees. Ps choose numbers from those listed to check that inequalities are true. | BB: a) \square: 6, 7, 8, 9
b) \bigcirc: 7, 6, 5, 4, 3, 2, 1, (0)
c) \triangle: 1, (0) |
| **8** Rotation | Individual trial first, monitored but not helped |
| T sticks 3 pictures of a rabbit with only one ear on BB. BB: | Use copy master, enlarged, coloured and cut out. |
| Let's place these 3 one-eared rabbits so that each rabbit has two ears! Ps try on desks without help first. If a P discovers the solution he/she sits up with arms folded. If nobody has solved it after 2 minutes, T gives hint to try rotation. P who has solved it explains to whole class at BB, otherwise T explains. | Ps can have set on desks too |
| | Praise Ps who have solved it but give others more time |
| | Demonstration, agreement |
| | Ps could take sets home to try out on friends/parents. |
Lesson Plan 138

Activity

1. **Crossword with numbers**
 - **R:** Mental calculation
 - **C:** Revision and practice. Puzzles and challenges
 - **E:** Roman numbers. Combinatorics

 Notes
 - Whole class activity
 - T could have a crossword to show.
 - Drawn on BB or use enlarged copy master or OHP

 Extension
 - Class reads each clue in unison
 - Class agrees/disagrees
 - Checking horizontally and vertically
 - Ps have copies of blank crossword on desks

2. **Making 2-digit numbers**
 - **Notes**
 - Individual work, monitored, helped
 - Discussion, reasoning agreement
 - Agreement, checking, praising
 - Discussion, agreement, checking, praising. BB: e.g. 45 ÷ 3 = 30 ÷ 3 + 15 ÷ 3 = 10 + 5 = 15

3. **Book 2, page 138, Q.1**
 - **Notes**
 - Whole class activity
 - Ask several Ps what they think and why.
 - Class agrees on a number.
 - Check by demonstration
 - Encourage Ps to visualise what the outcomes might be
 - T helps if necessary
 - Repeat if there is time with other colours or numbers

Crossword with numbers

T talks about normal crosswords which have numbers to show where each clue starts. T explains about clues going across the row (horizontal) and going down a column (vertical).

This is a crossword puzzle about numbers, so each clue is shown by a letter.

CLUES (BB)

Across (horizontal)
- a) The number of sides in a hexagon.
- b) The biggest 1-digit number.
- c) A 2-digit number which has its units digit 3 times its tens digit.

Down (vertical)
- a) Odd number, less than 70, more than 60 and divisible by 3
- b) the biggest 2-digit number.

Ps come out to choose a clue and write in the answer, explaining reasoning. Let's check that all the clues are satisfied.

- What other clues could we have given for each number?
- Ps could make up own crosswords and clues for neighbours to solve.

Making 2-digit numbers

T writes on BB: 3, 4, 5

- a) Write down in your Ex. Bks all the 2-digit numbers which can be made from these digits. (Heading: Lesson number and date)

 You may repeat a digit. Try to do it logically.

 A, how many did you write? Who had the same? Who had more? What is the most we could make? (For each digit you choose as the tens, you can make three 2-digit numbers, i.e. 3 × 3 = 9)

 BB: 33, 34, 35, 43, 44, 45, 53, 54, 55 (9 numbers)

- b) Underline those numbers which are divisible by 3. (33, 45, 54)

 Show calculations on BB: 45 = 30 + 15, 54 = 30 + 24

Book 2, page 138, Q.1

- **Notes**
 - Whole class activity
 - Ask several Ps what they think and why.
 - Class agrees on a number.
 - Check by demonstration
 - Encourage Ps to visualise what the outcomes might be
 - T helps if necessary
 - Repeat if there is time with other colours or numbers

Solution:
- a) 9, c) 13 (as first 8 marbles could all be black)
- b) 11, d) 15 (as first 10 marbles could all be white)
- e) 11 (as for b) and d)
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson Plan 138</td>
<td></td>
</tr>
<tr>
<td>Whole class in unison</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored (helped)</td>
<td></td>
</tr>
<tr>
<td>Written on BB or use enlarged copy master</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking, self-correcting</td>
<td></td>
</tr>
<tr>
<td>Extra praise if Ps notice this without help. Otherwise T explains it.</td>
<td></td>
</tr>
<tr>
<td>Whole class activity</td>
<td></td>
</tr>
<tr>
<td>Ps explain meanings to class</td>
<td></td>
</tr>
<tr>
<td>BB: a) VI = IX – III</td>
<td></td>
</tr>
<tr>
<td>BB: b) X = I + IX</td>
<td></td>
</tr>
<tr>
<td>Extra praise for Ps who deduced correct answer by themselves</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored (helped)</td>
<td></td>
</tr>
<tr>
<td>Written on BB or use enlarged copy master</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking, self-correcting</td>
<td></td>
</tr>
<tr>
<td>Extra praise if Ps notice this without help. Otherwise T explains it.</td>
<td></td>
</tr>
<tr>
<td>Whole class activity</td>
<td></td>
</tr>
<tr>
<td>Ps explain meanings to class</td>
<td></td>
</tr>
<tr>
<td>BB: a) VI = IX – III</td>
<td></td>
</tr>
<tr>
<td>BB: b) X = I + IX</td>
<td></td>
</tr>
<tr>
<td>Extra praise for Ps who deduced correct answer by themselves</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored (helped)</td>
<td></td>
</tr>
<tr>
<td>Written on BB or use enlarged copy master</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking, self-correcting</td>
<td></td>
</tr>
<tr>
<td>Extra praise if Ps notice this without help. Otherwise T explains it.</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored (helped)</td>
<td></td>
</tr>
<tr>
<td>Written on BB or use enlarged copy master</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking, self-correcting</td>
<td></td>
</tr>
<tr>
<td>Extra praise if Ps notice this without help. Otherwise T explains it.</td>
<td></td>
</tr>
<tr>
<td>Individual (or paired) work, monitored (helped)</td>
<td></td>
</tr>
<tr>
<td>Discussion, agreement, checking, praising</td>
<td></td>
</tr>
<tr>
<td>(Or use copy master)</td>
<td></td>
</tr>
<tr>
<td>Individual trial first, monitored but not helped</td>
<td></td>
</tr>
<tr>
<td>Discussion, reasoning, agreement, checking</td>
<td></td>
</tr>
<tr>
<td>Demonstrate if necessary</td>
<td></td>
</tr>
<tr>
<td>Extra praise for Ps who deduced correct answer by themselves</td>
<td></td>
</tr>
</tbody>
</table>
Activity

1 Making 2-digit numbers

Let's list all the 2-digit numbers which have 4 as the tens digit and which have a units digit that is not more than the tens digit.

T writes Ps' responses in logical order on BB.

BB: 44, 43, 42, 41, 40

Repeat with 6 as the tens digit. (BB: 66, 65, 64, 63, 62, 61, 60)

5 min

2 Rules

Let's find possible numbers for \(a\), \(b\) and \(c\) so that the equations are true.

BB: \[Rule: a + 3 = b \times 3 = c - 3 \]

<table>
<thead>
<tr>
<th>(a)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>(c)</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
</tr>
</tbody>
</table>

T (or P) explains rule using first column. Ps come out one at a time to fill in the other columns, explaining reasoning. Class agrees/disagrees.

Who could write the rule in another way? Who agrees? Who thinks something else? (There are several possibilities.)

Let's check with values from the table.

13 min

3 Book 2, page 139

Q.1 Read: Colour the odd one out. Write the reason for your choice.

Ps write values above ellipses first. Review at BB with whole class. Ps write divisions on BB. Mistakes corrected.

Deal with all choices. Class decides whether reasoning is valid.

\[\text{Solution: } '1\text{ sixth of }6' \text{ is the odd one out because it has a value of } '1' \text{ whereas all the others have a value of } '4', \text{ or it is the only one where the amount is divided by itself.} \]

18 min

4 Interlude

Action song

20 min

5 Book 2, page 139

Q.2 Read: Fill in the missing numbers.

Let's see how many of these you can do in 3 minutes! You may use your multiplication tables if you need to, but try to do as many as you can without them.

Review orally round the class. Mistakes corrected.

Who had all correct? Who made a mistake? Try to learn by heart the facts you did not know.

25 min

Notes

Whole class activity

(Or Ps could write numbers in their exercise books if they wish)

At a good pace

Class agrees/disagrees

Praising

Whole class activity

Table drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, checking, praising

(Bold numbers given already, Ps fill in rest)

Encourage logical solution, but accept any order

\[\text{Rule: } a = 3 \times b - 3 \]

\[b = (a + 3) \div 3 \]

\[c = a + 6, \text{ etc.} \]

\[\text{Check: e.g. } 9 = 3 + 6 \]

Individual work, monitored, helped

Discussion, agreement, checking, praising

BB: \[12 \div 3 = 4 \]
\[8 \div 2 = 4 \]
\[16 \div 4 = 4 \]
\[6 \div 6 = 1 \]

Whole class in unison

Individual work, monitored

T notes Ps who need to refer to their tables

Agreement, checking, self-correcting, praising

Encouragement only
Activity

6

Book 2, page 139

Q.3 Read: Fill in the missing numbers.

Let's see how many of these you can do in 3 minutes! You may use your multiplication tables if you need to, but try to do as many as you can without them.

Review orally round the class. Mistakes corrected.

Who had all correct? Who made a mistake? Try to learn by heart the facts you did not know.

7

Logic puzzle

Study this puzzle. What do you think the rule could be? (The number in the middle is the product of the 4 numbers around it. The same shape means the same number.)

BB:

Where should we start? (e.g. at product 32, because '4' is given and the other 3 numbers are the same.) A, come and write in the missing numbers and explain why you think so. (4 \(\times \) 2 \(\times \) 2 \(\times \) 2 = 32, so the square = 2) Who agrees? A, write '2' in all the squares. (Or could start at 16, as all 4 numbers are the same.)

Where should we go next? (e.g. product 48 as 3 numbers are now known) B, come and write in the missing number and explain why you think so. (4 \(\times \) 2 \(\times \) 2 \(\times \) 3 = 48, so the triangle = 3) B, write '3' in all the triangles. Continue in this way until puzzle is completed. Check solution.

Ps could make up own puzzles for neighbours to solve.

8

Book 2, page 139

Q.4 Read: Write the value, in acorns, of each squirrel’s store of food if: 2 chestnuts = 6 walnuts,

\[1 \text{ chestnut} + 1 \text{ walnut} = 12 \text{ acorns}. \]

Review at BB with whole class. Hands up those of you who think the squirrel in part a) has more food? Who thinks the squirrel in part b) has more food? (Both the same: 48 acorns)

C, come and explain to us how you worked it out. Who agrees? Who did it another way? Who made a mistake? etc.

Solution:

a) \(5 \text{ acorns} + 3 \text{ acorns} = 5 \times 9 + 3 = 45 + 3 = 48 \text{ acorns} \)

b) \(16 \text{ acorns} = 16 \times 3 = 10 \times 3 + 6 \times 3 = 30 + 18 = 48 \text{ acorns} \)

9

Problem

Listen carefully and show me the answer with number cards when I say.

A patient has to take 11 pills, one each hour. How many hours will there be between the first and last pill taken?

Show me . . . now! (10) Discuss/demonstrate why it is not 11.
Lesson Plan 140

Activity

1

Oral practice
Describe these numbers in different ways (72, 17) e.g.
72: 60 + 12, 8 x 9, 100 – 28, 7 x 10 + 2, etc.
17: 2nd last 2-digit odd number, 3 less than 20, 100 – 83, 34/2, etc.
Repeat for other numbers if there is time. Ps may choose the numbers.

Notes
Whole class activity
At speed round class
Involve all Ps
Class points out errors
Praise creativity

2

Secret shapes or numbers
A P comes to front of class, thinks of a number or shape and the rest of the class has to deduce what it is by asking questions. P at front can answer only ‘Yes’ or ‘No’.
(e.g. Is it a number? (Yes) Does it have 2 digits? (Yes) Is it even? (No) Is it less than 20? (Yes) Is it more than 15? (Yes) Is it 17? (No) It is 19!

Notes
Whole class activity
Involve majority of Ps
Encourage Ps to ask logical questions and to keep in mind the clues already given.
Praise creative questioning

3

Book 2, page 140
Q.1 Read: We have put some of these shapes one on top of the other to give the shape on the right.
Colour the shapes we have used in the correct colour.
Remind Ps that B = blue, Y = yellow, R = red.
Review at BB with whole class. Check by demonstration.
(Use pre-coloured shapes to lay one on top of the other.)
What are the names of these shapes? Ps come to BB to point to a shape and to name and describe it (e.g. rectangle is a quadrilateral which has opposite sides the same length and has square (right-angled) corners; square is a rectangle which has all 4 sides the same length, triangle has 3 sides, etc.)
(parallelogram is a quadrilateral with opposite sides parallel, rhombus is a parallelogram with all 4 sides of equal length)

Notes
Individual work, monitored (helped)
Use copy master, enlarged, coloured appropriately and shapes cut out and stuck to BB
Discussion, agreement, checking, praising
To see what Ps remember about shapes
With help of T if needed
Discussion, agreement, praising
Revise meaning of parallel (all points on lines are the same distance apart)

4

Number cards
I will ask some questions and you must show me the answer with number cards when I say. Write the calculations and answers in your exercise books first. (Heading: Lesson number and date)
What is:
a) the difference between 48 and a half of 48? Show me . . . now!
(48 – 48 ÷ 2 = 48 – 24 = 24)
b) the sum of 35 and a fifth of 35?
(35 + 35 ÷ 5 = 35 + 7 = 42)
c) the sum of 65 and a half of 54?
(65 + 54 ÷ 2 = 65 + 27 = 92)
d) the difference between 1 sixth of 36 and 1 sixth of 24?
(36 ÷ 6 – 24 ÷ 6 = 6 – 4 = 2)

Notes
Individual work but class kept together
T repeats each part slowly
Give Ps time to think/write
In unison
Ps who answer correctly come to BB to explain reasoning
Agreement, self-correction
Praising
Ps could ask the questions too!

5

Interlude
Song, rhyme, exercises

Notes
Whole class in unison

© CIMT, Plymouth University
Activity

Book 2, page 140

Q.2 Read: The length of a room is 4 m 30 cm and the width is 2 m 70 cm. What is the difference between them?

Review at BB with whole class. Mistakes corrected.

Plan: Length of room: \(4 \text{ m } 30\) = 430 cm

Width of room: \(2 \text{ m } 70\) = 270 cm

Calculation: \((430 – 270 = 160)\) cm = 1 m 60 cm

Book 2, page 140, Q.3

Read: On a farm, each hen lays 1 egg per day. Complete the table.

Ps come out one after another to complete bottom row of table, explaining reasoning. Class agrees/disagrees. Ps complete table in their books too.

Let’s write a rule about the table. What should we do first?

Let \(H = \) number of hens, \(D = \) number of days, \(E = \) number of eggs.

X, come and write the rule. Who agrees? Who thinks something else? Who can write it another way? Let’s check with values from the table.

Book 2, page 140, Q.4

Read: Do the calculations in the correct order.

What do you notice about the equations? (All have the same numbers in the same order.)

Do you think that the results will all be the same? (No, because the brackets are not the same).

Revise order of calculation. Deal with one part at a time.

Review at BB with the whole class. Mistakes corrected.

BB: a) \(12 + 24 ÷ 6 – 4 = 12 + 4 – 4 = 12\)

\(12 + 24 ÷ (6 – 4) = 12 + 24 ÷ 2 = 12 + 12 = 24\)

\(12 + (24 ÷ 6 – 4) = 12 + (4 – 4) = 12\)

b) \((12 + 24) ÷ 6 – 4 = 36 ÷ 6 – 4 = 6 – 4 = 2\)

\(12 + (24 ÷ 6 – 4) = 12 + (4 – 4) = 12\)

What do you notice about the last equation in part b)? (Exactly the same as the last equation in part a.) How could we make it different from all the others? Change to:

\((12 + 24 ÷ 6) – 4 = (12 + 4) – 4 = 16 – 4 = 12\)

Book 2, page 140, Q.5

Read: In a card game, the cards have pictures of apples, pears, cherries and bananas. The rules are:

3 pears = 1 apple, 6 cherries = 1 pear, 2 bananas = 1 cherry

How many bananas are equal to an apple?

How could we solve it? Y, what do you think? Who agrees? Who thinks something else? Ps dictate what T should write on BB.

Solution: 1 apple = 3 pears, 3 pears = \((3 \times 6)\) cherries = 18 cherries, 18 cherries = \((18 + 2)\) bananas = 9 bananas

So 1 apple = 9 bananas

Notes

Individual trial, monitored, helped

Discussion, checking, Praising

If problems, show calculation in more detail on BB:

Whole class activity

Table drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, Praising

Rule: \(E = H \times D\)

\(H = E \div D\)

\(D = E \div H\)

Initial discussion and revision with whole class.

Written on BB or use enlarged copy master or OHP

Individual work, monitored, helped

(Or whole class activity: T could write 6 identical equations on BB without brackets and Ps could add brackets to make each equation different.)

Agreement, checking, Praising

Whole class activity

Ps suggest how to solve it

T gives hints if necessary

Rules drawn/written on BB

Reasoning, agreement, checking

Extra praise if Ps solve it without help

© CIMT, Plymouth University