BK3	R: (Mental) calculation C: Reflection. Symmetry E: Motion in space. Rotation around an axis by 180°	Lesson Plan 89
Activity 1	Addition practice T dictates simple additions of 3-digit numbers. Ps write the answers (if done mentally) or the whole addition in their Ex. Bks. e.g. $111+222,301+215,834+121$, etc. Ps can suggest additions too. (T keeps a note of them.) Review with whole class. Write problem calculations on BB. 4 min	Notes Individual work, monitored Ps nod heads when ready for next one. At a good pace Agreement, self-correction, praising
2	Missing numbers Listen carefully and think what values you would put in this table. Nigel had $£ 12.45$. After buying a book, Nigel had more than $£ 6.45$ but less than $£ 6.50$ left. How much could the book have cost? What should we do first? (Change the values to pence as the values in the table are in pence.) What is the smallest amount of money Nigel could have left? $(£ 6.46=646$ p.) Ps suggest where to write it in the table. How could we work out how much he spent if he had this amount left? (£12.45 = $1245 \mathrm{p}, 1245 \mathrm{p}-646 \mathrm{p}=\underline{599} \mathrm{p})$ P come out to BB to do calculation and write result in table. Class agrees/disagrees. Ps come to BB to fill in next 3 columns explaining reasoning (without calculation). Class agrees/disagrees. Are there any more possible values? No, because the largest amount that Nigel could have left is $£ 6.49=649 \mathrm{p}$) Answer: The book could have cost $£ 5.96, £ 5.97, £ 5.98$ or $£ 5.99$. Who can write a rule for the table? Who agrees? Who can think of a different one? etc. (T might need to help with this.) 8 min	Whole class activity Table drawn on BB or use enlarged copy master or OHP Discussion on method of solution. Ps suggest what to do at each stage BB: 1245-646 or 1245 $\begin{aligned} & =1245-645-1 \quad-\underline{646} \\ & =600-1=\underline{599} \quad 599 \end{aligned}$ Reasoning, agreement, praising $\begin{aligned} & \text { Rule: } H+S=1245, \\ & \text { or } \quad S=1245-R, \\ & \text { or } \quad R=1245-S, \\ & \text { and } 645<R<650 \end{aligned}$
3	Sums and differences Listen carefully and think how you would solve it. a) What is the sum of the sum and the difference of 876 and 528? Ps suggest what to do first and how to continue. Calculations done at side of BB. Class agrees/disagrees. b) What is the difference between the sum and difference of 876 and 528? Again, Ps suggest how to solve it. (Sum and difference already known from part a)). BB: $(876+528)-(876-528)=1404-348=\underline{1056}$ or $(876+528)-(876-528)=528+528=\underline{1056}$	Whole class activity (or individually in Ex. Bks if Ps wish) Do not intervene unless Ps are struggling. Discussion, reasoning, agreement, praising Extra praise if P thinks of this 'clever' method of solution. Discussion, reasoning, agreement, praising or $2 \times 528=1000+40+16$

BK3		Lesson Plan 89
Activity 4 See $Y 2 L P$ 116-119	Symmetry 1 T has various items, pictures, shapes, etc. stuck to (or drawn on) BB, some symmetrical, some not. Which of these are symmetrical? Ps come to BB to point and explain. Revise symmetry, mirror image, mirror line, line of symmetry, reflection. Allow Ps to explain where they can. T mentions the criteria missed. (Do not mention rotational symmetry at this stage unless a P notices it or asks about it. Sress that 'mirror line' is equivalent to 'line of symmetry'.) 17 min	Notes Whole class discussion/revision (e.g. pictures from Y1b and Y2b or cut out of magazines or drawn on BB: butterfly, leaf, flower, domino, clown, random shapes, etc.) BB: symmetry, symmetrical line of symmetry or mirror line
5	Symmetry 2 These shapes have been coloured in different ways. Which of them are symmetrical? Ps come to BB to draw in the mirror lines (lines of symmetry). Class agrees/disagrees. If problems, check with a mirror. BB: (rotational symmetry) Discuss the shapes which have rotational symmetry. Demonstrate what it means. Ps might notice that some shapes have both line and rotational symmetry.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T Ps could have mirrors and copies of shapes on desks too. BB: Rotational symmetry T could copy these shapes onto OHTs, stick a drawing pin through the centre and rotate on top of original shapes.
6	Symmetry 3 What do these shapes have in common? (All have area 4 square units) Which of them are symmetrical? Ps come out to point and draw in the mirror lines (lines of symmetry). BB: - Ps come out to point to lines which are parallel. - Ps come out to show the perpendicular lines and right angles. - Which has the shortest perimeter? (The square has a perimeter of 8 units. All the others have perimeters of 10 units.)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Ps might notice that the shape 2nd from left has rotational symmetry around centre point. Exra praise if Ps remember how to show parallel and perpendicular lines. parallel perpendicular

BK3		Lesson Plan 89
Activity 7 Extension	Book 3, page 89 Q. 1 Read: Write below each pattern the number of mirror lines it has. Ps may use mirrors as a check. Ps draw the lines using pencils and rulers and write the appropriate numbers in the boxes. Review at BB with whole class. Ps come to BB to show their solutions. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Which of the shapes have rotational symmetry? (c, e, f, g, h)	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps should draw lightly at first so that errors can be erased easily. Discussion, agreement, selfcorrection, praising Feedback for T Extra prase if Ps find them all (T could have copies of these 5 shapes on OHTs as a check.)
8	Book 3, page 89 Q. 2 Read: Colour each shape so that it has: a) exactly one mirror line b) more than one mirror line c) no mirror lines. Deal with one part at a time. Review after each part. Ps who finish first colour the shapes on the BB or OHP. Ps show alternative solutions. Class decide whether they are valid. Mistakes discussed and corrected Solution: e.g. a) b) c)	Individual work, monitored, helped, corrected (Or whole class activity if T prefers) Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising Exra praise for creative, correct solutions. Feedback for T Extension Ps can point out the shapes which have rotational symmetry. (*)

BK3		Lesson Plan 90
Activity 3	Symmetry 1 Ps each have 2 rectangular sheets of thin paper and 4 pieces of carbon paper (1 piece half the size of the rectangle and the other 3 pieces a quarter of the size). a) Line symmetry Fold one sheet in half and put the large piece of carbon paper inside like this. (T demonstrates with large pieces to show which side of the carbon paper should be face down.) Now draw 2 simple pictures on the paper. (e.g. face and flower) Make sure that Ps press hard while drawing. Now take out the carbon paper, unfold your sheet and hold it up to the window. What can you see? (One half is a reflection or mirror image of the other half.) T shows an example to class and pierces key points (e.g. the left eye) on the sheet to confirm the reflection. Agree that holes on both sides are in the eye nearest the fold. Elicit that the fold is the mirror line or line of symmetry and that the shapes are in symmetrical positions on either side of the line. Agree that the sheet (i.e. the whole pattern) has line symmetry. b) Rotational symmetry Fold the other sheet of paper in four and put the small pieces of carbon paper inside the layers face down like this. Now draw a simple picture on the paper (e.g. chick, triangle, boat). Make sure that Ps press very hard while drawing. Now take out the pieces of carbon paper, unfold your sheet and hold it up to the window. What can you see? (4 pictures, each a reflection of the other.) Elicit that there are 2 lines of symmetry (the fold lines) crossing at the centre of the sheet (centre point). T shows an example to class. Discuss the positions of each picture relative to the others. Elicit that LH pair are mirror images of RH pair (top pair are mirror images of bottom pair). T has copy of example on an OHT. T pins both to BB through centre points and rotates the OHT by half a turn. Ps agree that the shapes line up exactly. The sheet (pattern) has rotational symmetry.	Notes Whole class discussion but individual preparation All paper prepared before lesson and put on Ps' desks. T gives instructions and demonstrates at the same time. Check position of carbon paper before drawing begins. T chooses Ps to show their drawings to class. e.g. Discussion, agreement BB: Line symmetry T instructs and demonstrates. Check position of carbon paper before drawing begins. T chooses Ps to show their drawings to class. Discussion, agreement, praising BB: Centre point e.g. BB: Rotational symmetry
4	Symmetry 2 a) Ps point out symmetrical things in the classroom, indicating where the lines of symmetry (mirror lines) are (or T points to things and Ps say whether they are symmetrical or not). Ps also show the mirror line or centre point where relevant. b) T places one or more pairs of congruent plane (2-D) shapes on BB, some in symmetrical positions and some not. Elicit meaning of congruent (exactly the same). Ps say whether the patterns have line symmetry (and draw the line of symmetry) or rotational symmetry (and draw the centre point) or that the shapes are not in symmetrical positions.	Whole class activity Involve several Ps Agreement, praising BB: congruent Discussion, agreement, praising Or Ps could stick the shapes on the BB to show symmetry relative to mirror lines drawn by T .

5 53		Lesson Plan 90
Activity 5	Book 3, page 90 Q. 1 Read Colour the unit squares using only 3 colours. Do not use the same colour for adjoining unit squares. Make every large square different. Let Ps try without help first. Review at BB with the whole class. T could have a possible solution already prepared for discussion. Some Ps could show their solutions too. e.g. Read: If a pattern is symmetrical draw in the mirror line(s). Ps come to BB to draw the mirror lines in the solution on the BB. Rest of Ps do so on their own solutions in Pbs. 30 min	Notes Individual work, monitored, helped Ps decide on the 3 colours T has a possible solution coloured on BB or use enlarged copy master or OHP Agreement, praising Discussion, agreement, praising. Ps point out the shapes which also have rotational symmetry. (2nd and 3rd from left)
6	Book 3, page 90 Q. 2 Read: Draw a line around 5 unit squares in different ways. If a shape is symmetrical, draw in any mirror lines. T could show one example on BB if necessary. Elicit that area of each shape will always be 5 unit squares but the perimeter may vary. T sets a time limit. (e.g. 4 minutes) Ps come to BB to draw a shape each. Class agrees whether the shape is valid, whether it is a repeat (e.g. by rotation or reflection of congruent shapes) and whether it is symmetrical. N.B. There should be 12 different shapes but T need not show all cases if Ps have missed some - leave the problem open. Solution	Individual work, monitored, helped, corrected Grid drawn on BB or use enlarged copy master or OHP (Ps will most likely find only 3-5 shapes and may repeat some in another position) e.g. Discussion, agreement, praising only Extra praise if Ps find all 12 cases! Ps could try to find missing cases in Lesson 115, or at home if they wish.

$B \leq 3$		Lesson Plan 90
Activity 7	Book 3, page 90 Q. 3 Read: Reflect the shape in one axis first. Then reflect the shape and its mirror image in the other axis. Draw the mirror lines of the whole shape. T explains task. Elicit that the vertical and horizontal solid lines are the axes and are perpendicular to each other. Remind Ps about the axes in a graph - the x-axis is horizontal, and the y-axis is vertical. Imagine that these lines are mirrors. Do part a) on BB with whole class first if necessary, so that Ps understand what to do. Deal with one part at a time. Review at BB with whole class. Ps come out to draw solution. Class agrees/disagrees. Mistakes discussed and corrected. Agree that shapes a) to e) have both line and rotational symmetry. Which is the odd one out? (part f), as the shapes in the 4 sections do not touch to make a 'whole' shape.) Ps might see the 4 shapes as congruent and in symmetrical positions. Solution: a) d) b) e) c) f)	Notes Individual work, monitored, helped, corrected (or whole class activity if T prefers) Drawn on BB or use enlarged copy master or OHP Whole class discussion to start BB: y-axis Agreement, self-correction, praising Whole class discussion Agree that in part f), each pair of shapes (top, bottom, left, right) are mirror immages of the other pair and that the pattern has rotational symmetry around the centre point..

BK3	R: Calculation C: Shapes in symmetrical positions E: Challenges	$\begin{gathered} \text { Lesson Plan } \\ 91 \end{gathered}$
Activity 1	Problem Paul has saved up $£ 4.32$. How much extra money will he need to save if he wants to buy one of these? BB: Ps come out to BB to choose a picture and say how much more Paul would have to save. Ps can change the money to pence and do vertical additions, or keep as $£ s$ and do the calculations horizontally. Ps give answer in a sentence. Class points out errors. Ball: Paul has enough money already to buy the ball and will have $£ 4.32-£ 3.32=£ 1$ left. Boat: Boat costs $£ 8.54=854 \mathrm{p} \quad 854$ $\begin{aligned} & \text { Boat costs } £ 8.54=854 \mathrm{p} \\ & \text { Paul needs to save } 422 \mathrm{p}=\underline{£ 4.22} . \quad-\underline{432} \\ & \underline{422} \end{aligned}$ Plane: Plane costs $£ 4.99=499$ p. Paul needs to save 67 p.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP or use pictures cut out of magazines, or real toys, with price labels. At a good pace Ps may do calculations in Ex. Bks first if they wish. Reasoning, agreement, praising Ps decide what method to use and dictate to T or write on BB. Feedback for T
2	Sequence I am thinking of a seqence. Its 1 st term is 1×195, its 2 nd term is 2×195, its 3 rd term is 3×195, etc. Let's write the first 5 terms. Ps come to BB to write the terms or dictate to T , explaining reasoning. Class agrees/disagrees. Calculations can be done at side of BB. BB: $195,390,585,780,975, \ldots$ What is the rule? (Increasing by 195) [Preparation for multiplicaton of 3-digit numbers by a 1-digit number] $10 \min$	Whole class activity (Or individually in Ex. Bks if Ps wish) $\begin{aligned} & \text { BB: e.g. } \\ & 195 \\ & +\underline{195}+\underline{195}+\underline{585} \\ & \underline{\underline{390}} \underline{+195} \\ & \underline{585} \\ & +\underline{780} \\ & \underline{975} \\ & \hline \end{aligned}$ Discussion, praising
3	Written exercises Revise order of operations (operations inside the brackets first, multiplication or division before addition or subtraction, otherwise work from left to right.) T dictates operations. Ps write them in Ex Bks. and solve them. Review at BB with whole class. Mistakes discussed and corrected. a) $\begin{aligned} & 480-400 \div 8=(430) \\ & (480-400) \div 8=(10) \end{aligned}$ c) $\begin{aligned} & 1200 \div 40+20=(50) \\ & 1200 \div(40+20)=(20) \end{aligned}$ b) $\begin{aligned} & 480 \div 8-2=(58) \\ & 480 \div(8-2)=(80) \end{aligned}$ d) $180-40 \div 10=(176)$ $(180-40) \div 10=(14)$	Individual work, monitored T walks round class while reading operations. Reasoning, agreement, selfcorrection, praising Ps explain how they did the calculations, e.g. $1200 \div 40=120 \div 4=30$ Feedback for T

$B K 3$		Lesson Plan 91
Activity 4	Making symmetrical shapes Ps have coloured sheets of paper on desks. T shows Ps how to make symmetrical patterns by folding sheets in two (four), tearing a random pattern along unfolded edges, then opening out again. T chooses Ps to show their shapes. Elicit that the fold lines are the lines of symmetry, that shapes made by folding sheet in 2 have line symmetry (symmetry across a line) and those made by folding in 4 have rotational symmetry (symmetry around the centre point) 20 min	Notes Whole class demonstration first, then individual work, monitored Praising only T (or class) chooses the most original shapes Elicit that the centre point is where the fold lines cross.
5	Book 3, page 91 Q. 1 Read: Colour the row in which the ducks are mirror images of each other. T also asks Ps to draw the mirror lines. Review at BB with whole class. P comes out to point and explain. Class agrees/ disagrees. How have the other rows been made? Ask several Ps what they think. T repeats their reasoning using mathematical terms. Solution:	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection. praising T could have cut-out ducks to show the transformations. Row 1: Translation (moved 5 units to the right each time) Row 2: Reflection Row 3: Rotation by half a turn then reflection (extra praise if Ps realise this by themselves)
6	Book 3, page 91, Q. 2 Read: Complete the drawings so that each duck is exactly the same as the first duck. T tells Ps that the ducks must be the same shape (congruent) but can face in different directions. (Elicit that the position of the eye indicates where the duck is facing.) Ps come to BB to complete shapes. Class agrees/disagrees or helps P at front if necessary. Read: Join up the pairs which are mirror images of each other. Ps come to BB to draw joining lines. Class agrees/disagrees. Check by drawing the mirror lines . (a-b, b-f, c-d, $\mathrm{f}-\mathrm{g}, \mathrm{e}-\mathrm{h}$) Solution: a) e)	Whole class activity Draw on BB or use enlarged copy master or OHP T (and Ps) could have ducks cut out of card for ease of manipulation. Ps can draw ducks in Pbs too if they wish. Discussion, agreement, praising only (If Ps are struggling, let them manipulate a cut-out duck. Once the correct position has been agreed, Ps draw round the duck.) Discuss other transformations. e.g a) to c): rotation by a quarter turn to the right, etc. Ps explain in own words and T repeats using mathematical terms. Praising only

BKE3		Lesson Plan 91
Activity 7	Book 3, page 91 Q. 3 Read: Draw the duck on these grids. Review at BB with whole class. Mistakes corrected. Solution: a) b) d) - Which duck is similar to the ducks in Q.2? (b), as it is the same shape but a bigger size.) - What has happened to the other ducks? (a) has been stretched horizontally, c) has been stretched vertically and d) has been stretched diagonally)	Notes Individual work, monitored, helped, corrected Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection. praising BB: similar Discussion, agreement, praising T could show stretching with a piece of elasticated material.
8	Book 3, page 91 Q. 4 Read: Draw the mirror image of the mouse. Deal with one part at a time. Elicit that the dashed lines are the mirror lines. Review at BB with whole class. How could we check it? (With a mirror or by choosing any point on the mouse, e.g. the nose or the ear, and counting the units from each point to the mirror line. Elicit that if they are true reflections, the distances should be equal.) Solution: T could have a cut-out card mouse stuck to BB and give Ps instructions such as: - rotate it by half a turn to the left (1 right angle to the right, etc.) - reflect it in the y-axis (i.e. vertical axis) - reflect it in the x-axis (i.e. horizontal axis) - rotate it so that its nose points NE (SW, etc.)	Individual work, monitored, helped, corrected Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection. praising Whole class activity (or Ps each have a cut-out mouse on desks) Ps come out to transform mouse. Class agree/disagrees. At agood pace Ps can give instructions too!

B	R: Calculation C: Similarity. Parallel and perpendicular lines E: Estimation	$\begin{gathered} \text { Lesson Plan } \\ 92 \end{gathered}$
Activity 1	Operations Let's do the calculations and compare the results. BB: $\begin{array}{lll} 842 \\ 965-123-542=(300) & (=) & 965-(123+542)=(300) \\ 1507 \\ 965+542-123=(1384) & (=) & 965+(542-123)=(1384) \\ (965+542)-123=(1384) & (>) & 965-(542-123)=(546) \end{array}$ Ps come to BB to do calculations, writing difficult ones at side of BB. Class points out errors. Ps then come out to compare the results, writing the correct sign between each pair. Ps might be able to explain the equalities but do not worry it if they cannot. Ps might also point out the sets of brackets which are not really needed. (LH bottom, RH middle)	Notes Whole class activity Already prepared on BB or SB or OHT. At a good pace Ps can do calculations in Ex. Bks if they wish. Reasoning, agreement, praising BB: e.g. $\begin{array}{rrrr} 1507 & 542 & 965 & 965 \\ -123 & -123 & +419 & -\underline{419} \\ \hline \underline{1384} & \underline{419} & \underline{1384} & \underline{546} \\ \hline \end{array}$ Discussion, agreement, praising
2	Inequalities Which numbers could we write instead of the rectangles? BB: a) $478+312-105$ (685 < 790 - \square], so \square $<790-685=105$ or Ps might notice that 790 is the same on both sides, so the numbers subtracted on RHS must be less than 105 . \square : 104, 103, ...) $\text { BB: b) } 149<200 \times \square-850<151$ (Add 850 to all parts: $\begin{aligned} & \quad 999<200 \times \square<1001 \\ & \text { but } 999<\underline{1000}<1001 \\ & \text { so } 200 \times \square=1000, \square=\underline{5}) \end{aligned}$ 10 min	Whole class activity Already written on BB or SB or OHT Ps suggest method of solution and what calculations to do. Reasoning, agreement, checking, praising Extra praise for clever explanations. $\begin{aligned} \text { or } 149 & <\underline{150}<151 \text {, so } \\ 200 \times \square & -850=150 \\ 200 \times \square & =1000 \\ \square & =\underline{5} \end{aligned}$ T gives hints if necessary
3	Find the mistake Daffy Duck had to write the same number in 6 different ways but he has made one mistake in each part. Can you find it? BB: Deal with one part at a time. First elicit what the numbers should be. (365 and 908) Ps come to BB to underline the mistake and write it correctly. Class agrees/disagrees.	Whole class activity T has BB or SB or OHT already prepared Give Ps time to work out descriptions mentally Reasoning, agreement, correcting, praising Feedback for T

1 53		Lesson Plan 92
Activity 4	Shapes and lines Look carefully at the houses on the different grids. Which parts of the drawings are missing? Ps come out to BB to draw them in. Class points out errors. BB: A D G B E C I - Who can show us lines which are parallel (perpendicular)? Ps come out to point. Class agrees/disagrees or suggests others. - Which houses are congruent (exactly the same)? (A 'is congruent to' C) We could write it mathematically like this. T shows the sign. - Which houses are similar? (i.e. the same shape but different size) ($\mathrm{A}($ or C) 'is similar to' E and G) We could write it like this. - What have we done to House A to make the other houses? Elicit that: A (or C) was enlarged (made bigger) to make E, A (or C) was reduced (made smaller) to make G, A (or C) was stretched horizontally to make B, A (or C) was stretched vertically to make D. Discuss the cases of F, H and I. T could liken House I to the reflection we sometimes see in the ripples of a pond or lake.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, agreement, praising At a good pace Involve majority of Ps Ps could have sheets of copy master on desks too. T reminds Ps of notation to show parallel (perpendicular) lines. BB : Congruent $\mathrm{A} \cong \mathrm{C}$ BB: Similar $A \sim E \sim G$ or $\mathrm{C} \sim \mathrm{E} \sim \mathrm{G}$ Ps explain in own words. T repeats using mathematical terms where appropriate. T could introduce the terms skewed to the right (F) and distorted (out of shape) for H and I.
5	Book 3, page 92 Q. 1 Read: Colour in the same colour shapes which are similar to: i) rectangle 1 , ii) rectangle 2 , iii) rectangle 3 . Use a different colour for each set of shapes. Elicit that similar rectangles are the same shape but can be different sizes. Class can agree on a colour for each set. Deal with one set at a time. Review at BB with whole class. Discuss how to check whether shapes are similar. Elicit that, e.g. Rectangle 1: longer sides are twice the length of shorter sides (or are in the ratio 1 to 2 , or $1: 2$) Rectangle 2: longer sides are 1 and a half times as long as the shorter sides (or are in the ratio 2 to 3 , or $2: 3$) Rectangle 3: All sides are equal so it is a square (or in ratio 1:1). - Which is the odd one out? (13) Why? (Longer sides are 3 times length of shorter sides, or are in the ratio 1:3) - Which rectangles are congruent? Ps show and write on BB.	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Solution: i) $1 \sim 4 \sim 5 \sim 10 \sim 12 \sim 15$ ii) $2 \sim 6 \sim 11$ iii) $3 \sim 8 \sim 9 \sim 14 \sim 16 \sim 17$ Ps explain in own words. T tells it as a ratio. Agreement, praising Ps might notice that ' 7 ' is missing. Let's draw it ~ 13. $\mathrm{BB}: 1 \cong 12 \cong 15 ; 2 \cong 6$

3		Lesson Plan 94
Activity 3	Book 3, page 94 Q. 1 Read: This picture is a smaller copy of a larger picture. Scale: 1 mm on the copy means 1 cm on the real picture. Make sure that Ps understand the scale by referring to mm and cm on their rulers. Deal with one part at a time. a) Read: By how much was the real picture reduced? Elicit that $1 \mathrm{~cm}=10 \mathrm{~mm}$, so the real picture was reduced by 1 tenth of its size (or by scale factor 1 tenth). b) Read: How long were the sides of the real picture? How could we find this out? (Measure the sides of the copy in $P b s$, then multiply the lengths by 10 , or measure in mm and change the units to cm) Review with whole class. Ask several Ps what they think. (Width $=32 \mathrm{~cm}$ and Height $=40 \mathrm{~cm}$) c) Read: How long is the perimeter of this copy? Review at BB with whole class. Mistakes corrected. BB: \quad perimeter $=2 \times$ width $+2 \times$ height $\begin{aligned} & =2 \times 32 \mathrm{~mm}+2 \times 40 \mathrm{~mm} \\ & =64 \mathrm{~mm}+80 \mathrm{~mm}=\underline{144 \mathrm{~mm}}(=14.4 \mathrm{~cm}) \end{aligned}$ d) Read: What length of wood would be needed to make a frame for the real picture? Elicit that the length needed will be the same as the perimeter of the real picture. BB: $\begin{aligned} \text { Perimeter of real picture } & =10 \times 14.4 \mathrm{~cm} \\ & =\underline{144 \mathrm{~cm}}(=1 \mathrm{~m} \mathrm{44cm)} \end{aligned}$ [or $2 \times(32 \mathrm{~cm}+40 \mathrm{~cm})=2 \times 72 \mathrm{~cm}=\underline{144 \mathrm{~cm}]}$	Notes Ps have rulers on desks Individual work, monitored, helped BB: $1 \mathrm{~cm}=10 \mathrm{~mm}$ Discussion, agreement, self-correcting, praising Use enlarged copy master for discussion and demonstration only! T could have the frame already prepared from card to show to give Ps an idea of its real size.
4	Book 3, page 94 Q. 2 Read: This is an enlarged copy of the front cover of a tiny book. Draw the real book cover if the smaller side is 2 cm long. What is the length of the larger side of the real book? How do we know what length to make the longer side? Ask several Ps what they think. (Measure the shorter side on the copy, then compare it with 2 cm to find how much is has been reduced.) Ps measure and work out the scale. Agree that: BB: \quad Scale: $4 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ or $2 \mathrm{~cm} \rightarrow 1 \mathrm{~cm}$ (i.e. the real book cover is half the size of the copy) Ps measure the length of the longer side, then complete the drawing. Ps can use corner of ruler to ensure that the lines are perpendicular. Solution: Real book cover	Whole class discussion first to determine the scale of the reduction Discussion, reasoning, agreement, praising BB: $4 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ $6 \mathrm{~cm} \rightarrow 3 \mathrm{~cm}$ N.B. Ps do not need to write the text! Extension What is the perimeter (area) of the real book cover? $\begin{aligned} & P=2 \times(3 \mathrm{~cm}+2 \mathrm{~cm})=10 \mathrm{~cm} \\ & A=2 \mathrm{~cm} \times 3 \mathrm{~cm}=6 \mathrm{~cm}^{2} \end{aligned}$

3		Lesson Plan 94
Activity 5	Book 3, page 94 Q. 3 Read: This is the ground plan of a room. Scale: 1 mm on the plan means 10 cm in real life. T makes sure that Ps understand the scale with quick oral practice. T says a length on the plan, e.g. $2 \mathrm{~mm}(5 \mathrm{~mm}, 10 \mathrm{~mm}$, etc.), Ps say what it would measure in real life (and vice versa). Discuss what the items on the plan mean. Ps come out to point to the door, windows, rug and say what they think the other items of furniture could be (e.g. bed, bedside cabinet, stool, dressing table, bookshelves, wardrobe or chest of drawers, etc) Deal with one part at a time. Class decides which measure is the length and which is the width of the room. In part b), iii) T might need to explain what a skirting board is and show where it is (or where it would be) in the classroom. Review at BB with whole class. Discuss all results and class decides which measures are acceptable. Extra discussion about b) iii), as Ps might forget to take off the gap for the door. Solution: a) In the plan: i) width of room: 45 mm ii) length or room: 35 mm b) In real life: i) width of the door: 70 cm ii) width of each window: 100 cm iii) length of skirting board: $2 \times(450 \mathrm{~cm}+350 \mathrm{~cm})-70 \mathrm{~cm}$ $=2 \times 800 \mathrm{~cm}-70 \mathrm{~cm}$ $=1600 \mathrm{~cm}-70 \mathrm{~cm}$ $=1530 \mathrm{~cm}(=15 \mathrm{~m} \mathrm{30} \mathrm{cm})$ 38 min	Notes Whole class introduction T chooses Ps at random. At speed. Praising Use enlarged copy master for discussion and demonstration only. Involve several Ps Explanation/demonstration Agreement, checking, selfcorrecting, praising (Accept 1 mm more or less) (Or do part b) iii) as a whole class activity if Ps are struggling)
6	Shapes revision T has various shapes drawn on a grid. Study these shapes. BB: e.g. Who can think of questions to ask about them? e.g. - Which shapes are similar (congruent, symmetrical)? - What is the name (perimeter, area) of each shape? - Which shapes are enlargements (reductions) of other shapes? - Show parallel lines (perpendicular lines, right angles.) - How would you put them in sets? etc.	Whole class activity Drawn on BB or use enlarged copy master or OHP Involve as many Ps as possible T repeats unclear questions using correct mathematical language. Ps choose other Ps to answer their questions. Class agrees/disagrees or points out omissions. Praising, encouragement only Extra praise for clever questions

BK3	R: Calculation. Plane shapes C: Building solids from unit cubes E: Plane symmetry. Similarity of solids	$\begin{gathered} \text { Lesson Plan } \\ 95 \end{gathered}$
Activity 1	Missing numbers Let's fill in the digits missing from these calculations. BB: a) i) $\begin{array}{r\|l\|l\|} 3 & 4 & 2 \\ +2 & 4 & 7 \\ \hline 5 & 8 & 9 \\ \hline \end{array}$ ii) iii) iv) $\begin{array}{r} 999 \\ +8899 \\ \hline 1888 \\ \hline \end{array}$ v) $\begin{array}{r\|lll\|} & 3 & 1 & 2 \\ + & 9 & 4 & 6 \\ \hline 1 & 2 & 5 & 8 \\ \hline \end{array}$ vi)1 3 8 +1 0 3 2 4 1 b) i) $\begin{array}{\|c\|c\|c\|} \hline 9 & 5 & 6 \\ -3 & 4 & 2 \\ \hline 6 & 1 & 4 \\ \hline \end{array}$ iii) $\begin{array}{\|ll\|l} 8 & 3 & 8 \\ -5 & 2 & 6 \\ \hline 3 & 1 & 2 \\ \hline \end{array}$ v)8 5 6 2 3 4 6 2 2 vi)7 5 1 -5 9 9 1 5 2 Ps come out to fill in missing digits, explaining reasoning to class. Class checks that they are correct.	Notes Whole class activity Written on BB or OHP or use enlarged copy master At a good pace Bold numbers missing Reasoning, checking, agreement Details of difficult calculations given where needed Ps may do the calculations in Ex. Bks first before showing on BB. Praising, encouragement only
2	Tables practice relay T says a multiplication or division. P says the result, then gives another multiplication or division to the next P . Class points out errors. \qquad 11 min \qquad	Whole class activity At speed round class In good humour!
3	Shapes What kind of shapes can you see in the diagram? (squares, rectangles, triangles, flowers (from 4 semicircles), stars, circles, parallelograms) BB: - Which shapes are similar? (e.g. Ps might point out that each unit parallelogram is similar to the large parallelogram and also to each 4-unit parallelogram) - Which shapes are congruent? (T has BB ruler or measuring tape ready in case of disagreement) - Which shapes are enlargements (reductions)? Ps come out to point and explain. Class agrees/disagrees or suggests other examples.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Revise what a parallelogram is (quadrilateral with opposite sides parallel, so squares and rectangles are also parallelograms) Discussion, reasoning, agreement, praising Encourage Ps to use mathematical terms Feedback for T

BK3	R: Calculation. Shapes C: Fractions: using and finding halves, quarters, eighths, thirds E: Other fractions	$\begin{gathered} \text { Lesson Plan } \\ 97 \end{gathered}$
Activity 1	Sequence Write in your Ex. Bks only the results to the operations I say. T: $3 \times 4,7 \times 3+1,6 \times 7,9 \times 8,9 \times 9+31$ Review with whole class. T writes what Ps dictate on BB. Mistakes corrected. BB: 12, 22, 42, 72, 112 If these are the first 5 terms in a sequence, what is the rule? Give Ps time to think, then if no P knows, T gives hint about differences. What are the next 10 terms? Ps come to BB to write them. Class agrees/disagrees. $\begin{gathered} \text { BB: } 12,22,42,72,112,(162,222,292,372,462,562,672, \ldots) \\ 10 \quad 20 \quad 30 \quad 40 \quad 50 \\ 10 \end{gathered}$	Notes Individual work in doing calculations Ps nod heads when ready for next one. Agreement, self-correction, praising Agreement on rule: difference is increasing by 10 At a good pace Feedback for T Extra praise if Ps notice rule without hint from T.
2	Cutting into equal parts Thas various real items of food (e.g. slice of bread, melon, bar of chocolate, Swiss roll, etc.) and asks Ps to come to front to cut them into equal parts.e.g. a) \mathbf{A}, come and cut this slice of bread into $\underline{2}$ equal parts. What is each part called? (1 half) Who can write an equation about it? BB: $\begin{aligned} & 1 \text { whole }=1 \text { half }+1 \text { half } \\ & 1 \text { whole }=2 \text { halves } \end{aligned}$ b) \mathbf{B}, come and cut this melon into $\underline{3}$ equal parts. What is each part called? (1 third) Who can write an equation about it? BB: 1 whole $=1$ third +1 third +1 third 1 whole $=3$ thirds c) C, come and cut this bar of chocolate into $\underline{4}$ equal parts. What is each part called? (1 quarter) Who can write an equation about it? BB: $\begin{aligned} & 1 \text { whole }=1 \text { quarter }+1 \text { quarter }+1 \text { quarter }+1 \text { quarter } \\ & 1 \text { whole }=4 \text { quarters } \end{aligned}$ d) D, come and cut this cake into $\underline{5}$ equal parts. What is each part called? (1 fifth) Who can write an equation about it? BB: 1 whole $=1$ fifth +1 fifth +1 fifth +1 fifth +1 fifth 1 whole = 5 fifths	Whole class activity T shows real (or plasticine) items first then draws rough diagrams on BB or OHP. Ps do the cutting with T's help. Class decides whether all the parts are equal in size and what fraction each is of the whole. (T could have cutting lines marked on each item if Ps are not very able.) Ps come to BB to write equations and class reads them aloud in unison. At a good pace Elicit that: $2 \text { quarters }=1 \text { half }$ Feedback for T

BK3		Lesson Plan 97
Activity 3	Equal values Let's join up the fractions to the matching shapes. Ps come out to draw joining lines, explaining reasoning. Class agrees/ disagrees. Extra praise if Ps notice that 4 eighths $=1$ half. BB:	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T
4	Shading fractions Ps each have a sheet of 4×6 rectangles on desks. T tells Ps that each rectangle is 1 whole unit. Colour the parts of them that I say. T reads the fraction and Ps show it by colouring the appropriate number of grid squares. Deal with one part at a time. Review at BB with whole class. Mistakes discussed and corrected. Ps might notice equivalent fractions. BB: e.g.	Individual (or paired) work, monitored, helped T has grids drawn on BB or use enlarged copy master or OHP Ps finished first come to BB or OHP to draw their solutions. Discussion, agreement, selfcorrection, praising Elicit that each rectangle has been divided up into 24 (4×6) small grid squares, so, e.g. $\begin{aligned} 1 \text { twelfth of } 24 & =24 \div 12 \\ & =2 \\ 6 \text { twelfths of } 24 & =6 \times 2 \\ & =\underline{12} \\ 1 \text { eighth of } 24 & =24 \div 8 \\ & =3 \end{aligned}$ etc.
5	Book 3, page 97 Q. 1 Read: Circle in red the rectangles which have 1 half shaded. Circle in blue the rectangles which have 1 third shaded. Circle in green the rectangle which has 1 quarter shaded. If you have time, write below the rectangles you have not circled what part has been shaded. Review at BB with whole class. Mistakes discussed and corrected. Solution: Circled: 1 half: a) and c); 1 third: f) and h); 1 quarter: b) Uncircled: d) 1 sixth; e) 2 thirds; g) 3 quarters	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Elicit that: 1 half $=2$ quarters $=3$ sixths $=4$ eighths [Practice in spelling, saying and reading fractions]

BK3	R: Calculation C: Fractions E: Comparison, completing diagrams	Lesson Plan 98
Activity 1	Mental practice a) Tell me the nearest whole 10 greater than: $600(800,440,740,934,532,301,1766,15,171 \text {, etc. })$ b) Tell me the nearest whole 100 smaller than: 600 ($800,440,740,934,532,301,1766,15,171$, etc.) c) Tell me the nearest whole 10 smaller than: 600 ($800,440,740,934,532,301,1766,15,171$, etc.) d) Tell me the nearest whole 100 greater than: 600 ($800,440,740,934,532,301,1766,15,171$, etc.)	Notes Whole class activity T chooses Ps at random At speed If a P answers incorrectly, the next P corrects it Praising, encouragement only
2	Fractions of a line T has 4 lines of equal length drawn on the BB. T: Think of these lines as the same line divided into different numbers of equal parts. Who can come and colour over 1 half (1 third, 1 quarter, 1 eighth) of the lines? Ps come to BB to choose appropriate line, colour over the relevant part and label it. Class points out errors. BB: Who can think of equations to write about the line? e.g. $\quad 1$ half +1 half $=1 ; \quad 1$ third +2 thirds $=1$; $1-7$ eighths $=1$ eighth; 1 half $=2$ quarters, etc. 10 min	Whole class activity Lines drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Elicit that each line is 1 whole. Involve several Ps. Praising, encouragement only Extra praise for creativity
3	Fractions of shapes What part of each shape has been shaded? BB: 2 thirds 3 quarters 3 sixths 1 half Ps come ot BB to choose a shape and say and write the fraction, explaining reasoning, e.g. 'The rectangle has been divided into 3 equal parts, so each part is 1 third. Two of them are shaded, so the shaded part is 2 thirds of the whole rectangle.' Class agrees/disagrees. Which part is not shaded?	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Elicit that each shape is 1 whole. Discuss equivalent fractions: shaded part of circle: $3 \text { sixths }=1 \text { half }$ shaded part of quadrilateral 5 fifteenths $=1$ third

BK3		Lesson Plan 98
Activity 4	Missing numbers Let's complete the missing numbers. BB: a) $1($ whole $)=$ \square fifths b) $1($ whole $)=$ \square sevenths c) $1($ whole $)=$ \square sixths d) $1($ whole $)=$ \square tenths e) 1 (whole) $=$ \square eighths f) $1($ whole $)=$ \square ninths e.g. a) T: 1 whole equals how many fifths? Tell me . . . now! (5) 19 min	Notes Whole class activity T has BB or SB or OHT already prepared. T points to each part in turn. Class shouts out missing number on command and T writes in box. Agreement, praising
5	Drawing the whole Draw this in your Ex. Bks and colour it. BB: How many grid squares does it cover? (4) Draw the whole shape if this (T points to shaded square) is: a) 1 half of the whole b) $\quad 1$ third of the whole c) 1 quarter of the whole d) 1 fifth of the whole e) 1 sixth of the whole etc. Deal with one part at a time. Review with whole class. Agree that the whole can be any shape which covers the correct number of squares. a) 1 (whole) $=2 \times 1$ half e.g. Area $=2 \times 4$ squares $=\underline{8} \text { squares }$ b) 1 (whole) $=3 \times 1$ third $\begin{aligned} \text { Area } & =3 \times 4 \text { squares } \\ & =\underline{12} \text { squares } \end{aligned}$ c) $1($ whole $)=4 \times 1$ quarter $\begin{aligned} \text { Area } & =4 \times 4 \text { squares } \\ & =\underline{16} \text { squares } \end{aligned}$ d) 1 (whole) $=5 \times 1$ fifth $\begin{aligned} \text { Area } & =5 \times 4 \text { squares } \\ & =\underline{20} \text { squares } \end{aligned}$ e) 1 whole $=6 \times 1$ sixth $\begin{aligned} \text { Area } & =6 \times 4 \text { squares } \\ & =\underline{24} \text { squares } \end{aligned}$	Individual work, monitored, helped, correcetd Ps draw in squared Ex Bks or on squared grid sheets. Discussion, reasoning, agreement, self-correcting praising T has BB or SB or OHT already prepared (or use enlarged copy master) and uncovers each solution as it is dealt with. (Or T chooses Ps to draw their shape on BB or OHP and class discusses it.) Praise unusual (but correct) 'wholes'. Elicit the names of the whole shapes. e.g. for the shapes opposite: a) and e) rectangles b) and d) hexagons (irregular) c) square

BK3	R: Calculation C: Fractions E: Fractional parts	$\begin{gathered} \text { Lesson Plan } \\ 99 \end{gathered}$
Activity 1	Sequences T says first few terms of a sequence, Ps continue it. Elicit the rule. a) $144,149,159,174,(194,219,249,284,324,369,419, \ldots)$ $+5+10+15+20+25+30+35+40+45+50$ Rule: difference is increasing by 5 .) b) $512,256,128,(64,32,16,8,4,2,1,1$ half, 1 quarter $)$ Rule: Each following term is half of the previous term. $(\div 2)$ 5 min	Notes Whole class activity Ps write the terms in Ex. Bks first. Give Ps time to think. T chooses Ps at random. T gives hint about rule if Ps do not think of it. Discussion, reasoning, checking, praising
2	Fractions T has several copies of a rectangle (6×4) drawn or stuck on BB or SB. a) \mathbf{A}, come and colour 1 third of the rectangle. A explains reasoning too. Who agrees? Who can think of another way to do it? Ask 3 or 4 Ps to colour 1 third in different ways. Class checks that they have coloured 8 grid squares. e.g. b) Who can colour 1 quarter (1 eighth) of the rectangle?	Whole class activity Or use enlarged copy master or OHP BB: 1 unit $=24$ squares 1 third of $24=24 \div 3$ $=\underline{8}$ (squares) 1 quarter of $24=24 \div 4$ $=\underline{6}$ (squares) 1 eighth of $24=24 \div 8$ $=\underline{3} \text { (squares) }$ Agreement, praising
3	Folding Each P has a strip of paper on desks. T has large strip for demonstration. a) Fold the paper in two like this. Make sure that the ends meet exactly. \square \square What fraction of the whole strip of paper can you see? (1 half) Let's check. Unfold your strip of paper. How many equal parts has it been divided into? (2) Elicit that 2 halves $=1$ whole. b) This time, fold the paper in two, then in two again. What fraction of the whole strip of paper can you see now? (1 quarter) \square Let's check. Unfold your strip of paper. How many equal parts has it been divided into? (4) Elicit that 4 quarters $=1$ whole. c) This time, fold the paper in two, then in two again, then in two again. What fraction of the whole strip of paper can you see now? \qquad (1 eighth) Let's check. Unfold your strip of paper. How many equal parts has it been divided into? (8) Elicit that 8 eighths $=1$ whole	Individual folding but whole class discussion on results T demonstrates at front of class. T asks several Ps what they think and why. Reasoning, agreement, praising Feedback for T Discuss the relationship between the parts: BB: $\begin{aligned} & 1 \begin{aligned} 1 & =2 \\ & \text { halves }=4 \text { quarters } \\ & \text { eighthts } \end{aligned} \\ & \begin{aligned} 1 \text { half } & =2 \text { quarters } \\ & =4 \text { eighths } \end{aligned} \\ & 1 \text { quarter }=2 \text { eighths } \end{aligned}$

BK3		Lesson Plan 99
Activity 4	Problems Listen carefully and think how you would calculate the answer. Ps come to BB to explain reasoning and write calculations on BB. Class checks that they are correct. a) John had 4001 p coins. He divided them into 2 equal parts. How many coins were in each part? What fraction of John's money was in each part? BB: $400 \div 2=\underline{100}$ Answer: 100 coins were in each part. Each part was 1 half of John's money. b) John divided up his 4001 p coins into equal parts. There was $50 p$ in each part. Into how many equal parts did John divide up his money? What fraction of John's money was in each part? BB: $400 \mathrm{p} \div 50 \mathrm{p}=40 \mathrm{p} \div 5 \mathrm{p}=\underline{8}$ Answer: John divided his money into 8 equal parts. Each part was 1 eighth of John's money. c) John divided up his 4001 p coins into equal parts. Each part was 1 quarter of his money. Into how many equal parts did John divide up his money? How much was in each part? BB: 1 whole $=1$ quarter $\times \underline{4} ; \quad 400 \mathrm{p} \div 4=\underline{100 \mathrm{p}}$ Answer: John divided his money into 4 equal parts. There was $100 \mathrm{p}(=£ 1)$ in each part.	Notes Whole class activity At a good pace T repeats slowly. Ps repeat problem in own words (with T's help) Ps can do calculations in Ex. Bks first if they wish. Discussion, reasoning, agreement, praising Feedback for T
5	Book 3, page 99 Q. 1 Read: Circle: a) 1 half, b) 1 quarter, c) 1 third. Elicit that there are $4 \times 9=\underline{36}$ items in each picture. Review at BB with whole class. Ps come to BB to explain and write divisions. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. How many flowers (apples, socks) would be in 2 halves (2 quarters, 2 thirds, 3 quarters, 4 quarters) of the picture? What part of each picture would one item be? (1 thirtysixth)	Individual work, monitored (helped) Use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising BB: a) 1 half of $36=36 \div 2=\underline{18}$ b) 1 quarter of $36=36 \div 4$ $=\underline{9}$ c) $\begin{aligned} 1 \text { third of } 36 & =36 \div 3 \\ & =\underline{12} \end{aligned}$ Ps can choose the fractions too. Praising, encouragement only Ask several Ps what they think.

BK3		Lesson Plan 99
Activity 6	Book 3, page 99 Q. 2 Read: Fill in the missing numbers. If 1 unit is this, what are these parts? Into how many equal parts has this unit been divided? (12) Elicit that each part (a square) is 1 twelfth of 1 unit (the rectangle). Deal with one part at a time. Review at BB with the whole class. Ps come to BB to write missing numbers and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Read: Colour: red the shapes equal to 1 , green the shapes more than 1 . Review at BB with whole class. T points to each shape in turn and class shouts out whether it should be red, green or neither. Discuss equivalent fractions. Ps dicate them to T to write on BB . Solution a) 1 half 2 halves (3) halves 1 third 2 thirds 3 thirds 4 thirds c) \qquad 1 1 quarter 2 quarters 3 quarters 4 quarters d) 1 sixth 2 sixths 3 sixths 5 sixths 6 sixths 7 sixths 9 sixths	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP BB: 1 unit \square 12 twelfths $=1$ Reasoning, agreement, selfcorrection, praising Individual work, monitored (or whole class activity) Agreement, praising BB: 1 half $=2$ quarters $=3$ sixths 1 third $=2$ sixths 2 halves $=3$ thirds $=$ 4 quarters $=6$ sixths $=1$ 3 halves $=1$ and a half 4 thirds $=1$ and a third etc. Praising, encouragement only Feedback for T
7	Book 3, page 99 Q. 3 Read: Draw the whole unit if this is: a) 1 half, b) 1 quarter, c) 1 fifth, d) 1 third. Deal with one part at a time. Ps measure given fraction accurately with a ruler, then calculate the whole unit (by addition or multiplication). Ps extend the line already given to the required length. Review at BB with whole class. Ps explain reasoning, writing calculations on BB and giving the measurements. Class agrees/disagrees. Mistakes corrected. What fraction of the line did you have to draw to make 1 unit? Solution: a) b) c)	Ps have rulers on desks Individual work, monitored, helped, corrected Draw on BB or use enlarged copy master or OHP for demonstration only! Reasoning, agreement, selfcorrection, praising BB: a) 1 unit $=2 \times 2 \mathrm{~cm}=\underline{4 \mathrm{~cm}}$ b) $\begin{aligned} 1 \text { unit } & =4 \times 3 \mathrm{~cm} \\ & =\underline{12 \mathrm{~cm}} \end{aligned}$ c) $\begin{aligned} 1 \text { unit } & =5 \times 2 \mathrm{~cm} \\ & =\underline{10 \mathrm{~cm}} \end{aligned}$ d) $\begin{aligned} 1 \text { unit } & =3 \times 4 \mathrm{~cm} \\ & =12 \mathrm{~cm} \end{aligned}$ Elicit that: $\begin{aligned} & 1 \text { half }+\underline{1 \text { half }=1} \\ & 1 \text { quarter }+\underline{3 \text { quarters }}=1 \\ & 1 \text { fifth }+\underline{4 \text { fifths }}=1 \\ & 1 \text { third }+2 \text { thirds }=1 \end{aligned}$

BK3		Lesson Plan 99
Activity 8	Fractions of time T has a large clock to demonstrate. Elicit that 1 revolution of the minute hand is 1 hour. BB : 1 hour $=60$ minutes. Let's use 1 hour as 1 unit of time (BB) - Who can move the minute hand to show 1 half (1 quarter, 3 quarters, 1 sixth, 1 twelfth, 1 tenth, etc.) of an hour? P comes out to move the minute hand. Class agrees/disagrees. How many minutes has it moved? Who can write an equation about it? e.g. BB: 1 quarter of an hour $=60 \mathrm{~min} . \div 4=15 \mathrm{~min}$. $\begin{aligned} 3 \text { quarters of an hour }=15 \mathrm{~min} . \times 3 & =30 \mathrm{~min} .+15 \mathrm{~min} . \\ & =45 \mathrm{~min} . \text { etc. } . \end{aligned}$ - T (or P) moves the minute hand. Class says how many minutes moved and what fraction it is of 1 hour. 42 min	Notes Whole class activity Or draw clock on BB and Ps come out to draw hands and shade the appropriate part. e.g. $60 \mathrm{~min} . \div \underline{12}$ $=5 \mathrm{~min}$ 1 twelfth of an hour Discussion, reasoning, agreement, praising At a good pace Praising, encouragement only
 9	Fractions of length Ps have cm ruler on desks. How many mm are in 1 cm ? (10) Let's use 10 cm as our unit of measure. How many mm is that? (100) - How many mm there are in 1 half, (1 fifth, 1 tenth, 1 quarter) of 10 cm ? Ps use their rulers to help them. T asks several Ps what they think. Class agrees/disagrees. ($50 \mathrm{~mm}, 20 \mathrm{~mm}, 10 \mathrm{~mm}, 25 \mathrm{~mm}$) - T says a length in cm (e.g. $10 \mathrm{~cm}, 5 \mathrm{~cm}, 2 \mathrm{~cm}, 2$ and a half cm , and Ps say what part of 10 cm it is. (1 whole, 1 half, 1 fifth, 1 quarter). In what other way could we write 2 and a half cm ? Ps come to BB to write and explain. (2.5 cm , meaning 2 whole cm and 5 tenths of a cm) 45 min	Whole class activity BB: 1 unit $=10 \mathrm{~cm}=100 \mathrm{~mm}$ Discussion, reasoning, agreement, praising At a good pace BB: e.g. 1 quarter of $10 \mathrm{~cm}=10 \mathrm{~cm} \div 4$ $=2$ and a half $\mathrm{cm}(=2.5 \mathrm{~cm})$ Reasoning, agreement, praising

BK3	R: Mental calculation C: Fractions E: Fractional parts	Lesson Plan 100
Activity	Secret numbers a) I thought of a number. I subtracted 130 from it and the result was 148. What was the number I first thought of? Show me . . now! (278) (Written on 'slates' or scrap paper) P who responded correctly explains to those who did not. b) I thought of a number. I added 143 to it and the result was 220 . What was the number I first thought of? Show me . . . now! (77) (Written on 'slates' or scrap paper) P who responded correctly explains to those who did not. 5 min	Notes Whole class activity Ps can do vertical calculations in Ex. Bks if they need to. In unison Reasoning, agreement, praising BB: a) $148+130=\underline{278}$ In unison BB: b) $220-143=\underline{73}$
2	Find the mistakes This is Silly Sammy's homework. What do you think he had to do? (Write below each diagram what part of it is shaded.) Has Silly Sammy made a mistake? Let's check it for him. c) Ps come to BB to check each diagram, e) pointing out any mistake and correcting it. Discuss equivalent d) fractions where relevant.	Whole class activity Drawn on BB or use enlarged copy master or OHP Agree that each large shape is 1 whole unit. Reasoning, agreement, correcting, praising BB: 2 quarters $=1$ half 16 twentyfourths $=8$ twelfths $=4$ sixths $=2$ thirds
${ }^{3}$	Sequence What can you tell me about the shapes on the BB? (12 circles, each divided into 3 equal parts. Each part is 1 third of the circle.) Let's make a sequence by colouring 1 third of each circle. Where should we start? (e.g. at the top and go round clockwise). BB: e.g. We can see 12 terms but imagine the sequence up to the 30th term! a) What would be the numbers of the terms coloured like this? i) ii ii $(1,4,7,7,11,14,17,20,23,26,29)$ Rule: +3 Elicit that when divided by 3 the numbers in i) give a remainder of 2 and in ii) give a remainder of 1 and that every 3 rd number $(3,6,9, \ldots)$ is exactly divisible by 3 (i.e. a multiple of 3).	Whole class activity Drawn on BB or use enlarged copy master or OHP BB: 3 thirds $=1$ Ps come to BB to colour each circle as shown. At a good pace T writes what class dictates. Ps might notice that these numbers form a sequence increasing by 3 . Discussion, agreement, praising
Extension	How many circles could be formed by $9 \bigcirc$?	$\text { BB: } \begin{aligned} 9 \times 1 \text { third } & =9 \text { thirds } \\ & =3 \end{aligned}$

BKT3		Lesson Plan 100
Activity 4	Fractions of solids T has various solids made up from unit cubes as below. a) If this is 1 unit, build 1 half (1 quarter, 1 eighth, 3 quarters, 5 eighths, etc.) of it. e.g. 1 half b) Build 1 whole solid if this (T shows large model to class) i) is 1 half of it. e.g. ii) is 2 thirds of it, e.g iii) is 3 quarters of it, e.g Repeat each fraction with with other shapes. 21 min	Notes Individual (or paired) work Ps have cubes on desks. Deal with one fraction at a time. T shows 1 unit to class. Ps can show their solids to T on command or T chooses Ps to show different possible solutions and class checks that they are correct. (Or done as a whole class activity, with Ps building the solids in front of the class.) Reasoning, agreement, paraising only Extra praise for creative solutions
5	Book 3, Page 100 Q. 1 Read: If this solid is 1 unit, what part of a unit are these solids? Deal with one part at a time. Ps build the 1 unit solid on desks. How many cubes are in 1 unit? (12, so 1 cube is 1 twelfth of 1 unit) Ps build the parts to compare with it. Ps write fraction in Pbs. Review at BB with whole class. Check with a large model. Solution: a) 11 twelfths d) 6 twelfths 3 sixths 1 half b) 9 twelfths 3 quarters e) 3 twelfths 1 quarter f) c) 8 twelfths 4 sixths 2 thirds g)	Paired work (or individual work if Ps wish) BB: 1 unit $=$ $(3 \times 2 \times 2=\underline{12}) \text { cubes }$ Or done as a whole class activity with large models already prepared by T, or a combination of all three. Diagrams drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, praising Discuss equivalent fractions, e.g. 9 twelfths $=3$ quarters, etc. Feedback for T
6	Comparing fractions T draws a line on BB (or use a piece of card or metre stick) divided into 12 equal sections. Elicit that each section is 1 twelfth of the line. BB: Which part of the line is longer: a) 1 quarter or 1 half b) $\quad 1$ sixth or 1 quarter c) 5 twelfths or 7 twelfths d) $\quad 1$ third or 2 sixths? T asks several Ps what they think. Ps come to BB in pairs to show each fraction, to explain reasoning and to write a statement about it.	Whole class activity BB: 1 unit $=12$ twelfths Reasoning, agreement, praising BB: a) 1 quarter <1 half b) 1 sixth <1 quarter c) 5 twelfths <7 twelfths d) 1 third $=2$ sixths

BK3		Lesson Plan 100	
Activity 7	Book 3, Page 100, Q. 2 Read: Only the minute hand is on the clock. What part of an hour does it show? Elicit that 1 hour $=60$ minutes. $\mathrm{T}($ or P$)$ shows movement of minute hand on model (or real) clock for each part. Ps come to BB to explain reasoning and write the fraction. Class agrees/ disagrees. If problems, write equations on BB or check on clock. Solution: a) 20 minutes b) c) 12 minutes 1 fifth of an hour d) e) 45 minutes 3 quarters of an hour	Notes Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising e.g. reasoning: $\begin{aligned} & \text { e) } 45 \mathrm{~min} .=\underline{3} \times 15 \mathrm{~min} . \\ & 15 \mathrm{~min} .=60 \mathrm{~min} . \div 4 \\ & 15 \mathrm{~min} .=1 \text { quarter of an hour } \\ & 45 \mathrm{~min} .=\underline{3 \text { quarters }} \text { of an hour } \end{aligned}$	
8	Book 3, page 100 Q. 3 Read: Fill in the missing numbers. Set a time limit. Review at BB with whole class. T could use models (e.g. 1 finger is 1 fifth of the number of fingers on one hand) or T or Ps draw diagrams on BB or SB or OHT. Solution: a) 2 fifths $+\underline{3}$ fifths $=1$ b) 3 quarters $+\underline{1}$ quarter $=1$ c) 2 sixths $+\underline{4}$ sixths $=1$ d) 5 eighths $+\underline{3}$ eighths $=1$ e) 3 tenths $+\underline{7}$ tenths $=1$ f) 5 hundredths $+\underline{95}$ hundredths $=1$, (e.g. use $£ 1$ as the unit: $£ 1=100 \mathrm{p}$, so $1 \mathrm{p}=1$ hundredth of $\mathrm{a} £ 1,5 \mathrm{p}+95 \mathrm{p}=£ 1)$	Individual work, monitored, helped Reasoning, agreement, praising BB: e.g. a) b) c) d) e) प\| प	\square ПП\|П
9	Book 3, page 100 Q. 4 Read: Fill in the missing numbers. Deal with one part at a time. Set a time limit. Review orally with whole class. If problems, Ps write operations on BB. $\text { e.g. BB: } \begin{aligned} 1 \text { quarter of a metre } & =100 \mathrm{~cm} \div 4 \\ & =80 \mathrm{~cm} \div 4+20 \mathrm{~cm} \div 4 \\ & =20 \mathrm{~cm}+5 \mathrm{~cm}=25 \mathrm{~cm} \\ 3 \text { quarters of a metre } & =3 \times 25 \mathrm{~cm} \\ & =3 \times 20 \mathrm{~cm}+3 \times 5 \mathrm{~cm} \\ & =60 \mathrm{~cm}+15 \mathrm{~cm}=75 \mathrm{~cm} \end{aligned}$ Solution: a) half a metre $=\underline{50} \mathrm{~cm}$ b) half a $\mathrm{kg}=\underline{500} \mathrm{~g}$ 1 fifth of a metre $=\underline{20} \mathrm{~cm}$ 1 quarter of a $\mathrm{kg}=\underline{250} \mathrm{~g}$ 1 tenth of a metre $=\underline{10} \mathrm{~cm} \quad 1$ tenth of a $\mathrm{kg}=\underline{100} \mathrm{~g}$ 3 quarters of a metre $=\underline{75} \mathrm{~cm} 3$ quarters of a $\mathrm{kg}=\underline{750} \mathrm{~g}$ 3 fifths of a metre $=\underline{60} \mathrm{~cm} \quad 5$ tenths of a $\mathrm{kg}=\underline{500} \mathrm{~g}$ 7 tenths of a metre $=\underline{70} \mathrm{~cm} \quad 2$ fifths of a $\mathrm{kg}=\underline{400} \mathrm{~g}$ 11 hundredths of a metre $=\underline{11} \mathrm{~cm} \quad 9$ hundredths of a $\mathrm{kg}=\underline{90} \mathrm{~g}$	Individual work, monitored, helped (or done orally round the class if time is short) BB: $1 \mathrm{~m}=100 \mathrm{~cm}$ $1 \mathrm{~kg}=1000 \mathrm{~g}$ Differentiation by time limit T could have BB or SB or OHT already prepared and uncover each equation as it is dealt with (or use enlarged copy master or OHP) Reasoning, agreement, selfcorrection, praising In a) T could ask for answers in mm too. Feedback for T	

BIT3	R: Mental calculation, Fractions C: Revision and practice. Equations, inequalities E: Commbinatorics, set problems	$\begin{gathered} \text { Lesson Plan } \\ 101 \end{gathered}$
Activity 1	Problems Listen carefully and show me the answer when I say. You can draw a diagram in your Ex. Bks. to help you. a) If 2 thirds of a birthday cake was eaten, what part of it was left? Show me . . now! (1 third) A, come and draw a diagram on the BB and explain your solution. (e.g. 'The cake was cut into thirds, so there were 3 equal pieces. Two of the 3 thirds were eaten, so 1 third was left.') b) If 3 quarters of a chocolate cake was eaten, what part of it was left? Show me . . now! (1 quarter) B, come and draw a diagram on the BB and explain your solution. c) If 5 eighths of a fruit cake was eaten, what part of it was left? Show me . . . now! (3 eighths) C, come and draw a diagram on the BB and explain your solution. 6 min	Notes Individual drawing and calculating, monitored T reads problems while walking round class. Answers written on scrap paper or on 'slates' and shown in unison. Reasoning, agreement, praising BB: e.g. (shaded part is left) a) 3 thirds -2 thirds $=\underline{1 \text { third }}$ b) 4 quarters - 3 quarters $=1$ quarter c) 8 eighths - 5 eighths $=\underline{3 \text { eighths }}$
2	Oral practice T asks a question. Ps answer in complete sentences, explaining reasoning too. e.g. a) What part of 48 is 12 ? (12 is 1 quarter of 48 , because $48 \div 4=12$, or because $\underline{4} \times 12=48)$ b) What is half of 48 ? (Half of $48=24$, as $48 \div 2=\underline{24})$ c) What is 1 quarter of 48 ? (1 quarter of $48=\underline{12}$, as $48 \div 4=\underline{12}$) d) What part of 48 is 24 ? (24 is 1 half of 48 , because $48 \div \underline{2}=24$, or because $\underline{2} \times 24=48)$ e) What part of 48 is 6 ? (6 is 1 eighth of 48 , because $48 \div \underline{8}=6$, or because $\underline{8} \times \overline{6}=48)$ f) What is 1 sixth of 48 ? (1 sixth of $48=\underline{8}$, as $48 \div 6=\underline{8}$)	Whole class activity T chooses Ps at random At a good pace T repeats unclear explanations correctly as a model for Ps to follow. Agreement, praising Feedback for T
3	Estimation and calculation T writes operations on BB. How could we estimate the result? (By rounding numbers to the nearest 100 , or to the nearest 10). Agree that rounding to the nearest 10 gives a closer estimate. Then Ps do vertical calculations in Ex. Bks. Review at BB with whole class. Compare the calculated result with the estimates. BB: Estimations a) $\begin{gathered} 678+354-217 \approx 700+400-200=100-200=900 \\ \text { or } \approx 680+350-220=680-130=810 \\ \text { Check: } 810 \approx \underline{815} \end{gathered}$ Repeat for: b) $\begin{gathered} 1264-(628+594) \approx 1300-(600+600)=1300-1200=100 \\ \text { or } \approx 1260-(630+590)=1260-1220=40 \\ \text { Check: } 40 \approx \underline{42} \end{gathered}$ 18 min	Whole class activity Discussion, agreement, praising T writes what Ps dictate. Individual work, monitored Reasoning, agreement, selfcorrecting, praising BB: $678 \quad 1032$ a) $+\frac{354}{\underline{1032}}-\underline{217}$ b)628 1264 $+\quad 594$ -1222 1222 42

BKK3		Lesson Plan 101
Activity 4	Find the mistakes This is Dizzy Domble's homework. Let's check it for him. Ps come to BB to do calculations, point out errors and correct the mistakes, explaining reasoning. Class agrees/disagrees or suggest an alternative way to check whether it is correct or not. BB: a) $623-578+216=317$ Correction: $623-578+216 \neq 317$, or $\begin{aligned} 628-578+216 & =\underline{261} \\ 985+312-443 & =854\end{aligned} \quad \begin{array}{r}985 \\ -\frac{443}{\underline{542}}+\frac{542}{\underline{854}}\end{array}$ c) $629+348-557=320 \boldsymbol{x}$ $\begin{array}{llrr}\text { Correction: } & \begin{array}{rlr}629 & 977 \\ 629+348-557 & \neq 320, \text { or } \\ 629+348-557 & =\underline{420}\end{array} \quad \underline{\underline{977}} & -\frac{557}{420}\end{array}$ (or using only the units: $3+6-8=1)$ (or by rounding to the nearest 10 : $630+350=980$, $980-560=420$)	Notes Whole class activity Written on BB or SB or OHT At a good pace Ps suggest how to check them Reasoning, agreement, checking, praising Ps suggest how to correct them. c) If Ps suggest it, discuss what would happen by rounding to nearest 100 : $600+300-600=300$, indicating that 320 might be correct. T warns Ps about rounding too much!
5 Extension	Book 3, page 101 Q. 1 Read: Write in the missing sign to make the statement correct. Check on the grids Deal with one part at a time. Ps come to BB to do calculation on LHS and rest of Ps do it in Pbs. Discuss and agree on what the missing sign might be. Let's check it! Ps come to BB to do calculation for RHS and rest of Ps work in Pbs. Solution: a) $349+572<727 \stackrel{926}{\square} 199$ b) $942-449-849 \stackrel{482}{ }-467$ How many more is one side than the other?	Whole class activity Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, checking, praising Class agrees/disagrees with Ps at front of class, or Ps correct mistakes made in Pbs. (Or individual work, monitored, helped, and reviewed with whole class) a) $926-921=\underline{4}$ b) $499-482=\underline{17}$

$B K 3$		Lesson Plan 101
Activity 8	Book 3, page 101, Q. 4 Read: Which numbers can be written instead of the shapes? Deal with one part at a time. Ps decide where to start and what to do next. Ps do calculations in Ex. Bks (or on 'slates') and tell results to T. Solution: a) $440-10 \times \hat{z}=315+45$ b) $\quad 726-571+\bigcirc>161$ $440-10 \times=360$ $155+\bigcirc>161$ $10 \times \lesssim=440-360=80$ $>161-155=6$ $\hat{z}=80 \div 10=\underline{8}$ $: 7,8,9, \ldots$ Check: a) $440-10 \times 8=440-80=360$ b) e.g. $726-571+8=155+8=163>161$	Notes Whole class activity (or individual work if Ps wish) Written on BB Discussion on method of solution Ps come to BB or T writes what Ps dictate. Reasoning, agreement, praising Check answers by substituting a possible number in the statement.
9	Revision Everyone stand up! Follow my instructions! e.g. - Hold your arms horizontal (vertical, parallel, at right angles) - Make a quarter turn to your right (half a turn, whole turn to your left) - Turn by 1 right angle (2 right angles, 3 right angles, half a right angle) to your left (right). - Face North. Turn to face SW (NE, S, NW, E, SE, W)	Whole class activity At speed In good humour! Ps can give instructions too. Elicit that: 2 right angles $=$ half a turn 1 right angle $=$ quarter of a turn

BK3	R: Calculation (mental) C: Revision and practice. Problems in context E: Fractions in context	$\begin{gathered} \text { Lesson Plan } \\ 102 \end{gathered}$
Activity 1	Matching fractions Study these shapes. BB: What can you tell me about them? Ps come to BB to choose a shape and describe it. (e.g 1st shape is a quadrilateral with the two horizontal lines parallel; the shape has been divided into 7 equal triangles, 3 of them are shaded.) Ps write the part shaded below each shape. Let's join up the shapes which have the same fraction shaded. Ps come to BB to draw joining lines and explain reasoning. Class agrees/disagrees. Discuss equivalent fractions.	Notes Whole class activity Shapes drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising BB: 2 sixths $=1$ third 4 sixths $=2$ thirds 6 eighths $=3$ quarters Feedback for T
2 ${ }^{2}$	Numbers T dictates some numbers. Ps write them in Ex. Bks. T: '240, 806, 347, 580, 785, 950' a) Write them again in increasing order. Ps list in Ex. Bks, then dictate to T: BB: $\quad 240<347<580<785<806<950$ b) Do these calculation in your Ex. Bks and show me the results when I say (on scrap paper or 'slates'). Ps who respond correctly explain. i) What is the sum of the two greatest numbers? (1756) ii) What is the difference between two smallest numbers? What else can you think of to do with the numbers? (e.g. Put them in sets according to various criteria. How much more needs to be added to each one to make 1000? Which two numbers can be added (subtracted, multiplied together) to make these numbers?)	Individual work, monitored Reviewed at BB with the whole class Agreement, self-correction, praising Responses shown in unison Reasoning, agreement, selfcorrection, prasing $\text { BB: i) } \begin{array}{rr} 806 & \text { ii) } \\ +\frac{957}{950} & -\underline{240} \\ \underline{1756} & \underline{107} \\ \hline \end{array}$ Involve several Ps. Extra praise for creativity
3	Secret numbers a) I thought of a number. I added 679 to it and the result was 1128 . What was the number I first thought of? Show me . . now! (449) (on 'slates' or scrap paper) P who responded correctly explains to those who did not. Mistakes discussed and corrected. BB: \square $+679=1128$, \square $=1128-679=449$ $-\quad 679$ b) This time I will give you the equation for a similar question. What could the question be? What is the secret number? (e.g. I thought of a number. I subtracted 340 from it and the result was 563 . What was the number I first thought of?) Show me the secret number . . . now! (903) P who responded correctly explains to those who did not. Mistakes discussed and corrected.	Whole class activity Ps can do calculations in Ex. Bks if they need to. In unison Reasoning, agreement, selfcorrecting, praising BB: \square $-340=563$ Ask several Ps what they think T helps with wording. In unison $\begin{array}{rlr} \mathrm{BB}: & 563 \\ \square & =563+340 \\ & =903 & +\frac{340}{903} \end{array}$

BK3		Lesson Plan 102
Activity 4	Problems Listen carefully, do a rough drawing to help you if you need to and show me the answer when I say. a) Mum baked 12 fairy cakes. Ann ate 2 sixths of them. How many cakes were left? Show me . . now! (8) A, come and explain how you worked out the answer. Who agrees? Who did it a different way? etc. Deal with all cases. BB: e.g. Eaten: 1 sixth of $12=2$ (or Eaten: 2 sixths $=1$ third 2 sixths of $12=4$ Left: $1-1$ third $=2$ thirds Left: $\quad 12-4=\underline{8}$ 2 thirds of $12=\underline{8}$) Answer: There were 8 cakes left. b) Granny baked 16 jam tarts. Billy ate 3 eighths of them. How many jam tarts were left? Show me . . . now! (10) B, come and explain how you worked out the answer. Who agrees? Who did it a different way? etc. Deal with all cases. BB: e.g. Eaten: 1 eighth of $16=16 \div 8=2$ 3 eighths of $16=3 \times 2=6$ Left: $16-6=\underline{10} \quad$ (or Left: 5 eighths of $16=5 \times 2=\underline{10}$) Answer: There were 10 jam tarts left.	Notes Individual work in drawing and calculating, monitored, helped (or whole class activity, with cakes drawn or stuck on BB or use enlarged copy master) In unison Reasoning, agreement, selfcorrecting, praising BB: Ps say answer in unison In unison Reasoning, agreement, selfcorrecting, praising Ps say answer in unison
5	Which operation? Study these operations. Which of them could be used to solve this problem? Tina had 321 marbles. She gave 247 to her friend and got 159 marbles back. How many marbles does Tina have now? T points to each operation in turn and Ps say whether or not it solves the problem. Why? (Why not?) Ps explain reasoning. Ps do calculations mentally or in Ex. Bks and dictate to T (or come to $\mathrm{BB})$ as a check.	Whole class activity Only the operations already written on BB or SB or OHT T reapeats slowly and P repeats in own words. Discussion, reasoning, agreement, checking, praising Feedback for T

BKK		Lesson Plan 102
Activity 6	Book 3, page 102 Q. 1 Read: Tick the operations which answer the problem and then do the calculations. Ps read the problem themselves, then work out only the operations which are correct. Lee had a $£ 10$ note and 22 p. He spent $£ 2.56$, then his sister gave him 35 p. How much money does Lee have now? Review at BB with the whole class. Ps explain reasoning to class. Class agrees/disagrees. Mistakes corrected. $\begin{aligned} \text { BB: } & \times 1022+256-35= \\ & \times 1022-256-35= \\ & \vee 1022-256+35=766+35=\underline{801}(\mathrm{p}) \\ & \times 1022+256+35= \\ & \vee 1022-(256-35)=1022-221=801(\mathrm{p}) \end{aligned}$	Notes Individual work, monitored, helped Encourage Ps not to calculate every operation! Operations written on BB or SB or OHT Ps can do necessary calculations at side of $P b s$ Reasoning, agreement, checking, self-correction, praising only Elicit that the numbers shown are pence. Agree that $801 \mathrm{p}=£ 8.01$
7	Book 3, page 102 Q. 2 Read: Make a plan, do the calculation and write the answer in a sentence. Ps read the problem themselves, then write a plan. Hetty Hedgehog had 347 apple pips. She got 172 orange pips from her Mum. Then she swapped 268 apple pips for grape pips with a friend. How many pips does Hetty Hedgehog have now? Review the plan with the whole class first. Deal with all cases. (Ps might notice that swapping 268 apple pips for grape pips does not change the amount so is not really needed in the operation, or that $-268+268=0$, so only one calculation needs to be done.) Then Ps do calculation and write the answer as a sentence. Review at BB with whole class. Ps explain reasoning. Class agrees/disagrees. Mistakes corrected. Answer: Hetty Hedgehog has 519 apple pips now.	Individual work, monitored, helped Discussion, agreement, correcting, praising Reasoning, agreement, selfcorrection, praising

$B \leq 3$		Lesson Plan 102
Activity 8	Book 3, page 102 Q. 3 First elicit that 1 litre $=100 \mathrm{cl}, 1 \mathrm{cl}=10 \mathrm{ml}(\mathrm{BB})$ Ps read the problems themselves and choose two to solve. Review at BB with whole class. Ps explain reasoning. Who agrees? Who did it a different way? etc. Mistakes corrected. a) Read: A 2 litre bottle was full of water. We poured out 35 cl of water. How much water is left in the bottle? BB: $200 \mathrm{cl}-35 \mathrm{cl}=\underline{165 \mathrm{cl}}(=\underline{1 \text { litre } 65 \mathrm{cl})}$ b) Read: A 2 litre bottle contained 35 cl of water. We poured in another 35 cl of water. How much water is in the bottle now? BB: $\quad 35 \mathrm{cl}+35 \mathrm{cl}=\underline{70 \mathrm{cl}}$ c) Read: A 2 litre bottle contained 36 cl of water. We poured out 10 cl 9 ml of water. How much water is left in the bottle? BB: $36 \mathrm{cl}-10 \mathrm{cl} 9 \mathrm{ml}=360 \mathrm{ml}-109 \mathrm{ml}=251 \mathrm{ml}$ (= $25 \mathrm{cl1ml})$	Notes Individual work, monitored, helped T warns Ps that not all the information in a question is needed in the calculation! Reasoning, agreement, selfcorrecting, praising Ps must listen to the problem they did not do and say whether they disagree with the reasoning. Praising, encouragement only Feedback for T
9	Book 3, page 102 Q. 4 Read: Last April it rained on 3 fifths of the days. How many days are there in April? (30, as shown on the calendar) T (or P) reads each part and Ps do calculations in Pbs, using the calendar to help them. Ps show solutions on scrap paper or 'slates' on command. Ps who responded correctly explain to those who did not. a) Read: On how many days did it rain? Show me . . now! (15) Solution: e.g. 1 fifth of 30 days $=30$ days $\div 5=6$ days $3 \text { fifths of } 30 \text { days }=6 \text { days } \times 3=18 \text { days }$ b) Read: Did it rain on more than half the days? Show me . . . now! (Yes) Solution: e.g. 1 half of 30 days $=30$ days $\div 2=15$ days 18 days >15 days, i.e. more than half the days. c) Read: What part of April was dry? Show me . . now! (2 fifths) Solution: e.g. It rained on 3 fifths of the days.. 5 fifths - 3 fifths $=2$ fifths It was dry on $\underline{2 \text { fifths }}$ of the days. (= 12 days) 45 min	Individual work, monitored, helped (Or whole class activity and Ps dictate solution to T) Reasoning, agreement, selfcorrecting. praising Deal with all methods Feedback for T

BK3		Lesson Plan 103
Activity 6	Book 3, page 103 Q. 2 Read: Mark the temperatures on the thermometers. Which is higher and by how much? T explains task. Ps colour the tube of the thermometers up to the given levels. Then they compare the 2 temperatures and write the appropriate sign in the square. Then they count the ticks to find out how many degrees more the higher temperature is Deal with one part at a time. Review at BB with whole class. Ps dictate results to T or come to BB to explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) ${\sqrt{\frac{{ }^{\circ}}{}{ }^{\circ} \mathrm{E}} 10}_{\frac{E}{E}}^{\frac{E}{E}} 0$ b) c)	Notes Individual work, monitored, helped Use 2 model thermometers or enlarged copy master or OHP Do part a) with whole class first if necessary. Reasoning, agreement, selfcorrection, praising (Ps can use magnifying glass to make counting the ticks easier or have copy of enlarged copy master.) Ps read the inequalities in unison.
7	Negative numbers Let's put these temperatures in decreasing order. BB: $\quad 3^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C},-2^{\circ} \mathrm{C}, 7^{\circ} \mathrm{C},-10^{\circ} \mathrm{C}, 8^{\circ} \mathrm{C}$ Ps come out to BB to rewrite order, crossing out values when used while rest of Ps list them in Ex. Bks. Class points out any errors. BB: $\quad 8^{\circ} \mathrm{C}>7^{\circ} \mathrm{C}>3^{\circ} \mathrm{C}>0^{\circ} \mathrm{C}>-2^{\circ} \mathrm{C}>-5^{\circ} \mathrm{C}>-10^{\circ} \mathrm{C}$ Remind Ps that: $8^{\circ} \mathrm{C}$ means $8^{\circ} \mathrm{C}$ more than $0^{\circ} \mathrm{C}$, i.e. is positive (+) $-2^{\circ} \mathrm{C}$ means $2^{\circ} \mathrm{C}$ less than $0^{\circ} \mathrm{C}$, i.e. is negative (-) Let's see if we can find these numbers on the number line! Ps come out to point. Class agrees/disagrees. BB: Discuss and compare pairs of values (+ and -) and how far they are from zero and from each other. (Ps might notice that zero is similar to a line of symmetry, with, e.g. - 5 and 5 the same distance away from it.)	Whole class activity T has BB already prepared At a good pace. Agreement, praising Use negative and positive segments of class number line or draw on BB. At a good pace Discussion, agreement Extra praise if Ps notice the symmetry.

BKT		Lesson Plan 103
Activity 8	Book 3, page 103 Q. 3 Read: How much does each child have? Who has more? Write in the missing sign. T explains the meaning of the symbols, talking about the money you have at this moment, e.g. in your purse or piggy bank (cash) and money you owe to someone, e.g. borrowed and have to pay back, or you have ordered something from a shop and you will have to pay for it later on (being in debt). Deal with one part at a time. Review at BB with whole class. Ps dictate results to T or come to BB to explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. How much more is the bigger amount? Ps write on BB. Solution: T asks individual Ps to describe each situation in real life. e.g. 'Ann has $£ 4$ in cash, but she is $£ 2$ in debt (or owes $£ 2$), so she really has only $£ 2$.' We say that the Ann's balance is $£ 2$. Similarly for the other names.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP (or part a) done as whole class activity with 2 Ps at front of class using card coins and debt slips) Reasoning, agreement, selfcorrection, praising Elicit that, e.g. 1 and - 1 give a balance of zero. Show amounts and differences between them on the class number line. [Comparison is preparation for subtraction of negative whole numbers.] BB: balance
9	Book 3, page 103 Q. 4 Read: Complete the drawings to make the statements correct. Make sure that Ps understand the meaning of the symbols and that each (1) and -1 makes 0 . (Each such pair can be joined up or crossed out and what is left should be the balance.) T could do part a) with the whole class first if necessary, with cards for (1) and -1 stuck to BB. Review at BB with the whole class. Demonstrate with cards on BB and also show on number line. Mistakes discussed and corrected. [Note than there are many correct solutions, e.g. e.g. a) (1) (1) $\boxed{-1} \boxed{\boxed{-1}} \boxed{\boxed{-1}} \boxed{-1} \boxed{-1} \boxed{-1}($ (1) $\boxed{-1} \boxed{-1} \sqrt{-1})$ Solution: (most straightforward) a) Alice's balance is $-£ 6$: (1) (1) $-1 \boxed{-1} \boxed{-1} \boxed{-1} \sqrt{-1}(\boxed{-1} \sqrt{-1})$ b) Barry's balance is $£ 3:$ (1) (1) (1) $-1 \square$ ((1) (1)) c) Carol's balance is $f 0$: (1) (1) (1) (1) -1 -1 $-1,-1$ d) Dan's balance is $-£ 4$: (1) (1) (1) $(\boxed{-1} \boxed{-1} \boxed{-1} \sqrt[-1]{-1} \boxed{-1} \boxed{-1})$ e) Eve's balance is 55 : (1) (1) (1) (1) (1) (1) (-1) How could we write them as equations? e.g. a) $1+1-1-1-1-1-1-1-1-1=-6$, or $2+(-8)=-6$, or $2-8=-6$	Individual work, monitored, helped (or whole class activity with Ps at front of class to be A, B, C, D and E, with cash and debt cards stuck on BB) Discussion, reasoning, agreement, self-correction, praising T can demonstrate this on BB if no P has done it. Whole class discussion Ps suggest ways. Agreement, praising Show on class number line.

BIT3	R: Calculation C: Opposite quantities. Negative numbers E: Preparation for addition and subtraction of negative whole numbers	$\begin{gathered} \text { Lesson Plan } \\ 104 \end{gathered}$
Activity 1	Problems Listen carefully and think how you would solve this problem. Which operation should we write? (Ps can write data and operations in Ex. Bks first before dictating to T.) A, what do you think we should write? Who agrees? Who thinks something else? etc. a) Suzy Squirrel had 363 acorns, 129 acorns more than her brother Timmy Squirrel had. How many acorns will Timmy have left if he eats 148 of his acorns? BB: SS had: 363 (acorns) $T S$ had: $363-129$ (acorns) TS now has: $363-129-148=234-148=\underline{86}$ (acorns) or $363-(129+148)=363-277=\underline{86}$ (acorns) 277 Answer: Timmy Squirrel will have 86 acorns left. b) Emma was given $£ 2.65$ by her Mum, $£ 1.28$ by her Grandpa and $£ 2.39$ by her Grandma. How many 70 p sweets could Emma buy with this money? BB: Given: $265+128+239=632(\mathrm{p})$ Number of sweets: $632 \mathrm{p} \div 70 \mathrm{p}=9$ (remainder 2 p) $\text { (as } \underline{9} \times 70 \mathrm{p}=630 \mathrm{p} \text {) }$ Answer: Emma could buy 9 sweets with this money (and would have 2 p left over).	Notes Whole class activity Give Ps time to write data and think about it. Discussion, reasoning, agreement, praising Calculations done mentally or vertically in $E x$. Bks. BB: e.g. a) $363 \quad 234$ or 363 $\begin{array}{rrr}-\underline{129} & -\underline{148} & -\underline{277} \\ \underline{86} & \underline{86}\end{array}$ b) $\begin{array}{r}265 \\ 128 \\ +239 \\ \hline 632 \\ \hline\end{array}$ (By looking at the multiples of 7: $\underline{9} \times 7=63$ so $\quad \underline{9} \times 70=630$) Ps say answer in a sentence.
2	Sequences T says the first few terms of a sequence. Ps continue it, then give the rule. a) $322,319,313,304,(292,277,259,238,214,187, \ldots)$ $\begin{array}{llllllllll} -3 & -6 & -9 & -12 & -15 & -18 & -21 & -24 & -27 \end{array}$ Rule: The difference between terms is increasing by 3 . b) $\begin{aligned} & -2,0,-3,-1,(-4,-2,-5,-3,-6,-4, \ldots) \\ & +2-3+2-3+2-3+2-3+2 \end{aligned}$ Rule: Increasing by 2 , then decreasing by $3(+2,-3)$. Elicit that: - increasing by 2 moves 2 units to the right on the number line (or 2 units up on vertical scale) - decreasing by 3 moves 3 units to the left on the number line (or 3 units down on vertical scale)	Whole class activity Ps dictate what T should write (or come to BB) Discussion on the rule Reasoning, checking, agreement, praising Ps have negative number lines on desks to help them. Show on class number line or on vertical scale on thermometer model. Agreement, checking, praising

BK3		Lesson Plan 104
Activity 3	Book 3, page 104 Q. 1 Read: Join up the fruit to the corresponding point on the number line. Review at BB with whole class. Ps come to BB to draw joining lines. Class agrees/disagrees. Mistakes corrected. Solution: - Let's say them in a) increasing order: $-13,-8,-7,-4,9,10,12$ (moving to the right along the number line or up on vertical scale) b) decreasing order: $12,10,9,-4,-7,-8,-13$ (moving to the left along the number line or down on vertical scale) - T (or P) says 2 of the numbers. Ps say which is greater, e.g. $12>9,10>-7,-4>-8,-8<-7$, etc. Elicit that when comparing negative numbers, the greatest is nearest zero (the smallest is furthest away from zero).	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP (or fruit cut out and stuck to BB above class number line) Agreement, self-correction, praising Feedback for T In unison T shows on either or both scales. At a good pace T chooses Ps at random: e.g. 'minus four is greater than minus eight' (BUT opposite is true for positive numbers)
4	Negative values Listen carefully and think how to explain it. a) The temperature is higher than $-5^{\circ} \mathrm{C}$ but lower than $8^{\circ} \mathrm{C}$. T asks several Ps what the temperature could be. e.g. $-4^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}, \ldots 0^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}, \ldots, 7^{\circ} \mathrm{C}$, or could also include fractions of a degree, e.g. 2 and a half ${ }^{\circ} \mathrm{C}$, -1 and a half ${ }^{\circ} \mathrm{C}$. B, come and show it on the thermometer (or vertical scale drawn on BB). Agree that temperature is not as cold as $-5^{\circ} \mathrm{C}$ but is colder than $8^{\circ} \mathrm{C}$. Who could write it as an inequality? BB: $-5^{\circ} \mathrm{C}<\square<8^{\circ} \mathrm{C}$ b) The balance of Ian's bank account is more than $-£ 5$ but less than $£ 8$. T asks several Ps how much money Ian could have in his account. e.g. $\quad P_{1}$: He could have debts of $£ 4, £ 3, £ 2$ or $£ 1$. ($-£ 4, \ldots,-£ 1$) P_{2} : He could nave no money left in his account. (£0) P_{3} : He could have $£ 1, £ 2, \ldots, £ 7$ in his account. or P_{5} : He could have debts of $£ 6$ and savings of $£ 2$, as that would give a balance of $-£ 4$. or P_{6} : He could have debts of $£ 2$ and savings of $£ 9$ as that would give a balance of $£ 7$. Agree that Ian could have any amount of savings and debts so long as the balance of his account was from - $£ 4.99$ up to $£ 7.99$. Who could write it as an inequality? BB: $-£ 5<\square<£ 8$	Whole class activity Ps can note data in Ex. Bks (or on' slates') Ps make suggestions. Class agrees/disagrees. Ps explain using model or diagram drawn on BB: Ps write inequality in Ex. Bks. Discussion, reasoning, agreement, praising Ps explain using (1) and -1 cards stuck on BB and on class number line. Extra praise if Ps think of last 2 possibilities or of using $£$ s and pence. Ps write inequality in Ex. Bks.

BK3	R: (Mental) calculation C: Multiplication. Properties of multiplication E: Expressing the rules of multiplication	$\begin{gathered} \text { Lesson Plan } \\ 105 \end{gathered}$
Activity 1	Competition T divides class into 3 (or 6) teams of roughly equal ability. T writes a number for each team on different parts of the BB (or on SB, flip chart, or large sheets of paper stuck to wall). I will give you 2 minutes to write as many different ways as you can to describe your number. You must start and stop when I say. Start ... now! Ps from each team come to BB one after another to write different descriptions. Rest of team correct their team-mates' errors, point out repetitions and note ideas from other teams. . . . Stop! Quick check of each team's descriptions. Each team's score is the number of correct forms minus the number of wrong ones. 5 min	Notes Whole class activity At a good pace e.g. $\begin{gathered} \text { BB: } \quad \frac{150}{3 \times 50} \quad \underline{200} \quad \underline{250} \\ 5 \times 30 \\ 100+50 \\ 300 \div 2 \\ \text { etc. } \end{gathered}$ Class applauds the winners
2	Find the mistake Let's decide whether these inequalities are correct or not. BB: a) $\begin{aligned} & -3 \underset{6}{<}-9 \\ & (-3 \underset{6}{>}-9) \end{aligned}$ b) $-15<-1$ c) $\begin{aligned} & -8 \underset{\text { < }}{<-}-2 \times \\ & (-8 \underset{6}{<}-2) \end{aligned}$ d) $-5<3 \times$ $(-5<8)$ e) $\begin{aligned} & -2 \underset{x}{\ngtr} 1 \times \\ & (-2 \underset{3}{<} 1) \end{aligned}$ f) $-20<10$ Ps come to BB to check each inequality, saying whether it is correct or not and explaining reasoning on vertical scale or class number line. Ps write correct inequality where relevant. Class agrees or disagrees. \qquad 10 min \qquad	Whole class activity Inequalitites written on BB or use enlarged copy master or OHP At a good pace Ps write corrected inequalities in Ex. Bks. Reasoning, agreement, praising Ps can make up inequalities too for class to check.
3	Equivalent fractions This line has been divided into different numbers of equal parts. What are the parts called? T points to each line in turn and Ps say what it has been divided into. (1 whole, 2 halves, 3 thirds, etc.) Let's find different ways of expressing the same segment of the line. BB: Ps come to BB to choose a line segment and to write its value in different ways. e,g, BB: 1 half $=2$ quarters $=3$ sixths $=4$ eighths $=5$ tenths 1 third $=2$ sixths $=3$ ninths; 2 thirds $=4$ sixths $=6$ ninths 1 quarter $=2$ eighths; 3 quarters $=6$ eighths, etc.	Whole class activity Lines drawn on BB or use enlarged copy master or OHP Ps could have copies of copy master on desks too. T writes what Ps dictate. At a good pace T (Ps) could check equivalent fractions by drawing a dotted vertical line or lining the ticks up against a ruler. Reasoning, agreement, praising Class points out errors. Feedback for T

BK3		Lesson Plan 105
Activity 4 Extension	Multiplication revision 1 We have blue, red and green coloured pencils and we have to put one of each colour into the 4 wallets like this. How could we do it? BB: After discussion, elicit that there are 2 ways. a) We could put a blue pencil in each wallet, then a green pencil in each wallet, then a red pencil in each wallet. How could we write it mathematically? BB: $4+4+4=12=3 \times 4$ Elicit (or tell) that in this equation, 3 is the multiplier (i.e. number of groups) and 4 is the multiplicant (i.e. number in each group). b) We could put a blue, a red and a green pencil in the first wallet, then do the same for the other 3 wallets. How could we write it mathematically? BB: $3+3+3+3=12=4 \times 3$ Elicit that in this case 4 is the multiplier (i.e. number of groups) and 3 is the multiplicant (i.e. number in each group). We can also say that 3 and 4 are factors of 12. (i.e. when multiplied together they give a product of 12) In multiplication does it matter which way round the factors are? (No, the result is the same for both ways.) Confirm with a diagram on the BB. What are all the factors of $12 ?(\underline{1} \times \underline{12}, \underline{2} \times \underline{6} \underline{3} \times \underline{4})$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Ask several Ps what they think Discussion, reasoning, agreement, checking, T explains both ways if Ps have not suggested them. Ps can demonstrate each way on BB or OHT with coloured chalk or pens (vertical lines would do for pencils and squares for the wallets) BB: multiplier $\quad 3 \times 4$ 4×3 Discussion, revision BB: factors $3 \times 4=4 \times 3=12$
5	Multiplication revision 2 Let's see how much money I have in this purse! (T opens purse and sticks the model coins on the BB.) BB: $\begin{array}{ll}\text { (10) (10) } & \text { How much money do } \\ \text { (10) (10) } & \text { What multiplications } \\ \text { (e.g. } 6 \times 10=60 \text {) }\end{array}$ Think about the rows and columns. What other multiplications could we write? e.g. BB: a) there are 2 rows, with 3 (10) in each: $2 \times(3 \times 10)=60$, or b) there are 3 columns, with 2 (10) in each: $3 \times(2 \times 10)=60$, or c) there are 2×3 coins, each coin is (10): $(2 \times 3) \times 10=60$, or d) there are 3×2 coins, each coin is (10): $(3 \times 2) \times 10=60$, If we left off the brackets, would it make a difference to the product? (No, the product would be the same, working from left to right.) If we did the calculation from right to left (in any order) would the product change? (No) Confirm that if all the operations are multiplications, then the order does not matter. What other operation is this true for? (addition)	Whole class activity Purse already prepared T writes what Ps dicate Reasoning, agreement, praising After Ps' suggestions, T writes these operations on BB. Ps copy into Ex. Bks. Whole class discussion Agreement, praising Feedback for T

BK3		Lesson Plan 105
Activity 8	Book 3, page 105 Q. 3 Read: Three brothers were each left 257 dollars in their American uncle's will. How much did their uncle leave them in total? Fill in the missing numbers. Who can explain what the diagram means? (A, B and C are the 3 brothers. Each brother has two 100 dollar notes, one 50 dollar note, a 5 dollar coin and a 2 dollar coin, i.e. 257 dollars) Ps write the sub-totals in the blank boxes (horizontally and vertically, then write the total amount on the dotted line. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Let's say the answer in a sentence. Answer: Their uncle left the brothers 771 dollars in total. Solution: 	Notes Individual work, monitored, helped (Or done as a whole class activity, with Ps as the three brothers and model money stuck on BB.) Diagram drawn on BB or use enlarged copy master or OHP Initial discussion/explanation Reasoning, agreement, selfcorrection, praising In unison. Praising If possible, T could have real American dollars to show to class and show how the unit of money is written: \$ (dollar) [Preparation for vertical multiplication with place value columns]
9	Book 3, page 105 Q. 4 Read: Write the results. Underline the operation which is impossible. Let's see how many of these can you can do in 4 minutes! Start . . . now! . . . Stop! Ps change pencils and mark their own work. Review orally round class. Mistakes discussed and corrected. Agree that the impossible operation is $10 \div 0$, as you cannot divide a number into no equal parts! Who had all correct ($1,2,3$, more than 3 mistakes)? What were your mistakes? Make a note of them and try to learn those tables by heart at home!	Individual work, monitored Differentiation by time limit. (Less able Ps may use their multiplication tables.) Quick check Agreement, self-correction, praising Evaluation. T notes the most common mistakes for revision in Lesson 135.

BIT3	R: Multiplication and division tables. Other operations C: Multiplication: properties E: Expressing properties of multiplication	$\begin{gathered} \text { Lesson Plan } \\ 106 \end{gathered}$
Activity 1	Jumps along the number line Kangaroo is jumping 10 units at a time along the number line. Squirrel is jumping 5 units at a time along the number line. What numbers do they each land on if: a) they start at zero? $K: 0,10,20,30,40,50, \ldots$ $S: 0,5,10,15,20,25,30,35,40,45,50, \ldots$ b) they start at 150 and jump to the right? $K: 150,160,170,180,190,200, \ldots$. (+10) $S: 150,155,160,165,170,175,180, \ldots$ (+5) c) they start at 500 and jump backwards to the left? $K: 500,490,480,470,460,450,440,430, \ldots$ (-10) $K: 500,495,490,485,480,475,470,465, \ldots$ Ps show each set of jumps on number line too. 6 min	Notes Whole class activity Boys could be Kangaroo and girls could be Squirrel. At speed, in relay or in unison Girls (boys) point out each others' mistakes. Elicit the rule for each sequence. Use class number line or appropriate segments drawn on BB or OHP.
2	Sequences Write only the results in your Ex. Bks. Continue the sequence if you can! T dictates: $6 \times 6-2,7 \times 7-20,5 \times 8-21,6 \times 4-20, \ldots$ What is the sequence? T writes what Ps dictate. What is the rule? BB: $34,29,19,4,(-16,-41, \ldots)$ Rule: difference is $-5,-10,-15,-20,-25, \ldots$ increasing by 5 . What do you notice about the differences? (They make another sequence: $-5,-10,-15,-20,-25 \ldots$ Rule: decreasing by 5) 10 min \qquad	Whole class activity but individual writing in Ex. Bks. Do not expect many Ps to continue the sequence but one or two might be able to do it. Discussion, agreement on the rule. T gives hint if necessary. Accept other wording, e.g. 'subtract 5 more each time' Agreement, praising
 Extension	Multiplication and division practice T says a multiplication or division, Ps say result. Listen carefully and put your hand on your head if anyone makes a mistake! Here are some of the operations. Can you find a relationship between any of them? (e.g. $21 \div 3=42 \div 6=63 \div 9=7$: if dividend and divisor are increased by the same number of times, the quotient stays the same; or $18 \div 6$ is half of $18 \div 3$: if dividend is the same but the divisor is doubled, then the quotient will be halved)	Whole class activity In relay round class at speed If a P makes a mistake, class puts hands on heads and next P has to correct it. In good humour! Praising, encouragement only Ps can give extra facts too. Written on BB or OHT Agreement, praising T encourages (or helps) Ps to explain using correct mathematical terms.

BK3	R: Multiplication and division tables C: Estimation of products E: Preparation for vertical multiplication	$\begin{gathered} \text { Lesson Plan } \\ 107 \end{gathered}$
Activity 1	Oral work What are the missing products? What do you notice about how the factors and products change? BB: a) $40 \times 3=$ a) \square 120 $40 \times 6=$ \square 240 $40 \times 12=$ \square 480 b) $30 \times 4=120$ $30 \times 8=$ \square 240 $30 \times 12=$ \square 360 c) $50 \times 2=100$ \square $50 \times 6=$ \square 300 \qquad $50 \times 20=$ \square $50 \times 20=$ \square 1000 1000 \qquad	Notes Whole class activity Operations written on BB or use enlarged copy master or OHP Ps dictate the products to T or come out to write on BB, explaining reasoning (with T's help if necessary). Class points out missed relationships. Agreement, praising Feedback for T
2	Book 3, page 107 Q. 1 Read: Fill in the missing products. Deal with one part at a time. Review with whole class. What did you notice? (The product of the multiplication in the bottom row is the sum of the products in the first 2 rows.) Mistakes discussed and corrected. Solution: a) $\begin{aligned} & 6 \times 10=\underline{60} \\ & 6 \times 4=\underline{24} \\ & 6 \times 14=\underline{84} \end{aligned}$ b) $5 \times 10=\underline{50}$ c) $5 \times 7=\underline{35}$ $5 \times 17=\underline{85}$ $\begin{array}{r} 30 \times 3=\underline{90} \\ 5 \times 3=\underline{15} \\ 35 \times 3=\underline{105} \end{array}$ Let's do these multiplications in the same way. $\text { BB: } \quad \begin{array}{rlrl} \frac{130 \times 7}{100 \times 7} & =700 & \frac{5 \times 175}{} & \\ 30 \times 7 & =+210 & 5 \times 100 & =500 \\ 130 \times 7 & =910 & 5 \times 70 & =350 \\ 5 \times 5 & =+25 \\ & & 5 \times 175 & =875 \end{array}$ 10 min	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self correction, praising Whole class activity Ps dictate to T what to write or come to BB, explaining reasoning. Class agrees/disagrees. T adds + sign and horizontal lines to emphasise the addition.
3	Estimation Listen to this problem and think how we could estimate the answer. There are 283 nails in each box. How many nails are in 3 boxes? (Ps might suggest rounding to nearest 100 and nearest 10.) We could estimate in 3 ways. T starts each method of solution, then asks Ps for help with the details. Let $B=$ number of nails in 1 box, $T=$ total number of nails in 3 boxes a) Let's estimate by rounding to the nearest 100 : $\begin{array}{rlrl} \text { BB: } & B & =283 & \\ & B=300 & & T \approx 3 \times 300=900 \\ \text { As } & B & <300, & \text { then } \\ & T<3 \times 300=900 \end{array}$	Whole class activity Give Ps the chance to suggest methods first. Then T leads Ps through the 3 estimations, allowing Ps to help where they can. Encourage Ps to say if they do not understand the reasoning. Ps copy the 3 methods into Ex. Bks as T works on BB. a) $T<900$

BK3		Lesson Plan 107
$\begin{gathered} \text { Activity } \\ 3 \\ \text { (continued) } \end{gathered}$	b) Let's estimate by rounding to the nearest 10 : BB: $\begin{array}{lll} B=283 & \text { so } & T=3 \times 283 \\ B \approx 280 & \text { so } & T \approx 3 \times 280=840 \\ B>280 & \text { so } & T>3 \times 280=840 \end{array}$ c) Let's estimate using an inequality: i) using nearest 100 s : ii) using nearest 10 s : $\begin{aligned} 280<B<290, \text { so } \quad 3 \times 280 & <T<3 \times 290 \\ 840 & <T<870 \end{aligned}$ What is the exact value? $(3 \times 283=3 \times 280+3 \times 3=840+9=849)$ Which method of estimation do you think is best? Why? \qquad 18 min \qquad	Notes BB: $\begin{aligned} & 3 \times 200=600 \\ & 3 \times 80=\frac{240}{840} \\ & 3 \times 280=840 \end{aligned}$ b) $T>840$ c) i) $600<T<900$ ii) $840<T<870$ BB: $\begin{aligned} 3 \times 200 & =600 \\ 3 \times 90 & =270 \\ 3 \times 290 & =\frac{870}{} \end{aligned}$ Agreement, praising Discussion. Ask several Ps what they think.
4	Multiplication Let's fill in the missing products. Try to think of easy ways to do the calculations! Ps come out to fill in missing numbers and explain reasoning. Class agrees/disagrees or suggests easier methods. Elicit relationships between factors and products (some are given in the solution below.) BB: a) b) d) Book 3, page 107 Q. 2 Read: Fill in the missing products. Let's see if you can do these calculations on your own! Review at BB with whole class. Relationships discussed. Mistakes corrected. Solution: a) $3 \times 24=72$ b) $6 \times 12=72$ c) $3 \times 12=36$ $3 \times 240=720$ $6 \times 120=720$ ${\underset{\div 2}{\rightarrow}}^{-2 \times 120=360}$	Whole class activity Written on BB or SB or OHT or use enlarged copy master Ps try to do calculations in steps mentally. Write details on BB if necessary, e.g. $\begin{aligned} 6 \times 28 & =6 \times 20+6 \times 8 \\ & =120+48=168 \end{aligned}$ Discuss how the factors and products change. Ps point out what they notice. Praising, encouragement only! Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T

Br3		Lesson Plan 107
Activity 7	Book 3, page 107 Q. 4 Read: Estimate the product by rounding to the nearest ten. Compare your estimate with the exact product too. You can write any necessary calculations in your Ex. Bks. or at the side of your Pbs (or on your 'slates'). Deal with one part a a time. Review at BB with the whole class. Ps dictate results to T or come to BB to write in missing numbers and signs, explaining reasoning. Mistakes discussed/corrected. Solution: a) $162 \times 5 \approx \underline{160} \times 5=\underline{800}$ $162 \times 5>800$ b) $177 \times 4 \approx \underline{180} \times 4=\underline{720}$ $177 \times 4<720$ c) $315 \times 3 \approx \underline{320} \times 3=\underline{960}$ $315 \times 3<960$ d) $231 \times 4 \approx \underline{230} \times 4=\underline{920}$ $231 \times 4>920$	Notes Individual work, monitored, helped (Or whole class activity if time is short) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Details of calculations written on BB: e.g. $\begin{aligned} 160 \times 5 & =100 \times 5+60 \times 5 \\ & =500+300=\underline{800} \end{aligned}$ (or vertically if Ps suggest it)
8	Book 3, page 107 Q. 5 Read: In your exercise book, estimate, calculate and check the answer. Write it below. Ps read the problem themselves, write the operation required, then estimate the product to the nearest 10 . Then Ps calculate exact product and compare with their estimation as a check. Then they write the answer as a sentence in their Pbs. Either keep Ps together for each step, then review, or if Ps are able and wish it, let them do the whole exercise before review. In both cases, Ps dicate solution to T and correct their mistakes. Class says answer as a sentence in unison. Grandpa gave $£ 1.35$ to each of his 4 grandchildren. How much did he give them altogether? Solution: (Could be already prepared and each part uncovered as it is dealt with) Plan: \quad Each grandchild: $£ 1.35=135 \mathrm{p}$ 4 grandchildren: $4 \times 135 \mathrm{p}$ $\begin{aligned} E: 4 \times 135 & \approx 4 \times 140=4 \times 100+4 \times 40=560(\mathrm{p}) \\ C: 4 \times 135 & =4 \times 100+4 \times 30+4 \times 5 \\ & =400+120+20=\underline{540}(\mathrm{p}) \\ & =\underline{£ 5.40} \end{aligned}$ Answer: He gave them $£ 5.40$ altogether. 45 min	Individual work, monitored, helped (Or whole class activity if time is short) T could have diagram drawn (or coins stuck) on BB to help Ps: e.g. Reasoning, agreement, selfcorrection, praising Agree that $4 \times 135<E$ (or vertically if Ps suggest it) $\begin{aligned} & 4 \times 100=400 \\ & 4 \times 30=120 \\ & 4 \times 5=+20 \\ & 4 \times 135=r \\ & \hline \end{aligned}$ Check: 540 < 560

BK3		Lesson Plan 108
Activity 5	Book 3, page 108 Q. 1 Read: Write a plan, estimate the answer to the nearest $10 p$, then do the calculation. Ribbon costs $£ 2.54$ per metre. How much do 3 metres cost? Ue the diagram to help you understand the problem. Review at BB with whole class (or after each step if necessary). Ps come to BB to explain their solutions. Class agrees/disagrees. Check solution against estimate and confirmby rearranging coins. Solution: . Plan: Cost of: 1 metre: $£ 2.54=254$ p; 3 metres: $3 \times 254 \mathrm{p}$ Estimate: $3 \times 254 \approx 3 \times 250=3 \stackrel{600}{\times} 200+3 \times 50=750(p)$ Calculation: $3 \times 254=3 \times 200+3 \times 50+3 \times 4=\underline{120} \times 2(\mathrm{p})$ Answer: 3 metres of ribbon cost $762 \mathrm{p}(=£ 7.62)$. 23 min	Notes Individual work, monitored helped Coins stuck on BB: Ps could show final answer on scrap paper or on 'slates' in unison on command. Reasoning, agreement, selfcorrection, praising Agree that $E<C$ Check: $750 \mathrm{p}<762 \mathrm{p}$
6	Book 3, page 108 Q. 2 Read: Estimate the result in your head first, then do the calculation. Ps estimate by rounding number to nearest 10 and calculating mentally (or at side of Pbs or in Ex. Bks or on 'slates'). Ps could write estimate lightly above each operation. Ps write details of calculations in Ex. Bks if necessary before writing the products in Pbs . Review after each row. Ps explain reasoning and compare calculated product with estimate. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\begin{aligned} & 32 \times 30=960 \quad 24 \times 20=480 \quad 16 \times 50=800 \\ & 38 \times 20=760 \end{aligned}$ $\begin{array}{lllll} \text { b) } & 14 \times 60 & =840 & 17 \times 50=850 & \\ 21 \times 40 & =840 & & & \\ & 21 \times 70 & =910 \\ & 56 \times 30 & =1680 & 40 \times 37=1480 & 89 \times 20=1780 \\ & 56 \times 34 & =1700 & & \end{array}$	Individual work, monitored helped Written on BB or SB or OHT (or estimates can be done orally as whole class activity first) T may differentiate, as part c) is more difficult. Reasoning, agreement, checking against estimate, self-correction, praising Ps explain calculations in detail, e.g. E: $32 \times 30 \approx 30 \times 30=900$ (so exact product is >900) C: $32 \times 30=32 \times 3 \times 10$ $=96 \times 10=\underline{960}$ Praise 'clever' methods, e.g. $16 \times 50=8 \times 100=\underline{800}$
7	Problem Listen carefully and think about how you would solve this problem. An air ticket costs $£ 213$. How much will 4 air tickets cost? What should we do first? (Write a plan.) What should I write? What should we do next? etc. Ps dictate what to do next and what T should write on BB . T directs Ps' thinking by asking appropriate questions. BB: Plan: Cost of 1 ticket: $£ 213$ Cost of 4 tickets: $4 \times £ 213$ Estimate: $4 \times £ 213 \approx 4 \times £ 200=£ 800$, so $C>£ 800$ Let's show the calculation in a place value table.	Whole class activity T repeats slowly and Ps repeat in own words. Give Ps time to think about it. Discussion, reasoning, agreement, praising Drawn on BB or SB or only table drawn and coins stuck on, or use enlarged copy master or OHP.

BK3	R: Mental operations C: Multiplication. Short form without crossing tens E: Short form, crossing tens	$\begin{gathered} \text { Lesson Plan } \\ 109 \end{gathered}$
Activity 1	Jumps along the number line Grasshopper starts at zero and jumps 4 units at a time along the number line. Where he will he get to after: a) 15 jumps b) 36 jumps c) 48 jumps d) 100 jumps?. BB: a) $15 \times 4=10 \times 4+5 \times 4=40+20=\underline{60}$ or $10 \times 4=40$ (or $15+15+15+15$, or 30×2) $\frac{5 \times 4=20}{15 \times 4=\underline{60}}$ b) $36 \times 4=30 \times 4+6 \times 4=120+24=\underline{144}$ (or 72×2) c) $48 \times 4=40 \times 4+8 \times 4=160+32=\underline{192}$ d) $100 \times 4=\underline{400}$	Notes Whole class activity For each part, Ps come to BB or dictate to T what to write. Class agrees/disagrees. (Or if Ps are able, calculations can be done on slates or in Ex. Bks, answers written on slates and shown on command. Ps who answered correctly explain to those who did not.) Feedback for T
2	Estimating Let's estimate these multiplications by rounding to the nearest 100 . Ps come to BB to write estimate or dictate to T, explaining reasoning and saying whether estimate is more or less than exact product. Class agrees/disagrees. What do you notice? Repeat estimations but this time rounding to the nearest 10 . BB: Rounding to nearest 100 Rounding to nearest 10 a) $269 \times 4_{(\underset{\text { < })}{ }}^{\approx}(300 \times 4=1200)$ $(270 \times 4=800+280=1080)$ b) $217 \times 4 \underset{(>)}{\approx}(200 \times 4=800)$ $(220 \times 4=800+80=880)$ c) $352 \times 2 \approx(400 \times 2=800)$ $(350 \times 2=600+100=700)$ d) $93 \times 7 \approx(100 \times 7=700)$ $(90 \times 7=630)$ e) $449 \times 2 \underset{(>)}{\approx}(400 \times 2=800)$ $(450 \times 2=800+100=900)$ f) $21 \times 9 \underset{(\underset{\sim}{>})}{\approx}(0 \times 9=0)$ ($20 \times 9 \approx 180$) Which estimation do you think is closest to the exact product? Why? Agree that rounding numbers to the nearest 100 gives a very rough estimate but rounding to the nearest 10 is closer to the exact product. 10 min	Whole class activity T has BB already prepared Involve majority of Ps Reasoning, agreement, praising At a good pace Discuss results, e.g. Ps might notice that estimates of b), c) and e) are the same when rounding to nearest 100 but are different when rounding to nearest 10 . Discuss results of f), where 21 is not at all close to zero but is nearer zero than 100 . In this case, estimating by rounding to the nearest 100 is silly - much better to round to the nearest 10 .
3	Problems Listen carefully to these problems and think how you would solve them. Do you need to do an exact calculation or will an estimate do? T reads problem. Give Ps time to write appropriate plan. Ask several Ps what they think. Class agrees on plan and Ps come to BB to complete estimates or to do exact calculations. Class agrees/disagrees. Class says answer in a sentence. a) Pupils bought 40 plants for the school garden. Each plant cost 38 p. Roughly how much did they spend? BB: $40 \times 38 \mathrm{p} \approx$ (40 $\begin{aligned} 40 \times 40 \mathrm{p}=10 \times 4 \times 40 \mathrm{p} & =10 \times 160 \mathrm{p} \\ & =\underline{1600 \mathrm{p}}=\underline{£ 16}) \end{aligned}$ Answer: They spent roughly $£ 16$. Agreement that exact amount would be less than $£ 16$. (£15.20)	Individual work in writing plan (in Ex. Bks, or Ps could write on scrap paper or 'slates' and show on command) Whole class activity in completing estimation or calculation. If estimation, Ps say whether exact amount would be more or less than estimated amount. Ps can calculate exact amount in Ex. Bks if they wish. $\begin{aligned} & \text { (e.g. } £ 16-2 \times 40 \mathrm{p}= \\ & \\ & £ 16-80 \mathrm{p}=£ 15.20 \text {) } \end{aligned}$

BK3		Lesson Plan 109
Activity 3	(Continued) b) Paul has 2750 p coins. About how much money does Paul have? $\mathrm{BB}: 27 \times 50 \mathrm{p} \approx(30 \times 50 \mathrm{p}=\underline{1500 \mathrm{p}})$ or $(=15 \times £ 1=\underline{£ 15})$ Answer: Paul has about $£ 15$. Agreement that exact amount would be less than $£ 15$. c) 1 box of apples weighs 28 kg . Approximately how much do 60 boxes of apples weigh? BB: $60 \times 28 \mathrm{~kg} \approx(60 \times 30 \mathrm{~kg}=6 \times 300 \mathrm{~kg}=\underline{1800 \mathrm{~kg})}$ Answer: 60 boxes of apples weigh approximately 1800 kg Agreement that exact amount would be less than 1800 kg . (1680 kg) d) How much will 8 kg of plums cost if 1 kg costs $£ 1.92$? Elicit first that $£ 1.92=192 \mathrm{p}(\mathrm{BB})$ e.g. BB: $8 \times 192 \mathrm{p}=(8 \times 100 \mathrm{p}+8 \times 90 \mathrm{p}+8 \times 2 \mathrm{p}$ $\begin{aligned} =800+720 p+16 p & =1520 p+16 p \\ & =1536 p=\underline{£ 15.36} \end{aligned}$ Answer: 8 kg of plums will cost $£ 15.36$. 16 min	Notes Exact amount: e.g. $\begin{align*} 27 \times 50 \mathrm{p} & =£ 15-3 \times 50 \mathrm{p} \\ & =£ 15-£ 1.50 \\ & =\underline{£ 13.50} \tag{£13.50} \end{align*}$ Exact amount: e.g. $\begin{aligned} & 60 \times 28 \mathrm{~kg} \\ & =60 \times 20 \mathrm{~kg}+60 \times 8 \mathrm{~kg} \\ & =1200 \mathrm{~kg}+480 \mathrm{~kg} \\ & =\underline{1680 \mathrm{~kg} \text { or }(1800-120) \mathrm{kg}} \end{aligned}$ Or $\begin{aligned} 8 \times £ 1.92 & =8 \times £ 2-8 \times 8 \mathrm{p} \\ & =£ 16-64 \mathrm{p} \\ & =£(15.36 \end{aligned}$ Only problem d) requires the exact amount.
4	Book 3, pag3 109 Q. 1 Read: Fill in the missing products. Note how they change. Deal with one row at a time. Review orally with whole class. Mistakes discussed and corrected Ps tell class of relationships they notice within each row. Agree that, e.g. if one factor is twice as much, then the product is twice as much; if one factor is twice as much and the other factor is half as much then the product is the same; etc. Solution: a) $60 \times 3=\underline{180} 60 \times 6=\underline{360} \quad 60 \times 9=\underline{540} \quad 60 \times 12=\underline{720}$ b) $40 \times 5=\underline{200} 40 \times 10=\underline{400} 40 \times 15=\underline{600} 40 \times 25=\underline{1000}$ c) $4 \times 2=\underline{8} \quad 40 \times 2=\underline{80} \quad 400 \times 2=\underline{800} \quad 40 \times 20=\underline{800}$ d) $3 \times 5=\underline{15} \quad 30 \times 5=\underline{150} \quad 300 \times 5=\underline{1500} \quad 30 \times 50=\underline{1500}$ e) $4 \times 24=\underline{96} \quad 8 \times 12=\underline{96} \quad 16 \times 6=\underline{96} \quad 2 \times 48=\underline{96}$ $4 \times 240=\underline{960} \quad 8 \times 120=\underline{960} \quad 16 \times 60=\underline{960} \quad 2 \times 480=\underline{960}$ 22 min	Individual work, monitored, helped T could have solutions already prepared on BB or SB or OHP and uncover each as it is dealt with. Agreement, self-correction, praising Discussion on relationship between factors and products Involve several Ps Praising only Feedback for T
5	Book 3, page 109 Q. 2 Read: Fill in the missing products. Deal with one column at a time. Review orally with whole class. Ps dictate results to T , explaining reasoning. Mistakes corrected. What do you notice about the columns? (e.g. in each column, one of the factors is always the same; the product in the bottom row is the sum of the 3 products above it.) BB: a) $\begin{aligned} & 5 \times 100=500 \\ & 5 \times 20=100 \\ & 5 \times 1=5 \\ & \hline 5 \times 121=605 \end{aligned}$ b) $\begin{aligned} 4 \times 3 & =12 \\ 30 \times 3 & =90 \\ 200 \times 3 & =600 \\ \hline 234 \times 3 & =702 \end{aligned}$ c)7×8 $=56$ 7×30 $=210$ 7×100 $=700$ $7 \times 138=966$	Individual work, monitored helped Written on BB or SB or OHT Reasoning agreement, self-correction, praising (or reasoning for bottom row: $\begin{aligned} & 234 \times 3 \\ & =200 \times 3+30 \times 3+4 \times 3 \\ & =600+90+12=702) \end{aligned}$ Discussion, checking, agreement, praising Feedback for T

BK3	R: Mental calculation C: Multiplication E: Vertical multiplication, crossing tens	$\begin{gathered} \text { Lesson Plan } \\ 110 \end{gathered}$
Activity 1	Missing numbers Study this table and think what the rule could be. Ask several Ps what they think. Agree on one form of the rule. (BB) e.g. $a \times b=c$ Let's fill in the missing numbers. Ps come to BB choose a column and fill in the missing numbers, explaining reasoning. Who agrees? Who thinks something else? etc. Who can think of other ways to write the rule? Let's choose a column and check that it is correct. BB: Rule: $a \times b=\mathrm{c}, \quad b \times a=c, c \div b=a, c \div \mathrm{a}=b$	Notes Whole class activity Written on BB, or use enlarged copy master or OHP Discussion, agreement on the rule. At a good pace Reasoning, agreement, praising Check other forms of rule: $\text { e.g. BB: } \begin{aligned} 4 \times 322 & =1288 \\ 1028 \div 2 & =514 \\ 882 \div 441 & =2 \end{aligned}$
2	Secret numbers I will think of a number and describe it. You must work it out in your Ex. Bks, then show me the number when I say. a) I am thinking of a number. It is 270 less than 3 times 250 . What is the number I am thinking of? Show me . . now! (480) A, tell us how you worked it out. Who did the same? Who did it a different way? etc. BB: e.g. $3 \times 250=3 \times 200+3 \times 50=600+150=750$ b) I am thinking of a number. 3 times this number is 270 more than 480. What is the number I am thinking of? Show me . . now! (250) B, tell us how you worked it out. Who did the same? Who did it a different way? etc. $\begin{gathered} \text { BB: e.g. } 3 \times \square=480+270=680+20+50 \text { or } \begin{aligned} & 480 \\ &=750 \\ & \underline{270} \\ & \square=750 \div 3=600 \div 3+150 \div 3 \\ &=200+50=\underline{250} \end{aligned} \end{gathered}$	Whole class activity, but individual work in calculating T repeats slowly Give Ps time to do calculations in Ex. Bks. Responses written on scrap paper or 'slates. Reasoning, agreement, praising (Or all done as a whole class activity, with Ps dictating what T should write on $B B$) Extra praise if Ps might notice connection with, or use results from, part a), e.g. $\begin{aligned} & (480+270) \div 3=\underline{250} \\ & 750 \end{aligned}$ Feedback for T
3	Sequences T writes first 3 terms of a sequence on BB . Ps continue it and give the rule (by coming to BB or dictating to T) explaining reasoning. Class agrees/disagrees. a) $\mathbf{4}, \mathbf{1 2}, \mathbf{3 6},[108,324,972,(2916, \ldots)] \quad$ Rule: $\times 3$ Reasoning: e.g. $36 \times 3=30 \times 3+6 \times 3=90+18=\underline{108}$ b) $\mathbf{2 , 8} \mathbf{8}, \mathbf{3 2},[128,512,(2048, \ldots)] \quad$ Rule: $\times 4$ Reasoning: e.g. $128 \times 4=400+80+32=480+20+12=\underline{512}$ $512 \times 4=2000+40+8=\underline{2048}$ c) $\mathbf{1 5 3 6}, \mathbf{7 6 8}, \mathbf{3 8 4},[192,96,48,24,12,6,3,(1$ and a half, $\ldots)]$ Rule: $\div 2$ (or every following term is half of previous term). Reasoning: e.g. $384 \div 2=284 \div 2+100 \div 2=142+50=\underline{192}$	Whole class activity Reasoning, agreement, praising. Details written on BB where needed. or $\begin{array}{rr} 900 \times 3= & 2700 \\ 70 \times 3= & 210 \\ 2 \times 3= & 6 \\ \hline 972 \times 3= & 2916 \end{array}$ In c) Ps might calculate the first two differences: $\begin{aligned} 1536-768 & =768 \\ 768-384 & =384 \end{aligned}$ and realise the terms are halved.

		Lesson Plan 110

D	Mental calculation Multiplication. Puzzles Problems involving crossing tens								Lesson Pla
Activity 1	Mental practice Listen carefully and show me only the answer when I say. Try to work it out in your head but you can write it down if you need to. T says operation and Ps show result on command. Ps who answered correctly explain to those who did not. $\begin{array}{ll}\text { a) What number is } 20 \text { times } 15 \text { ? } & \text { Show me . . now! } \\ \text { b) What number is } 3 \text { times } 280 \text { ? } & \text { Show me . . now! } \\ \text { c) What number is } 1 \text { fifth of } 250 \text { ? } & \text { Show me . . now! } \\ & 3 \text { min }\end{array}$								Notes Whole class activity Rough work and results written on scrap paper or slates. BB: e.g. a) $20 \times 15=2 \times 150=\underline{300}$ b) $3 \times 280=600+240=\underline{840}$ c) $250 \div 5=\underline{50}$ Reasoning, agreement, praising
2	Puzzle The same shape stands for the same whole hundred. The sum of each row and column is 1000 . What are the missing numbers? BB: or Ps come to BB to explain reasoning. Class checks that they are correct. Accept trial and error but encourage logical reasoning, e.g. C2: $3 \times \square<1000$, so possible hundreds are 100, 200 or 300 C4: $3 \times \bigcirc<1000$, so possible hundreds are also 100,200 or 300 R2: $2 \times \square+2 \times \bigcirc=1000$, so $\square+\square=500$ so possible hundreds for either are 200 or 300 . $\text { R1: If } \square+\bigcirc=500 \text {, then } \triangle+\square=1000-500=500 \text {. }$ They must be different from 200 and 300 , so the only possible hundreds for either are 100 and 400. There are two possible solutions, depending on how the pairs of possible numbers are allocated (as shown above)								Whole class discussion Drawn on BB or use enlarged copy master or OHP Give Ps a minute to think about how to solve it and to discuss with their neighbours. Reasoning, agreement, checking, praising If Ps do not know how to solve it, T gives hints. [Using multiplication to solve a problem]
3	Book 3, page 111 Q. 1 Read: Complete the table. (Do the calculations in your exercise book if you need to.) Make sure that Ps understand what each column/row means. Review at BB with whole class Ps dictate results to T, explaining reasoning where necessary. Class agrees/disagrees. Mistakes corrected. Solution:								Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, self-correction, praising Feedback for T Details, e.g. $\begin{aligned} 450 \times 6 & =2400+300 \\ & =2700 \end{aligned}$

BK3		Lesson Plan 111
Activity 4	Book 3, page 111 Q. 2 Read: Fill in the missing numbers. What is wrong with this puzzle? (No rule is given and it cannot be worked out as there is no completed section.) What could the rule be? T asks several Ps what they think. Let's use the rule that in each segment, the number in the outer ring is the product of the number in the inner ring multiplied by the number in the circle. Review at BB with whole class. Ps come to BB or dictate results to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) b) c)	Notes Whole class discussion to start Drawn on BB or use enlarged copy master or OHP Ask several Ps what they think. Praise all contributions Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising Details given if problems, e.g. $\begin{aligned} 1620 \div 4 & =1600 \div 4+20 \div 4 \\ & =400+5=405 \end{aligned}$
5	Find the mistakes This is how Little Ass did his multiplications. Let's check them by estimating first, then finding his mistakes and correcting them. Ps come to BB to estimate by rounding to the nearest 10 or 100 , as appropriate. (Some mistakes are obvious from the estimation, but some can only be found by doing the whole calculation.) Ps cross out mistakes and write correction below, explaining reasoning. Class agrees/disagrees. BB: a) $\begin{aligned} & E: 60 \times 3=180 \\ & \frac{6.1 \times 3}{19} \times\end{aligned}$ d) $\begin{gathered}E: 200 \times 3=600 \\ \left.\begin{array}{r}170 \times 3 \\ 5 \\ \hline 18\end{array}\right]\end{gathered}$ E: $500 \times 3=1500$ b) 5 0 2 \times 1 5 6 1 5 0 25 min	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, correcting, agreement, praising Encourage Ps to explain using place values. e.g. 316×4 : $\begin{aligned} & 4 \times 6 \mathrm{U}=24 \mathrm{U}=2 \mathrm{~T}+\underline{4} \mathrm{U} \\ & 4 \times 1 \mathrm{~T}=4 \mathrm{~T}, 4 \mathrm{~T}+2 \mathrm{~T}=\underline{6} \mathrm{~T} \\ & 4 \times 3 \mathrm{H}=12 \mathrm{H}=\underline{\mathrm{T}}+\underline{2} \mathrm{H} \end{aligned}$ Agree that estimating can give only a rough idea of the answer. To check properly, the whole calculation should be done again.
6	Calculation practice a) BB: $804 \quad 604 \quad 624824$ Which of these numbers is twice the sum of 273 and 139? (824) Ps do calculations in any way they choose in Ex. Bks, then sit up with arms folded when ready. T points to each number in turn and Ps stand up if they think it is correct (or Ps can show on 'slates' on command). A, how did you work it out? Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. $\text { e.g. } 2 \times(273+138)=2 \times 412=\underline{824} \text { or } \begin{array}{r} 273 \\ \\ +\underline{139} \\ \underline{412} \end{array} \underline{\underline{824}} \times 2$ Deal with a) and b) in a similar way.	Whole class activity but Ps do calculations in Ex. Bks (or on scrap paper, slates, etc.) In unison. In good humour! Reasoning, agreement, praising Deal with all methods used. Class decides whether each method is valid.

BKB	R: Mental calculation C: Problems in context using multiplication E: Direct proportion. Multiplication, crossing tens	$\begin{gathered} \text { Lesson Plan } \\ 112 \end{gathered}$
Activity 1	Making numbers T sticks 4 number cards on BB: How many 3-digit numbers can we make from these numbers? How could we do it? (e.g. start at smallest possible number and list in increasing order.) T writes what Ps dictate. Elicit that there are 4 possible hundreds digits, that for every hundreds digit there are 3 possible tens digits, and that for every tens digit there are 2 possible units digits, i.e. there are $4 \times 3 \times 2=\underline{24}$ possible 3-digit numbers. We could show the possibilities for each hundred like this. It is called a tree diagram. T starts off drawing the diagrams, then Ps help.	Notes Whole class activity Discussion on strategy for solution. Ps might remember similar activity in Lesson 119. Encourage logical listing, as this makes sure than no numbers are repeated or left out. At a good pace Discussion, agreement, praising When diagrams are drawn, T could point to a number in list and Ps find it on the diagram.
2	Problems 1 Listen carefully and think how you would solve these problems. Which operation should we write? (Ps can write data and operations in Ex. Bks first before dictating to T.) A, what do you think we should write? Who agrees? Who knows another way to do it? etc. Let's say the answer as a sentence. a) Lisa has collected 148 stamps and Emma has collected 4 times that amount. How many stamps does Emma have? BB: Plan: Lisa: 148 (stamps) Emma: 148×4 (stamps) $\begin{gathered} \frac{148}{592} \\ \\ \\ \frac{430}{592} \\ \underline{160} \\ \underline{40} \end{gathered}$ b) Andrew has 148 marbles and Vicky has 4 times that amount. How many marbles do they have altogether? BB: Plan: A: 148 (marbles) V: 4×148 $\mathrm{V}+\mathrm{A}: 148+4 \times 148=148+592(\text { or }=5 \times 148)$ Answer: They have 740 marbles altogether.	Whole class activity T repeats slowly while Ps think. Ps suggest plan and method of calculation. Ps work at BB or dictate to T. Reasoning, agreement, praising Class says answer in unison. Reasoning, agreement, praising
3	Problems 2 Listen carefully, write the data and do the calculation in your Ex. Bks. Show me your result when I say (on scrap paper or on 'slates'). a) A farmer is putting his wheat into sacks. Each sack can hold 70 kg of wheat. How much wheat does the farmer have if he fills 21 sacks? Show me . . . now! (1470 kg) B, explain how you worked it out. Who did the same? Who did it a different way? etc. BB: e.g. $21 \times 70 \mathrm{~kg}=210 \times 7 \mathrm{~kg}=\underline{1470 \mathrm{~kg}}$ Answer: He has 1470 kg of wheat.	Individual work, monitored, helped Give Ps time to think and do the calculation. In unison Reasoning, agreement, praising. Discuss all methods used and mistakes.

B \mathbf{B}^{3}		Lesson Plan 112
Activity 3	(Continued) b) A spider has 8 legs. How many legs do 205 spiders have? Show me . . . now! (1640) C, explain to us how you worked it out. Who did the same? etc. BB: $205 \times 8=200 \times 8+5 \times 8=1600+40=\underline{1640}$ or $\frac{205}{1640} \times 8$ Answer: 205 spiders have 1640 legs. c) A fish has no legs. How many legs do 978 fish have? Show me . . . now! (0) D, what calculation did you write? e.g. BB: $978 \times 0=\underline{0}$ Answer: 978 fish have no legs. How many tails would 978 fish have? (978) \qquad 19 min	Notes In unison Reasoning, agreement, praising Ps give answer in a sentence. In unison Reasoning, agreement, praising Ps give answer in a sentence. Ps shout out in unison.
(4	Problems 3 Listen carefully and think how you would solve these problems. If you think the answer is 'Yes', clap your hands; if 'No', put your hands on your heads when I say. a) Joe had 1200 cabbage plants. He planted them in rows of 193. Did Joe have enough cabbage plants for 6 rows? Show me . . . now! (Yes) Ps who answered correctly explain. BB: $1200 \div 6=200>193$; or $193 \times 6=1158<2000$ So Joe had enough cabbage plants. How many would he have left over? b) Sammy Snail can move 4 cm in 1 minute. Is it possible that he could move 630 cm in 156 minutes? Show me . . . now! (No) Ps who answered correctly explain. BB: $156 \times 4 \mathrm{~cm}=400+200+24(\mathrm{~cm})$ (or as shown opposite) $=624 \mathrm{~cm}<630 \mathrm{~cm}$ So Sammy Snail could not move 630 cm in 156 minutes. How many more minutes would he need? (1 and a half to move 6 cm) 24 min	Whole class activity, but Ps try out problems first in Ex. Bks. T repeats slowly. Ps respond in unison. Reasoning, agreement, praising Show long form if problems. Ps shout out in unison. T repeats slowly Ps respond in unison.
5	Book 3, page 112 Q. 1 a) Read: How many triangles can you see in this diagram? T asks several Ps what they think. P points to them. Agree that there are $\underline{5}$ triangles (4 small +1 large). b) Read: How many triangles would you see in i) 51 of these diagrams ii) 102 of these diagrams? Ps do calculations in grids in $P b s$, then write the answer. Review with whole class. Mistakes corrected. Solution: a) \qquad b) \qquad Answer: 255 triangles 510 triangles	Whole class activity Diagram drawn on BB Discussion, agreement Individual work, monitored Encourage Ps to use rulers to draw the horizontal lines. Reasoning, agreement, self-correction, praising Extra praise if Ps notice that $102=2 \times 51$

B		Lesson Plan 112
Activity 6	Book 3, page 112 Q. 2 a) Read: How many circles make this teddy bear's head? Clap your hands the same number of times. (6) b) Read: How many circles would you need to draw to make i) 72 teddy bear heads ii) 105 teddy bear heads? Ps do calculations in grids in $P b s$, then write the answer. Review with whole class. Mistakes corrected. Solution: a) b) Answer: 432 circles 630 circles	Notes Whole class activity Diagram drawn on BB In unison. Praising Individual work, monitored Encourage Ps to use rulers to draw the horizontal lines. Reasoning, agreement, self-correction, praising
7	Book 3, page 112 Q. 3 Read: There are 24 hours in 1 day. How many hours are there in: a) 1 week b) 4 weeks? Ps do calculations in grids in $P b s$, then fill in the missing values in the equations. Review at BB with whole class. Ps explain reasoning in detail. Who did it a different way? etc. Mistakes corrected. Solution: a) b) 1 week $=\underline{7}$ days $=\underline{168}$ hours, 4 weeks $=\underline{28}$ days $=\underline{672}$ hours	Individual work, monitored, helped Encourage Ps to use rulers to draw the horizontal lines. Reasoning, agreement, self-correction, praising Accept any correct calculation. e.g. $\begin{aligned} & \text { b) } \begin{array}{r} 24 \times 7 \times 4=24 \times 28 \\ =12 \times 56=6 \times 112 \\ \begin{array}{rl} \frac{1}{6} 7 & 1 \\ 1 & 2 \\ \hline \end{array} \end{array} . \end{aligned}$
8	Book 3, page 112, Q. 4 Read: Is it possible to answer the questions with the data given? T explains that Ps do not need to work out the answer to each problem, just to decide whether they could answer it with the information given. Deal with one question at a time. T chooses a P to read out the question. Give Ps a minute to think about it. Then Ps write YES or NO on scrap paper or slates and show on command (or use pre-agreed actions). Ps who think that they can work out the answer come to BB to do it, thus confirming whether the problem can or can't be solved. Solutions: a) A car goes at a steady speed and covers 125 m in 1 minute. What distance does it cover in 8 minutes? b) Jenny weighed herself and her weight was 29 kg . What is the total weight of 9 children? c) Uncle Andrew put fence posts an equal distance apart. He used 9 fence posts. How long was the fence? d) A centipede has 478 legs. How many legs do 3 centipedes have? [YES] N.B. Accept any correct method of calculation in a) and d).	Whole class activity (Or individual work, reviewed with whole class) Responses shown in unison. Discussion, reasoning, agreement, praising In good humour! a) b) Each child might not weigh the same as Jenny. c) We need to know how far apart the fence posts were. d) 1434 legs

