BK	R: Mental calculations C: Hundredths and percentage. Multiplication of fractions by natural numbers E: Ratio and percentage	$\begin{gathered} \text { Lesson Plan } \\ 89 \end{gathered}$
Activity 1	Hundredths and percentage Ps each have a 10 cm by 10 cm square grid on desks and T has larger version for demonstration. T asks some questions about the square and writes Ps' answers on BB. What length are the edges of the square? Ps measure with rulers. $(10 \mathrm{~cm})$ What is the area of the square? $\left(A=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}\right)$ What is the area of 1 grid square? $\left(1 \mathrm{~cm}^{2}\right)$ If we think of the area of the large 10 cm square as 1 unit, what part of the unit is the area of each grid square? (1 hundredth) BB: [Percentages added later - see below] a) Colour blue 1 half of the area of your large square. How many grid squares have you coloured blue? (50) What area have you coloured blue? ($50 \mathrm{~cm}^{2}$) How many hundredths have you coloured blue? (50 hundredths) T writes an equation to show the equivalent fractions. (BB) b) Colour red 1 fifth of the area of your large square. How many grid squares have you coloured red? (20) What area have you coloured red? $\left(20 \mathrm{~cm}^{2}\right)$ How many hundredths did you colour red? (20 hundredths) Who can write an equation to show the equivalent fractions? (BB) c) Colour green an area of $17 \mathrm{~cm}^{2}$. How many grid squares have you coloured green? (17) How many hundredths did you colour green? (17 hundredths) Who can write it as a fraction? (BB) d) What part of the large square have you coloured altogether? What operation should we write? (addition) P comes to BB or dictates to T. Agree that 100 should be the common denominator. What area have you coloured altogether? $\left(A=87 \mathrm{~cm}^{2}\right)$ What part of the square is not coloured? (BB) $\left[A=13 \mathrm{~cm}^{2}\right]$ T: We also call 1 hundredth one percent and write it like this. (BB) Who can write the coloured parts of the square as percentages? Ps come to BB to write percentages on diagram (as above). Class points out errors. What percentage is the area of the whole unit square? (100\%) T: 'Per cent' means 'out of 100 ', so when we talk about percent we mean that the whole unit has been divided into 100 equal parts, so each part is 1 hundredth or 1 out of 100 or 1 percent.'	Notes Whole class activity but individual colouring Drawn on BB or use enlarged copy master or OHP for demonstration only! Ps should have accurate 10 cm squares on desks (or use copy master) Discussion, agreement, praising BB: $A=100 \mathrm{~cm}^{2}=1$ unit Area of grid square $=1 \mathrm{~cm}^{2}$ $1 \mathrm{~cm}^{2}=\frac{1}{100}$ of 1 unit Ps shout out in unison or T chooses Ps at random. BB: $\frac{1}{2}=\frac{50}{100}$ $\frac{1}{5}=\frac{20}{100}$ BB: $\frac{17}{100}$ BB: Part coloured: $\frac{50}{100}+\frac{20}{100}+\frac{17}{100}=\frac{87}{100}$ BB: Part not coloured: $\frac{100}{100}-\frac{87}{100}=\frac{13}{100}$ BB: 1 percent: 1% $\begin{aligned} \frac{1}{100} & \rightarrow 1 \% \\ 1 \text { unit }=\frac{100}{100} & \rightarrow 100 \% \end{aligned}$

BK5		Lesson Plan 89
Activity 2 Extension	Book 5, page 89 Q. 1 a) Read: Use a ruler to draw the required parts of this 10 cm line. Deal with one part at a time or set a time limit. Elicit that BB: $10 \mathrm{~cm}=100 \mathrm{~mm}$. Ps calculate lengths, measure, draw and write lengths below line segments. Review with whole class. Ps come to BB or dictate lengths to T, explaining reasoning. Class agrees/disagrees. Mistakes or inaccuracies corrected. Solution: b) Read: Express the fractions in hundredths and percentages. Ps come to BB to fill in boxes, explaining reasoning, with T's help in converting the fifth and quarter to hundredths. Ps work in Pbs too. Elicit that the number of hundredths (i.e. the number of mm) is the same as the percentage. Solution: i) $\frac{1}{5}=\frac{20}{100} \rightarrow \underline{20 \%}$ ii) $\frac{1}{4}=\frac{25}{100} \rightarrow \underline{25 \%}$ iii) $\frac{85}{100} \rightarrow \underline{85 \%}$ iv) $\frac{41}{100}$ $\rightarrow \underline{41 \%}$ Let's write additions and subtractions using these fractions. Ps come to BB or dictate to T , explaining reasoning. Class points out errors. What is the result as a percentage? BB: e.g. $\begin{aligned} & \frac{1}{5}+\frac{1}{4}=\frac{4+5}{20}=\frac{9}{20}=\frac{45}{100} \rightarrow 45 \% \\ & \frac{85}{100}-\frac{1}{4}=\frac{85-25}{100}=\frac{60}{100} \rightarrow 60 \% \quad\left(=\frac{3}{5}\right) \quad \text { etc. } \end{aligned}$	Notes Individual work, monitored, helped, corrected Drawn on BB or use enlarged copy master (demonstration only) Agreement, self-correction, praising (or T has solution already prepared and uncovers each line segment as it is dealt with) BB: $10 \mathrm{~cm}=100 \mathrm{~mm}$ i) $100 \mathrm{~mm} \div 5=\underline{20 \mathrm{~mm}}$ ii) $100 \mathrm{~mm} \div 4=\underline{25 \mathrm{~mm}}$ iii) 85 hundredths: 85 mm iv) 41 hundredths: 41 mm Whole class activity (or individual trial first if Ps wish) Reasoning, agreement, praising T: To change a fraction to a percentage, we first expand it to hundredths. Whole class activity At a good pace Involve several Ps. Reasoning, agreement, praising
3	Problem Listen carefully, do the calculation in your Ex. Bks and show me the answer when I say. a) There are 100 pupils in Year 5 and 27 of them wear glasses. What percentage of pupils in $Y 5$ do not wear glasses? Show me the answer . . . now! (73\%) P answering correctly explains at BB to Ps who were wrong. Mistakes discussed and corrected. BB: $1-\frac{27}{100}=\frac{100}{100}-\frac{27}{100}=\frac{73}{100} \rightarrow 73 \%$	Whole class activity but individual calculation T repeats slowly to give Ps time to think. In unison on slates or scrap paper Reasoning, agreement, praising

$B K 5$		Lesson Plan 89
Activity 3	(Continued) b) If the names of all the pupils were put into a bag and one name was taken out at random, which outcome has more chance of happening: 1) the pupil wears glasses; or 2) the pupil does not wear glasses? Show me . . now! (2) P answering correctly explains to Ps who were wrong. T helps with wording if necessary. Probability of the outcome: 1) the P wears glasses: 27 out of 100 or $\frac{27}{100}$ (or 27%) 2) the P does not wear glasses: 73 out of 100 or $\frac{73}{100}$ (or 73%) T: We say that outcome 1) has a probability of 27% and outcome 2) has a probability of 73%.	Notes T repeats slowly to give Ps time to think. In unison Reasoning, agreement, praising Elicit that if an outcome is: - certain to happen, its probability is $1 \rightarrow 100 \%$; - impossible, its probability is $0 \rightarrow 0 \%$.
4	Multiplication of fractions a) Here is an 8 cm strip and here is a 2 cm strip. How many times is 2 cm contained in 8 cm ? (4 times) If we think of 8 cm as 1 unit, what part of the unit is 2 cm ? BB: So how many times is 1 quarter contained in 1 ? (4 times) b) Here is an 9 cm strip and here is a 3 cm strip. How many times is 3 cm contained BB: in 9 cm ? (3 times) If we think of 9 cm as 1 unit, what fraction of the unit is: i) a 3 cm strip $\left(\frac{1}{3}\right)$ ii) two 3 cm strips $\left(\frac{2}{3}\right)$ iii) three 3 cm strips $\left(\frac{3}{3}=1\right)$ iv) five 3 cm strips? $\left(\frac{5}{3}=1 \frac{2}{3}\right)$ c) Let's write these additions as multiplications. Ps come to BB or dictate to T. Class agrees/disagrees. i) $\begin{aligned} & \frac{1}{4}+\frac{1}{4}=\frac{1}{4} \times 2=\frac{2}{4}\left(=\frac{1}{2}\right), \quad \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4} \times 3=\frac{3}{4} \\ & \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4} \times 4=\frac{4}{4}=1, \text { etc. } \end{aligned}$ ii) $\frac{1}{3}+\frac{1}{3}=\frac{1}{3} \times 2=\frac{2}{3}, \quad \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{3} \times 3=\frac{3}{3}=1$ $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{3} \times 4=\frac{4}{3}=1 \frac{1}{3}$, etc. iii) $\frac{2}{9}+\frac{2}{9}=\frac{2}{9} \times 2=\frac{4}{9}, \quad \frac{2}{9}+\frac{2}{9}+\frac{2}{9}=\frac{2}{9} \times 3=\frac{6}{9}=\frac{2}{3}$	Whole class activity Strips stuck on BB (or use Cuisennaire rods or multilink cubes) T writes $\frac{1}{4}$ beside 2 cm strip on BB. Agreement, praising Ps dictate fractions to T who writes on BB. Written on BB or SB or OHT At a good pace Agreement, praising Rest of Ps write operations in Ex. Bks. at the same time. Let's see if you can calculate the multiplication without writing the addition? BB: $\frac{2}{9} \times 4=\left(\frac{8}{9}\right)$ $\frac{2}{9} \times 5=\left(\frac{10}{9}=1 \frac{1}{9}\right)$

BKS		Lesson Plan 89
Activity 5	Book 5, page 89 Q. 2 Read: Use the diagrams to help you do the calculations. Set a time limit. Ps colour the fractions on the grids first, then do the mulitplications (with or without writing the matching additions). Review with whole class. Ps come to BB to colour diagrams and complete the multiplications, explaining reasoning. Class agrees/ disagrees. If problems or disagreement, write as an addition. Solution: a) $\frac{2}{7} \times 3=\frac{6}{7}$ b) $\frac{2}{3} \times 2=\frac{4}{3}=1 \frac{1}{3}$ c) $\frac{2}{3} \times 3=\frac{6}{3}=2$	Notes Individual work, monitored, helped Grids drawn on BB or SB or OHT Ps colour each fraction in a different colour (as in diagrams). Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who realised that they needed to draw another grid square in part d). Feedback for T
6	Book 5, page 89 Q. 3 Read: In your exercise book, write each sum as a multiplication, then do the calculation. Set a time limit. Ps can draw digrams to help them. Review with whole class. Ps come to BB or dictate to T, saying the whole equation. Class agrees/disagrees. Thelps Ps to draw diagrams on BB as a check. Mistakes discussed and corrected. Solution: a) $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2} \times 3=\frac{3}{2}=1 \frac{1}{2}$ b) $\frac{2}{7}+\frac{2}{7}+\frac{2}{7}+\frac{2}{7}+\frac{2}{7}=\frac{2}{7} \times 5=\frac{10}{7}=1 \frac{3}{7}$ c) $\frac{3}{8}+\frac{3}{8}+\frac{3}{8}+\frac{3}{8}+\frac{3}{8}+\frac{3}{8}=\frac{3}{8} \times 6=\frac{18}{8}=\frac{9}{4}=2 \frac{1}{4}$ d) $\left(-\frac{1}{3}\right)+\left(-\frac{1}{3}\right)=-\frac{1}{3} \times 2=-\frac{2}{3}$	Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection, praising Elicit that if the numerator and denominator are divided by the same number, the value of the fraction does not change. Feedback for T

B		Lesson Plan 89
Activity 7	Book 5, page 89 Q. 4 Read: In your exercise book, write each multiplication as an addition, then do the calculation. Set a time limit. Review with whole class. Ps come to BB or dictate to T, saying the whole equation. Class agrees/disagrees or points out further simplification where possible. Mistakes discussed and corrected. Solution: a) $\frac{3}{4} \times 4=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{3}{4}=\frac{12}{4}=3$ b) $\frac{2}{3} \times 5=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{10}{3}=3 \frac{1}{3}$ c) $\frac{4}{7} \times 6=\frac{4}{7}+\frac{4}{7}+\frac{4}{7}+\frac{4}{7}+\frac{4}{7}+\frac{4}{7}=\frac{24}{7}=3 \frac{3}{7}$ d) $\frac{2}{9} \times 3=\frac{2}{9}+\frac{2}{9}+\frac{2}{9}=\frac{6}{9}=\frac{2}{3}$ 40 min	Notes Individual work, monitored (helped) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Show on diagrams or models or number line if problems or disagreement. Feedback for T $\begin{aligned} & \text { e) } \frac{7}{6} \times 12=\frac{7}{6}+\frac{7}{6}+\frac{7}{6} \\ & +\frac{7}{6}+\frac{7}{6}+\frac{7}{6}+\frac{7}{6}+\frac{7}{6}+\frac{7}{6} \\ & +\frac{7}{6}+\frac{7}{6}+\frac{7}{6}=\frac{84}{6}=\underline{14} \end{aligned}$
8	Book 5, page 89, Q. 5 Read: In your exercise book, calculate the sums and differences in two different ways. Let's look crefully at part a). What do you notice? (Denominators are equal so only the numerators need to be dealt with.) If the calculation was BB: $(3+7) \times 2$ which two ways could we do it? Two Ps come to BB to show them. BB: 1) $(3+7) \times 2=10 \times 2=\underline{20}$ or 2$)(3+7) \times 2=3 \times 2+7 \times 2=6+14=\underline{20}$ Agree that that both are correct. Let's calculate the fractions in these two different ways. Ps come to BB to or dictate what T should write (with T's help where needed). Class agrees/disagrees. Ps write the two ways in Ex. Bks. Solution: e.g. a) 1) $\left(\frac{3}{5}+\frac{7}{5}\right) \times 2=\frac{10}{5} \times 2=2 \times 2=4$ 2) $\left(\frac{3}{5}+\frac{7}{5}\right) \times 2=\frac{3}{5} \times 2+\frac{7}{5} \times 2=\frac{6}{5}+\frac{14}{5}=\frac{20}{5}=\underline{4}$ b) 1) $\left(\frac{6}{7}-\frac{5}{3}\right) \times 3=\frac{18-35}{21} \times 3=-\frac{17}{21} \times 3=-\frac{51}{21}=-\frac{17}{7}$ 2) $\left(\frac{6}{7}-\frac{5}{3}\right) \times 3=\frac{6}{7} \times 3-\frac{5}{3} \times 3=\frac{18}{7}-5=\frac{18-35}{7}=-\frac{17}{7}$ c) 1) $\left(\frac{1}{2}+\frac{7}{3}\right) \times 6=\frac{3+14}{6} \times 6=\frac{17}{6_{1}} \times 6^{1}=\frac{17}{1}=\underline{17}$ 2) $\left(\frac{1}{2}+\frac{7}{3}\right) \times 6=\frac{1}{2} \times 6+\frac{7}{3} \times 6=\frac{6}{2}+\frac{42}{3}=3+14=\underline{17}$	Whole class activity Written on BB or SB or OHT Discussion on what the different ways could be. (operation in brackets first) (multiplication done first) Reasoning, agreement, praising Accept any valid method. T might show: b) $-\frac{17}{27} \times \mathcal{3}^{1}=-\frac{17}{7}$ and ask if it is correct. $\begin{aligned} & =-\frac{23}{7} \\ & =-\frac{2}{7} \end{aligned}$ T shows how to cancel out the two sixes.

$B K E$		Lesson Plan 90
Activity 2	(Continued) Solution: a) $\frac{4}{5} \times 2=\frac{8}{5}=1 \frac{3}{5}$ b) $\frac{3}{8} \times 4=\frac{12}{8}=\frac{3}{2}=1 \frac{1}{2}$ or $\frac{3}{8} \times 4=\frac{3}{2}=1 \frac{1}{2}$ T shows $\frac{3}{8} \times 4^{1}=\frac{3}{2}=1 \frac{1}{2}$ c) $\frac{3}{4} \times 8=\frac{24}{4}=6 ; \quad$ T shows: $\frac{3}{A_{1}} \times 8^{2}=\frac{6}{1}=6$ d) $\frac{5}{12} \times 8=\frac{40}{12}=\frac{10}{3}=3 \frac{1}{3}$; or $\mathrm{T}: \frac{5}{12} \times 8^{2}=\frac{10}{3}=3 \frac{1}{3}$ e) $\frac{5}{8} \times 12=\frac{60}{8}=\frac{15}{2}=7 \frac{1}{2}$; or $\mathrm{T}: \frac{5}{8_{2}} \times 12^{3}=\frac{15}{2}=7 \frac{1}{2}$ f) $\frac{5}{11} \times 0=0$ (As any number multiplied by zero is zero.)	Notes Accept any valid method. (Multiplying the numerator by the natural number.) (Dividing the denominator by the natural number) (Dividing the denominator and the natural number by a common factor.) T points out that this last method is used when the denominator is not exactly divisible by the natural number but they have factors in common. Ps say which method thy like best.
3	Solving equations Let's find the numbers which can be written instead of the letters to make the equation is true. Ps come to BB or dictate to T , explaining reasoning by showing that their result is correct by substitution. Class agrees/disagrees. BB: a) $\frac{2}{7} \times a=\frac{10}{7}$; $a=\underline{5}, \text { as } \frac{2}{7} \times \underline{5}=\frac{10}{7}$ b) $\frac{3}{5} \times b=3\left(=\frac{15}{5}\right) ; \quad b=\underline{5}$, as $\frac{3}{5} \times \underline{5}=\frac{15}{5}=3$ c) $c \times 4=\frac{12}{17}$; $c=\frac{3}{17}$, as $\frac{3}{17} \times 4=\frac{12}{17}$	Whole class activity At a good pace Reasoning, agreeement, praising Accept trial and error too: e.g a) $\frac{2}{7} \times a=\frac{10}{7}$ If $a=4, \frac{2}{7} \times 4=\frac{8}{7}<\frac{10}{7}$ so 4 is too small, etc. Have no expectations yet about Ps using division, but give extra praise if they do.
4	Book 5, page 90 Q. 2 Read: Fill in the missing numbers. Check that they make the statements true. Set a time limit or deal with one row at a time. Review with whole class. Ps come to BB or dictate to T, explaining how they worked out the missing number. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{2}{5} \times 2=\frac{4}{5}$ b) $3 \times \frac{5}{9}=\frac{15}{9}\left(=\frac{5}{3}=1 \frac{2}{3}\right)$ c) $\frac{3}{10} \times 10=\frac{30}{10}=3$ d) $\frac{5}{8} \times 2=\frac{5}{4}\left(=1 \frac{1}{4}\right)$ e) $\frac{5}{6} \times 4=\frac{10}{3}\left(=\frac{20}{6}=3 \frac{1}{3}\right)$ f) e.g. $\frac{5}{3} \times 6=10$	Individual work, monitored Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Accept trial and error, but encourage Ps to reason in a mathematical way. In f), many solutions are possible, e.g. $\frac{5}{2} \times 4, \frac{5}{4} \times 8, \frac{5}{5} \times 10, \text { etc. }$ (i.e. any natural number as the denominator and twice that number as the multiplier)

BKE		Lesson Plan 90
Activity 5	Book 5, page 90 Q. 3 Read: Write each calculation in different ways. Set a time limit. Ask Ps to write at least 2 different ways. Review at BB with whole class. A, come and show us one way. Who agrees? Who can show us another way? etc. In a), T shows the calculation using 'cancellation' if no P has shown it and asks Ps if it is correct. Ps write it in Ex. Bks. Mistakes discussed and corrected. Solution: e.g. a) $\begin{aligned} & \left(\frac{3}{2}+\frac{1}{3}\right) \times 12=\frac{9+2}{6} \times 12=\frac{11}{6} \times 12=\frac{132}{6}=\underline{22} \\ & \begin{aligned} \text { or }\left(\frac{3}{2}+\frac{1}{3}\right) \times 12=\frac{3}{2} \times 12+\frac{1}{3} \times 12 & =\frac{36}{2}+\frac{12}{3} \\ & =18+4=\underline{22} \end{aligned} \\ & \text { or } \quad=\frac{3 \times 12}{2_{1}}+\frac{1 \times 12}{3_{1}}=18+4=\underline{22} \end{aligned}$ b) $\left.\begin{array}{l} \left(\frac{4}{5}-\frac{2}{3}\right) \times 4=\frac{12-10}{15} \times 4=\frac{2}{15} \times 4=\frac{8}{\frac{15}{2}} \\ \text { or }\left(\frac{4}{5}-\frac{2}{3}\right) \times 4=\frac{4}{5} \times 4-\frac{2}{3} \times 4 \end{array}\right)=\frac{16}{5}-\frac{8}{3} .$	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Accept and praise any correct method. Feedback for T
6	Fraction of a fraction This 6 cm strip is 1 unit. BB: 1 a) What part of the unit is the 2 cm strip? (1 third) b) What part of the unit is the 3 cm strip? (1 half) c) What length is half of the 2 cm strip? $(1 \mathrm{~cm})$ What part of the unit is half of the 2 cm strip? BB: $\frac{1}{2}$ of $\frac{1}{3}=\frac{1}{6}$ T : We can write it as a division like this: BB: $\frac{1}{3} \div 2=\frac{1}{6}$ d) What length is 1 third of the 3 cm strip? $(1 \mathrm{~cm})$ What part of the unit is 1 third of the 3 cm strip? BB: $\frac{1}{3}$ of $\frac{1}{2}=\frac{1}{6}$ T : We can write it as a division like this. BB: $\frac{1}{2} \div 3=\frac{1}{6}$ e) What part of the unit is 4 cm ? (2 thirds) What length is 1 quarter of 2 thirds? $(1 \mathrm{~cm})$ What fraction of a unit is 1 quarter of 2 thirds? (1 sixth) Who can write a division about it? BB: $\frac{2}{3} \div 4=\frac{1}{6} \quad\left(=\frac{2}{12}\right)$	Whole class activity Strips drawn (stuck) on BB or use Cuisennaire rods or multi-link cubes Discussion, reasoning, agreement, praising T chooses Ps ar random, or class shouts out in unison. Ps write divisions in Ex. Bks. T writes: BB: $\frac{2}{3} \div 4=\frac{4}{6} \div 4=\frac{1}{6}$ and asks Ps what they think of it.

TK		Lesson Plan 90
Activity 7	Book 5, page 90 Q. 4 Read: Answer each question by writing a division. Use the diagram to help you. What can you tell me about the diagram? (The long rectangle is 1 unit; the unit is divided into 12 equal parts, so each small square is 1 twelfth of a unit.) Set a time limit (or deal with one at a time if Ps are not very able). Review at BB with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Class agrees or disagrees. Mistakes discussed and corrected. Solution: a) What is half of a third? Elicit that 1 third is 4 grid squares. BB: $\frac{1}{2}$ of $\frac{1}{3}=\frac{1}{3} \div 2=\frac{1}{6}$ (2 grid squares) b) What is a third of a quarter? (1 quarter: 3 grid squares) BB: $\frac{1}{3}$ of $\frac{1}{4}=\frac{1}{4} \div 3=\frac{1}{12}$ (1 grid square) c) What is a quarter of a third? (1 third: 4 grid squares) BB: $\frac{1}{4}$ of $\frac{1}{3}=\frac{1}{3} \div 4=\frac{1}{12}$ (1 grid square) d) What is a fifth of 10 twelfths? (10 twelfths: 10 grid squares) BB: $\frac{1}{5}$ of $\frac{10}{12}=\frac{10}{12} \div 5=\frac{2}{12}\left(=\frac{1}{6}\right) \quad$ (2 grid squares) e) What is a third of 3 quarters? (3 quarters: 9 grid squares) BB: $\frac{1}{3}$ of $\frac{3}{4}=\frac{3}{4} \div 3=\frac{1}{4} \quad$ (3 grid squares) f) What is a quarter of 16 twelfths? (16 twelfths: 16 grid squares) BB: $\frac{1}{4}$ of $\frac{16}{12}=\frac{16}{12} \div 4=\frac{4}{12}\left(=\frac{1}{3}\right) \quad$ (4 grid squares)	Notes Individual work, monitored, helped Strips drawn (stuck) on on BB or use Cuisennaire rods or multilink cubes. Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Elicit or point out the two different ways in which we can divide a fraction. 1) We divide the numerator by the divisor and leave the denominator unchanged. [as in d) to f)] 2) We multiply the denomimator by the divisor and leave the numerator unchanged. [as in a) to c)] but do not expect Ps to learn them yet. Extra praise if Ps point out the fractions which can be simplified.
8	Book 5, page 90, Q. 5 a) Read: One third of the unit has been divided into 5 equal parts. Write a division about the part which has been shaded twice. What part of the unit has been shaded twice? (1 fifteenth, as 1 unit has been divided into 15 equal parts, so each part is 1 fifteenth) Who can write a division about it? P comes to BB or dictates to T. Class agrees/disagrees. Ps write division in Pbs too. b) Read: Do the division and show it on the diagram in a). Ps come to BB to shade 2 thirds on the diagram, colour 1 fifth of the shaded part and complete the division. Class agrees/disagrees. c) Read: Do the division. Amend the diagram to show it. Ps come to BB to write the division and explain BB: reasoning by drawing another column and shading. Who can think of another way to write the division? T shows it if no P can think of it.	Whole class activity (or individual trial first if Ps wish) Diagrams drawn on BB or SB or OHT \qquad $\frac{1}{3} \div 5=\frac{1}{15}$ $\begin{aligned} & \frac{2}{3} \div 5=\frac{2}{15} \\ & \frac{4}{3} \div 2=\frac{4 \div 2}{3}=\frac{2}{3}, \text { or } \\ & \frac{4}{3} \div 2=\frac{4}{3 \times 2}=\frac{4}{6}=\frac{2}{3} \end{aligned}$

BKE	R: (Mental) calculation C: Practice with fractions. Division of fractions by natural numbers E: Sequences. Equations and inequalities	$\begin{gathered} \text { Lesson Plan } \\ 91 \end{gathered}$
Activity 1	Fractions practice 1 Study these fractions. Which ones are equal to a whole number? Ps come to BB to circle them, write the whole number below and say the whole equation. Class agrees/disagrees. BB: $\frac{4}{50}\left(\frac{50}{5}\right) \frac{7}{5} \quad \frac{19}{4}\left(\frac{48}{3}\right) \frac{15}{4} \quad \frac{91}{7} \frac{15}{9} \quad \frac{8}{9} \quad \frac{91}{13}$ Let's write an inequality about each of the other fractions, showing the next nearest whole number greater than and less than the fraction. Ps come to BB to write inequalities, explaining reasoning. Class agrees/disagrees. To which whole number is the fraction closest? Ps underline the relevant number. Class agrees/disagrees. BB : $\begin{aligned} & \underline{0}<\frac{4}{50}<1 ; \quad 1<\frac{7}{5}<2 ; \quad 4<\frac{19}{4}<\underline{5} ; \quad 3<\frac{15}{4}<\underline{4} \\ & 1<\frac{15}{0}<\underline{2} ; \quad 0<\frac{8}{0}<\underline{1} \end{aligned}$	Notes Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising BB: $7 \times 13=13 \times 7=91$ (Ps may write inequalities in Ex. Bks first.) Show on number line or change to equivalent fractions with common denominators if problems or disagreement. Feedback for T
2	Fractions practice 2 Let's work out the perimeter and BB: area of this rectangle. Ps come to BB or dictate what T should write. Class points out errors or suggests another way to do the calculation. BB: e.g. $\begin{gathered} P=(a+b) \times 2=\left(3+1 \frac{1}{2}\right) \times 2=4 \frac{1}{2} \times 2=8+1=\underline{9} \text { (units) } \\ A=a \times b=3 \times 1 \frac{1}{2}=3 \times\left(1+\frac{1}{2}\right)=3+\frac{3}{2}=3+1+\frac{1}{2}=4 \frac{1}{2} \\ \text { or } 3 \times 1 \frac{1}{2}=3 \times \frac{3}{2}=\frac{9}{2}=4 \frac{1}{2} \text { (sqare units) } \end{gathered}$	Whole class activity Drawn on BB or SB or OHT Elicit the general formula for perimeter and area first, then Ps replace the letters with numbers. Agreement, praising Feedback for T
3	Fractions practice 3 If possible, T has a piece of exciting ribbon to show to class! If 1 metre of this ribbon costs $£ \frac{3}{4}$, how much would these amounts cost? Ps come to BB to write a multiplication, or dictate to T, explaining reasoning. Class points out errors. How can we write the result as a decimal? (Change to hundredths first, as there are 100 p in $£ 1$.) BB: e.g. a) 2 metres: $£ \frac{3}{4} \times \mathscr{2}_{2}^{1}=£ \frac{3}{2}=£ 1 \frac{1}{2}\left[=£ 1+£ \frac{50}{100}=\underline{£ 1.50]}\right.$ b) 3 metres: $£ \frac{3}{4} \times 3=£ \frac{9}{4}=£ 2 \frac{1}{4}\left[=£ 2+£ \frac{25}{100}=£ \underline{£ 2.25]}\right.$ c) 4 metres: $£ \frac{3}{4_{1}} \times \mathbb{4}^{1}=£ 3 \quad[=\underline{£ 3.00}]$	Whole class activity Resoning, agreement, praising (Once Ps understand what to do, responses could be written on scrap paper or slates and shown in unison.) Reasoning, agreement, praising Elicit that: $£ \frac{3}{4}=£ \frac{75}{100}=£ 0.75$ Extra praise if Ps notice relationships: e.g. $\begin{aligned} \text { c) } 2 \mathrm{~m} & \rightarrow £ 1.50 \\ 4 \mathrm{~m} & \rightarrow £ 1.50 \times 2=\underline{£ 3.00} \end{aligned}$

BKK		Lesson Plan 91
Activity 6	Book 5, page 91 Q. 2 Read: Solve the equations and inequality. Check your solutions. What does solve mean? (Work out which numbers the letters represent to make the statement true.) Set a time limit or deal with one at a time. Review with the whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly come to BB or dictate to T , explaining reasoning and checking by substitution. Who thought the same? Who worked it out in a different way? etc. Mistakes discussed and corrected. Solution: a) $x \times 4=\frac{3}{4} ; x=\frac{3}{4} \div 4=\frac{3}{16}$; Check: $\frac{3}{16} \times 4=\frac{12}{16}=\frac{3}{4}$ (The unknown factor of a product can be calculated by dividing the product by the known factor.) b) $y+5 \times y=\frac{12}{5} ; \quad 6 \times y=\frac{12}{5}$, so $y=\frac{12}{5} \div 6=\frac{2}{5}$ Check: $\frac{2}{5}+5 \times \frac{2}{5}=\frac{2}{5}+\frac{10}{5}=\frac{12}{5} \checkmark$ (Reasoning as for a), or as opposite. Stress that whatever we do to one side of an equation we must also do to the other side to keep the equation true.) c) $6 \times \mathrm{z}-\mathrm{z}<\frac{5}{8} ; 5 \times \mathrm{z}<\frac{5}{8}$, so $\mathrm{z}<\frac{5}{8} \div 5 ; \mathrm{z}<\frac{1}{8}$ Check: If we think of the inequality as an equation: BB: $\quad 5 \times z=\frac{5}{8}, z=\frac{1}{8}$ So five times a number which is less than 1 eighth must be less than 5 eighths.	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Accept any valid reasoning, including trial and error but also show methods below. N.B. T should write each line of calculation vertically on BB, with ' $=$ ' and ' $<$ ' signs lined up one below the orther. or If we divide each side of the equation by 6 , the equation still remains true. BB: $6 \times y \div 6=\frac{12}{5} \div 6$ $y=\frac{2}{5}$ or if we divide each side of the inequality by 5 , the inequality still remains true. $\text { BB: } \begin{aligned} 5 \times z \div 5 & <\frac{5}{8} \div 5 \\ z & <\frac{1}{8} \end{aligned}$
7	Book 5, page 91 Q. 3 Read: The 4th, 5th and 6th terms of a sequence are given. Complete the sequence so that the first 10 terms are listed. How many terms must you write before (after) the 3 given? (3 before and 4 after, as $3+3+4=10$) Deal with one part at a time or set a time limit. Review with whole class. Ps come to BB or dictate terms to T, stating the rule they used. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\left(\frac{1}{6}, \frac{1}{3}, \frac{2}{3}\right), \frac{4}{3}, \frac{8}{3}, \frac{16}{3},\left(\frac{32}{3}, \frac{64}{3}, \frac{128}{3}, \frac{256}{3},\right)[\times 2]$ b) $\left(-\frac{1}{7}, \frac{0}{7}, \frac{1}{7}\right), \frac{2}{7}, \frac{3}{7}, \frac{4}{7},\left(\frac{5}{7}, \frac{6}{7}, \frac{7}{7}, \frac{8}{7},\right)\left[+\frac{1}{7}\right]$ c) $\left(-\frac{1}{9}, \frac{0}{1}, \frac{1}{2}\right), \frac{2}{3}, \frac{3}{4}, \frac{4}{5},\left(\frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{8}{9},\right)$	Individual work, monitored, helped Given terms written in middle of BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps notice that: - $\frac{0}{7}=\frac{0}{1}=0$ and in c): - there is no 1 st term, as it is impossible to divide a number by zero - Rule: numerators and denominators increasing by 1 - $0 \leq$ any term < 1

$B K S$		Lesson Plan 91
Activity 7	(Continued) d) $\left(\frac{486}{5}, \frac{162}{5}, \frac{54}{5}\right), \frac{18}{5}, \frac{6}{5}, \frac{2}{5},\left(\frac{2}{15}, \frac{2}{45}, \frac{2}{135}, \frac{2}{405},\right)[\div 3]$ e) $(4,2,1), \frac{1}{2}, \frac{1}{4}, \frac{1}{8},\left(\frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128},\right) \quad[\div 2]$	Notes Elicit that when dividing a fraction by a natural number, either the numerator decreases or the denominator increases.
8	Book 5, page 91 Q. 4 Read: The area of a rectangle is $\frac{80}{3} m^{2}$. The length of a side a) What length is the adjacent side of the rectangle? b) Calculate the perimeter of the rectangle. First elicit the general rule for area and perimeter of a rectangle. BB: $\quad A=a \times b, \quad P=(a+b) \times 2$ Deal with one part at a time or set a time limit. Ps write a plan then do the calculation and check the answer in a) by substituting the values for the letters in the general formula. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: a) $b=A \div a=\frac{80}{3} \div 6=\frac{80}{18}=\frac{40}{9}=4 \frac{4}{9}(\mathrm{~m})$ Answer: The length of the adjacent side of the rectangle is 4 and 4 ninths metres. b) $\begin{aligned} & P=\left(6+4 \frac{4}{9}\right) \times 2=10 \frac{4}{9} \times 2=20+\frac{8}{9}=20 \frac{8}{9}(\mathrm{~m}) \\ & \text { or } P=\left(6+\frac{40}{9}\right) \times 2=\frac{54+40}{9} \times 2=\frac{94}{9} \times 2 \\ & =\frac{188}{9}=20 \frac{8}{9}(\mathrm{~m}) \end{aligned}$ Answer: The perimeter of the rectangle is 20 and 8 ninths metres.	Idividual work, monitored, helped (or whole class activity, with Ps suggesting what to do first and how to continue) Drawn on BB or SB or OHT BB: $\begin{gathered} A=\frac{80}{3} \mathrm{~m}^{2} b \\ a=6 \mathrm{~m} \end{gathered}$ Discussion, reasoning, checking, agreement, selfcorrection, praising $\text { Check: } \begin{aligned} 4 \frac{4}{9} \times 6 & =\frac{40}{9_{3}} \times 6^{2} \\ & =\frac{80}{3} \checkmark \end{aligned}$ or $P=\left(6+4 \frac{4}{9}\right) \times 2$ $\begin{aligned} & =12+8+\frac{8}{9} \\ & =20 \frac{8}{9} \text { (metres) } \end{aligned}$ Feedback for T
9	Book 5, page 91 Q. 5 Read: Find a rule and complete the table. Write the rule in different ways. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Who can write the rule? Who agrees? Who can show another way to write it? Mistakes discussed and corrected. Solution:	Individual work, monitored, helped (or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Rule: $a=b \times 5, b=a \div 5$, or $b \div a=5, a \div b=\frac{1}{5}$

BK5	R: (Mental) calculation C: Practice with fractions E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 92 \end{gathered}$
Activity 1	Ordering fractions Let's form as many fractions as we can using only the digits 3,4 or 6 . Ps come to BB or dictate to T, simplifying fractions where possible. Encourage a logical listing so that none will be missed. $\left.\begin{array}{rl} \mathrm{BB}: & \frac{3}{3}, \frac{3}{4}, \frac{3}{6}, \frac{4}{3}, \frac{4}{4}, \frac{4}{6}, \frac{6}{3}, \frac{6}{4}, \frac{6}{6} \\ & (1) \frac{1}{2} 1 \frac{1}{3} 1 \frac{2}{3} \\ 2 & 1 \frac{1}{2} \end{array}\right)$ Let's write the fractions in increasing order. What should we do first to make it easier to compare them? (Change to a common denominator.) What is the lowest common multiple of 3,4 and 6 ? (12) Ps dictate the fractions as twelfths and T writes on BB above original fractions, then Ps dictate the fractions in decreasing order. $\begin{aligned} \text { BB: } & \frac{12}{12}, \frac{9}{12}, \frac{6}{12}, \frac{16}{12}, \frac{12}{12}, \frac{8}{12}, \frac{24}{12}, \frac{18}{12}, \frac{12}{12} \\ & \frac{3}{6}<\frac{4}{6}<\frac{3}{4}<\frac{3}{3}=\frac{4}{4}=\frac{6}{6}<\frac{4}{3}<\frac{6}{4}<\frac{6}{3} \end{aligned}$	Notes Whole class activity At a good pace BB: 3, 4, 6 Agreement, praising Ps write fractions in Ex. Bks. too Agreement, praising Ps write comparison in $E x$. Bks. too.
2	Fractions on the number line This number line has only 2 numbers marked. BB: How can we mark the positions of these numbers? (BB) Ps suggest what to do (e.g. divide the space between -1 and 3 into 4 equal sections and mark the units 0,1 and 2 ; then divide each unit into sixths). Ps come to BB to measure and draw ticks, using a BB ruler and/or BB compasses, with T's help. Then other Ps come to BB to mark and label the required numbers. Class points out errors. BB:	Whole class activity Drawn on BB or SB or OHT BB: $-\frac{5}{6}, 0, \frac{5}{6}, \frac{13}{6}, 1 \frac{1}{6}$ Discussion, agreement, praising Rest of Ps can draw number line in Ex. Bks. too At a good pace Agreement, praising
3	Adding and subtracting fractions These calculations are very long! How could we group the terms to make it easier for us? Ps come to BB to explain and show their ideas. Class agrees on the simplest way. Ps write simplest way in Ex. Bks. BB: $\text { a) } \begin{aligned} & \frac{1}{3}+\frac{2}{4}+\frac{5}{3}-\frac{2}{6}+\frac{1}{4}-\frac{2}{4}-\frac{6}{3}+\frac{1}{4} \\ = & (\underbrace{\frac{1}{3}+\frac{5}{3}-\frac{6}{3}}_{\sim})+(\underbrace{\frac{2}{4}-\frac{2}{4}}_{0}+\frac{1}{4}+\frac{1}{4})-\frac{2}{6} \\ = & \frac{2}{4}-\frac{2}{6}=\frac{6-4}{12}=\frac{2}{12}=\frac{1}{6} \end{aligned}$	Whole class activity Written on BB or SB or OHT Discussion, reasoning, agreement, praising e.g. Collect fractions with equal denominators and do these calculations first.

BKE		Lesson Plan 92
Activity 3	(Continued) $\text { b) } \begin{aligned} & -\frac{4}{5}+\frac{2}{\sim}-\frac{3}{5}-\frac{1}{15}+\left(-\frac{2}{3}\right)+\frac{3}{5}-\left(-\frac{1}{5}\right) \\ = & (-\underbrace{\frac{4}{5}+\frac{3}{5}+\frac{1}{5}}_{\sim})+(\underbrace{\frac{2}{3}-\frac{2}{3}}_{0})+\frac{3}{5}-\frac{1}{15} \\ = & \frac{3}{5}-\frac{1}{15}=\frac{9-1}{15}=\frac{8}{15} \end{aligned}$	Notes Extra praise for Ps who suggest collecting fractions with equal denominators which add up to zero. Agree that $-\left(-\frac{1}{5}\right)=+\frac{1}{5}$
4	Book 5, page 92 Q. 1 Read: Practise calculation. Write details in your exercise book. Set a time limit or deal with one row at a time. Review with whole class. Ps come to BB or dictate results, explaining reasoning. Who agrees? Who did it in a different way? etc. Mistakes discussed and corrected. Solution: a) $\frac{5}{8}+\frac{3}{16}=\frac{10+3}{16}=\frac{13}{16}$ b) $\frac{3}{15}+\frac{7}{10}=\frac{1}{5}+\frac{7}{10}=\frac{2}{10}+\frac{7}{10}=\frac{9}{10} \quad$ (Simplify $\frac{3}{15}$ first) c) $\frac{3}{7}+\frac{1}{8}=\frac{24+7}{56}=\frac{31}{56}$ d) $\frac{3}{4}-\frac{5}{8}=\frac{6-5}{8}=\frac{1}{8}$ e) $\frac{12}{15}-\frac{2}{5}=\frac{4}{5}-\frac{2}{5}=\frac{2}{5} \quad$ (Simplify $\frac{12}{15}$ first) f) $\frac{3}{8}-\frac{3}{12}=\frac{3}{8}-\frac{1}{4}=\frac{3}{8}-\frac{2}{8}=\frac{1}{8}$ g) $\frac{5}{6_{1}} \times 6^{1}=5$ h) $\frac{4}{93} \times 6^{2}=\frac{8}{3}=2 \frac{2}{3}$ i) $\frac{5}{8} \times 4^{1}=\frac{5}{2}=2 \frac{1}{2}$ j) $\frac{6}{7} \div 3=\frac{2}{7}$ k) $\frac{5}{7} \div 5=\frac{1}{7}$ 1) $\frac{5}{6} \div 4=\frac{5}{24}$ (Divide numerator and leave denominator unchanged, or multiply denominator and leave numerator unchanged.)	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Draw diagrams on BB or use models or show on the number line if problems or disagreement. Accept any valid method of calculation. e.g.f): $\begin{aligned} & \frac{3}{8}-\frac{3}{12}=\frac{9-6}{24}=\frac{3}{24}=\frac{1}{8} \\ & \text { h) } \frac{4}{9} \times 6=\frac{24}{9}=\frac{8}{3}=2 \frac{2}{3} \end{aligned}$ Reiterate the 2 methods for dividing a fraction by a natural number, as opposite.
5	Book 5, page 92 Q. 2 Read: Practise calculation. Write details in your exercise book. Deal with one at a time or set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Who did the same? Who did it another way? etc. Deal with all methods Mistakes discussed and corrected. Solution: a) $\frac{5}{6}+\frac{1}{4}-\frac{2}{3}=\frac{10+3-8}{12}=\frac{5}{12}$	Individual work, monitored helped (or whole class activity if Ps had difficulties in Q.1) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T

$B K 5$		Lesson Plan 92
Activity 5	(Continued) b) $\frac{9}{6} \div 6 \times 4=\frac{9}{36} \times 4=\frac{9}{9}=1$ c) $\frac{7}{6} \times(7-4)=\frac{7}{6} \times 3=\frac{7}{2}=3 \frac{1}{2}$ d) $\frac{8}{3}-\frac{3}{4} \times 6^{3}=\frac{8}{3}-\frac{9}{2}=\frac{16-27}{6}=-\frac{11}{6}=-1 \frac{5}{6}$	Notes
6	Book 5, page 92, Q. 3 Read: Solve the problems in your exercise book. Write the answers here. Deal with one question at a time. Allow Ps a minute to read the problem themselves and to work out the answer if they can. Who has an answer? Come and show us what you did. Who agrees? Who did it a different way? etc. If no P has an answer, class solves it together, with hints from T where necessary. Solution: e.g. a) How many hours are in 3 fourteenths of a week BB: 1 week $=7$ days $=7 \times 24 \mathrm{~h}=140 \mathrm{~h}+28 \mathrm{~h}=168$ hours $\frac{3}{14} \text { of } 168 \text { hours }=168 \mathrm{~h} \div 14 \times 3=12 \mathrm{~h} \times 3=\underline{36(\mathrm{~h})}$ b) What part of a week is half a day? BB: 1 week $=7$ days $=14$ half days So 1 half day is $\frac{1}{14}$ of a week. c) How many days is twenty-four thirds of an hour? BB: 1 day $=24$ hours $\frac{24}{3} \text { hours }=8 \text { hours }=\frac{8}{24} \text { of a day }=\frac{1}{3} \text { of a day }$	Whole class activity (with short individual trial first) Discussion, reasoning, agreement, (self-correction), praising Accept any valid method of solution. e.g. a) $\begin{aligned} & \frac{3}{14} \text { of } 7 \text { days } \\ = & 7 \div 14 \times 3 \text { (days) } \\ = & \frac{7}{14} \times 3=\frac{21}{14} \text { (days) } \\ = & \frac{3}{2} \text { days }=1 \frac{1}{2} \text { (days) } \\ = & 24 \mathrm{~h}+12 \mathrm{~h}=\underline{36 \text { hours }} \end{aligned}$ Ps who could not work out the answer in the allotted minute could write the solution they understand best in Ex. Bks.
7	Book 5, page 92 Q. 4 Read: Which natural numbers could be written instead of each of the shapes? Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{\square}{9}<\frac{11}{9}$ b) $\frac{5}{53}<\frac{\triangle}{53}<\frac{10}{53}$ c) $\frac{7}{3}-\frac{\bigcirc}{3}>1$ $10,9,8,7,6,5$, 4, 3, 2, 1 \qquad : 6,7,8,9 : 1,2,3 38 min	Individual work, monitored, (helped) Written on BB or SB or OHT Discussion, reasoning, checking, agreement, selfcorrecting, praising Check by writing extremes of the range of possible numbers instead of the shapes to see if they make the inequality true.

$B K E$		Lesson Plan 92
Activity 8	Book 5, page 92 Q. 5 Read: Solve the problem in your exercise book. A 10 cm cube can hold 1 litre of water. What height would the water level be in the cube if we pour into it: a) half a litre b) 3 quarters of a litre c) 25 cl d) $800 \mathrm{~cm}^{3}$? If possible T has a $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ cube to show to class (ideally glass or plastic and hollow), otherwise draw on BB. If we filled it with 1 litre of water, how high would the water level be? (It would reach the top, i.e. 10 cm high) If we poured in only half a litre, which dimension would change? (Agree that the area of the base would be the same, so only the height would change.) Set a time limit of 2 minutes. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain to Ps who were wrong, referring to the cube (or a digram drawn on BB). Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) 1 litre $\rightarrow 10 \mathrm{~cm}$ high; $\frac{1}{2}$ a litre $\rightarrow 10 \mathrm{~cm} \div 2=\underline{5 \mathrm{~cm}}$ high b) $\frac{3}{4}$ of a litre $\rightarrow 10 \mathrm{~cm} \div 4 \times 3=2.5 \mathrm{~cm} \times 3=\underline{7.5 \mathrm{~cm}}$ c) $25 \mathrm{cl}=\frac{25}{100}$ litre $=\frac{1}{4}$ litre $\frac{1}{4} \text { of a litre } \rightarrow 10 \mathrm{~cm} \div 4=\underline{2.5 \mathrm{~cm}}(\text { or } 25 \mathrm{~mm})$ c) $V=800 \mathrm{~cm}^{3}=10 \mathrm{~cm} \times 10 \mathrm{~cm} \times \underline{8 \mathrm{~cm}}$ Level of water: 8 cm	Notes Individual work, monitored, helped (or whole class activity if time is short) BB: Discussion, agreement, (demonstration if time), praising Reasoning, agreement, selfcorrection, praising Accept any valid reasoning and method of calculation. or $10 \mathrm{~cm}=100 \mathrm{~mm}$ $\begin{aligned} & 100 \mathrm{~mm} \div 4 \times 3 \\ & =25 \mathrm{~mm} \times 3=75 \mathrm{~mm} \end{aligned}$ (as $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ is the area of the base and 8 cm is the height of the water)
9	Book 5, page 92, Q. 6 Read: What part of the whole unit is shaded? Write the fraction in different forms in your exercise book. What do you think we should do first to make it easier for ourselves? (Divide the shapes into equal parts using the marks provided) Elicit that part a) should be divided into equal squares and b) into equal triangles. Ps come to BB to draw grid lines and rest of Ps work in Pbs. Agree on the number of equal parts and how many are shaded. [In a), 9 equal squares, 4 and a half squares shaded; i.e. half of the unit is shaded] Tell me the fraction in different forms. Ps dictate to T, explaining what they have done to numerator and denominator. Class points out errors. Solution: a) 9 equal parts 4 and a half parts shaded i.e. 1 half is shaded $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{9}{18} \ldots \quad \frac{13}{25}=\frac{26}{50}=\frac{39}{75} \ldots$	Whole class activity (or a 1 minute individual trial first if Ps wish and there is time) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising At speed round class Praising, encouragement only Elicit that such fractions of equal value are called equivalent fractions. Feedback for T

BTE	R: Fractions. Tenths, hundredths C: Reading and writing decimals. Place value E: Comparing decimals	$\begin{gathered} \text { Lesson Plan } \\ 93 \end{gathered}$
Activity 1	Revision of decimals T has 3 amounts in decimal form written on BB. What kind of numbers are these? (decimals) Let's read them together. (fourteen point nine nine pounds; two hundred and thirty point four metres; seven point six litres) What does the decimal point show? (It separates the whole units from the parts of a unit.) Let's think about what the decimal number really means. Ps come to BB to write other forms of the numbers. Class agrees/disagrees. BB: a) $£ 14.99=£ 1499 \mathrm{p}=£\left(14+\frac{99}{100}\right)$ b) $230.4 \mathrm{~m}=230 \mathrm{~m} 40 \mathrm{~cm}=\left(230+\frac{4}{10}\right) \mathrm{m}$ c) 7.6 litres $=7$ litres $60 \mathrm{cl}=\left(7+\frac{6}{10}\right)$ litres T points to certain digits and Ps say its digit value, place value and real value. (e.g. 230.4 m : digit value: 4 , place value: 4 t real value: $\frac{4}{10}$) 4 min	Notes Whole class activity Written on BB or SB or OHT BB: decimals In unison Involve several Ps. Agreement, praising Feedback for T
2	Place value 1 Study this place value table. What does the thick vertical line show? (It separates the whole numbers from the parts and is where the decimal point would be written.) BB: Let's write each number in the place value table as an addition, then as a single fraction, then in decimal form. Ps come to BB or dictate to T. Class points out errors. (If Ps write on BB, ask them to say the numbers too. e.g. 5 plus 3 hundredths; 503 hundredths; 5 point zero 3) BB: a) $5+\frac{3}{100}=\frac{503}{100}=5.03$ b) $0+\frac{72}{100}=\frac{72}{100}=0.72$ c) $50+\frac{26}{100}=\frac{5026}{100}=50.26$ d) $400+\frac{9}{10}=\frac{4009}{10}=400.9$ e) $1000+\frac{5}{100}=\frac{100005}{100}=1000.05 \quad$ ('1 hundred thousand and 10 min 5 hundredths')	Whole class activity Drawn on BB or use enlarged copy master or OHP Involve several Ps. At a good pace Agreement, praising

BK5		Lesson Plan 93
Activity 6	Book 5, page 93 Q. 1 Read: Join the numbers to the corresponding points on the number line. Set a time limit. Review with whole class. Ps come to BB to draw dots and joining lines, explaining reasoning (and saying the decimals as fractions and the fractions as decimals). Class agrees/disagrees. Mistakes discussed and corrected. Solution: Let's say the numbers as: a) decimals in increasing order, b) fractions in decreasing order.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Elicit that: $\begin{aligned} & -0.60=-0.6 \\ & \frac{80}{100}=\frac{8}{10}=0.80=0.8 \\ & 1+\frac{9}{10}=1 \frac{9}{10}=\frac{19}{10}=1.9 \end{aligned}$
7	Book 5, page 93 Q. 2 Read: List the marked numbers in order if: a) $x=10$, b) $x=1$, c) $x=0.1$ Set a time limit or deal with one at a time. Review at BB with whole class. P says what each tick on the number line represents. T points to each dot in turn and a P says the number. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $x=10:-12<-10<-3<2<5<13$ b) $x=1$: $-1.2<-1<-0.3<0.2<0.5<1.3$ c) $x=0.1:-0.12<-0.1<-0.03<0.02<0.05<0.13$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising (a tick at every ' 1 ') (a tick at every 'tenth') (a tick at every 'hundredth')
8	Book 5, page 93 Q. 3 Read: List the fractions as decimals in increasing order. Write $<$ or $=$ signs between them. What is the easiest way to compare them? (Change the tenths to hundredths first.) Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show in a place-value table or on a number line drawn on BB if problems or disagreement. Solution: $\begin{aligned} & \frac{3}{10}, \frac{1}{100}, \frac{27}{100}, \frac{30}{100}, \frac{84}{100}, \frac{70}{100}, \frac{16}{10}, \frac{160}{100}, \\ & \frac{30}{10} \\ & \frac{160}{100} \end{aligned}$	Individual work, monitored, helped Drawn on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T

BK	R: Mental calculation C: Comparison of decimals. Rounding decimals E: Quantities	$\begin{gathered} \text { Lesson Plan } \\ 94 \end{gathered}$
Activity 1	Exact measures a) A line segment is exactly 15 cm long. Tell me different ways to write its length. Ps dictate to T. Class points out errors. BB: e.g. $15 \mathrm{~cm}=150 \mathrm{~mm}=15.0 \mathrm{~cm}=0.15 \mathrm{~m}=0.150 \mathrm{~m}$ $\text { or }=\frac{15}{100} \mathrm{~m}=\frac{150}{1000} \mathrm{~m}, \text { etc. }$ b) If a stick is exactly 15 cm 2 mm long, in which different ways could we write its length? Ps dictate to T. Class points out errors BB: e.g. $15 \mathrm{~cm} 2 \mathrm{~mm}=152 \mathrm{~mm}=15.2 \mathrm{~cm}=0.152 \mathrm{~m}$ $\text { or }=15 \frac{2}{10} \mathrm{~cm}=\frac{152}{1000} \mathrm{~m}, \text { etc. }$ c) We have two sticks, one is 1.6 m long and the other is 1.49 m long. Which is longer? Let's compare them in different ways. T starts each comparison and Ps continue it. BB: e.g. $\begin{gathered} 1.6 \mathrm{~m}=1 \mathrm{~m} 60 \mathrm{~cm}=160 \mathrm{~cm}>1.49 \mathrm{~m}=1 \mathrm{~m} 49 \mathrm{~cm}=149 \mathrm{~cm} \\ 1.6=\frac{16}{10}=\frac{160}{100}>1.49=\frac{149}{100} \\ 1.6=1.60>1.49 \end{gathered}$ Elicit that $1.6=1.60=1.600=1.6000 \ldots$ (i.e. any number of zeros can be written after the decimal point but the value doesn't change.	Notes Whole class activity Involve as many Ps as possible. If Ps cannot think of many, T makes suggestions and asks Ps if they are correct. Agreement, praising Ps could write the different forms in Ex. Bks. Feedback for T Discussion, agreement, praising
2	Rounding 1 a) Measure the width of your Practice Book. T asks 3 or 4 Ps for their measurements and writes them on BB . e.g. BB: $208 \mathrm{~mm}, 20 \mathrm{~cm} 9 \mathrm{~mm}, 21 \mathrm{~cm}, 211 \mathrm{~mm}$, etc. T: I measured it as 20 cm 9 mm but I am not sure that it is exact. What I can say is that the width is 20 cm 9 mm , to the nearest mm . If I call the width w, I can write it mathematically like this. BB: $\quad 20 \mathrm{~cm} 8.5 \mathrm{~mm} \leq \mathrm{w}<20 \mathrm{~cm} 9.5 \mathrm{~mm}$ or in cm: $\quad 20.85 \mathrm{~cm} \leq \mathrm{w}<20.95 \mathrm{~cm}$ Let's show it on the number line. Ps dictate what T should draw and write. If necessary, remind Ps about the notation for showing inequalities on the number line. [A closed (black) circle means the number is included; an open (white) circle means the number is not included; horizontal line joining the circles covers all the possible numbers.] b) The length of a stick was measured as approximately 1.6 m . What does it really mean? Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: $1.55 \mathrm{~m} \leq$ length $<1.65 \mathrm{~m}$ or $155 \mathrm{~cm} \leq$ length < 165 cm c) Another person measured the same stick and gave its measurement as approximately 1.60 m . What did they really mean? Ps come to BB or dictate to T. Class agrees/disagrees. BB: $1.595 \mathrm{~m} \leq$ length $<1.605 \mathrm{~m}$ or $159.5 \mathrm{~cm} \leq$ length $<160.5 \mathrm{~cm}$ Agree that 1.60 m is a more exact measurement than 1.6 m . 10 min	Whole class activity Ps use rulers. (If first 4 Ps all had the same, T asks who had different measurements.) T explains and Ps listen. Discussion, reasoning, agreement, praising

$B K E$		Lesson Plan 94
Activity 3	Rounding 2 a) T has numbers written on BB : BB: 6318, 6518, 6358, 6315 Let's round each number to the nearest 10,100 and 1000 . Ps come to BB to write approximations, explaining reasoning. Class agrees/disagrees. BB: $\quad \begin{aligned} 6318 & \approx 6320 \approx 6300 \approx 6000 \\ 6518 & \approx 6520 \approx 6500 \approx 7000 \\ 6358 & \approx 6360 \approx 6400 \approx 6000 \\ 6315 & \approx 6320 \approx 6300 \approx 6000\end{aligned}$ b) Let's round these quantities to the nearest 10 units and convert them to larger units of measure. Deal with one at a time. T writes quantity on BB and Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: e.g. i) $438 \mathrm{~cm} \approx 440 \mathrm{~cm}=4.4 \mathrm{~m}$ ii) $3846 \mathrm{~mm} \approx 3850 \mathrm{~mm}=385 \mathrm{~cm}=3.85 \mathrm{~m}$ iii) $2641 \mathrm{~g} \approx 2640 \mathrm{~g}=2.64 \mathrm{~kg}$ iv) $555 \mathrm{~g} \approx 560 \mathrm{~g}=0.56 \mathrm{~kg}$ v) $835 \mathrm{~m} \approx 840 \mathrm{~m}=0.84 \mathrm{~km}$, etc.	Notes Whole class activity Revise rounding if necessary: to nearest 10: 5 rounds up to nearest 100: 50 rounds up to nearest 1000: 500 rounds up Reasoning: e.g. $\underline{6318}$ ' 18 is nearer 20 than 10 ' '318 is nearer 300 than 400', '6318 is nearer 6000 than 7000', etc. Agreement, praising At a good pace Reasoning, agreement, praising Ps write approximations in $E x$. $B k s$. at same time. Ps can suggest some quantities too. T notes Ps having difficulties.
(4	Book 5, page 94 Q. 1 Read: Convert each pair of fractions so that they have equal denominators. Compare them. Set a time limit. Ps convert mentally or write beside relevant fraction in $P b s$, then fill in the missing sign. Review with whole class. Ps come to BB or dicatate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{6}{10}\left(=\frac{60}{100}\right)>\frac{50}{100}$ b) $\left.\frac{7}{10}\left(=\frac{70}{100}\right)\right\rangle \frac{14}{100}$ c) $\frac{5}{100}<\frac{20}{100}$ d) $\frac{9}{10}\left(=\frac{90}{100}\right) \boxminus \frac{90}{100}$ e) $\frac{5}{10}\left(=\frac{50}{100}\right)<\frac{51}{100}$ f) $\frac{161}{1000} \boxtimes \frac{16}{100}\left(=\frac{160}{1000}\right)$ T points to some of the inequalities and asks Ps to say them in decimal form (e.g. $0.6>0.50 ; 0.05<0.20$, etc.)	Individual work monitored, helped Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Feedback for T

R15		Lesson Plan 94
Activity 5	Book 5, page 94 Q. 2 Read: Convert the decimal numbers to hundredths and compare them. Set a time limit. Ps write extra zeros in hundredths column where appropriate and fill in the missing signs. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees.disagrees. Mistakes discussed and corrected. Solution: a) $0.6 \underline{0}>0.06$ b) $0.7 \underline{0}=0.70$ c) $0.11>0.1 \underline{0}$ d) $0.03<0.7 \underline{0}$ e) $0.07<0.3 \underline{0}$ f) $0.4 \underline{0}>0.39$	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Underlined zeros not given in Pbs.
6	Book 5, page 94 Q. 3 Read: Write three numbers betwen the two decimals. T also asks Ps to compare the 3 numbers by writing appropriate sign between each pair. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Who agrees? Who wrote different numbers? Deal orally with all cases. Mistakes discussed and corrected. Solution: e.g. a) $3.4<\underline{3.45}<\underline{3.53}<\underline{3.59}<3.6$ b) $5.2<\underline{5.21}>\underline{5.25}<\underline{5.28}<5.3$ c) $-0.2<-0.1<\underline{0}<\underline{0.08}<0.1$ d) $2.9<\underline{2.91}<\underline{2.92}<\underline{2.93}<3$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Show on number line if problems or disagreement. Feedback for T
7	Book 5, page 94 Q. 4 Read: Write the next nearest whole number less than and greater than the decimal number. Set a time limit. Ask Ps to underline the nearest whole number. Review with whole class. Ps come to BB or dictate numbers to T. Class agrees/disagrees. Mistakes discussed and corrected. Show on relevant segment of number line drawn on BB if problems or disagreement. Solution: a) $4<4.7<\underline{5}$ b) $7<7.26<8$ c) $\underline{0}<0.09<1$ d) $99<99.99<\underline{100}$ e) $\underline{101}<101.01<102$ f) $\underline{2}<2.306<3$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Feedback for T

BK5	R: Mental calculation C: Addition and subtraction of decimals E: Pencil and paper calculation	$\begin{gathered} \text { Lesson Plan } \\ 95 \end{gathered}$
Activity 1	Puzzle Let's solve this puzzle and find the word in the thick vertical box which will make us better at mathematics! T reads out the clues across in numerical order and Ps suggests words to try. Ask Ps for examples (or further examples) as each clue is found. (1) An example is $\frac{4}{7}$. (fraction) (2) The upper number in a fraction. (numerator) (3) The lower number in a fraction. (denominator) (4) This is what we do when we multiply the upper and lower numbers in a fraction by the same number. (expand) (5) This what we do when we divide the upper and lower numbers in a fraction by the same number. (simplify) (6) The next place-value smaller than units. (tenths) (7) An adjective which describes fractions with the same value. (equivalent) What should we do to make us better at mathematics? (practise!) We did not have a clue for row 8 . Who can think of one?	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Ps could have copies on desks too. Involve as many Ps as possible. Agreement, praising T helps with the spelling where needed. Class shouts out in unison. (e.g. plan, perimeter, polygon, probability, prime, etc.)
2	Addition of decimals 1 Let's add these fractions, then write the addition with decimals and fill in the place-value table. Ps come to BB to write additions and fill in the table. Class points out errors. $\begin{aligned} & \text { BB: } \\ & \frac{3}{10}+\frac{57}{100}+\frac{40}{100}=\frac{30+57+40}{100}=\frac{127}{100}=1+\frac{27}{100} \begin{array}{\|r\|r\|r\|} \hline \mathrm{U} & \mathrm{t} & \mathrm{~h} \\ \hline & 3 & \\ \hline & 5 & 7 \\ \hline & +3 & 4 \\ \hline 1 & 4 & 0 \\ \hline 1 & 2 & 7 \\ \hline \end{array} \end{aligned}$	Whole class activity Table drawn on BB or SB or OHT At a good pace Reasoning, agreement, praising Repeat with other fractions which have denominators of 10 and 100, suggested by Ps.
3	Problem Listen carefully to this problem and tell me the operation you would use to solve it. We need four lengths of cord to tie up some parcels. The lengths we need are $2 \mathrm{~m} 75 \mathrm{~cm}, 380 \mathrm{~cm}, 405 \mathrm{~cm}$ and 3 m 66 cm . What length of cord do we need altogether? What operation would you use? (addition) Let's write the lengths in this table, BB: then add them up. Ps come to BB or dictate what T should write. + Elicit that, e.g. $16 \mathrm{~cm}=1 \times 10 \mathrm{~cm}+6 \mathrm{~cm}$, etc. In cm: If we change all the lengths BB: to cm , we can add up in the normal way like this. Ps come to BB or dictate what T should write.	Whole class activity Tables drawn on BB or use enlarged copy masteror OHP T repeats slowly to give Ps time to note the data in Ex. Bks. BB: $2 \mathrm{~m} 75 \mathrm{~cm}+380 \mathrm{~cm}$ $+405 \mathrm{~cm}+3 \mathrm{~m} 66 \mathrm{~cm}=$? Reasoning, with T's help if necessary, agreement, praising Place-value table completed first, then vertical addition written as normal. Ps write the addition in Ex. Bks.

BKE		Lesson Plan 95
Activity	Q. 4 Read: Estimate the result here by rounding each decimal to the nearest whole number, then do the calculation acurately in your exercise book. Ps round all the numbers first in Pbs , then review. Ps dictate rounding to T, explaining reasoning. Ps correct any mistakes before they do the calculations. Set a time limit for the calculations. Ps could write place-value labels above each column to help them. Review with whole class. Ps come to BB to write calculations and explain reasoning with place-value detail. Mistakes discussed and corrected. Solution: a) $2.24+21.56+0.75 \approx 2+22+1=25$ $\begin{array}{r} 2.24 \\ 21.56 \\ +\quad 0.75 \\ \hline 24.55 \\ \hline 11 \end{array}$ b) $31+3.1+0.31+0.031 \approx 31+3+0+0=34 \quad 31$ $\begin{array}{r} 3.1 \\ 0.31 \\ +\quad 0.031 \\ \hline 34.441 \\ \hline \end{array}$ c) $26.68-19.35 \approx 27-19=8$ $\begin{array}{r} 10 \\ 26.688 \\ -\quad 19.35 \\ \hline 7.33 \\ \hline \end{array}$ d) $37.5-8.37 \approx 38-8=30$	Notes Individual work, monitored, helped Written on BB or SB or OHT Reasoning: e.g. '2.24 is approximately equal to 2 , as 2 and 24 hundredths is nearer 2 than 3^{\prime}) Agreement, self-correction, praising Feedback for T
8	Book 5, page 95, Q. 5 Read: Solve the problem in your exercise book. Dad bought a water melon which weighed 6.5 kg . At lunch, Mum ate 500 g , Irene ate 3 quarters of a kg, Steve ate 1.2 kg and Dad ate 1.5 kg . How much was left for dinner? \mathbf{X}, how would you solve it. Who would do the same? Who would do it a different way? etc. Accept any correct method of solution. Ps come to BB to write a plan, estimate the result and do the calculations, with T's help where necessary. Class agrees/disagrees. Solution: e.g. Data: mass of melon: 6.5 kg M: $500 \mathrm{~g}, \mathrm{I}: \frac{3}{4} \mathrm{~kg}, \mathrm{~S}: 1.2 \mathrm{~kg}, \mathrm{D}: 1.5 \mathrm{~kg}$ Plan: $6.5 \mathrm{~kg}-(0.5+0.75+1.2+1.5) \mathrm{kg}$ C : E: $7-(1+1+1+2)=7-5=2(\mathrm{~kg})$ Check: $2.55+0.5+0.75+1.2+1.5$ $=6.5(\mathrm{~kg}) \checkmark$ T chooses a P to say the answer in a sentence. Answer: There was 2.55 kg of melon left for dinner. 45 min	Whole class activity (or individual trial first if Ps wish and there is time, with Ps showing results on scrap paper or slates on command) Discussion, reasoning, agreement, (self-correction), praising or in grams: Using fractions of a kg is also possible but is rather difficult!

BKI	R: (Mental) calculations C: Addition and subtraction of decimals E: Problems	Lesson Plan 96
Activity 1	Sequences T says the first 3 terms of a sequence and Ps continue it, then give the rule. Class points out errors. a) $1.2,1.4,1.6,(1.8,2,2.2,2.4,2.6, \ldots) \quad[+0.2]$ b) $3.5,2.9,2.3,(1.7,1.1,0.5,-0.1,-0.7,-1.3, .[$.-) 0.6$]$ c) $10.24,5.12,2.56,(1.28,0.64,0.32,0.16,0.08,0.04,0.02$, $0.01,0.005, \ldots$. $[\div 2]$ etc.	Notes Whole class activity At speed in order round class If a P makes a mistake, the next P must correct it. In good humour! Praising, encouragement only (Ps start off additional sequences if there is time.)
2	Comparison of decimals In each pair of decimals, which is more? How many more? Ps come to BB to write appropriate sign between each pair and the difference below the sign, explaining reasoning. Class agrees/disagrees. Ps show calculation on BB or demonstrate on number line if problems or disagreement. BB: a) 0.25 0.8(0) b) 6.2 4.9 c) 2.03 2.3(0) (0.55) (1.3) (0.27) d) 0.303 0.33(0) e) -0.3 \square 0.9 f) 0.4 \square - 0.4 (0.027) (1.2) (0.8)	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Feedback for T BB: e.g. $$
3	Find the mistake What do you think of these calculations. Are they correct? Ps come to BB to estimate result by rounding and write a tick or a cross. If incorrect, Ps say what mistake has been made and write the calculation again correctly. Class agrees/disagrees. E: $5-6=-1$ is wrong anyway. 4.67 - $6.04=-1.37$	Whole class activity Written on BB or SB or OHT Discussion, reasoning, agreement, correcting, praising Elicit that when doing vertical calculation with decimals, we must write the digits with the same place-value one below the other: - units below units, - decimal point below decimal point, - tenths below tenths, - hundredths below hundredths, etc.

BKE		Lesson Plan 96
Activity 4	Number line T has car model drawn (stuck) on BB. If possible, Ps have smaller version on desks. Let's play the car game. Revise the 'rules' first. - When the car faces the house it means a positive number is added or subtracted. - When the car faces the tree it means a negative number. is added or subtracted. - When the car moves forward we have to add. - When the car reverses we have to subtract, T describes how the car moves and Ps come to BB to show it, then write an operation about it. Class agrees/disagrees. Ps write operation in Ex. Bks. too. BB: a) i) The car is at - 0.8 and faces the house. It moves forward 1.4 units. $\text { BB: }-0.8+(+1.4)=+0.6 \text { or }-0.8+1.4=0.6$ ii) The little car is at 1.6 and faces the house. It reverses 2.1 units. $\mathrm{BB}:+1.6-(+2.1)=-0.5 \text { or } 1.6-2.1=-0.5$ b) T writes additions or subtractions on BB and Ps come to BB to show the motion of the car, describe it in words and say the result. e.g. $-0.2+(-0.7), 0.9+1.1,-1.4-(-0.5), 0.3-(-0.2)$, etc.	Notes Whole class activity (but individual manipulation if Ps have smaller version of model on desks) Use enlarged copy master or OHP and toy car Discussion on the rules Reasoning agreement, praising Elicit that positive signs can be omitted, as any number without a sign is a positive number. $\text { e.g. }-0.2+(-0.7)=-0.9$ 'The car is at -0.2 and faces the tree. It moves forward 0.7 units.'
5	Book 5, page 96 Q. 1 Read: Estimate first by rounding to the nearest tenth, then do the calculations accurately. Ps round all the numbers first, then review and correct any mistakes before doing the calculations. Set a time limit for calculations. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $4.12+29.35+0.87$ b) $7.05+27.6+6.715+37.17$ $\approx 4.1+29.4+0.9=34.4$ $\approx 7.1+27.6+6.7+37.2=78.6$ $\begin{array}{\|c\|c\|c\|c\|} \hline & 4.1 & 2 \\ \hline 2 & 9.3 & 5 \\ \hline & 0.8 & 7 \\ \hline 3 & 4.3 & 4 \\ \hline 1 & 1 . & 1 \end{array}$ $\begin{array}{\|c\|c\|c\|c\|} \hline & 7.0 & 5 & \\ \hline 2 & 7.6 & \\ \hline & 6.7 & 1 & 5 \\ \hline 3 & 7.1 & 1 & \\ \hline 7 & 8.4 & 7 & 5 \\ \hline 2 & 1 & \end{array}$ c) $34.67-25.58$ d) $85.49-16$ $\approx 34.7-25.6=9.1$ $\approx 85.5-16=69.5$ $\begin{array}{r}10 \quad 10 \\ 34.67 \\ -5.588 \\ \hline 9.09 \\ \hline\end{array}$ $\begin{array}{\|c\|c\|c\|} \hline 80 \\ \hline 1 & 5.4 & 9 \\ \hline 1 & 6 . & \\ \hline 6.9 .4 .9 \\ \hline \end{array}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, checking, self-correction, praising Check by comparing with estimate and by adding in opposite direction for addition, or using reverse addition for subtraction. Feedback for T

$B K 5$		Lesson Plan 96
Activity 6 Extension	Book 5, page 96 Q. 2 Read: Practise addition. Remind Ps to estimate mentally first by rounding, then to check sums by adding in opposite direction. Set a time limt. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a)5 6 3 2 8 4 0 9 1 6 0 0 5 1 2 b) c) $\begin{array}{r}50.0 \\ +\begin{array}{r}0.7 \\ 6.0 \\ \hline 5.6 .7 \\ \hline\end{array} \\ \hline\end{array}$ - Round each result to the nearest tenth (whole number). - What is the sum of the 4 results? 35 min	Notes Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T Extra work in Ex. Bks. for quicker Ps.
7	Book 5, page 96 Q. 3 Read: Practise subtraction. Check with addition. Encourage Ps to estimate the result mentally first by rounding. Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaiing reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a)9 4 6 5 $\begin{array}{ll}3 & 1\end{array}$ 3 2 3 3 3 3 40 min \qquad	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, self-correcting, praising Feedback for T Extension (for quicker Ps) How much needs to be added to each difference to make the next greater whole ten?
8	Book 5, page 96, Q. 4 Read: Answer each question by writing an equation. $\mathrm{T}(\mathrm{P})$ reads each question. Ps show result on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong, writing an equation (i.e. calling the unknown number a letter) or an operation. Class agrees/disagrees. Ps write equations in Pbs too. Show calculation details if problems or disagreement. Solution: a) What should be added to 1.2 to get 1.7? b) What should be subtracted from 3.5 to get 3.50 ? c) What should be sutracted from 3.58 to get 3.08 ? d) What should be added to 1.25 to get 1.35? e) If I add 13.48 to a number, the sum is 72.25 . What is the number? f) If I subtract 18.6 from a number, the result is 3.1. What is the number? (21.7)	Whole class activity (or individual work under a time limit if Ps prefer) Responses shown in unison. Reasoning, agreement, (self-correction), praising BB: e.g. a) $\begin{align*} & 1.2+a=1.7 \\ & a=1.7-1.2=0.5 \tag{0.5} \end{align*}$ b) $\begin{align*} & 3.5-b=3.50 \\ & b=3.5-3.50=\underline{0}, \text { etc. } \tag{0.50} \end{align*}$ or in one line: c) $c=3.58-3.08=\underline{0.5}$ d) $d=1.35-1.25=\underline{0.1}$ e) $e=72.25-13.48=\underline{58.77}$ f) $f=18.6+3.1=\underline{21.7}$

BK	R: (Mental) calculation C: Problems in context. Measures with decimals. Reading scales E: Accuracy of measurement	Lesson Plan 97
Activity 1	Time What do these units measure? (time) Let's fill in the missing numbers. Ps come to BB to write numbers, explaining reasoning. Class points out errors. Ask Ps to say the decimal answers as fractions too. BB: a) 1 hour $=$ \square 60 min b) 0.1 of an hour $=$ \square 6 \min c) 0.2 of an hour $=$ \square 12 \min d) 0.9 of an hour $=$ \square 54 min e) 1.3 hours $=$ \square 78 min f) 2.5 hours $=$ \square 150 min g) $6 \mathrm{~min}=$ \square 0.1 of an hour h) $18 \mathrm{~min}=$ \square 0.3 of an hour i) $90 \mathrm{~min}=$ \square 1.5 hours j) $3 \mathrm{~min}=$ \square 0.05 of an hour k) $9 \mathrm{~min}=$ \square 0.15 1) $45 \mathrm{~min}=$ \square 0.75 of an hour $\left(=\frac{15}{100} h=\frac{3}{20} h\right)$ $\left(=\frac{75}{100} \mathrm{~h}=\frac{3}{4} \mathrm{~h}\right)$	Notes Whole class activity Written on BB or SB or use enlarged copy master or OHP Reasoning, agreement, praising Encourage Ps to look for relationships to make the calculations easier. e.g. $\begin{aligned} & 0.1 \text { of an hour }= \\ & =\frac{1}{10} \text { of } 60 \mathrm{~min} \\ & \\ & = \\ & \begin{aligned} 0.9 \text { of an hour } & =6 \mathrm{~min} \times 9 \\ & =\underline{54 \mathrm{~min}} \end{aligned} \\ & \begin{aligned} 6 \mathrm{~min}=\underline{0.1} \text { of an hour } \\ 3 \mathrm{~min}=0.1 \div 2=\underline{0.05}(\mathrm{~h}) \end{aligned} \\ & 9 \mathrm{~min}=0.05 \times 3=\underline{0.15}(\mathrm{~h}) \end{aligned}$
2	Problem Listen carefully, note the data in your Ex. Bks and think about how you would work out the answer. I worked in the garden for 2.4 hours then I sat on the grass to rest for 15 minutes. After that I continued working for another 1.8 hours, a) For how many hours did I rest? Who thinks they know what to do? Come and show us. Who agrees? Who can think of another way to do it? T helps where necessary. $\begin{aligned} & \text { BB: e.g. } 15 \mathrm{~min}=\frac{15}{60} \mathrm{~h}=\frac{5}{20} \mathrm{~h}=\frac{1}{4} \mathrm{~h} \quad\left(=\frac{25}{100} \mathrm{~h}=0.25 \mathrm{~h}\right) \\ & \underline{\text { or }} \quad \begin{aligned} 6 \mathrm{~min} & =0.1 \text { of an hour } \\ 3 \mathrm{~min} & =0.1 \div 2=0.05(\mathrm{~h}) \\ 15 \mathrm{~min} & =0.05 \times 5=\underline{0.25(\mathrm{~h})} \end{aligned} \end{aligned}$ Answer: I rested for a quarter (or 0.25) of an hour. b) For how many minutes did I work in the garden? $\begin{aligned} & \text { BB: e.g. } 2.4 \mathrm{~h}+1.8 \mathrm{~h}=4.2 \mathrm{~h}=4 \times 60 \mathrm{~min}+\frac{2}{10} \text { of } 60 \mathrm{~min} \\ & \\ & =240 \mathrm{~min}+12 \mathrm{~min}=\underline{252 \mathrm{~min}} \\ & \begin{aligned} \underline{\text { or }} \quad 2.4 \mathrm{~h}+1.8 \mathrm{~h} & =(120+24) \mathrm{min}+(60+48) \mathrm{min} \\ & =144 \mathrm{~min}+108 \mathrm{~min}=\underline{252 \mathrm{~min}} \end{aligned} \end{aligned}$ Answer: I worked for 252 minutes in the garden. c) How much time did I spend in the garden altogether? BB: $(2.4 \mathrm{~h}+1.8 \mathrm{~h})+15 \mathrm{~min}=252 \mathrm{~min}+15 \mathrm{~min}=267 \mathrm{~min}$ $=\underline{4 \text { hours } 27 \text { minutes }}$ Answer: I spent 4 hours 27 minutes in the garden altogether. Discuss how time is usually expressed. (Not normally as decimals.)	Whole class activity T repeats slowly to give Ps time to think. (Or at each part, Ps who have an answer show it on scrap paper or slates in unison. Ps with correct answers explain reasoning at BB.) Discussion, reasoning, agreement, praising T chooses a P to say the answer in a sentence. or 0.1 of an hour $=6 \mathrm{~min}$, so 0.2 of an hour $=12 \mathrm{~min}$ as 0.4 of an hour $=24 \mathrm{~min}$, 0.8 of an hour $=48 \mathrm{~min}$ Extra praise if Ps notice that they can use the answer in b). Would we normally be so accurate in real life? (No, we would say that we had spent about 4 and a half hours in the garden.)

BK		Lesson Plan 97
Activity 3	Measurements T chooses Ps to measure certain things with the appropriate measuring tools. Ps write measures on BB. After each type of measurement, class discusses how accurate the tools can be and how accurate the written measures are. a) T (Ps) uses a stop-watch to time Ps running to touch the BB and back to their seats. BB: e.g 22 seconds (to the nearest second) b) Ps weigh objects (e.g. book, pencil, ball) on scales in grams. BB: e.g. Book: 232 g (to nearest g) $\approx 230 \mathrm{~g}$ (to nearest 10 g) c) Ps measure length or width or height of objects with ruler or ruler and compasses. BB: e.g. thickness of a book: $2.38 \mathrm{~cm} \approx 2.4 \mathrm{~cm}=24 \mathrm{~mm}$ d) Ps measure angles with a protractor. (Revise degrees and angle minutes first if necessary.) BB: e.g. $31^{\circ} 17$ ' (read as '31 degrees and 17 angle minutes', to the nearest angle minute) $\approx 31^{\circ}$ (to the nearest degree)	Notes Whole class activity Involve as many Ps as possible in measuring and writing measures on BB and in the discussion following. In good humour! (to nearest mm) BB: 1 whole turn $=360^{\circ}$ $1^{\circ}=60^{\prime}$
4	Angles What is the biggest unit we use to measure angles? (degrees) What is the next smaller unit? (angle minutes) Can you guess what the next smaller unit is? (angle seconds) How many angle seconds do you think are in an angle minute? Angle seconds are so tiny that we cannot see them and this unit is only used by scientists in written calculations. It is possible to measure angle minutes with very precise equipment but we do not have it in the classroom! We must imagine each degree on the protractor divided into 60 equal parts, each part 1 angle minute. Let's fill in the missing numbers. Ps come to BB to write numbers and explain reasoning. Class agrees/disagrees. BB: $\begin{array}{lll} \text { a) } 1^{\circ}=60 & 0.1^{\circ}=0^{\prime} & 0.2^{\circ}=5^{\prime} \\ & 0.9^{\circ}=5^{\prime} & 1.3^{\circ}=78 \\ & 2.5^{\circ}=150 \\ \text { b) } 6^{\prime}=0^{\prime}=0 . y^{\circ} & 18^{\prime}=0.3^{\circ} & {90^{\prime}=1.5}^{\circ} \end{array}$	Whole class activity BB: $1^{\prime}=60^{\prime \prime}$ (1 angle minute $=60$ angle seconds) Extra praise for Ps who guessed correctly. Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Note similarity with time.

$B K 5$		Lesson Plan 97
Activity 8	(Continued) b) The price of a bottle of medicine is $£ 11.80$, which includes the cost of the bottle If the bottle costs $£ 5.20$ less than the medicine, how much are you paying for: i) the medicine ii) the bottle? BB: e.g. $\mathrm{B}+\mathrm{M}=£ 11.80, \quad \mathrm{~B}=\mathrm{M}-£ 5.20$ We replace B in the first formula with $B=M-£ 5.20$ to give $(M-£ 5.20)+M=£ 11.80$ Adding $£ 5.20$ to both sides of the equation gives $\begin{aligned} & (M-£ 5.20)+M+£ 5.20=£ 11.80+£ 5.20 \\ & \text { giving } M+M=£ 17.00 \end{aligned}$ i) $\mathrm{M}=£ 17.00 \div 2=\underline{£ 8.50}$ ii) $B=£ 8.50-£ 5.20=£ 3.30$ Answer: You are paying $£ 8.50$ for the medicine and $£ 3.30$ for the bottle.	Notes Let the bottle be B and the medicine be M . T helps with the calculations and reasoning. Ps write the method they understand best in Ex. Bks. Check: $\begin{aligned} & £ 8.50-£ 3.30=£ 5.20 \checkmark \\ & £ 8.50+£ 3.30=£ 11.80 \quad \end{aligned}$

B		Lesson Plan 98
Activity 7	Book 5, page 98, Q. 4 T reads out one question at a time. Ps calculate mentally or on scrap paper or slates, then show result on command. P answering correctly explains to Ps who were wrong by writing an operation on BB. Mistakes discussed. Ps write correct numbers in boxes in Pbs. Solution: a) i) $70 \mathrm{p}=£ 0.7$ $£ 0.7 \times 10=\underline{£ 7}, \quad £ 0.7 \times 100=\underline{£ 70}, \quad £ 0.7 \times 1000=\underline{£ 700}$ $\text { or } 70 \mathrm{p} \times 10=700 \mathrm{p}=\underline{£ 7}, \text { etc. }$ ii) $\begin{aligned} & £ 270 \mathrm{p}=£ 2.70 \\ & £ 2.70 \times 10=\underline{£ 27, \quad £ 2.70 \times 100=\underline{£ 270},} \\ & £ 2.70 \times 1000=\underline{£ 2700} \end{aligned}$ b) i) $£ 630 \div 10=\underline{£ 63}, £ 630 \div 100=\underline{£ 6.30}$, $£ 630 \div 1000=£ 0.63$ ii) $£ 4750 \mathrm{p}=£ 47.50$ $£ 47.50 \div 10=\underline{£ 4.75}, \quad £ 47.50 \div 100=\underline{£ 0.475}$ Elicit that in real life $£ 0.475$ is impossible. It can only be $£ 0.47$ or $£ 0.48$, i.e. 47 p or 48 p , as 1 p is the smallest coin. Which do you think it is? (48 p , as 5 rounds up to next greater place value) $£ 47.50 \div 1000=\underline{£ 0.0475}$ Again, elicit that in real life it can only be be $£ 0.04$ or $£ 0.05$, i.e. 4 p or 5 p . Which do you think it is? (It rounds up to 5 p .)	Notes Whole class activity but individual calculation (or individual trial first under a time limit, reviewed with whole class) Written on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, (self-correction), praising Show in a place value table if problems or disagreement. Extra praise if Ps point this out, otherwise T asks what coins would make up the amount. Discussion, agreement, praising
8	Book 5, page 98 Q. 5 Read: Practise calculation. How many calculations are there? $(3 \times 4=\underline{12})$ Let's see how many you can do in 3 minutes! Start . . . now! ... Stop! Review with whole class. Ps dictate results to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Stand up if you had all 12 correct! Let's give them 3 cheers! Solution: a) $0.3 \times 100=\underline{30}$ b) $3.45 \times 10=\underline{34.5}$ c) $605 \div 100=\underline{6.05}$ d) $574 \div 10=57.4$ e) $0.87 \times 10=\underline{8.7}$ f) $0.303 \times 100=\underline{30.3}$ g) $1.39 \div 10=\underline{0.139}$ h) $45.7 \div 100=\underline{0.457}$ i) $0.07 \times 10=\underline{0.7}$ j) $0.05 \times 100=\underline{5}$ k) $0.81 \div 10=\underline{0.081}$ 1) $30.06 \div 10=\underline{3.006}$	Individual work, monitored Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, e.g. a) '100 times 3 tenths $=300 \text { tenths }=30^{\prime}$ or 'To multiply 0.3 by 100 , I move each digit $\underline{2}$ placevalues to the left.' Agreement, self-correction, praising Show in a place-value table if problems or disagreement. Feedback for T

BKE	R: Mental and written procedures C: Multiplying a decimal by a natural number E: Problems in context	$\begin{gathered} \text { Lesson Plan } \\ 99 \end{gathered}$
Activity 1	Multiplication Let's think of different ways to calculate these sums Ps suggest ways. a) $\mathrm{BB}: 5.3+5.3=(10.6)$ or $5.3 \times 2=\left(5+\frac{3}{10}\right) \times 2=10+\frac{6}{10}=\underline{10.6}$ T: If the amount was 5.3 cm , we could change it to mm and do the multiplication with natural numbers, then change back to cm . BB: $5.3 \mathrm{~cm}=53 \mathrm{~mm}$ $\begin{array}{\|c\|c\|} \hline 5 & 3 \\ \hline x & 2 \\ \hline 1: 0 & 6 \\ \hline \end{array}(\mathrm{~mm})=\underline{10.6 \mathrm{~cm}}$ T: Or we could multiply with decimals like this. BB: 2 times 3 tenths $=\underline{6}$ tenths I write 6 in the tenths column in the answer 2 times 5 units $=10$ units, so I write 0 in the units column and 1 in the tens column. b) Let's do this sum in the same kinds of ways. BB: $\quad 5.3+5.3+5.3+5.3+5.3=(26.5)$ or $5.3 \times 5=\left(5+\frac{3}{10}\right) \times 5=25+\frac{15}{10}=26+\frac{5}{10}=\underline{26.5}$ or $\quad 5.3 \mathrm{~cm}=53 \mathrm{~mm} \quad$ or multiplying with decimals:	Notes Whole class activity T gives hints if Ps cannot think of any. Reasoning, agreement, praising Ps dictate what T should write, reasoning with place-value detail. T starts reasoning and Ps continue it. T points out that the product should have the same number of digits after the decimal point as the multiplicand. BB: $\begin{array}{r}5.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \hline\end{array} \frac{5.3}{2.3} \begin{aligned} & 1\end{aligned}$ Thelps where necessary.
2	Mental multiplication Let' see if you can do these calculations mentally. Ps come BB to write products, reasoning loudly with place-value details. Class agreesdisagrees. BB: a) $21 \times 4=\underline{84}$ $2.1 \times 4=\underline{8.4}$ b) $63 \times 2=\underline{126}$ c) $2 \times 4=\underline{8}$ $6.3 \times 2=\underline{12.6}$ $0.2 \times 4=\underline{0.8}$ d) $\begin{aligned} & 43 \times 4=\underline{172} \\ & 4.3 \times 4=\underline{17.2} \end{aligned}$ e) $7 \times 9=\underline{63}$ f) $0.09 \times 7=\underline{0.63}$ $\begin{aligned} & 9 \times 6=\underline{54} \\ & 0.09 \times 6=\underline{0.54} \end{aligned}$ g) $\begin{aligned} & 203 \times 4=\underline{812} \\ & 2.03 \times 4=\underline{8.12} \end{aligned}$ h) $11 \times 11=\underline{121}$ $0.11 \times 11=\underline{1.21}$ Who can explain how to multiply a decimal by a natural number? T asks several Ps what they think, then repeats in a clear way. 'We multiply a decimal number by a natural number in the same way as we multiply a natural number by a natural number. Then we must mark the decimal point so that there is the same number of decimal digits in the product as there is in the multiplicand.'	Whole class activity Written on BB or use enlarged copy master or OHP Reasoning, e.g. 6.3×2 : 2 times 6 is $12,2 \times 0.3$ is 0.6 , $12+0.6=\underline{12.6}$ Agreement, praising Discussion, agreement, praising Elicit that the multiplicand is the number being multiplied. Class repeats in unison.

BKE		Lesson Plan 99
Activity 5	Book 5, page 99 Q. 3 Read: Calculate the products. Estimate the result mentally first. Ps write estimates (rounding to the nearest whole number) above calculations in Pbs and check results against them. Set a time limit Review with whole class. Ps come to BB to show solutions, reasoning with place-value detail. Class agrees/disagrees. Mistakes discussed and corrected. What do you notice about the mulipliers? (Not in their correct place-value column) T tells Ps that it is not necessary to write the multiplier in the correct place-value column, as we are not adding or subtracting and it does not affect the result. T shows the multiplications written with multipliers in correct column. Ps decide which version they find easier to work with. Solution: E: $8 \times 3=24$ E: $6 \times 5=25$ E: $15 \times 7=105$ E: $102 \times 11=1122$ a)8.1 \times 3 $2: 4.3$ b) 5 6 2 x 5 2 8 0 0 3 1 c) 1 5 0 6 x 7 1 0 5 4 2 3 4 d) 1 0 2 1 \times 1 1 1 2 3 1 2 1 0 2 1 or with multipliers in corresponding place-value columns: a) 8 1 \times 3 2 4 3 b) 5 6 2 \times 5 2 8 0 0 3 1 c) \qquad d) 34 min	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T Discussion on layout of multiplications. Reiterate that when multiplying a decimal number by a natural number, the product must have the same number of decimal digits as the multiplicand.
6	Book 5, page 99 Q. 4 Read: Which is more? Calculate in your exercise book, then fill in the missing signs. Deal with one at a time or set a time limit. Review with whole class. Ps come to BB to write values of LHS and RHS of inequality, then to write the missing sign. Class agrees/disagrees. Mistakes discusssed and corrected. Show details of calculations if problems or disagreement. Solution: a) 43 times $2.5 \mathrm{~m}<25$ times 5.3 m b) 0 times 197 kg 197 times 0 kg (0 kg) (0 kg) c) 12 times 4.8 litres ∓ 48 times 1.2 litres	Individual work, monitored, helped (or whole class activity if time is short) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps reason correctly without doing the calculations in c): $4.8 \times 12=1.2 \times 48$ (as $48 \times 12=12 \times 48$, and products on LHS and RHS both have 1 digit after the decimal point)

BK	R: (Mental) calculation C: Multiplying decimals by natural numbers E: Problems. Equations, inequalities	$\begin{gathered} \text { Lesson Plan } \\ 100 \end{gathered}$
Activity 1	Sequences Here are 3 terms of a sequence. Continue it for 3 more terms in either direction. Ps calculate mentally (or in Ex. Bks or on scrap paper or slates if necessary) and dictate terms to T. Class agrees/disagrees. What is the rule? a) $(1.1,1.8,2.5), 3.2,3.9,4.6,(5.3,6,6.7) \quad[+0.7]$ b) $(14.4,7.2,3.6), 1.8, \frac{9}{10}, \frac{9}{20},\left(\frac{9}{40}, \frac{9}{80}, \frac{9}{160}\right) \quad[\div 2]$ Elicit decimal forms too: $0.9,0.45,(0.225,0.1125,0.05625)$ c) $\left(\frac{3}{1000}, \frac{9}{1000}, \frac{27}{1000}\right), \frac{81}{1000}, \frac{243}{1000}, \frac{729}{1000},\left(\frac{2187}{1000}, \frac{6561}{1000}\right.$, Elicit the decimal forms too: $0.003,0.009,0.027,0.081,0.243,0.729,2.187,6.561,19.683$	Notes Whole class activity Given terms written in middle of BB or SB or OHT (Terms given by Ps shown brackets) At a good pace Reasoning, agreement, praising Feedback for T
2	Solving equations Deal with one at a time. Pupils copy equation in Ex. Bks and try to solve it, checking that their solution makes the equation true. When Ps have an answer, they come to BB to explain to class. Class checks that they are correct. Elicit the general rule for solving such equations. Ask several Ps what they think, then repeat it more clearly if necessary. BB: a) $\begin{aligned} & 2 \times 0.9-x=0.7 \\ & 1.8-x=0.7 \\ & x=1.8-0.7=1.1 \end{aligned}$ b) $\begin{aligned} & y-2.7 \div 3=1.5 \\ & y-0.9=1.5 \\ & y=1.5+0.9=\underline{2.4} \end{aligned}$ c) $\begin{aligned} & (u+2.5) \div 3=5.9 \\ & u+2.5=5.9 \times 3=17.7 \\ & u=17.7-2.5=15.2 \end{aligned}$ 1.8 Check: $2 \times 0.9-\underline{1.1}=0.7 \quad \checkmark$ To get the unknown subtrahend, subtract the difference from the reductant. Check: $2.4-\underset{2.7 \div 3=1.5 \checkmark}{ } 0.9$ To get the unknown reductant, add the subtrahend to the difference. 17.7 Check: $(15.2+2.5) \div 3=5.9$ or $(15+2.7) \div 3=5+0.9=5.9$	Whole class activity Written on BB or SB or OHT Allow Ps 2 minutes for each part. Encourage a logical solution rather than trial and error. If several Ps have an answer, they could show to T on scrap paper or slates in unison on command. Reasoning, agreement, praising Generalise the rules. e.g. If $a \div b=c$, then $a=b \times c$ If $a+b=c$, then $a=c-b$
3	Parts of quantities a) Let's calculate 0.7 of 63 kg . How could we do it? Ps come to BB or dictate to T. BB: 0.7 of 63 $\begin{aligned} 63 \mathrm{~kg}=\frac{7}{10} \text { of } 63 \mathrm{~kg} & =63 \mathrm{~kg} \div 10 \times 7 \\ & =6.3 \mathrm{~kg} \times 7 \\ & =42 \mathrm{~kg}+2.1 \mathrm{~kg}=44.1 \mathrm{~kg} \end{aligned}$ or using direct proportion: $\begin{aligned} 0.1 \text { of } 63 \mathrm{~kg} & \rightarrow 63 \mathrm{~kg} \div 10=6.3 \mathrm{~kg} \\ 0.7 \text { of } 63 \mathrm{~kg} & \rightarrow 63 \mathrm{~kg} \div 10 \times 7=6.3 \mathrm{~kg} \times 7=44.1 \mathrm{~kg} \end{aligned}$	Whole class activity Allow Ps to suggest methods of calculation. Class agrees/disagrees. T intervenes only if necessary. Reasoning, agreement, praising Thighlights the important part of the operation.

$B K E$	R: Mental calculation C: Dividing decimals by natural numbers E: Pencil and paper procedures	$\begin{gathered} \text { Lesson Plan } \\ 101 \end{gathered}$
Activity 1	Missing values Study this table and think about what the rule could be. When they know the rule, Ps come to BB to choose a column and fill in the missing number but do not say the rule yet. Class agrees/disagrees. BB: Who can write the rule? Who can write the rule another way? Class checks that the rule is correct by inserting values from the table. BB: Rule: $b=4 \times a$, so $a=b \div 4, b \div a=4$, so $a \div b=\frac{1}{4}$ When checking, Ps might choose 'difficult' columns, e.g. $b=4 \times a: \quad \frac{4}{5} \times 4=\frac{16}{5}=3 \frac{1}{5} ; \quad a=b \div 4: \frac{3}{5} \div 4=\frac{3}{20}$ T: Because we know that the rules are true, we can write the answers to these calculations even though we have not yet learned yet how to do them. Ps shout out the answers. BB: $\quad 3 \frac{1}{5} \div \frac{4}{5}=\frac{16}{5} \div \frac{4}{5}=(4) \quad$ or $2.9 \div 11.6=\left(\frac{1}{4}\right)$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, agreement, praising Feedback for T Thelps if necessary. Extra praise for Ps who are correct.
2	Sequence Here are the first 3 terms of a sequence. What are the following terms? Ps try it in Ex. Bks. first them come to BB or dictate to T. Class agrees/disagrees. What rule did you use? Who agrees? Who used a different rule? BB: $641.6,320.8,160.4,(80.2,40.1,20.05,10.025, \ldots)$ Rule: Each following term is half of the previous term. [$\div 2$] Let's think about how we actually did the division. T starts first calculation and Ps continue it and do the others, explaining reasoning. $\begin{aligned} & \text { BB: } 80.2 \div 2=\left(80+\frac{2}{10}\right) \div 2=80 \div 2+\frac{2}{10} \div 2=40+\frac{1}{10}=\underline{40.1} \\ & 40.1 \div 2=\left(40+\frac{1}{10}\right) \div 2=20+\frac{1}{20}=20+\frac{5}{100}=\underline{20.05} \\ & 20.05 \div 2=\left(20+\frac{5}{100}\right) \div 2=10+\frac{5}{200}=10+\frac{25}{1000}=\underline{10.025} \end{aligned}$	Whole class activity Terms wrtten on BB or SB or OHT At a good pace Reasoning, agreeement, praising Ps come to BB or dictate what T should write. Ps could copy in Ex. Bks. too. Elicit that to divide a fraction by a natural number, either divide the numerator or multiply the denominator.
3	Problem Listen carefully and think about how you would solve this problem. The length of the fence around a square garden is 612.8 m . How long is each side of the garden? Ps come to BB to draw a diagram and to write a plan. Then Ps suggest different ways to do the calculation. (e.g. breaking up the number into easy mutliples of 4 , or using fractions.) Class points out errors. BB: e.g. \square a $\begin{aligned} & P=612.8 \mathrm{~m}=4 \times a \\ & a=612.8 \mathrm{~m} \div 4=(400+200+12+0.8) \div 4 \\ &=100+50+3+0.2=153.2(\mathrm{~m}) \end{aligned}$	Whole class activity T repeats slowly and a P repeats in own words to give class time to think. Discussion, reasoning, agreement, praising or BB: $\begin{aligned} \left(612+\frac{8}{10}\right) \div 4 & =153+\frac{2}{10} \\ & =\underline{153.2} \end{aligned}$

BKE		Lesson Plan 101
Activity 3	(Continued) T suggests changing lengths to cm , thus doing a vertical division with natural numbers in the normal way, then changing the result back to m . BB: $\quad 612.8 \mathrm{~m}=61280 \mathrm{~cm}$$15320 \mathrm{~cm}=153.2 \mathrm{~m}$1 5 3 2 0 $(\mathrm{~cm})$ 4 6 1 2 8 0 2 1 Let's try to do the division in this way, but keeping the decimal point where it is. T starts explaining reasoning with place-value detail and Ps continue it when they understand. Ps write the division in Ex. Bks. BB: Check: $\begin{array}{\|c:c:c\|} \hline 1 & 5 & 3.2 \\ \hline & x & 4 \\ \hline 6 & 1 & 2.8 \\ \hline 2 & 1 & (m) \checkmark \end{array}$ Reasoning: e.g. $' 6 \mathrm{H} \div 4=1 \mathrm{H}$, and 2 H remain $2 \mathrm{H}+1 \mathrm{~T}=21 \mathrm{~T}$ $21 \mathrm{~T} \div 4=\underline{5 \mathrm{~T}}$, and 1 T remains $1 \mathrm{~T}+2 \mathrm{U}=12 \mathrm{U} ; 12 \mathrm{U} \div 4=\underline{3 \mathrm{U}}$ $8 \mathrm{t} \div 4=\underline{2 \mathrm{t}^{\prime}}$ and there is no remainder' Answer: Each side of the garden is 153.2 m long.	Notes Extra praise if a P suggests it! Ps come to BB or dictate to T. Class points out errors. Involve as many Ps as possible. T writes 1 in the hundreds column in the answer and 2 below the hundreds column in the dividend. Ps follow the T's example. Class says answer in a sentence in unison.
4	Book 5, page 101 Q. 1 Read: Practise mental division. Set a time limit of 3 minutes. Encourage Ps to check their results mentally with multiplication. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value details. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) i) $36 \div 9=\underline{4}$, ii) $3.6 \div 9=\underline{0.4}$, iii) $0.36 \div 9=\underline{0.04}$ b) i) $56 \div 7=\underline{8}$, ii) $5.6 \div 7=\underline{0.8}$, iii) $0.56 \div 7=\underline{0.08}$ c) i) $48 \div 6=\underline{8}$, ii) $4.8 \div 6=\underline{0.8}$, iii) $0.48 \div 6=\underline{0.08}$ d) i) $96 \div 8=\underline{12}$, ii) $9.6 \div 8=1.2$ iii) $0.96 \div 8=\underline{0.12}$	Individual work, monitored Written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection, praising T asks Ps to show some divisions in fractional form. too. e.g. BB: $\frac{48}{100} \div 6=\frac{8}{100}(=0.8)$
5	Money model T has appropriate amounts of model money on desk. Let's stick $8 £ 10$ notes, $1 £ 1$ coin and 710 p coins on the BB. How much money do they make up altogether?(£81 70 p) What is the amount in £s? ($£ 81.70$ or $£ 81.7$) Let's divide it into 5 equal parts. How could we do it? Ps suggest ways. T directs Ps thinking if necessary. (Start with the largest place-value, i.e. tens, divide them by 5 , then change any remaining tens into the the next smallest place-value, i.e. units, etc.) $\mathrm{T}(\mathrm{P})$ manipulates money on BB (Ps do the same on desks if possible), then T writes calculation on BB , explaining with place-value detail. BB: 8 tens $\div 5=\underline{1 \text { ten }(1 £ 10 \text { note moved into each of } 5 \text { groups, or }) ~}$ -5 tens ($5 £ 10$ notes used altogether) given to each of 5 Ps) 3 tens (3£10 notes remain) We can change the 3 tens remaining into 30 units ($£ 1$ coins), add to the unit already there to make 31 units, then continue the division.	Whole class activity Coins needed for the activity: £10 (8); £1 (31); 10 p (17); 1 p (20) (or use copy master) BB: Ideally, Ps have model money on desks too and work in pairs. If Ps have no ideas, T starts and Ps continue, following the T's example. Discussion, reasoning, demonstration, agreement, praising

$B K 5$		Lesson Plan 101
Activity 7	(Continued) Solution: Long division: $\begin{aligned} & 129.6 \div 7=\underline{18.5}, \text { r } 1 \text { tenth } \\ & \text { or } 129.6 \div 7=\underline{18.51}, \text { r } 3 \text { hundredths } \\ & E: 140 \div 7=20 \\ & \text { or } 126 \div 7=(70+56) \div 7=10+8=18 \end{aligned}$ We can say that: $129.6 \div 7$ is 18.51 , r 3 hundredths, or $\quad 129.6 \div 7$ is 18.51 , to the nearest 100th, (as $18.51+3$ hundredths is nearer 18.51 than 18.52) or $\quad 129.6 \div 7$ is 18.51 , to 2 decimal places, (as there are 2 decimal digits after the decimal point.) Which answer is exact? ($129.6 \div 7=18.51$, r 3 hundredtedths) Agree that the other 2 answers are approximate.	Notes Agree that 18.51 is more accurate than 18.5. Agree that 3 hundredths is 0.03 . Do not expect Ps to learn this vocabulary for approximation yet - just to start to become familiar wth it.
A 8	Book 5, page 101 Q. 4 Read: Do the divisions in your exercise book. Continue each division until the result is 0 . Deal with one row at a time. Set a time limit. Ps estimate result mentally first, then write long or short divisions in squared Ex. Bks. and check with multiplications. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value details. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) i) $\quad \underset{4}{\frac{474}{896}}$ ii) $\quad \begin{array}{r}47.4 \\ { }_{21}^{89.6}\end{array}$ iii) $\quad \begin{aligned} & 4 \sqrt{18.74} \\ & 2.96\end{aligned}$ iv) \quad0.474 41.896 21 b) i) $600 \div 8$ ii) $60 \div 8$ iii) $6 \div 8$ iv) $0.6 \div 8$ $8 \longdiv { 8 } \begin{array} { r } { 7 5 } \\ { 6 0 0 } \end{array}$ 7.5 $8 \longdiv { 4 0 . 0 }$ 6.75 $8 \longdiv { 4 . 0 0 }$ 0.0 .075 $\left.8 \begin{array}{\|c}0.600 \\ 4\end{array}\right]$ Ps say the quotients as fractions or mixed numbers (i.e. whole numbers and fractions.	Individual work, monitored, helped (or do part a) i) with whole class first if Ps are unsure) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Agree that as there are no remainders, the quotients are exact. Feedback for T
9	Book 5, page 101 Q. 5 Read: Write a plan, estimate, calculate, check and write the answer in a sentence. A 2.88 m length of ribbon is cut into 3 equal parts. How long is each part? Set a time limit. Review with whole class. Ps could show result on scrap paper or slates on command. P answering correctly explains solution at BB. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence.	Individual work, monitored Reasoning, agreement, selfcorrection, praising Accept any valid method. Solution: e.g. Plan: $2.88 \mathrm{~m} \div 3 \approx 1 \mathrm{~m}$ $C: \quad 0.96$ (m) (or change $3 \longdiv { 2 . 8 . 8 } (\mathrm { m })$ to cm first) Answer: Each part is 0.9 .6 m .

BK5	R: (Mental) calculation with whole numbers and decimals C: Dividing decimals by natural numbers E: Calculating the mean value	$\begin{gathered} \text { Lesson Plan } \\ 102 \end{gathered}$
Activity 1	Fractions, decimals and percentages Ps have two 10 cm by 10 cm square grids on desks and T has large versions for demonstration. a) Colour 3 twentieths of the grid red, then 0.2 of the grid green, then 36% yellow but do not colour any grid squares more than once. i) What part of the square have you coloured altogther? Ps come to BB to write an addition, explaining reasoning. Class agrees/disagrees. Who can think of another way to write it? BB: Part coloured: e.g. $\frac{3}{20}+0.2+36 \%=\frac{15}{100}+\frac{20}{100}+\frac{36}{100}=\frac{71}{100}$ or $\frac{3}{20}+0.2+36 \%=0.15+0.2+0.36=\underline{0.71}$ or $15 \%+20 \%+36 \%=\underline{71 \%}$ i) What part of the square is not coloured? Ps come to BB or dictate what T should write, using fractions, decimals and percentages. Class agrees/ disagrees. BB: Part not coloured: e.g. $1-\frac{71}{100}=\frac{100}{100}-\frac{71}{100}=\frac{29}{100}=0.29=29 \%$ b) Use a new grid to colour 0.17 of the grid 5 times, each time using a different colour. i) What part of the grid have you coloured this time? ii) What part is not coloured? Ps come to BB or dictate what T should write. Who can write it another way? etc. Class agrees/disagrees. 5 min	Notes Whole class activity Use copy masters from LP 89/1. P finished first colours grid on BB too (or T has solution already prepared) BB: e.g. (or Ps can write operations in Ex.Bks first before coming to BB) Reasoning, agreement, (self-correction), praising BB: b) i) Part coloured: $\begin{aligned} 0.17 \times 5 & =\underline{0.85} \\ \text { or } \frac{17}{100} \times 5 & =\frac{85}{100} \\ \text { or } 17 \% \times 5 & =\underline{85 \%}\end{aligned}$ ii) Part not coloured: e.g. $1-0.85=\underline{0.15}=\frac{15}{100}=\underline{15 \%}$
2	Comparison Which side is greater? How much greater? Ps come to BB to calculate each side mentally or to write calculations on BB, explaining reasoning with place-value detail. Then Ps fill in the missing signs and calculate the differences. Clas agrees/disagrees. BB: а) $13+1.7-\frac{3}{2} \fallingdotseq 40-27-\frac{5}{2}+2.7$ LHS: $14.7-1.5=\underline{13.2}$ (13.2) RHS: $13-2.5+2.7$ $\begin{equation*} =\underline{13.2} \tag{13.2} \end{equation*}$ b) $\begin{array}{rlrl} \left(2+\frac{3}{4}\right) \times 5<25-14.8 \div 5 & \text { LHS: } 10+\frac{15}{4} & =10+3 \frac{3}{4} \\ & =13 \frac{3}{4} \tag{22.04}\\ \left(13 \frac{3}{4}\right) & 8.29 & \\ & & \text { RHS: } 25-04) & 2.96 \end{array}$ c) $\begin{aligned} & (0.31+0.69) \div 5<18.3 \div 3-4.9 \\ & \left(1 \div 5=\frac{1}{5} \quad 1 \quad(6.1-4.9=\underline{1.2})\right. \\ & \left.=\frac{2}{10}=\underline{0.2}\right) \end{aligned}$	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Feedback for T BB: b) $13 \frac{3}{4}=13 \frac{75}{100}=13.75$

BKE		Lesson Plan 102
Activity 6	Book 5, page 102 Q. 2 Read: A group of 5 pupils were asked their ages and these were the results in months. 110 months, 121 months, 113 months, 116 months, 117 months What is the mean value of their ages? Set a time limit. Ps write operation in one line in Pbs , do the addition and division in Ex. Bks. and write the result in Pbs. Review with the whole class. Ps come to BB to show solution, explaining reasoning. Who agrees? Who did it a different way? Discuss whether the answer is exact or approximate. Mistakes discussed and corrected. Solution:	Notes Individual work, monitored, helped Discussion, reasoning, checking with a calculator, agreement, self-correction, praising Accept fractions too. $\begin{aligned} & \text { e.g. } \frac{577}{5}=115+\frac{2}{5} \\ & \quad=115+\frac{4}{10}=\underline{115.4} \end{aligned}$ Agree that in real life we would say that the average age of the group is 'about 9 years 7 months'.
7	Book 5, page 102 Q. 3 Read: Calculate the mean age of each family and then compare them. Set a time limit, or deal with one part at a time. Ps write operation in one line in Pbs, do calculations in Ex. Bks and write result in Pbs. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) The Cabbage family: Mean age: $\frac{1+2+11+33+35+59+65}{7}=\frac{206}{7}$ ≈ 29.4 (years) b) The Sprout family $\text { Mean age: } \begin{aligned} \frac{10+11+16+19+21+42+44}{7} & =\frac{163}{7} \\ & \approx \underline{23.3} \text { (years) } \end{aligned}$ Agree that the average age of the Cabbage family is older than that of the Sprout family, although there are 2 very young children. Discuss what the relationships in each family might be. e.g. 2 grandparents, Mum and Dad and their 3 children in the Cabbage family and Mum and Dad and their 5 children in the Sprout family. Read: Which family has more people able to work in their garden? Write C or S on your slates and show me . . now! (S) T asks Ps with different responses to explain their reasoning. Class decides who is correct. (In the Sprout family, 7 people could do some gardening but in the Cabbage family, only 5 people could do the work and one of these would have to look after the two young children.)	Individual work, monitored, helped Discussion, reasoning, agreement, (checking on calculator), self-correction, praising [NB If T allows Ps to use calculators for the calculations, the results could be: $\begin{aligned} & C \approx 29 . \overline{428571} \\ & S \approx 23 . \overline{285714} \end{aligned}$ T explains that the block of digits below the bar keeps repeating to infinity. e.g. $29.428571428571428571 \ldots$ It is another type of recurring decimal.]

$B K E$	R: (Mental) calculation C: Decimal form of fractions. The quotient as a fraction and a decimal E: Recurring decimals	$\begin{gathered} \text { Lesson Plan } \\ 103 \end{gathered}$
Activity 1	Review T dictates a number and Ps write it in Ex. Bks with digits. Review quickly with whole class. P comes to BB to write and say the number. Class agrees/disagrees. Mistakes discussed and corrected. e.g. a) one million, fifty-six thousand, one hundred and seven (1056 107) Remind Ps that a space between every group of 3 digits from the right makes the number easier to read. b) One whole unit and 51 hundredths of a unit (1.51 or $1 \frac{51}{100}$) c) Two point five zero two (2.502) d) Eight thirteenths $\left(\frac{8}{13}\right)$ etc.	Notes Whole class activity (or Ps write numbers on slates or scrap paper and show in unison on command) At a good pace Agreement, self-correction, praising Ps can think of numberts to say too.
2	Rounding T says a number and asks P_{1} to round it to the nearest unit, P_{2} to round it to the nearest ten and P_{3} to round it to the nearest tenth.	Whole class activity Orally at speed round class Ps say the whole equation or inequality and the accuracy of the rounding, e.g. '1.2 is approximately equal to 1 , to the nearest unit' Agreement, praising Stress that the complete number should be rounded (not one digit at a time). Feedback for T
3	Calculation practice T says and writes an operation on BB. Ps calculate mentally if possible (or on scrap paper or in Ex. Bks.) and show the result on slates on command. Ps responding correctly who did it mentally say how they did it. Ps show calculations in vertical form on BB if problems or disagreement and check result with a calculator. a) $45+2.7+6.1+9.8=(63.6)$ [e.g. $62+1.6]$ b) $100-0.54=(99.46)$ [e.g. $99.5-0.4]$ c) $4.5 \times 7=(31.5)$ [e.g. $28+3.5]$ d) $9 \div 4=\left(2.25\right.$ or $\left.2 \frac{1}{4}\right)$ $\text { [e.g. } 8 \div 4+1 \div 4]$	Whole class activity but individual calculation Reasoning, agreement, praising Feedback for T $\text { or BB: } \begin{array}{\|c\|c\|c\|c\|} \hline 4.2 . & 5 \\ \hline & 9.0 & 0 \\ \hline \end{array}$

BKE		Lesson Plan 103
Activity 4 Extension	Fractions of numbers a) What part of 24 is: i) $1\left(\frac{1}{24}\right)$ ii) $3\left(\frac{3}{24}=\frac{1}{8}\right)$ iii) $12\left(\frac{12}{24}=\frac{1}{2}\right)$ iv) $15\left(\frac{15}{24}=\frac{5}{8}\right)$ v) $36\left(\frac{36}{24}=\frac{3}{2}=1 \frac{1}{2}\right)$ What part of 24 is the mean of the five numbers? How can we do it? Ps suggest what to do first and how to continue. T helps or gives hints where necessary. Mean of numbers: $1+3+12+15+36=67 ; 67 \div 5=13 \frac{2}{5}$ Part of $24: \frac{13 \frac{2}{5}}{24}=13 \frac{2}{5} \div 24=\frac{67}{5} \div 24=\frac{67}{5 \times 24}=\frac{67}{120}$ or Mean of parts: $\left(\frac{1}{24}+\frac{3}{24}+\frac{12}{24}+\frac{15}{24}+\frac{36}{24}\right) \div 5=\frac{67}{24} \div 5=\frac{67}{24 \times 5}=\frac{67}{\underline{120}}$ b) What is the complete number if 1 fifth of it is: i) $1(1 \times 5=\underline{5})$ ii) $3(3 \times 5=\underline{15})$ iii) $12(12 \times 5=\underline{60})$ iv) $\frac{1}{10}\left(\frac{1}{10} \times 5=\frac{5}{10}=\frac{1}{2}\right)$ v) $20(20 \times 5=\underline{100})$	Notes Whole class activity Ps show parts on scrap paper or slates in unison on command. Ps answering correctly explain at BB to Ps who were wrong. Elicit that reducing numerator and denominator by the same number of times does not change its value. Discussion, reasoning, agreement, praising Review how to divide a fraction by a natural number: - divide the numerator by the divisor; or - multiply the denominator by the divisor. Ps show numbers on scrap paper or slates in unison. Ps answering correctly explain reasoning. Agreement, praising
5	Book 5, page 103 Q. 1 Let's see how many calculations you can do in 3 minutes! Start . . . now! . . . Stop! Ps come to BB or dictate to T, explaining reasoning. Class agrees or disagrees. Mistakes discussed and corrected. Who had all 7 correct or made just 1 mistake? Let's give them a clap! Solution: a) i) $\frac{1}{2}$ of $36=36 \div 2=\underline{18}$ ii) $\frac{2}{2}$ of $36=\underline{36}$ iii) $\frac{3}{2}$ of $36=36 \div 2 \times 3=18 \times 3=\underline{54}$ b) i) $\frac{1}{2}$ of $25=25 \div 2=\underline{12.5}$ ii) $\frac{2}{5}$ of $25=25 \div 5 \times 2=5 \times 2=\underline{10}$ iii) $\frac{7}{5}$ of $25=25 \div 5 \times 7=5 \times 7=\underline{35}$ iv) $\frac{7}{10}$ of $25=25 \div 10 \times 7=2.5 \times 7=\underline{17.5}$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Feedback for T or $\frac{7}{5}$ of $25=1 \frac{2}{5}$ of 25 $=25+10=\underline{35}$

BKK		Lesson Plan 103
Activity 6	Book 5, page 103 Q. 2 a) Read: Write the decimals as fractions. Set a time limit. Review at BB with whole class. Ps dictate fracitons to T, explaining reasoning. Class agrees or disagrees. Mistakes discussed and corrected. Solution: i) $0.1=\frac{1}{10}$ ii) $0.5=\frac{5}{10}=\frac{1}{2}$ iii) $1.2=1 \frac{2}{10}=1 \frac{1}{5}$ iv) $0.01=\frac{1}{100}$ v) $0.35=\frac{35}{100}=\frac{7}{20}$ vi) $3.05=3 \frac{5}{100}=3 \frac{1}{20}$ vii) $\quad 0.001=\frac{1}{1000}$ b) Read: Express the quotient of 5 divided by 8 as a fraction and as a decimal. Ps come to BB to write fraction and do the short division, explaining with place-value detail, to calculate the decimal. Class points out errors. Rest of Ps write in Pbs too. Soltuion: $5 \div 8=\frac{5}{8}=\underline{0.625}$ $\begin{array}{c\|c\|c\|c} & 0.6 & 2 & 5 \\ \hline 8 & 5,0 & 0 & 0 \\ \hline & 2 & 4 \end{array}$ c) Read: Express the quotient of 15 divided by 9 as a fraction and as a decimal. Ps come to BB to write the fraction and do the short division, explaining with with place-value detail, to calculate the decimal. Class points out errors. Rest of Ps write in Pbs too. Soltuion: $15 \div 9=\frac{15}{9}=1 \frac{6}{9}=1 \frac{2}{3}=1.666 \ldots$ T tells/elicits that a decimal which has a digit repeating endlessly to infinity is called a recurring decimal and is written with a dot above the recurring digit. BB: $1.666 \ldots=1 . \dot{6}$ (read as 'one point six recurring')	Notes Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T Whole class activity T has grids already prepared on BB or SB or OHT. Discussion, reasoning, agreement, praising Elicit that: $\frac{5}{8}=\frac{625}{1000}$, as $5 \times 125=625$, and $8 \times \underline{125}=1000$. Extra praise if Ps realise that however many smaller placevalues they use, there will never be a remainder of zero. BB : recurring decimal Who can work out what 2 thirds (1 third) is as a decimal? ($0 . \dot{6}, 0 . \dot{3}$)
7	Decimal form of fractions Let's write these fractions as decimals. How can we do it? Ps come to BB or dictate what T should write, explaining reasoning. Who agrees? Who can think of another way to do it? etc. BB: a) $\frac{1}{2}=\frac{5}{10}=\underline{0.5} ; \frac{2}{2}=\underline{1}$; $\frac{5}{2}=\frac{25}{10}=\underline{2.5}$ or $\frac{3}{2}=1 \frac{1}{2}=1.5$ $\frac{5}{2}=2 \frac{1}{2}=2.5$ or	Whole class activity but individual calculation in Ex. Bks. too Discussion, reasoning, agreement, praising Elicit the 'rules' for changing a fraction to a decimal: - express the fraction as 10ths (100ths, 1000ths, etc); or - divide the numerator by the denominator (using vertical decimal division).

BKS		Lesson Plan 103
Activity 7	(Continued) b) $\frac{1}{5}=\frac{2}{10}=\underline{0.2} ; \quad \frac{2}{5}=\frac{4}{10}=\underline{0.4} ; \quad \frac{3}{5}=\frac{6}{10}=\underline{0.6}$; or 0.2 1.0 1$\begin{array}{\|c\|c\|} \hline 5 & 0.6 \\ \hline & 3.0 \\ \hline \end{array}$$\frac{4}{5}=\frac{8}{10}=\underline{0.8} ; \quad \frac{5}{5}=1 ; \quad \frac{6}{5}=\frac{12}{10}=\underline{1.2}\left(\text { or }=1 \frac{1}{5}=1.2\right)$ or $\quad \begin{array}{r}0,8 \\ \hline\end{array}$ $\begin{array}{l\|l} & 1.2 \\ 5 & 6.0 \\ \hline 1 \end{array}$ c) $\frac{1}{4}=\frac{25}{100}=\underline{0.25} ; \quad \frac{2}{4}=\frac{1}{2}=\underline{0.5} ; \quad \frac{3}{4}=\frac{75}{100}=\underline{0.75}$; or 0.2 5 $4 \lcm{1.0}$ $\begin{array}{\|c\|c\|c\|} \hline 4 \longdiv { 0 . 7 } 5 \\ \hline 4.3 .0 .0 \\ \hline 32 \end{array}$$\frac{4}{4}=\underline{1} ; \quad \frac{5}{4}=\frac{125}{100}=\underline{1.25}\left(\text { or }=1 \frac{1}{4}=1.25\right) \text { or } \begin{array}{r} 1.2 .5 \\ \frac{4.0}{12} \end{array}$	Notes
8	Book 5, page 103 Q. 3 Read: Write the fractions as decimals. Do the divisions in the grids. Set a time limit. Review with whole class. Ps come to BB to write divisions, explaining reasoning with place-value detail. Class agrees/disagrees. Mistakes discussed and corrected. Ask Ps to show the other method too. Solution: a) $\frac{1}{2}=\frac{5}{10}=\underline{0.5}$ b) $\frac{7}{2}=3 \frac{1}{2}=\underline{3.5}$ c) $\frac{3}{5}=\frac{6}{10}=\underline{0.6}$ 23.5 2 7.0 d) $\frac{11}{5}=\frac{22}{10}=\underline{2.2}$ e) $\frac{1}{4}=\frac{25}{100}=\underline{0.25}$ f) $\frac{3}{4}=\frac{75}{100}=\underline{0.75}$ g) $\frac{7}{4}=1 \frac{3}{4}=1 \frac{75}{100}=\underline{1.75}$ 1.7 5 4 7.0 0 3 2 41 min	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Make sure that divisons in previous activity are not visible! Differentiation by time limit Reasoning, agreement, selfcorrection, praising Ask Ps which method they like best (decimal division or expressing fraction as tenths or hundreths) and why.

$B K S$		Lesson Plan 104
Activity		Notes
7	Book 5, page 104, Q. 4 Read: Fill in the missing numerators, denominators or numbers. Ps come to BB to fill in missing numbers, explaining reasoning. Class agrees/disagrees. Ps write in Pbs too.	Whole class activity (or individual work, monitored helped if Ps wish and there is time)
	Agree that the easiest way to convert fractions to decimals is to express it as 10ths, 100ths or 1000ths, if possible.	Written on BB or use enlarged copy master or OHP
	Discuss how such times would be described in real life (not normally as decimals - more likely to be fractions).	At a good pace
	Solution: a) 3 minutes $=\frac{3}{\sqrt{60}}$ hour $=\frac{\square}{\boxed{20}}$ hour $=\frac{\square 5}{100}$ hour $=0.05$ hour	agreement, (self-correction), praising
	b) 15 minutes $=\frac{15}{\sqrt{60}}$ hour $=\frac{1}{\square 4}$ hour $=\frac{25}{100}$ hour $=0.25$ hour	
	$\text { c) } 63 \text { minutes }=\frac{63}{60} \text { hour }=\frac{21}{20} \text { hour }=\frac{105}{100} \text { hour }=1.05 \text { hours }$	
	d) $\quad 6$ hours $=\frac{6}{24}$ day $=\frac{1}{4}$ day $=0.25$ day	
	e) $\begin{aligned} 3 \text { hours }= & \frac{3}{\boxed{24}} \text { day }=\frac{1}{\boxed{8}} \text { day }=\square 0.125 \text { day } \\ & \frac{15}{5}\end{aligned}$	Extra praise if Ps notice relationships which make the calculation easier.
	$\text { f) } \quad 15 \text { hours }=\frac{\square}{24} \text { day }=\frac{\square}{8} \text { day }=0.625 \text { day }$	Feedback for T

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
R: Fractions \\
C: Ratio. Percentage. Chance or probability of certain events \\
E: Probability as a percentage
\end{tabular} \& \[
\begin{gathered}
\text { Lesson Plan } \\
105
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Activity \\
1
\end{tabular} \& \begin{tabular}{l}
Defining numbers \\
T writes the number 131 on the BB. Tell me different ways of describing this number exactly so that it could not possibly be any other number. \\
(e.g. 13 tens and 1 unit; 1 hundred and 13 units; 60 less than 200; 3 -digit number between 130 and 140 which has the same digit in the hundreds and units column; half of 262 , etc.) \\
T : We say that such examples define the number. \\
If Ps suggest a general description such as: prime number; gives a remainder of 2 after division by 3 ; odd number, etc, T asks rest of class if the description could be applied to other numbers too and if so, Ps give examples. What additional information do we need so that the description can apply only to 131 ? (e.g. the next prime number after 127; gives a quotient of 43 and a remainder of 2 after division by 3 ; the next nearest odd number greater than 129 , etc.)
\end{tabular} \& \begin{tabular}{l}
Notes \\
Whole class activity \\
Encourage creativity \\
At a good pace \\
Class checks the responses. \\
BB: to define \\
to describe exactly \\
Reasoning, agreement, praising
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
Numbers Venn diagram \\
T has Venn diagram and numbers already on BB. \\
Let's writethese numbers in the correct set. Ps come to BB to write (place) numbers in appropriate sets, saying what type of number it is. Class agrees/disagrees.
\[
\begin{aligned}
\& \text { BB: } \\
\& 5, \frac{2}{3}, 10.6,-71 \\
\& --4 \frac{1}{5}, 0,-0.80 \\
\& \frac{70}{10},-1.333 \ldots
\end{aligned}
\] \\
(Impossible sets shaded) \\
Numbers \\
What do you notice about the diagram? (Two sets are empty because they are impossible; e.g. a number is either negative or not negative, it can't be both; there is no number which is neither negative nor not negative.) Who can draw a better diagram without these impossible sets? P comes to BB to draw new diagram (with T's help).
\end{tabular} \& \begin{tabular}{l}
Whole class activity \\
Drawn/written on BB or use enlarged copy master or OHT (or numbers written on cards and stuck to side of BB for ease of manipulation) \\
Discussion, reasoning, agreement, praising \\
Elicit that:
\[
\frac{70}{10}=7,-1.333 \ldots=-1 . \dot{3}
\] \\
BB: e.g.
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
Ratio \\
Study these shapes. \\
BB:

\\
a) What part of the shapes are circles? (3 out of 8 , so $\frac{3}{8}$) \\
b) What part of the shapes are squares? (5 out of 8 , so $\frac{5}{8}$) \\
c) What is the ratio of circles to squares? (3 to 5) \\
d) What is the ratio of squares to circles? (5 to 3) \\
How do we write ratios? Ps come to BB or T reminds Ps if necessary. \\
We can also write the ratios using fractions, like this. (BB) Both ways mean the same.

 \&

Whole class activity \\
Drawn (stuck) on BB \\
T chooses Ps to respond to questions. Class agrees or disagrees. Praising \\
BB:

$$
\begin{aligned}
& C: S=3: 5 \\
& C: S=5: 3
\end{aligned}
$$ \\

or $\frac{C}{S}=\frac{3}{5}$ (Ratio of no. of circles to no. of

$$
\frac{S}{C}=\frac{5}{3}
$$ \\

squares is \\
3 fifths, etc.)
\end{tabular} \\

\hline
\end{tabular}

BK		Lesson Plan 105
Activity 4	Book 5, page 105 Q. 1 Read: In a group of children, there are 8 boys and 12 girls. Write the parts and ratios required. Deal with one part at a time. Ps read the questions themselves and write the ratio or fraction. Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain to Ps who were wrong. Mistakes discussed and corrected. Elicit the simplified forms. What would the parts and ratios be as percentages? Ps do calculations in Ex. Bks. then dictate to T. Class agrees/disagrees. T asks Ps to put the percentages into a sentence to make sure that they understand what they mean. (e.g. 40% of the group are boys.' or 'The number of boys is about 66.7% of the number of girls.') Solution: a) What is the ratio of boys to girls? ($\mathrm{B}: \mathrm{G}=8: 12=2: 3$) b) What part of the goup is boys? $\quad\left(\frac{8}{20}=\frac{2}{5}\right)$ c) What is the ratio of girls to boys? ($\mathrm{G}: \mathrm{B}=12: 8=3: 2$) d) What part of the group is girls? $\quad\left(\frac{12}{20}=\frac{3}{5}\right)$ 24 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, selfcorrection, praising [Extension Tell me other ratios from the picture in your Pbs. (e.g. girls with spotted dresses, boys with black shorts, etc.)] $\begin{aligned} & {\left[=\frac{2}{3} \rightarrow 0.6 \rightarrow 66.7 \%\right]} \\ & {\left[=\frac{40}{100} \rightarrow 40 \%\right]} \\ & {\left[=1 \frac{1}{2} \rightarrow 150 \%\right]} \\ & {\left[=\frac{60}{100} \rightarrow 60 \%\right]} \end{aligned}$
5	Probability T puts 4 white marbles, 1 red marble and 5 blue marbles into an opaque bag and shakes the bag so that the marbles are mixed up. T chooses 6 Ps to come to front of class one a time to take a marble out of the bag with their eyes closed. Before they do so, they predict the colour of the marble. If correct, class gives them a clap. Each P puts the marble back in the bag and shakes the bag again before the next P makes a prediction and repeats the procedure. Let's see what you think about these questions. a) Is it possible that the red marble could be taken out 5 times in a row? (Yes, it is possible but it would have a very small chance of happening.) b) Which colour of marble do you think has the greater chance of being taken out? (A blue marble has more chance of being taken out, as there are more of them.) c) Can you be certain that out of 10 experiments, a blue marble would be taken out most frequently? (No, it is not certain, as the red marble or a white marble could be chosen each time but blue is the most likely.) d) After 10 experiments, which colour do you think will be taken out more frequently, a red or a white marble? (A white marble, as there are more of them.)	Whole class activity Elicit that there are 10 marbles in the bag altogether and each marble has an equal chance of being picked. (i.e. they are the same size and mass, so the different colours cannot be identified by touch). Discussion, reasoning, agreement, praising Ps could show what they think by writing appropriate responses on scrap paper or slates, or by pre-agreed actions, and Ps with different responses explain reasoning. Class decides who is correct.

$B K 5$		Lesson Plan 105
Activity 6	(Continued) c) The group is going on a trip in a minibus. They get on the bus in a random order. How certain are you of these events occurring? If you think that it is certain to happen, write C, if you think that it is possible but not certain, write P and if you think that it is impossible, write I. i) The first 4 students to get on the bus are American. (There are only 3 Americans.) ii) The last student to get on the bus is American or British or Greek. (No other nationality is getting on the bus.) iii) The first student to get on the bus is Greek (but has a very small chance of happening as only 1 Greek) [Elicit that the chance is 1 out of 8 , or $\frac{1}{8}$ or 0.125%] iv) The first 4 students to get on the bus are an American, a Greek, an American and a British student in that order. (but a very small chance of happening) v) Two Americans, a British and the Greek student are the first four to get on the bus. (Again, a very small chance of happening) d) i) Which nationality is the most likely to get on the bus first? (British, as there are more of them) [Elicit that the chance is 4 out of 8 , or $\frac{4}{8}=\frac{1}{2} \rightarrow 50 \%$] ii) Is the first student to get on the bus more likely to be Americn or British? (British, as there are more of them; or as the ratio of B to A is $4: 3$; or Chance of the student being American: $\frac{3}{8}$ Chance of the student being British: $\frac{4}{8}$, and $\frac{4}{8}>\frac{3}{8}$	Notes Accept and praise good reasoning but extra praise if Ps explain by giving an exact chance or probabilty. Ps might agree that v) has more chance than iv) of occurring. as in v), the order does not matter.

$B K E$	R: Numbers. Calculations C: Positive and negative numbers. Debt and cash E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 106 \end{gathered}$
Activity 1	Defining numbers T writes the number 132 on BB a) Let's define this number. (i.e. describe it exactly) T gives an example first if necessary, then Ps dictate their own. Class checks that they are correct and that the description does not fit any other number.. (e.g. 132% of $100 ; 1$ third of $396 ; 11 \times 12 ; 2 \times 2 \times 3 \times 11$; half of $264 ; 100+32$; the 133 rd number from $0 ; 1000-868$, etc.) Elicit the difference between defining a number (which relates only to that number) and saying a true statement about the number (which can also be true for other numbers too). b) Tell me true statements about the number 132 . (e.g. It is even. It has 3 digits. It is divisible by 6 . It is not a multiple of 5 . It is a factor of 396 . It is not a prime number. etc.)	Notes Whole class activity At a good pace in good humour! Reasoning, agreement, praising Encourage creativity. Extra praise for unexpected definitions or statements Feedback for T.
2	Ratio What can you tell me about this rectangle? BB: (Divided into 10 equal parts; 4 of the parts are shaded.) Who can write different ratios abour it? Ps come to BB or dictate what T should write, explaining reasoning. (If necessary, T gives first ratio as an example for Ps to follow.) Ratio of: Shaded to White: $4: 6=2: 3 \quad\left[=\frac{2}{3}=0 . \dot{6} \rightarrow 66 \frac{2}{3} \%\right.$ White to Shaded: $6: 4=3: 2 \quad\left[=1 \frac{1}{2}=1.5 \rightarrow 150 \%\right]$ Shaded to the whole: $4: 10=2: 5 \quad\left[=\frac{2}{5}=0.4 \rightarrow 40 \%\right]$ White to the whole: $6: 10=3: 5 \quad\left[=\frac{3}{5}=0.6 \rightarrow 60 \%\right]$ 12 min	Whole class activity Drawn (stuck) on BB or SB or OHT Reasoning, agreement, praising Feedback for T $[\text { or }=0.666 \ldots \rightarrow 66.7 \%]$ Extension T asks Ps to express the ratio as a fraction, decimal and percentage. Show calculations on BB. e.g. $\begin{array}{\|c\|c\|c\|c\|c} & 0.6 & 6 & 6 & \cdots \\ 3 & 2.0 & 0 & 0 & \cdots \\ \hline 2 & 4 & 4 & 4 \end{array}$
3	Book 5, page 106 Q. 1 Read: Write the ratios between the shaded and white parts and the whole square. Set a time limit or deal with one at a time. More able Ps can be asked to write the ratios as fractions, decimals and percentages too. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees Mistakes discussed and corrected. Elicit the fractions, decimals and percentages. Solution: a) \square \square $\square: 34: 66=17: 33\left[=\frac{17}{33}=0.5 \dot{1} \rightarrow 52 \%\right.$ b) to $\square: 66: 34=33: 17\left[=\frac{33}{17}=1 \frac{16}{17} \underset{\rightarrow}{\sim} \underset{\rightarrow}{\sim} 194.9412\right.$ \rightarrow 194.1\%] c) \square to the whole: $34: 100=17: 50\left[=\frac{34}{100}=0.34 \rightarrow 34 \%\right]$ d) \square to the whole: $66: 100=33: 50\left[=\frac{66}{100}=0.66 \rightarrow 66 \%\right]$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP BB: Discussion, reasoning, agreement, self-correction, praising T (Ps) can use a calculator to do difficult divisions.

BKE		Lesson Plan 106
Activity 4	Probability Let's consider whether these events are certain, possible but not certain, or impossible. Show me what you think when I say. a) There will be a 29th of February in the year 2004. (C) (2004 will be leap year, so will have an extra day) [Accept possible if a P reasons that the world might end before 29 February 2004!] b) More girls than boys will be born next year. (Over several years, on average, the same number of boys as girls are born but it might not necessarily happen next year.) c) If I throw a dice, I will get a 7 . (A dice has only the numbers 1 to 6) d) If I take 12 marbles from a bag containing 10 black marbles and 20 white marbles, I will have taken out at least one white marble. (C) (The first 10 marbles could all be black but the 11th and 12th must be white, as only white marbles are left in the bag.)	Notes Whole class activity Ps could have probability cards on desks, or write C, P or I on slates or scrap paper and show in unison on command. T asks Ps with different responses to explain their reasoning. Class decides if they are correct or not. In good humour! Reasoning, agreement, praising, encouragement only Feedback for T
5	Book 5, page 106 Q. 2 Read: How certain of these events occurring? Write C for certain, P for possible but not certain, or I for impossible. Set a time limit. Ps write appropriate letters in the boxes. Review with whole class. Ps could show initial letters on scrap paper or slates, or use probability cards. Ps wth different responses explain reasoning. Class decides who is correct. Mistakes discussed and corrected. Solution: a) The next Olympic Games will be in the year 2004. b) The next next time I throw a dice I will get a 5 . c) The next time I throw a dice I will get a 0 . d) Next year, the number of boys born will be twice the number of girls a) Next year, fewer boys than girls will be bon.	Individual work, monitored, (helped) Reasoning, agreement, selfcorrection, praising More Ps might write P in a) after the discussion in Activity $4 a$! but very unlikely!
6	Problem Listen carefully, note the data and think about how you would solve this problem. In a bag of marbles, the ratio of red marbles to green marbles is $2: 5$. There are 6 red marbles in the bag. a) How many green marbles are there? b) How many marbles are in the bag altogether? Ps come to BB or dictate to T , explaining reasoning. Who agrees? Who thought of another way to do it? etc. T suggests some ways too. BB: e.g. a) $R: G=2: 5$, so $R=\frac{2}{5}$ of $G=6, \quad G=6 \div 2 \times 5=\underline{15}$	Whole class activity T repeats slowly and a P repeats in own words to give Ps time to think and write. Discussion, reasoning, agreement, praising Ps write the different plans in Ex. Bks. $(\times 3)$ or $R: G=2: 5=6: \underline{15}$ or Ps might draw a diagram, as below, or use algebra.

	R: Fractions, ratio C: Combinatorics, chance, probability E: Percentage. Frequency, relative frequency	$\begin{gathered} \text { Lesson Plan } \\ 107 \end{gathered}$
Activity 1	Numbers T writes the number $\underline{133}$ on BB . b) Let's factorise 133 . What does factorise mean? (To break down a number into its prime factors.) What is a factor of a number? (A number which divides into that number exactly) What is a prime factor? (A factor which is a prime number, i.e. is exactly divisible only by itself and 1) How can we factorise 133 ? (e.g. 133 is an odd number, so has no even prime factors; there is no 5 or 0 in the units column, so 5 is not a prime factor. Divide by 3,7 , etc. in turn to see if there is a remainder. We do not need to go past 11 , as $11 \times 12=132$) T points out that factors are whole numbers, so we do not continue the division beyond the units column. Elicit or remind Ps that every number has the factors 1 and the number itself. b) Let's define this number. (i.e. describe it exactly) Ps dictate definitions and class checks that they are correct and that the description is unique to 133 . (e.g. the 67th positive odd number; $111 \times 3-200 ; 1$ third of 399 ; 50% of $266 ; 133 \%$ of $100 ; 266 \%$ of $50 ; \frac{1}{10}$ of $1330 ; 100 \times 1.33$, etc.) 8 min	Notes Whole class activity Quick revision of how to factorise. Discussion, reasoning, agreement, praising Ps tell their ideas. T gives hints if Ps have forgotten how to factorise numbers. BB: $133=7 \times 19$ Factors: 1, 7, 19, 133 At a good pace Encourage creativity Extra praise for unexpected but correct definitions
2	Ratio In this box are 3 black pencils, 1 red pencil and 4 green pencils. Let's write different ratios about the pencils. Ps come to BB or dictate what T should write. Class agrees/disagrees. T asks Ps to give the ratios in other forms too. BB: e.g. $\begin{array}{ll} \text { Ratio of: } & B: R=3: 1(=3 \text { times } \rightarrow 300 \%) \\ & B: G=3: 4\left(=\frac{3}{4}=\frac{75}{100} \rightarrow 75 \%\right) \\ & R: B=1: 3\left(=\frac{1}{3} \rightarrow 33 \frac{1}{3} \%=33.3 \% \approx 33 \%\right) \\ & R: G=1: 4\left(=\frac{1}{4}=\frac{25}{100} \rightarrow 25 \%\right) \\ & G: B=4: 3\left(=\frac{4}{3}=1 \frac{1}{3} \rightarrow 133 \frac{1}{3} \%=133 . \dot{3} \% \approx 133 \%\right) \\ & G: R=4: 1(=4 \text { times } \rightarrow 400 \%) \\ \text { or, e.g. } & B:(R \text { or } G)=3: 5\left(=\frac{3}{5}=\frac{60}{100} \rightarrow 60 \%\right) \\ & (R \text { or } G): B=5: 3\left(=\frac{5}{3}=1 \frac{2}{3} \rightarrow 166 \frac{2}{3} \%=166.6 \%\right. \\ & \text { etc } \\ \text { or, e.g. } & B: \text { All pencils }=3: 8\left(=\frac{3}{8}=\frac{375}{1000} \rightarrow 37.5 \%\right) \\ & R: \text { All pencils }=1: 8\left(=\frac{1}{8}=\frac{125}{1000} \rightarrow 12.5 \%\right), \text { etc. } \end{array}$	Whole class activity Thas real pencils to show. At a good pace Encourage logical listing. T could start each new type if Ps do not suggest it and Ps dictate the other similar ratios. Reasoning, agreement, praising Ps can work out recurring decimals and percentages with a calculator. or, e.g. $(B$ or $R):$ All $=4: 8$ $\left(=\frac{4}{8}=\frac{1}{2}=50 \%\right)$ $(B$ or $G):$ All $=7: 8$ $\left(=\frac{7}{8}=\frac{875}{1000}=87.5 \%\right)$ or $B: R: G=3: 1: 4$ Agree that a 3-part ratio cannot be given as a fraction, decimal or percentage.

BKE		Lesson Plan 107
Activity 5	Possible outcomes: throwing a dice If we throw a dice, what possible outcomes could there be? Let's try it! Ps throw a dice several times (on desks and/or at front of class). What different outcomes did you see? (The dice landed showing $1,2,3,4,5$ or 6 facing up.) Did anyone's dice land on an edge or vertex? (No) Is it possible for a dice to land on an edge or vertex? T asks several Ps what they think. Class might agree that you can imagine it happening but in practice it does not happen unless the dice lands leaning against something, which does not count. Let's assume that a dice always lands with $1,2,3,4,5$ or a 6 facing up, so there are 6 possible outcomes. What chance do you think these outcomes have? Do they have an equal or unequal chance of happening? Elicit that as a dice is usually a cube and is symmetrical, each of the numbers should have an equal chance of being thrown. T: When we throw a dice, we assume that it is a normal (unbiased or fair) dice and has 6 possible outcomes, $1,2,3,4,5$ or 6 , and each outcome has an equal chance of occurring.	Notes Whole class activity If possible, Ps have dice on desks too. Discussion, agreement, praising BB: Dice 6 outcomes: $1,2,3,4,5$ or 6 (Again, some Ps might not agree because of their experience of board games where throwing a 6 is required to start or finish, or because they have used an unfair dice.)
6	Book 5, page 107 Q. 2 Read: Predict the results for each outcome first, then do the experiment. Throw a dice 20 times and note how it lands in this table. Ps make predictions (checking that they add up to 20) and throw a dice 20 times. If possible, keep Ps together at each throw. Ps check that they have made 20 tally marks altogether. Then Ps write totals in frequency column in table and calculate the ratios (relative frequencies) as fractions and percentages. P finished first could write his or her results in table on BB. T asks some Ps to report their results to class and to compare their actual results with their predictions. Read: Collect the class data and fill in this table. First agree on total number of throws. (e.g. if 25 Ps in class, and 20 throws each, then number of throws: $25 \times 20=\underline{500}$) Ps dictate their results for each outcome and T writes on BB. Ps keep count in Ex. Bks and/or T chooses Ps to keep a running total for each outcome on a calculator as a check. After checking that the 6 totals add up to 500 , Ps write agreed frequencies in class data table on BB and in Pbs .	Individual work, closely monitored, helped, corrected Tables drawn on BB or use enlarged copy master or OHP At a fast pace Calculations can be done in Ex Bks. or Ps may use a calculator for the percentages. Thelps where necessary. Elicit that relative frequency is the ratio of the number of times a certain number is thrown (frequency) compared with (relative to) the total number of throws. BB: $\frac{4}{20}=\frac{20}{100} \rightarrow 20 \%$, etc. Praising, encouragement only Whole class activity T writes in table on BB and Ps write in Pbs. Deal with one outcome at a time. At a fast pace. In good humour!

$B K E$		Lesson Plan 108
Activity 4	Possible outcomes Ps have 3 different coins (real or toy) on desks, e.g. 10 p, 50 p and $£ 1$ coins. a) What different outcomes are possible if we toss 2 different coins (e.g. 10 p and $£ 1$) at the same time? Ps toss the coins several times and note the outcomes in Ex. Bks. Let's list all the different outcomes you found in this table. Ps come to BB or dictate to T. Class agrees/disagrees or points out any missed. Encourage a logical listing. Outcome Elicit that there are $\underline{4}$ possible outcomes. BB: How many outcomes give: a) 2 Heads b) a Head and a Tail c) 2 Tails?	Notes Whole class activity (If all Ps having coins on desks is not possible, T asks several Ps to come to front of class to toss the coins.) Tables drawn on BB or use enlarged copy maser or OHP At a good pace Agreement, praising Check: $1+2+1=4$ Use any 3 different coins Allow a set time for tossing and praise Ps who did the most tosses in the given time. Check: $1+3+3+1=\underline{8} \checkmark$
5	Book 5, page 108 Q. 2 Read: Predict the result for each outcome first, then do the experiment. Toss a 10 p coin and a $£ 1$ coin at the same time. Repeat the experiment 24 times and keep a tally of how they land in this table. Ps write predictions. T asks several Ps what they predicted. If possible, keep Ps together on the tosses. Ps count their tally marks and write the freqeuncy for each outcome in their table. P finished first could write his or her data in the table on BB. T chooses some some Ps to report their data to the class and to compare their actual data with their predictions. Read: Collect the data for the class and complete the right hand side of the table. First agree on total number of tosses. (e.g. if 30 Ps in class, and 24 throws each, then number of throws: $24 \times 30=\underline{720}$) Ps dictate their results for each outcome and T writes on $B B$, while Ps keep a running total for each outcome in Ex. Bks..	Individual work, closely monitored, helped, corrected Table drawn on BB or use enlarged copy master or OHP Ps check that their predictions add up to 24. At a fast pace Ask Ps the reason for their predictions. Extra praise if they give a logical reasoning (4 possible outcomes, each with an equal chance, etc.) Whole class activity At a fast pace 4 Ps also keep running totals on calculators.

BKS		Lesson Plan 109
Activity 3	Possible outcomes: 2 dice Ps have 2 different coloured dice on desks, e.g. 1 white and 1 red. a) What different outcomes are possible if we throw 2 dice at the same time? Ps throw the dice several times and note the outcomes. Let's list all the different possible outcomes in these tables. Ps come to BB or dictate to T. Class agrees/disagrees or points out any missed. Encourage a logical listing, as shown. BB: Elicit that there are 36 possible outcomes. (For each of the 6 possible numbers on the white dice there are 6 possible numbers on the red dice, i.e. $6 \times 6=\underline{36}$ possible outcomes.) a) How many outcomes give: i) two 4 s (1) ii) one 2 and one 4 (2) iii) one 1 and one 6 (2) iv) two 1 s v) at least one 5? (11) b) What chance (probability) would you give to each of these outcomes? Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. T shows Ps the notation for writing the probability of a certain outcome. BB: i) $p($ two 4 s$)=\frac{1}{36} \quad$ (as 1 chance out of 36) ii) $p($ one 2 and one 4$)=\frac{2}{36}=\frac{1}{18}$ (as 2 chances out of 36) iii) p (one 1 and one 6$)=\frac{2}{36}=\frac{1}{18}($ as 2 chances out of 36$)$ iv) p (two 1 s$)=\frac{1}{36} \quad($ as 1 chance out of 36$)$ v) p (at least one 5$)=\frac{11}{36} \quad$ (as 11 chances out of 36)	Notes Whole class activity If all Ps having dice on desks is not possible, T asks several Ps to come to front of class to demonstrate. Tables drawn on BB or use enlarged copy maser or OHP At a good pace Agreement, praising Discussion, reasoning, agreement, praising Ps shout out in unison. Agreement, praising Reasoning, agreement, praising Point out that notation for probability is a lower case ' p ' (a capital ' P 'is used for 'perimeter'). Ps write probabilities in $E x$. Bks. too. Feedback for T

BKS		Lesson Plan 109
Activity 4	Book 5, page 109 Q. 1 Read: Predict the result of each outcome first, then do the experiment. Throw a white and a red dice at the same time and note how they land in this table. Repeat the experiment 72 times. What do you notice about this table? (It shows all the 36 outcomes listed in the 6 tables in the previous activity.) Set at a time limit for predicting, throwing the dice and recording the outcomes. Advise Ps to check that they have 72 tally marks before writing their totals. (P finished first could write his or her data in table on BB.) T chooses some Ps to report on their predictions and outcomes, (i.e. how many times their outcome matched their prediction). Read: Collect the class data and complete the table. How many pupils are in the class? (e.g. 20) How many throws have we done altogether? (e.g. $72 \times 20=1440$) Ps dictate their outcomes to T, and class keeps a running total in Ex. Bks. (and/or Ps keep running totals on calculators). Ps who did not finish individual experiments do so now (with help of quicker Ps) and dictate their results as they finish. Check that the class total is correct before writing the ratios. Ps come to BB or dictate fractions, then calculate the decimals to 4 decimal places with a calculator. The percentages are easily obtained from the decimals by moving each digit 2 place-values to the left. (i.e. multiplying by 100 , as $\%$ means 'out of 100 '). Sample table for a class of 20 Ps is shown on following page. What probability would you have predicted for each outcome? Ps give it as a fraction, decimal and percentage, explaining reasoning. Class agrees/disagrees. BB: p (each outcome) $=\frac{1}{36}=0.02 \dot{7} \rightarrow \approx 2.78 \%$ Hopefully, the class ratios will be very close to this. If not, discuss what the reasons could be for the difference. (e.g. some dice might be biased, or some Ps might have recorded the data inaccurately; or if quite close, not enough data collected) [If possible, T uses a computer simulation to demonstrate that the more times the experiment is done, the closer the ratios get to the probability.]	Notes Individual (or paired) work, closely monitored, helped, corrected Table drawn on BB or use enlarged copy master or OHP (Slower Ps can finish their experiment during collection of class data.) Or class compares their data with those in the table on BB. Whole class collection of class data and calculation of ratios Reasoning, agreement, checking totals, praising Hopefully, there will be just a few different frequencies which occur several times, so necessary calculations will be limited.) Ps write agreed ratios in tables in Pbs too (or could be set this work for homework) Discussion, reasoning, agreement, praising Compare the actual outcomes with the expected outcomes or probability.

T	R: Graphs C: Frequency tables and graphs. Probability E: Relative frequency	$\begin{gathered} \text { Lesson Plan } \\ 110 \end{gathered}$
Activity 1	Numbers Let's define the number 137. Ps dictate their definitions. Class agrees/disagrees. T could give some definitions too (some incorrect) and ask Ps if they are correct. e.g. It is a prime number greater than 131 and less than $139 ; 140-3$; $11 \times 11+16 ; 1$ third of $411 ; 137 \%$ of $100 ; 1 \mathrm{H}+37 \mathrm{U} ; 1.37 \times 100$; etc. 6 min	Notes Whole class activity At a good pace In good humour! Checking, agreeement, praising Extra praise for creativity!
2	Displaying outcomes Study this bar chart. What do you think it shows? BB: Elicit/tell that the bar chart shows the results obtained after throwing a dice several times. The horizontal axis shows the different outcomes and the vertical axis shows how many times they occurred (frequency). How many times was the dice thrown? $(6+5+7+4+4+4=\underline{30})$ Let's write the data in the table. Ps come to BB or dictate what T should write, using a calculator to work out the relative frequencies as percentages. (Divide numerator by denominator and multiply by 100). (Change recurring decimals in percentages to fractions so that the relative frequencies are exact and will add up to 100% - it is easier to compare with the probabitiy as a \%) Class points out errors. Are the frequencies in the table what we would expect? T asks several Ps what they think and why. e.g. [BB: Probability of each outcome: $\frac{1}{6}$ (as 1 chance out of 6) so we would expect that out of 30 throws, each outcome would occur ($30 \div 6=\underline{5}$) times and only the ' 2 ' was thrown 5 times.] Show me the answer to these questions about the actual data when I say. a) i) What is the frequency of an even number? $(5+4+4=\underline{13})$ ii) What is the relative frequency? $\left(\frac{13}{30}\right)$ [or $43 \frac{1}{3} \%$] Are they what you would expect? (No, we would expect : frequency: $5+5+5=\underline{15}$; relative frequency: 1 half or $\underline{50 \%}$) b) i) What is the frequency of a number $>2 ?(7+4+4+4=\underline{19})$ ii) What is the relative frequency? $\left(\frac{19}{30}\right)$ [or $63 \frac{1}{3} \%$] Are they what you would expect? (No, we would expect: frequency: $5+5+5+5=\underline{20}$; relative frequency: 2 thirds or $66 \frac{2}{3} \%$)	Whole class activity Drawn on BB or use enlarged copy master or OHP Table completed later (see below) Discussion, agreement, praising T writes agreed labels on bar chart. Reasoning, agreement, praising At a good pace $\begin{aligned} \text { (e.g. } & \frac{5}{30}=\frac{1}{6}=0.1 \dot{6} \\ & \left.\rightarrow 16 . \dot{6} \%=16 \frac{2}{3} \%\right) \end{aligned}$ Thelps with reasoning if necessary. Agreement, praising (but the others are quite close) Responses written on scrap paper or slates and shown in unison. Ps answering correctly explain to Ps who were wrong. Because in: a) ii): $p(\text { even number })=\frac{15}{30}=\frac{1}{2}$ b) ii): $p(\text { number }>2)=\frac{20}{30}=\frac{2}{3}$

BK5	R: Fractions, ratio C: Frequency, relative frequency E: Probability scale	$\begin{gathered} \text { Lesson Plan } \\ 111 \end{gathered}$
Activity 1	Numbers a) Let's factorise 138 and list all its positive factors. Ps come to BB or dictate to T. Class agrees/ disagrees. BB: b) Let's define the number 138 . Ps dictate definitions and class checks that they are correct and that the description is unique to 138 . (e.g. $6 \times 23 ; 138 \%$ of $100 ; 13.8 \times 10 ;-12+150,690 \div 5$; etc.) 8 min	Notes Whole class activity Ps draw factor tree on BB but praise other reasoning too. (e.g. 2 is a factor as 138 is even; 5 is not a factor as no 5 or zero in units column, etc.) At a good pace Agreeement, praising Extra praise for creativity!
2	Probability scale On the radio one morning during the weather forecast, the presenter made these remarks. What did he mean? a) There is a 50% chance of rain in the South-West. (There is an equal chance of it raining as not raining.) What other way could you say it? (e.g. half-in-half chance, or fifty-fifty chance, or even chance) b) There is a 20% chance of rain in the South-East. (Rain is possible but is rather unlikely.) c) There is an 80% chance of rain in the North. (It is very likely to rain, but it is not certain.) Have you ever heard of a 0% chance of rain, or a 100% chance of rain? (No, as a 0% chance means that it is impossible for it to rain and a 100% chance means that it is certain to rain - but we cannot control the weather!) Let's draw a probability scale. T draws a horizontal line on the BB and Ps draw one in Ex. Bks. What should we mark on it? (0 at one end and 1 at the other) Should we extend the line below zero and beyond 1? (No, as a probability cannot be less than zero, or more than 1.) What other mark could we make on it? (Half-way mark, where the probabilities of not happening and happening are equal.) Elicit what each part of the probability scale actually means and that the greater the probability, the more chance something has of happening. BB: Ask Ps to think of examples from real life and to show where they would be on the probability scale. (T should also have some in mind in case Ps cannot think of any.) Class agrees/disagrees. 16 min	Whole class activity Discussion involving as many Ps as possible Elicit alternative statements: e.g. a) There is a 50% chance of no rain in the South-West. b) There is an 80% chance of no rain in the South-East. c) There is a 20% chance of no rain in the North. Agreement, praising T works on BB and Ps work in Ex. Bks. While Ps are suggesting examples, T quickly checks all Ps' probability scales, correcting where necessary. Extra praise for clever examples.

$B K 5$		Lesson Plan 111
Activity 3	Probability game Let's play a game. Everyone stand up! I will say a probability as a ratio or a fraction or a decimal or a percentage and you must show me what it means with actions. e.g. If you think it is: - certain, raise both arms above your head - likely but not certain, hold your ears - as equally likely as unlikely, bow - unlikely but possible, fold your arms - impossible, sit down. T says a probability, then says, 'Show me . . now!' Ps with different responses explain reasoning and class decides which response is correct. e.g. $\frac{1}{10} \text { (unlikely), } \frac{70}{100} \text { (likely), } 1 \text { (certain), } 0.26 \text { (unlikely), }$ 85% (likely), 0% (impossible), 50% (equally likely as unlikely), etc.	Notes Whole class activity Ps could chooses the actions. T might have actions written on BB as a reminder, or Ps have a short practice first. At speed, in good humour! Actions done in unison. Praising, encouragment only If problems or disagreement, Ps show on probability scale. Ps could say some probabilities too! Feedback for T
4	Tossing a coin If we toss an unbiased coin, how many different outcomes are there? (2) What are they? (a head or a tail) Which is more likely? (They each have an equal chance, or are equally likely.) I will say an outcome and you must show me (on scrap paper or slates) what you think its probability is when I say. e.g. a) We toss a Head. b) We toss a Head or a Tail. c) We toss neither a Head nor a Tail. d) We toss a Head and a Tail. e) We toss a tail. ($\frac{1}{2}$ or 0.5 or 50%) (1 or 100%) [Certain] (0 or 0\%) [Impossible] (0 or 0\%) [Impossible] ($\frac{1}{2}$ or 0.5 or 50%)	Whole class activity Responses shown in unison. Demonstrate and/or show on probability scale if necessary. Elicit the other forms too. T (Ps) writes each on BB in a mathematical way. e.g. a) $p(\mathrm{H})=\frac{1}{2}=0.5 \rightarrow 50 \%$ b) $p(\mathrm{H}$ or T$)=1 \rightarrow 100 \%$ c) $p(\mathrm{H}$ nor T$)=0 \rightarrow 0 \%$ etc.
5	Book 5, page 111 Q. 1 Read: When we throw an unbiased dice, there are 6 possible outcomes, each equally likely: 1, 2, 3, 4, 5, or 6 . Show the probabiltiy of each of these outcomes by joining it to the correct point on the probability scale. Elicit that the vertical probability scale ranges from 0 to 1 and is divided into 6 equal parts, with a tick at every sixth. Set a time limit or deal with one at a time. Advise Ps to find the correct point on the scale first then join it to the matching question, rather than the other way round, as it is more accurate. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agres/disagrees. Mistakes discussed and corrected.	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit and extension work. Discussion, reasoning, agrement, self-correction, praising

$B K 5$		Lesson Plan 111
Activity 5	(Continued) Q. 1 Solution: a) Throwing a 2 b) Throwing a number less than 3 c) Throwing a number not less than 3 d) Throwing a 7 e) Throwing a number less than 1 f) Throwing a number greater than 0 g) Throwing a number greater than 5 T reviews: When we have 6 possible outcomes, each with equal probability, the sum of their probabilities is the certain outcome, 1 .	Notes Extension Elicit decimals and percentages. a), g) $\frac{1}{6}=0.1 \dot{6} \rightarrow 16 \frac{2}{3} \%$ b) $\frac{2}{6}=\frac{1}{3}=0 . \dot{3} \rightarrow 33 \frac{1}{3} \%$ c) $\frac{4}{6}=\frac{2}{3}=0 . \dot{6} \rightarrow 66 \frac{2}{3} \%$ d), e) $\frac{0}{6}=0 \rightarrow 0 \%$ f) $\frac{6}{6}=1 \rightarrow 100 \%$ Ps repeat in unison.
6	Book 5, page 111 Q. 2 Read: Seven children draw lots in the hope of winning a prize. If each child has an equal chance of winning, what is the probability of each of these outcomes happening? Join the outcomes to the matching points on the prabability scale. Discuss the problem first to ensure that Ps understand the context. Ps give names to the 7 chldren. (e.g. Ann, Bob, Charlie, etc.) What do you notice about the proabability scale? (Divided into 7 equal parts, with a tick at every seventh) Set a time limit. Ps find the correct point on the scale and join it to the matching question, writing the fraction too. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agres/disagrees. Mistakes discussed and corrected. Solution: a) C wins. b) A or D wins. c) G or E or C or A wins. d) B and F win. e) G does not win. f) Neither D not E wins. T reviews, then Ps repeat in unison. When we have 7 possible outcomes, each with equal probability, the sum of their probabilities is the certain outcome, 1 .	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Use names of Ps in class if possible. Discussion, reasoning, agreement, self-correction, praising Show details on BB: a) 1 chance out of $7: \frac{1}{7}$ b) $\frac{1}{7}+\frac{1}{7}=\frac{2}{7}$ c) $\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}=\frac{4}{7}$ d) Impossible, as only one winner! e) $1-\frac{1}{7}=\frac{6}{7}$ f) $1-\frac{2}{7}=\frac{5}{7}$

BK		Lesson Plan 111
Activity 7		Notes
	Book 5, page 111, Q. 3	
	Read: Let's suppose that when the fortune teller spins her lucky number wheel, any of the numbers has an equal chance of coming to rest in front of the arrow.	Whole class activity (or individua trial first if Ps wish and there is time, monitored, helped)
	Also, the wheel has been fixed so that it cannot stop with the arrow pointing to a line between two numbers.	Drawn on BB or use enlarged copy master or OHP
	What is the probability of these outcomes happening? What can you tell me about this wheel? (Divided into 20 equal parts; labelled with the numbers 1 to 20 in a random order.)	BB:
	Deal with one part at a time. T reads the outcome and Ps show its probability on scrap paper or slates on command. Ps with different responses explain reasoning to class. Class decides who is correct. Ps write agreed fraction in Pbs. Elicit decimals and percentages too if no P has shown them.	
	Solution:	Responses shown in unison.
	The number is: a) 17 $\left(\frac{1}{20}\right)\left[=\frac{5}{100}=0.05 \rightarrow 5 \%\right]$	Discussion, reasoning, agreement, (self-correction), praising
	b) less than $17 \quad\left(\frac{16}{20}\right)\left[=\frac{4}{5}=\frac{80}{100}=0.80 \rightarrow 80 \%\right]$	Elicit the possible numbers: b) 1 to 16
	c) not greater than $17 \quad\left(\frac{17}{20}\right)\left[=\frac{85}{100}=0.85 \rightarrow 85 \%\right]$	c) 1 to 17
	d) not less than 17 $\left(\frac{4}{20}\right)\left[=\frac{1}{5}=\frac{20}{100}=0.20 \rightarrow 20 \%\right]$	d) $17,18,19,20$ e) $2,4,6,8,10,12,14,16$, 18, 20
	e) even $\quad\left(\frac{10}{20}\right)\left[=\frac{1}{2}=0.5 \rightarrow 50 \%\right]$	f) $4,8,12,16,20$ g) $1,2,3,5,6,7,9,10,11$
	f) divisible by $4 \quad\left(\frac{5}{20}\right)\left[=\frac{1}{4}=\frac{25}{100}=0.25 \rightarrow 25 \%\right]$	$13,14,15,17,18,19$ h) 1 to 20 (All)
	g) not divisible by $4 \quad\left(\frac{15}{20}\right) \quad\left[=\frac{3}{4}=\frac{75}{100}=0.75 \rightarrow 75 \%\right]$	i) none
	h) either even or odd $\quad\left(\frac{20}{20}=1\right) \quad[\rightarrow 100 \%] \quad$ Certain!	Extra praise if a P notices that the probabilities of f)
	i) neither even nor odd $\quad\left(\frac{0}{20}=0\right) \quad[\rightarrow 0 \%] \quad$ Impossible!	and g$)$ sum to 1 .
Extension	Which outcomes are likely but not certain to happen? [b), c) and g)]	Agreement, praising
	When we have 20 possible outcomes, each with equal probability, the sum of their probabilities is the certain outcome, 1 .	Ps repeat in unison.

BKE	R: Ratio, percentage C: Probability scale. Experiments and calculations E: Problems. Combinatorics	Lesson Plan 112
Activity 1	Numbers a) Let's factorise $\underline{139}$ and list its positive factors. Ps try the prime numbers in increasing order, explaining reasoning with logic, as below. Class agrees/disagrees. - $\underline{2}$ is not a prime factor, as 139 is odd - $\underline{3}$ is not a factor, as $139=120+19$, and 19 is not a multiple of 3 - $\underline{5}$ is not a factor, as units digit is not 5 or 0 . - $\underline{7}$ is not a factor, as $139=140-1$, and 140 is a multiple of 7 - $\underline{11}$ is not a factor, as $139=110+29$, and 29 is not a multiple of 11 Elicit that no prime number more than 11 is possible either. e.g. 13: BB: $13 \times 13=130+39=169$, and $169>139$ Agree that 139 is a prime number and its only factors are 1 and 139 . b) Let's define 139 in different ways. Ps dictate definitions and class checks that they are correct and that the description is unique to 139 . (e.g. $1000-961 ; 139 \%$ of $100 ; 1.39 \times 100 ; 1 \mathrm{H}+39 \mathrm{U}, 556 \div 4$; etc.) 8 min	Notes Whole class activity Elicit method for checking prime numbers. T directs Ps' thinking if necessary. At a good pace Agreement, praising Ps use easy known multiples. BB: $139=1 \times 139$ Checking, agreement Praising, encouragement only Extra praise for unexpected definitions
2	Probability 1 T has probability scale drawn on BB. BB: Let's think of outcomes for each of these probabilities. If necessary, T helps with the context, but Ps think of the appropriate outcomes. e.g. a) In a lottery, one number is drawn from the numbers $1,2,3$ and 4 . Each of the numbers has an equal chance of being drawn. Ps: The probability of 'drawing 1 ' is $\frac{1}{4}$. (same for 2,3 and 4) The probability of 'drawing 1 or 2 ' is $\frac{1}{2}$. (or 'an odd number') The probability of 'not drawing 1 ' is $\frac{3}{4}$. (or ' 1 or 2 or 3 ') The probability of 'drawing 5 ' is 0 . (or 'drawing 1 and 2 ', etc.) The probability of 'drawing a number not greater than 4 ' is 1 . b) In an interntional summer camp, there are 100 children; 25 are from Denmark, 50 are from England, and 25 are from France. All their names are put into a computer and the computer picks 1 name at random for a special task. Ps: e.g. The probability that the child is: - Danish is $\frac{1}{4}(25 \%)$ - English is $\frac{1}{2}$ (50%) - not French $\frac{3}{4}$ (75%) - Russian is $0(0 \%)$ - Danish or English or French is $1(100 \%)$. etc.	Whole class activity Drawn on BB or SB or OHT Ps could be given time to discuss it with their neighbour first. T intervenes only if Ps are struggling. Reasoning, agreement, praising Extra praise for creativity in contexts and ideas for the probabilities Encourage Ps to use the logic words: 'and', 'or', 'not', 'nor' Elicit also if an outcome is impossible, unlikely, likely or certain to happen.

BK5		Lesson Plan 112
Activity 4 Extension	Book 5, page 112 Q. 1 Read: In a lottery game, two numbers are drawn from the numbers 1,2, 3 and 4. Let's suppose that each number has an equal chance of being drawn. Deal with part a) first, then parts b) and c). Set a time limit. Ps read questions themselves and write the answers in Pbs. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) List the possible outcomes if the order of the two numbers does not matter. $(1,2),(1,3), 1,4),(2,3),(2,4),(3,4)$ [6 outcomes] b) What is the probability of these outcomes? i) The numbers are 1 and 3 . $\left(\frac{1}{6}\right)$ ii) One of the numbers is 2 . $\left(\frac{3}{6}=\frac{1}{2}\right)$ iii) One of the numbers is either 1 or 3 . $\left(\frac{5}{6}\right)$ c) List the possible outcomes if the order of the two numbers does matter. $(1,2),(1,3), 1,4) ;(2,1) ;(2,3),(2,4)$; $(3,1),(3,2),(3,4) ;(4,1),(4,2),(4,3)$ [12 outcomes] What are the probabilities of the outcomes in b)? (The same: i) $\frac{2}{12}=\frac{1}{6}$ ii) $\frac{6}{12}=\frac{1}{2}$ iii) $\frac{10}{12}=\frac{5}{6}$)	Notes Individual work, monitored, helped T stresses that the 2 numbers are drawn at the same time. Discussion, reasoning, agreement, self-correction, praising Feedback for T More able Ps can be asked for decimals and percentages too. Extension (for quicker Ps) iv) Neither of the two numbers is 1 or 3 . $\left(1-\frac{5}{6}=\frac{1}{6}\right)$ Agreement, praising
5	Book 5, page 112 Q. 2 Read: This time the numbers 1, 2, 3 and 4 are written on cards and put into a bag. A pupil takes out one card with his eyes shut, notes the number and puts it back into the bag again. Then the pupil takes out a 2 nd card in the same way and notes the number. a) List the possible outcomes if the order of the two numbers does not matter. b) List the possible outcomes if the order of the two numbers does matter. Deal with one part at a time. Set a time limit. Encourage logical listing. Review with whole class. Ps come to BB or dictate to T. Class points out any missed combination. Mistakes corrected.	Individual work, monitored, (helped) Demonstrate the game with a P at front of class if necessary. Discussion, reasoning, agreement, self-correction, praising

BKK		Lesson Plan 112
Activity 5 Extension	(Continued) Solution: a) $1,1 \quad 2,2 \quad 3,3 \quad 4,4 \quad$ (10 possible outcomes, $1,2 \quad 2,3 \quad 3,4 \quad$ but not equal probabilities) 1,3 2,4 1,4 b) $\begin{array}{llll}1,1 & 2,1 & 3,1 & 4,1 \\ 1,2 & 2,2 & 3,2 & 4,2 \\ 1,3 & 2,3 & 3,3 & 4,3 \\ 1,4 & 2,4 & 3,4 & 4,4\end{array}$ (16 possible outcomes, with equal probabilities) Using the listing in b), what are the probabilities of these outcomes? i) The two cards are 1 and $3 . \quad\left(\frac{2}{16}=\frac{1}{8}\right)$ ii) There is at least one $2 . \quad\left(\frac{7}{16}\right)$ iii) The two cards are 1 or $3 . \quad\left(\frac{12}{16}=\frac{3}{4}\right)$ iv) The two cards are 2 and $2 . \quad\left(\frac{1}{16}\right)$ 39 min	Notes T elicits/explains the unequal probability in the listing in a). [There is only one way of getting, e.g. 1 and 1, but there are 2 ways of getting, e.g. 1 and 2 in any order, $(1,2)$ and $(2,1)$, so the outcome ' 1 and 2 ' is more likely than the outcome ' 1 and 1 '. [If possible, use a computer simulation to show it.] Whole class activity (Ps could show on slates or scrap paper in unison.) Ps with different responses explain reasoning. Class decides on correct proabability. Extra praise if Ps give \% too.
\% 6	Book 5, page 112 Q. 3 Read: Eight children have written their names on a wheel of fortune. The fortune teller spins the wheel to see who is to be chosen to have their fortunes told. Let's suppose that each letter has an equal chance of coming to rest in front of the arrow and that the wheel cannot stop on the lines between the letters. What is the probability of each of these outcomes? Set a time limit. Review with whole class. Ps could show responses on scrap paper or slates on command. Ps answering correctly explains to Ps who were wrong. Mistakes discussed and corrected. Show each probabilty on a probability scale and ask Ps to express them as a decimal and percentage too. Solution: a) A wins. b) D wins $\left(\frac{1}{8}\right) \quad[=0.125 \rightarrow 12.5 \%]$ c) B and G win. (0) [Impossible!] d) F does not win. $\begin{aligned} & \left(1-\frac{1}{8}=\frac{7}{8}\right) \quad[=0.875 \rightarrow 87.5 \%] \\ & \left(\frac{2}{8}=\frac{1}{4}\right) \quad[=0.25 \rightarrow 25 \%] \end{aligned}$ f) Neither $\mathrm{C} \underline{\text { nor }} \mathrm{H}$ wins. $\left(1-\frac{1}{4}=\frac{3}{4}\right) \quad[=0.75 \rightarrow 75 \%]$ i) E either wins or doesn't win. (1) $[\rightarrow 100 \%]$ Certain!	Individual work, monitored, helped (or whole class activity) Drawn on BB or use enlarged copy master or OHP BB: Reasoning, agreement, selfcorrection, praising Scale drawn on BB or SB or OHT: The winning name's initial letter comes : g) after C in the alphabet; (i.e. D, E, F, G, H) $\left(\frac{5}{8}\right)[=0.625 \rightarrow 62.5 \%]$ h) before C in the alphabet. (i.e. A, B) $\left(\frac{2}{8}=\frac{1}{4}\right)[=0.25 \rightarrow 25 \%]$

