1. a) Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Colour red the 2-digit numbers in the 2nd row.
c) Colour blue the 2-digit even numbers in the 5th column from the left.
d) Colour yellow the 1-digit odd numbers in the 4th column from the right.
e) Colour green the numbers not less than 36.

2. Write the number of circles in the place-value table.

   a)  
   b)  
   c)  

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

3. The same shape means the same number. Fill in the missing whole tens.

\[
\begin{align*}
\square + \square + \triangle &= 100 \\
\square + \square - \triangle &= 60 \\
\square - \square + \triangle &= 40 \\
\square - \square - \triangle &= 0
\end{align*}
\]

4. The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers.

   a)  
   b)  

\[
\begin{align*}
a) & \quad 100 \\
 & \quad 40 \\
 & \quad 10 \\
 & \quad 30 \\
b) & \quad 100 \\
 & \quad 30 \\
 & \quad 10 \\
 & \quad 40
\end{align*}
\]
1. Fill in the amounts and mark the numbers on the number line.

   ![Number line with coins and numbers]

   a) 
   b) 
   c) 

2. Draw and write down how you could pay £76 from these notes and coins:

   £50  £20  £10  £5  £2  £1

   a) with the exact amount  
   b) with change needed.

   **Drawing:**  
   **Drawing:**

   **Calculation:**  
   **Calculation:**

3. Fill in the total amounts. Compare them by drawing arrows towards the amount which is more.

   ![Comparison of amounts with arrows]

4. Draw a line 8 cm long.
   Divide it up into quarters.
Practise addition.

1. a) 40 + 50 = 
   b) 26 + 30 = 
   c) 17 + 5 = 

2. 30 + 20 =  
   42 + 50 =  
   18 + 3 =  

3. 50 + 10 =  
   40 + 17 =  
   29 + 6 =  

4. 70 + 6 =  
   32 + 4 =  
   8 + 24 =  

5. 20 + 8 =  
   25 + 3 =  
   9 + 23 =  

6. 30 + 2 =  
   52 + 6 =  
   7 + 16 =  

Practise subtraction.

1. a) 80 – 70 =  
   b) 43 – 20 =  
   c) 26 – 9 =  

2. 50 – 10 =  
   75 – 50 =  
   27 – 8 =  

3. 90 – 30 =  
   68 – 30 =  
   23 – 5 =  

4. 38 – 8 =  
   52 – 1 =  
   24 – 12 =  

5. 52 – 2 =  
   98 – 6 =  
   28 – 14 =  

6. 76 – 6 =  
   87 – 4 =  
   25 – 17 =  

Do the additions in different ways. Fill in the missing numbers. Complete the diagrams.

1. a) 

2. 

3. 

4. Ann has 35 picture cards, 18 more than Lisa. How many picture cards do the two girls have altogether?

   They have  cards altogether.
1. Jane has £64. How many pounds could she spend and how many pounds would she have left? Complete the table.

<table>
<thead>
<tr>
<th>Spends (£)</th>
<th>18</th>
<th>36</th>
<th>25</th>
<th>49</th>
<th>27</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has left (£)</td>
<td>12</td>
<td>34</td>
<td>35</td>
<td>48</td>
<td>23</td>
<td>5</td>
</tr>
</tbody>
</table>

*Rule:* 64 = \( S \) = \( H \)

2. Andrew has £46 more than Brian has. How much money could they each have? Complete the table.

<table>
<thead>
<tr>
<th>A (£)</th>
<th>49</th>
<th>68</th>
<th>95</th>
<th>80</th>
<th>81</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (£)</td>
<td>15</td>
<td>24</td>
<td>17</td>
<td>18</td>
<td>39</td>
<td>27</td>
</tr>
</tbody>
</table>

*Rule:* A = B + 46 =

3. A book case has 3 shelves. On the middle shelf there are 32 books, 9 less than there are on the top shelf and 9 more than there are on the bottom shelf.

a) How many books are on the top shelf? ...........................................

b) How many books are on the bottom shelf? ...........................................

c) How many books are in the book case? ...........................................

4. Fill in the missing numbers.

a) 30 + \[ \quad \] = 80 \quad 33 + \[ \quad \] = 38 \quad 3 + \[ \quad \] = 83
   33 + \[ \quad \] = 83 \quad 38 + \[ \quad \] = 80 \quad 38 + \[ \quad \] = 83

b) \[ \quad \] + 40 = 60 \quad \[ \quad \] + 4 = 66 \quad \[ \quad \] + 40 = 64
   \[ \quad \] + 44 = 60 \quad \[ \quad \] + 46 = 60 \quad \[ \quad \] + 46 = 64

c) 90 − \[ \quad \] = 30 \quad 93 − \[ \quad \] = 33 \quad 99 − \[ \quad \] = 39
   90 − \[ \quad \] = 33 \quad 90 − \[ \quad \] = 39 \quad 93 − \[ \quad \] = 39

d) \[ \quad \] − 50 = 40 \quad \[ \quad \] − 5 = 40 \quad \[ \quad \] − 55 = 40
   \[ \quad \] − 54 = 45 \quad \[ \quad \] − 4 = 50 \quad \[ \quad \] − 44 = 5
Fill in the results. Colour equal values in the same colour.

\begin{align*}
18 + 15 &= \boxed{28} \\
31 - 10 - 5 &= \boxed{26} \\
25 + 10 - 2 &= \boxed{33} \\
28 + 5 &= \boxed{33} \\
31 - 11 - 4 &= \boxed{26} \\
18 + 10 + 5 &= \boxed{33} \\
25 - 8 &= \boxed{17} \\
31 - 20 + 5 &= \boxed{16} \\
25 + 10 - 2 &= \boxed{33} \\
28 + 2 + 3 &= \boxed{33} \\
31 - 11 - 4 &= \boxed{26} \\
18 + 20 - 5 &= \boxed{33} \\
31 - 7 + 8 &= \boxed{32} \\
25 + 5 + 3 &= \boxed{33} \\
\end{align*}

Mike has 35 books. He has 18 reference books and the rest are story books.

a) How many story books does Mike have? 
-----------------------------

b) Which type of book does Mike have more of? 
-----------------------------

How many more does he have? 
-----------------------------

Do what the arrows tell you. Fill in the missing numbers.

a) 
\begin{align*}
10 &+ 20 \rightarrow \boxed{30} \\
&+ 17 \rightarrow \boxed{47} \\
&- 11 \rightarrow \boxed{36} \\
&+ 33 \rightarrow \boxed{69} \\
&- 23 \rightarrow \boxed{46} \\
&+ 25 \rightarrow \boxed{71} \\
&+ 18 \rightarrow \boxed{89} \\
&- 29 \rightarrow \boxed{60} \\
&- 35 \rightarrow \boxed{25} \\
&- 5 \rightarrow \boxed{20} \\
\end{align*}

b) 
\begin{align*}
0 &+ 15 \rightarrow \boxed{15} \\
&+ 7 \rightarrow \boxed{22} \\
&+ 18 \rightarrow \boxed{40} \\
&- 13 \rightarrow \boxed{7} \\
&- 9 \rightarrow \boxed{-2} \\
&+ 52 \rightarrow \boxed{50} \\
&+ 24 \rightarrow \boxed{74} \\
&- 14 \rightarrow \boxed{60} \\
&- 30 \rightarrow \boxed{30} \\
&- 40 \rightarrow \boxed{-10} \\
\end{align*}

c) Make up your own operations to get from 100 to 0.

\begin{align*}
100 &\rightarrow \boxed{99} \\
&\rightarrow \boxed{96} \\
&\rightarrow \boxed{91} \\
&\rightarrow \boxed{86} \\
&\rightarrow \boxed{81} \\
&\rightarrow \boxed{76} \\
&\rightarrow \boxed{71} \\
&\rightarrow \boxed{66} \\
&\rightarrow \boxed{61} \\
&\rightarrow \boxed{56} \\
&\rightarrow \boxed{51} \\
&\rightarrow \boxed{46} \\
&\rightarrow \boxed{41} \\
&\rightarrow \boxed{36} \\
&\rightarrow \boxed{31} \\
&\rightarrow \boxed{26} \\
&\rightarrow \boxed{21} \\
&\rightarrow \boxed{16} \\
&\rightarrow \boxed{11} \\
&\rightarrow \boxed{6} \\
&\rightarrow \boxed{1} \\
&\rightarrow 0 \\
\end{align*}

Practise addition and subtraction.

a) \(39 + 61 = \boxed{100}\) 
b) \(45 - 25 = \boxed{20}\) 
c) \(77 + 7 = \boxed{84}\)

\begin{align*}
47 + 13 &= \boxed{60} \\
63 - 47 &= \boxed{16} \\
88 + 8 &= \boxed{96} \\
64 + 26 &= \boxed{90} \\
36 - 18 &= \boxed{18} \\
55 - 15 &= \boxed{40} \\
\end{align*}
1

Write an addition and a multiplication about each picture.

a) 

b) 

c) 

2

The animals start at 0 and make jumps of equal length along the number line. Draw their jumps and write the numbers they land on below the number line.

3

Fill in the rows and columns for 2, 5 and 10.

Make sure you know these multiplication facts by heart.
Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line.

a) 

b) 

c) 

d) 

e) 

Complete the table. Multiply the numbers in the top row by 3, 6 and 9.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Fill in the rows and columns for 3, 4, 6, 8, and 9.

Make sure you know these multiplication facts by heart.
Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line.

```
| 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
```

Write an addition and a multiplication about the picture.

```
\[ \text{Heads} \quad \text{Legs} \]
```

Complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ \text{Heads} ]</td>
<td>[ \text{Legs} ]</td>
<td></td>
</tr>
</tbody>
</table>

Practise multiplication.

a) \(3 \times 7 = \) \[\] 
b) \(9 \times 9 = \) \[\] 
c) \(8 \times 7 = \) \[\] 
\(5 \times 6 = \) \[\] 
\(4 \times 8 = \) \[\] 
\(5 \times 5 = \) \[\] 
\(9 \times 8 = \) \[\] 
\(2 \times 6 = \) \[\] 
\(9 \times 5 = \) \[\] 

Complete the multiplication table for 0, 1 and 7.

Make sure you know all the multiplication facts by heart.

<table>
<thead>
<tr>
<th>( \times )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>[]</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>56</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>64</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>72</td>
<td>81</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>10</td>
<td>[]</td>
</tr>
</tbody>
</table>
1. **Ollie Owl** collects operations which result in 28, **Dennis Deer** collects those which result in 40 and **Freddy Fox** collects the others. Join them up.

![Ollie Owl, Dennis Deer, Freddy Fox]

- \(8 \times 4\)
- \(2 \times 5 + 6 \times 3\)
- \(6 \times 3 + 7 \times 2\)
- \(9 \times 4 + 4\)
- \(7 \times 4\)
- \(2 \times 5 + 6 \times 3\)
- \(5 \times 9\)

2. Colin had £48. He was given £15 for his birthday by each of his 3 aunts. How much money does he have now?

*Calculation:*

*Answer: .................................................................

3. Fill in the missing numbers.

- a) \(7 \times \square = 56\)
- b) \(\square \div 3 = 10\)
- c) \(13 \times 7 = \square\)
- \(9 \times \square = 27\)
- \(\square \div 7 = 5\)
- \(24 \times 4 = \square\)
- \(6 \times \square = 18\)
- \(\square \div 2 = 7\)
- \(15 \times 6 = \square\)
- \(4 \times \square = 32\)
- \(\square \div 6 = 9\)
- \(3 \times 16 = \square\)
- \(5 \times \square = 45\)
- \(\square \div 8 = 9\)
- \(6 \times 16 = \square\)
- \(3 \times \square = 21\)
- \(\square \div 4 = 3\)
- \(3 \times 17 = \square\)

4. Do the calculation in each part and colour it according to the result.

- 25 **Dark blue**
- 12 **Red**
- 10 **Yellow**
- 16 **Brown**
- 64 **Green**
- 24 **White**
- 45 **Light blue**
Complete the table. Multiply the numbers in the top row by 4, 7 and 8.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practise multiplication.

a) $4 \times 3 = \underline{\phantom{000000}}$

b) $7 \times 7 = \underline{\phantom{000000}}$

c) $2 \times 8 = \underline{\phantom{000000}}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the value of each purse? Write a multiplication below each picture.

a) $5 \times 5 \times 5 = \underline{\phantom{000000}}$

b) $10 \times 10 \times 10 \times 10 \times 10 = \underline{\phantom{000000}}$

c) $2 \times 2 \times 2 \times 2 = \underline{\phantom{000000}}$

James had 37 marbles. He won 11 marbles from each of his 3 friends. How many marbles does James have now?
Answer the questions with divisions. Check with multiplications.

\[ \begin{array}{c}
\text{1 1 1 1 1 1 1 1 1 1} \\
\text{1 1 1 1 1 1 1 1 1 1}
\end{array} \]

a) For how many 2 s can you exchange these 20 1 s?

Calculation: ........................................... Check: ...........................................

b) For how many 5 s can you exchange these 20 1 s?

Calculation: ........................................... Check: ...........................................

c) For how many 10 s can you exchange these 20 1 s?

Calculation: ........................................... Check: ...........................................

Answer the questions with divisions. Check with multiplications.

How many marbles would each child get if these marbles were shared equally among:

a) 2 children Calculation: ......................... Check: .................................
b) 5 children Calculation: ......................... Check: .................................
c) 10 children Calculation: ......................... Check: .................................
d) 20 children Calculation: ......................... Check: .................................
e) 1 child? Calculation: ......................... Check: .................................

Colour different fractions of the shape.

a) \[ \begin{array}{c}
\text{1 half} \\
\end{array} \]

b) \[ \begin{array}{c}
\text{1 fifth} \\
\end{array} \]

c) \[ \begin{array}{c}
\text{1 tenth} \\
\end{array} \]

Draw a line 9 cm long. Divide it into thirds.
Write a division about each picture. Check with a multiplication.

a) ................................................................. Check: .................................................................

b) ................................................................. Check: .................................................................

Write a division to show how 32 marbles can be shared equally among:

a) 2 children .................................................................

b) 4 children .................................................................

c) 8 children .................................................................

Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>Legs 0 2 4 6 8 12 16 24 32 40 48 56 64 72 80</th>
<th>People 0 1 2 3 4</th>
<th>Chairs 0 1 2</th>
<th>Spiders 0 1</th>
</tr>
</thead>
</table>

Practise division.

a) $80 \div 8 = \square$  
b) $32 \div \square = 8$  
c) $16 \div 8 = \square$

$40 \div 10 = \square$  
$40 \div 10 = 10$  
$160 \div 8 = \square$

$40 \div 5 = \square$  
$64 \div \square = 8$  
$160 \div 80 = \square$

$24 \div 4 = \square$  
$16 \div \square = 2$  
$12 \div 4 = \square$

$16 \div 2 = \square$  
$14 \div \square = 7$  
$120 \div 4 = \square$

$72 \div 8 = \square$  
$35 \div \square = 7$  
$0 \div 4 = \square$
1. Write a division about each picture. Check it with a multiplication.
   a) \[ \frac{8}{2} = 4 \]
   Check: \[ 4 \times 2 = 8 \]
   b) \[ \frac{12}{3} = 4 \]
   Check: \[ 4 \times 3 = 12 \]
   c) \[ \frac{16}{4} = 4 \]
   Check: \[ 4 \times 4 = 16 \]

2. Write a division to show how 54 sweets can be shared equally among:
   a) 3 children
   \[ \frac{54}{3} = 18 \]
   b) 6 children
   \[ \frac{54}{6} = 9 \]
   c) 9 children
   \[ \frac{54}{9} = 6 \]

3. Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>54</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticks</td>
<td></td>
</tr>
<tr>
<td>[\triangle]</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>[\check]</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>[\triangle]</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

4. Complete the table.

   | Number of: | 0 | 1 | 2 | 3 | 6 | 8 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 54 | 90 |
   |-----------|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
   | Sticks    |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |
   | \[\triangle\] | 0 | – | – | 1 | – |   |   |    |    |    |    |    |    |    |    |    |    |    |
   | \[\check\] | 0 | – | – | – | – | – | – |    |    |    |    |    |    |    |    |    |    |    |    |
   | \[\triangle\] | 0 | – | – | – | – | – | – |    |    |    |    |    |    |    |    |    |    |    |    |

   a) \[ 60 \div 6 = 10 \]
   b) \[ 36 \div 9 = 4 \]
   c) \[ 18 \div 3 = 6 \]

   a) \[ 60 \div 3 = 20 \]
   b) \[ 54 \div 9 = 6 \]
   c) \[ 180 \div 30 = 6 \]

   a) \[ 42 \div 6 = 7 \]
   b) \[ 48 \div 8 = 6 \]
   c) \[ 180 \div 30 = 6 \]

   a) \[ 25 \div 5 = 5 \]
   b) \[ 12 \div 3 = 4 \]
   c) \[ \_ \_ \_ \div 6 = 6 \]

   a) \[ 81 \div 9 = 9 \]
   b) \[ 70 \div 7 = 10 \]
   c) \[ \_ \_ \_ \div 9 = 1 \]

   a) \[ 72 \div 8 = 9 \]
   b) \[ 28 \div 7 = 4 \]
   c) \[ \_ \_ \_ \div 3 = 0 \]
1 Complete the table.

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>21</th>
<th>25</th>
<th>28</th>
<th>42</th>
<th>63</th>
<th>70</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Divide the 35 sticks into 7 equal groups. Check your calculation in two ways.

Calculation: .................................................................

Check: ............................................. Check: ....................

3 Help Barry Bear find the matching lids for these honey pots.

4 Follow the arrows, do what they tell you and write the final number in the house.

5 Try to solve this difficult puzzle! Draw the dominoes in the square so that each row, column and diagonal has the same number of dots.
1

Pull out the data. Make a plan. Do the calculation and check it.

a) Each taxi can take 6 people. How many taxis will be needed for 30 people?

   Plan:
   Calculation: 
   Check: 
   Answer: ..............................................................

b) 45 sweets are divided equally among 7 children. How many sweets will each child get?

   Plan:
   Calculation: 
   Check: 
   Answer: ..............................................................

2

Practise division.

a) \(50 \div 5 = \) 

b) \(16 \div \) = 8 

c) \(14 \div 2 = \) 

\(70 \div 10 = \) 

\(40 \div \) = 4 

\(140 \div 20 = \) 

\(80 \div 2 = \) 

\(40 \div \) = 8 

\(140 \div 2 = \) 

\(18 \div 2 = \) 

\(45 \div \) = 9 

\(10 \div 2 = \) 

\(35 \div 5 = \) 

\(15 \div \) = 3 

\(100 \div 2 = \) 

3

Which shape has a half, a quarter, an eighth of it shaded?
Join up the shapes to the matching parts.

a) It takes 3 and a half minutes to boil an egg.
   How long will it take to boil 3 eggs? ........................................

b) There are 4 sisters in a family. Each of them has one brother.
   How many children are in this family? ........................................

Page 15
1. Grandpa gave 23 marbles to his 3 grandchildren. They want to share out the marbles equally.
How many marbles will each grandchild get and how many marbles will remain?

*Calculation:*

*Check:*

*Answer:*

2. What are the secret numbers? Do the calculations, then check your answer.
   a) I thought of a number. I divided it by 9 and the result was 6, remainder 3. What is the number I was thinking of?

*Calculation:*

*Check:*

*Answer:*

   b) I divided 47 by a number and the remainder was 2. What was the number?

*Calculation:*

*Check:*

*Answer:*

3. 2 5 7 12 15 18 20 21 22 23 26

   a) Circle in *blue* the numbers which give a remainder of 1 when divided by 2.

   b) Circle in *green* the numbers which give a remainder of 2 when divided by 3.

   c) Circle in *red* the numbers which give a remainder of 3 when divided by 4.

4. Tom has 78 stamps in his collection. He has already filled 2 stamp albums. How many stamps will go into a third album if each album can hold 30 stamps?

*Calculation:*

*Check:*

*Answer:*

5. 1 quarter of a line is 2 and a half cm long.
   Draw the whole line.
Practise division. What is the remainder? Check it with a multiplication.

a) \[ 14 \div 3 = \quad \text{remainder} \quad \boxed{} \]
\[ \text{Check} \]

b) \[ 28 \div 9 = \quad \text{remainder} \quad \boxed{} \]
\[ \text{Check} \]

c) \[ 47 \div 5 = \quad \text{remainder} \quad \boxed{} \]
\[ \text{Check} \]

During one week, Billy took 8 p out of his piggy bank every day. How much money was in Billy's piggy bank at the beginning of the week if 4 p remained at the end?

Calculation: \[ \boxed{} \]

Answer: \[ \boxed{} \]

Change £1 coins into £5 notes.
Complete the table.

Which number does each letter represent? Fill in the missing numbers.

\[ 8 \times a = 16 \quad 6 \times b = 24 \quad c \times 3 = 24 \quad d \times 7 = 42 \quad 12 \div e = 3 \]
\[ a = \quad \boxed{} \quad b = \quad \boxed{} \quad c = \quad \boxed{} \quad d = \quad \boxed{} \quad e = \quad \boxed{} \]

\[ f \div 9 = 7 \quad g \div 8 = 7 \quad 35 \div h = 5 \quad 14 \div i = 3, \text{remainder} 2 \]
\[ f = \quad \boxed{} \quad g = \quad \boxed{} \quad h = \quad \boxed{} \quad i = \quad \boxed{} \]

\[ 36 \div j = 4, \text{remainder} 4 \quad k \div 9 = 9, \text{remainder} 3 \quad l \div 7 = 9, \text{remainder} 1 \]
\[ j = \quad \boxed{} \quad k = \quad \boxed{} \quad l = \quad \boxed{} \]
If the 1st of January was a Saturday, which dates in January were:

a) Saturdays .................................................................
b) Tuesdays .................................................................
c) Fridays? .................................................................

List the whole numbers which make the inequalities true.

a) $8 \times 6 < a < 7 \times 8$  
   $a$: .................................................................
b) $40 \div 8 < b < 72 \div 9$  
   $b$: .................................................................
c) $3 \times 9 - 19 \geq c$  
   $c$: .................................................................
d) $16 - 36 \div 4 \leq d$  
   $d$: .................................................................

Write the operations **without** brackets if possible so that the result is the same. Do the calculations as a check.

a) $(2 + 8) \times 7 = =$
   
   b) $(11 - 3) \times 9 = =$
   
   c) $(21 + 14) \div 7 = =$
   
   d) $(24 - 8) \div 4 = =$
   
   e) $80 \div (12 - 4) = =$
   
   f) $72 \div (3 + 6) = =$

Do the calculations with and without brackets.

a) Grandma has 3 grandsons and 5 granddaughters. On her birthday, each grandchild gave her 7 flowers. How many flowers was she given altogether?
   
   **Calculation:**
   
   **Answer:** .................................................................

b) The 3 children in a family were given 90 p by Dad and 60 p by Mum. They shared the money equally. How much money did they each get?
   
   **Calculation:**
   
   **Answer:** .................................................................
Do the calculations in the correct order.

1. a) 54 + 5 × 4 + 6 ÷ 2 =
   b) 40 + 3 × 8 + 18 ÷ 9 =
   c) 76 – 7 × 8 – 8 ÷ 4 =
   d) 92 – 4 × 3 – 72 ÷ 8 =

2. Do the calculations in the correct order.
   a) 60 ÷ 6 + 4 × 2 – 2 =
   b) 60 ÷ 6 + 4 × (2 – 2) =
   c) 60 ÷ (6 + 4) × 2 – 2 =
   d) (60 ÷ 6 + 4) × 2 – 2 =
   e) 60 ÷ (6 + 4 × 2 – 2) =
   f) 60 ÷ (6 + 4) × (2 – 2) =

3. Four children were given £90. They spent £30 and then shared the remaining money equally. How much money did they each get?

   Plan:

   Calculation:

   Answer: .................................................................

4. Fill in the missing numbers so that the equations are true, both horizontally and vertically.

   | × | ÷ | = 4 |
   --|---|---|----|
   | × | ÷ | × |
   | × | × | = 18 |
   | × | × | ÷ |
   | × | ÷ | = 6 |

   = 27 | = 16 | = 9
1. Practise division. What is the remainder? Check it with a multiplication.

a) \[13 \div 4 = \square\] remainder \[\square\] Check
b) \[29 \div 8 = \square\] remainder \[\square\] Check
c) \[45 \div 7 = \square\] remainder \[\square\] Check

2. Which number does each letter represent? Fill in the missing numbers.

\[5 \times a = 25\]   \[7 \times b = 42\]   \[c \times 4 = 36\]   \[d \times 6 = 54\]   \[16 \div e = 4\]
\[a = \square\]   \[b = \square\]   \[c = \square\]   \[d = \square\]   \[e = \square\]

\[f \div 7 = 9\]   \[g \div 7 = 8\]   \[45 \div h = 9\]   \[53 \div i = 10, \text{remainder 3}\]
\[f = \square\]   \[g = \square\]   \[h = \square\]   \[i = \square\]

\[40 \div j = 6, \text{remainder 4}\]   \[k \div 10 = 9, \text{remainder 1}\]   \[l \div 3 = 7, \text{remainder 1}\]
\[j = \square\]   \[k = \square\]   \[l = \square\]

3. List the whole numbers which make the inequalities true.

a) \[5 \times 6 < \square < 9 \times 4\]  \[\square:\] ........................................

b) \[35 \div 5 \leq \square \leq 81 \div 9\]  \[\square:\] ........................................

c) \[6 \times 6 - 4 \times 7 > \square\]  \[\square:\] ........................................

d) \[15 \times 5 < \square \leq 10 \times 8\]  \[\square:\] ........................................

4. I thought of a number. I divided it by 7 and the result was 8, remainder 6. What is the number I was thinking of?

\textit{Calculation:} ........................................

\textit{Check:} ........................................  \textit{Answer:}
Imagine the size of these things in real life. Estimate their real lengths. Which letter could be written in which box?

1 m < □ < 2 m  
8 cm < □ < 10 cm  
20 cm < □ < 30 cm  
4 m < □ < 5 m  
10 m < □ < 20 m

Estimate, then measure accurately, the total length of the lines.

a)  
b)  
c)  
d)  
e)

Fill in the missing numbers.

a) 1 m 30 cm = □□ cm  
b) 1 m 50 cm = □□ cm  
c) 1 m 100 cm = □□ m = □□ cm  
d) 1 m 26 cm = □□ cm  
e) 1 m 80 cm = □□ cm  
f) 1 m 7 cm = □□ cm

Mr. Silly estimated some quantities. If you agree with him, write a ✓. If you disagree, write a × and correct his mistake.

a) My friend Bob is about 135 m tall.  

b) A matchbox is about 5 mm wide.  

c) A pupil's desk is about 70 mm high.  

d) My pencil is about 15 cm long.  

e) My pet rabbit has ears about 120 mm long.
1 Which capacity would be measured by which unit? Join up the containers to a suitable standard unit.

ml  cl  litre

2 What could the rule be? Fill in the missing numbers and complete the diagram.

10 cl = 100 ml, 100 ml + □ ml = 100 ml
50 ml = □ cl, 5 cl + □ cl = 10 cl
60 ml = □ cl, 60 ml + □ ml = 100 ml
4 cl = □ ml, 40 ml + □ ml = 100 ml
18 ml + □ ml = 100 ml

3 For a picnic, we made some lemonade and poured it into 50 cl, 80 cl and 1 litre bottles.

The graph shows the number of each size of bottle that we filled.

Do the calculations and answer the questions in your Exercise Books.

a) How many of each size of bottle did we fill?
b) How much lemonade did we pour into each size of bottle?
c) How much lemonade did we make altogether?
1. How much do you think they weigh in real life? Join up each picture to the suitable quantity.

- Dog: 25 g
- Jar: 16 kg
- Crisps: 700 g
- Girl: 1 kg
- Truck: 1 tonne
- Milk: 60 kg

2. Fill in the missing numbers and units.
   a) $1 \text{ kg} = 1000 \square \square \square \square \square\text{ g}$
   d) $\square \square \square \square \square \square \text{ kg} = 250 \text{ g}$
   b) Half a kg = $\square \square \square \text{ g}$
   e) $1 \text{ tonne} = 1000 \square \square \square \square \square \square \square \square \square \text{ g}$
   c) $\square \square \square \square \square \square \square \text{ kg} = 1500 \text{ g}$
   f) Half a tonne = $\square \square \square \square \text{ kg}$

3. All the 23 pupils in a class were weighed. The results are arranged in increasing order. Boys are shown by black bars and girls by white bars.

Weight in kg

Pupils in class

- 1) Which weight is the most common? $\square \square \square \square \square \square \square \square \square \text{ kg}$
- 2) What is the weight of the 6th pupil from the left? $\square \square \square \square \square \square \text{ kg}$
- 3) What is the weight of the 6th pupil from the right? $\square \square \square \square \square \square \text{ kg}$
- 4) What is the weight of the pupil in the middle? $\square \square \square \square \square \square \text{ kg}$
a) Colour in the same colour the clocks where the hands are mirror images.

b) Write below each clock the number of whole hours it shows.

![Clocks](image)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write below each clock how many hours and minutes the hands show.

![Clocks](image)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 24 hours in a day. The clock started at midnight as:

Draw where the hour and minute hands would be after:

![Clocks](image)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change the measures of time. Write the calculations and fill in the results.

a) 8 weeks 6 days = = ___ days
b) 3 days 8 hours = = ___ hours
c) 2 hours 45 minutes = = ___ minutes
d) 3 minutes 10 seconds = = ___ seconds

How many hours and minutes have passed from:

![Clocks](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Page 24
Fill in the missing numbers and units.

a) 2 litres = 200 \( \underline{\text{\hspace{1cm} }} \) 

d) 3 litres 50 cl = 350 \( \underline{\text{\hspace{1cm} }} \) 

b) 5 litres = \( \underline{\text{\hspace{1cm} }} \) cl 

e) 2 and a half litres = \( \underline{\text{\hspace{1cm} }} \) cl 

c) 9 litres = \( \underline{\text{\hspace{1cm} }} \) cl 

f) 40 cl = \( \underline{\text{\hspace{1cm} }} \) ml

What do you think they would weigh in real life? Write the letters in the circles.

100 kg < \( \underline{\text{\hspace{1cm} }} \) < 200 kg 

30 kg < \( \underline{\text{\hspace{1cm} }} \) < 40 kg 

60 kg < \( \underline{\text{\hspace{1cm} }} \) < 90 kg 

500 g < \( \underline{\text{\hspace{1cm} }} \) < 800 g 

1000 g < \( \underline{\text{\hspace{1cm} }} \) < 2000 g 

100 g < \( \underline{\text{\hspace{1cm} }} \) < 200 g

Change the measures of time. Fill in the missing numbers.

a) 73 days = \( \underline{\text{\hspace{1cm} }} \) weeks \( \underline{\text{\hspace{1cm} }} \) days 

b) 68 minutes = \( \underline{\text{\hspace{1cm} }} \) hours \( \underline{\text{\hspace{1cm} }} \) minutes 

c) 135 minutes = \( \underline{\text{\hspace{1cm} }} \) hours \( \underline{\text{\hspace{1cm} }} \) minutes 

d) 15 months = \( \underline{\text{\hspace{1cm} }} \) years \( \underline{\text{\hspace{1cm} }} \) months

Rachel emptied her piggy bank and counted the coins she had saved.

The graph shows the number of each type of coin in Rachel's piggy bank.

a) How many coins did Rachel have in her piggy bank altogether?

b) How much money had she saved?
1. a) Toss a coin 20 times with a partner so that you have 10 tosses each. Keep a tally of your results in this table. (A tally is $\text{H} \text{H} \text{H} \text{H}$ etc.)

<table>
<thead>
<tr>
<th>Pupil data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
</tr>
<tr>
<td>Tail</td>
</tr>
<tr>
<td>Total number of throws</td>
</tr>
</tbody>
</table>

b) Write the results for the whole class in this table.

<table>
<thead>
<tr>
<th>Class data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
</tr>
<tr>
<td>Tails</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total number of Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of Tails</td>
</tr>
<tr>
<td>Total number of Tosses</td>
</tr>
</tbody>
</table>

c) Which result happened most often?

2. a) Throw a dice 20 times with a partner so that you have 10 throws each. Keep a tally of the results in this table.

<table>
<thead>
<tr>
<th>Pupil data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Total number of throws</td>
</tr>
</tbody>
</table>

b) Write the results for the whole class in this table.

<table>
<thead>
<tr>
<th>Class data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>Total number of throws</td>
</tr>
</tbody>
</table>

c) Which number was thrown: i) most often
  ii) least often?
The graph shows how many km a bird flew each month during a year.

a) How far did it fly in January? \[\text{km}\]
b) How far did it fly in March? \[\text{km}\]
c) In which month did it fly the furthest? \[\text{months}\]
d) In which month did it fly the least distance? \[\text{months}\]
e) In which months did it fly exactly 20 km? \[\text{months}\]
f) In which months did it fly over 50 km? \[\text{months}\]

The pictogram shows how many times the pupils in a class went swimming during the month of July.

<table>
<thead>
<tr>
<th>Number of swims</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pupils</td>
<td>🤔</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>

a) Complete the table.

b) How many pupils went swimming at least once? \[\text{pupils}\]
c) How many pupils went swimming at least 3 times? \[\text{pupils}\]
d) Which number of times did exactly 5 pupils go swimming? \[ \text{times} \]
e) Which number of times was the most common? \[ \text{times} \]
1. *Kanga* the kangaroo is teaching little *Tangy* to jump further. They practise jumping only on weekdays and have a rest at the weekend.

The graph shows the longest jumps they each made every weekday for 2 weeks.

**Kanga**'s jumps

<table>
<thead>
<tr>
<th>Days in 1st week</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumps (m)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

**Tangy**'s jumps

<table>
<thead>
<tr>
<th>Days in 2nd week</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumps (m)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

a) What is the **range** of *Kanga*'s jumps? From m to m

b) On which day did *Tangy* jump furthest? ........................................

c) On which day did *Tangy* get tired? ........................................

d) In which week did *Tangy* try hardest? ........................................

2. One day, *Piggy* decided to climb the huge pine tree in Fairy-tale Forest.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m)</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>50</td>
<td>55</td>
<td>70</td>
</tr>
</tbody>
</table>

The table shows *Piggy*'s progress.

Use the table to complete the graph.
1. Donald Dog was practising weighing. He numbered all his bones and weighed each one. Then he made this graph.

\[ \text{Bone number} \quad \begin{array}{cccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text{Mass (g)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} \]

a) Which bone was: i) heaviest .............. ii) lightest? ..............
b) Which two bones weighed the same? ......................
c) Write the data from the graph in this table.

<table>
<thead>
<tr>
<th>Bone number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the number of inhabitants of Dombre Land.

2. a) When was the population: i) highest ...........

ii) lowest? ...........

b) When was there no change? ..............

c) When was there a decrease? ..............

d) Complete the table using data from the graph.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collect data on birthdays for all the pupils in your class.

a) Keep a tally of the number of birthdays on each **day** (1st to 31st) of the month in this table.

**Birthdays on each day of the month**

|    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|
| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 |

b) Keep a tally of the number of birthdays in each **month** (January to December) in this table.

**Birthdays in each month**

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>


c) Keep a tally of the number of pupils in your class who were born in each **year** in this table.

**Year of birth**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


d) Which is the **most** common:
   i) day .............. ii) month .............. iii) year? .........

e) Which is the **least** common:
   i) day .............. ii) month .............. iii) year? .........

f) Will this result be the same for **all** classes in your school? ...........
   Why? ............................................................................