1

a) Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

b) Colour red the 2-digit numbers in the 2nd row.

c) Colour blue the 2-digit even numbers in the 5th column from the left.

d) Colour yellow the 1-digit odd numbers in the 4th column from the right.

e) Colour green the numbers not less than 36.

2

Write the number of circles in the place-value table.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

3

The same shape means the same number. Fill in the missing whole tens.

- $50 + 30 + 20 = 100$
- $50 + 30 - 20 = 60$
- $50 - 30 + 20 = 40$
- $50 - 30 - 20 = 0$

4

The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers.

a)

b)
Fill in the amounts and mark the numbers on the number line.

[Number line with numbers 0 to 100 marked]

a)

b)

c)

Draw and write down how you could pay £76 from these notes and coins:

\[\begin{align*}
\text{£50} & \quad \text{£20} & \quad \text{£10} & \quad \text{£5} & \quad \text{£2} & \quad \text{£1}
\end{align*} \]

a) with the exact amount

\[\text{Drawing: } \begin{array}{c}
\text{£50} \quad \text{£20} \quad \text{£5} \quad \text{£1}
\end{array} \]

Calculation: \[50 + 20 + 5 + 1 = 76 \]

b) with change needed.

\[\text{Drawing: } \begin{array}{c}
\text{£50} \quad \text{£20} \quad \text{£10}
\end{array} \]

Calculation: \[50 + 20 + 10 = 80 \]
\[80 - 76 = 4 \]

Fill in the total amounts. Compare them by drawing arrows towards the amount which is more.

[Diagram with amounts and arrows]

Draw a line 8 cm long.
Divide it up into quarters.

[Diagram with 8 cm line divided into four quarters]
Practise addition.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| a) $40 + 50 = 90$ | b) $26 + 30 = 56$ | c) $17 + 5 = 22$
| $30 + 20 = 50$ | $42 + 50 = 92$ | $18 + 3 = 21$
| $50 + 10 = 60$ | $40 + 17 = 57$ | $29 + 6 = 35$
| $70 + 6 = 76$ | $32 + 4 = 36$ | $8 + 24 = 32$
| $20 + 8 = 28$ | $25 + 3 = 28$ | $9 + 23 = 32$
| $30 + 2 = 32$ | $52 + 6 = 58$ | $7 + 16 = 23$

Practise subtraction.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| a) $80 - 70 = 10$ | b) $43 - 20 = 23$ | c) $26 - 9 = 17$
| $50 - 10 = 40$ | $75 - 50 = 25$ | $27 - 8 = 19$
| $90 - 30 = 60$ | $68 - 30 = 38$ | $23 - 5 = 18$
| $38 - 8 = 30$ | $52 - 1 = 51$ | $24 - 12 = 12$
| $52 - 2 = 50$ | $98 - 6 = 92$ | $28 - 14 = 14$
| $76 - 6 = 70$ | $87 - 4 = 83$ | $25 - 17 = 8$

Do the additions in different ways. Fill in the missing numbers. Complete the diagrams.

a)

![Diagram](image1)

- $63 + 20 = \square + \square = \square$
- $63 + 28 = \square + \square = \square$
- $63 + 8 = \square + \square = \square$

b)

![Diagram](image2)

- $93 - 20 = \square - \square = \square$
- $93 - 27 = \square - \square = \square$
- $93 - 7 = \square - \square = \square$

Ann has 35 picture cards, 18 more than Lisa. How many picture cards do the two girls have altogether?

- $35 - 18 = 17$
- $17 + 35 = 52$

They have 52 cards altogether.
1. Jane has £64. How many pounds could she spend and how many pounds would she have left? Complete the table.

<table>
<thead>
<tr>
<th>Spends (£)</th>
<th>18</th>
<th>36</th>
<th>30</th>
<th>25</th>
<th>29</th>
<th>49</th>
<th>16</th>
<th>27</th>
<th>41</th>
<th>50</th>
<th>59</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has left (£)</td>
<td>46</td>
<td>12</td>
<td>28</td>
<td>34</td>
<td>39</td>
<td>35</td>
<td>48</td>
<td>37</td>
<td>23</td>
<td>14</td>
<td>5</td>
<td>51</td>
</tr>
</tbody>
</table>

Rule: \[64 = S + H\] \[S = 64 - H\] \[H = 64 - S\]

2. Andrew has £46 more than Brian has. How much money could they each have? Complete the table.

<table>
<thead>
<tr>
<th>A (£)</th>
<th>49</th>
<th>61</th>
<th>68</th>
<th>70</th>
<th>95</th>
<th>63</th>
<th>80</th>
<th>64</th>
<th>85</th>
<th>81</th>
<th>73</th>
<th>83</th>
<th>95</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (£)</td>
<td>3</td>
<td>15</td>
<td>22</td>
<td>24</td>
<td>49</td>
<td>17</td>
<td>34</td>
<td>18</td>
<td>39</td>
<td>35</td>
<td>27</td>
<td>37</td>
<td>49</td>
<td>9</td>
</tr>
</tbody>
</table>

Rule: \[A = B + 46\] \[B = A - 46\] \[46 = A - B\]

3. A book case has 3 shelves. On the middle shelf there are 32 books, 9 less than there are on the top shelf and 9 more than there are on the bottom shelf.

a) How many books are on the top shelf? \[41 \] (32 + 9)

b) How many books are on the bottom shelf? \[23 \] (32 - 9)

c) How many books are in the book case? \[96 \] (41 + 32 + 23)

4. Fill in the missing numbers.

a) \[30 + \boxed{50} = 80\] \[33 + \boxed{5} = 38\] \[3 + \boxed{80} = 83\]
\[33 + \boxed{50} = 83\] \[38 + \boxed{42} = 80\] \[38 + \boxed{45} = 83\]

b) \[\boxed{20} + 40 = 60\] \[62 + 4 = 66\] \[24 + \boxed{40} = 64\]
\[16 + \boxed{44} = 60\] \[14 + 46 = 60\] \[18 + \boxed{46} = 64\]

c) \[90 - \boxed{60} = 30\] \[93 - \boxed{60} = 33\] \[99 - \boxed{60} = 39\]
\[90 - \boxed{57} = 33\] \[90 - \boxed{51} = 39\] \[93 - \boxed{54} = 39\]

d) \[\boxed{90} - 50 = 40\] \[45 - 5 = 40\] \[\boxed{95} - 55 = 40\]
\[99 - \boxed{54} = 45\] \[54 - 4 = 50\] \[\boxed{49} - 44 = 5\]
1

Fill in the results. Colour equal values in the same colour.

\[
\begin{align*}
18 + 15 &= 33 \\
28 + 5 &= 33 \\
31 - 15 &= 16 \\
35 - 11 &= 24 \\
25 - 8 &= 17 \\
31 - 10 - 5 &= 16 \\
31 - 11 - 4 &= 16 \\
18 + 10 + 5 &= 33 \\
18 + 20 - 5 &= 33 \\
31 - 20 + 5 &= 16 \\
25 + 5 + 3 &= 33 \\
28 + 2 + 3 &= 33 \\
31 - 10 - 1 - 4 &= 16 \\
31 - 7 + 8 &= 32 \\
\end{align*}
\]

2

Mike has 35 books. He has 18 reference books and the rest are story books.

a) How many story books does Mike have? 17

b) Which type of book does Mike have more of? reference books

3

Do what the arrows tell you. Fill in the missing numbers.

a)
\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 & 3 & 0 & & 3 & 6 & & 4 & 6 \\
+20 & 1 & 0 & & 6 & 9 & & 7 & 1 \\
+17 & 4 & 7 & & 7 & 1 & & 6 & 0 \\
-11 & 6 & 9 & & 6 & 0 & & 2 & 0 \\
\end{array}
\]

b)
\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 & 1 & 5 & & 4 & 0 & & 1 & 8 \\
+15 & 0 & & 2 & 2 & & 7 & 0 & \\
+18 & 2 & 2 & & 7 & 0 & & 8 & 0 \\
-13 & 2 & 2 & & 7 & 0 & & 8 & 0 \\
\end{array}
\]

31 - 10 - 5 = 17

31 - 10 - 1 - 4 = 16

31 - 7 + 8 = 32

25 + 10 - 2 = 33

28 + 2 + 3 = 33

31 - 11 - 4 = 16

18 + 10 + 5 = 33

18 + 20 - 5 = 33

31 - 20 + 5 = 16

25 + 5 + 3 = 33

4

Practise addition and subtraction.

a) 39 + 61 = 100
b) 45 - 25 = 20
c) 77 + 7 = 84

47 + 13 = 60
63 - 47 = 16
88 + 8 = 96

64 + 26 = 90
36 - 18 = 18
55 - 15 = 40
1.

Write an addition and a multiplication about each picture.

E.g:

a) ![Picture of cherries]
 \[2 + 2 + 2 + 2 + 2 + 2 = 14\]
 \[7 \times 2 = 14\]

b) ![Picture of hops]
 \[5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 45\]
 \[9 \times 5 = 45\]

c) ![Picture of towers]
 \[10 + 10 + 10 = 30\]
 \[3 \times 10 = 30\]

2.

The animals start at 0 and make jumps of equal length along the number line. Draw their jumps and write the numbers they land on below the number line.

![Number line with jumps](image)

3.

Fill in the rows and columns for 2, 5 and 10.

Make sure you know these multiplication facts by heart.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>35</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>40</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>18</td>
<td>45</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>
1. Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line.

 a)
 b)
 c)
 d)
 e)

2. Complete the table. Multiply the numbers in the top row by 3, 6 and 9.

 \[
 \begin{array}{c|cccccccccccccc}
 \times & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
 \hline
 3 & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36 & 39 & 42 & 45 \\
 6 & 0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 & 66 & 72 & 78 & 84 & 90 \\
 9 & 0 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 & 99 & 108 & 117 & 126 & 135 \\
 \end{array}
 \]

3. Fill in the rows and columns for 3, 4, 6, 8, and 9.

 Make sure you know these multiplication facts by heart.

 \[
 \begin{array}{c|cccccccccccccc}
 \times & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 \hline
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
 3 & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
 4 & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
 5 & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
 6 & 0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
 7 & 0 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
 8 & 0 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
 9 & 0 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
 10 & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
 \end{array}
 \]
1. Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line.

2. Write an addition and a multiplication about the picture.

\[7 + 7 + 7 + 7 + 7 + 7 + 7 = 49 \]
\[7 \times 7 = 49 \]

3. Complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Legs</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule: \(S = H \), \(H = S \), \(L = 0 \)

4. Practise multiplication.

a) \(3 \times 7 = \boxed{21} \)

b) \(9 \times 9 = \boxed{81} \)

c) \(8 \times 7 = \boxed{56} \)

5. Complete the multiplication table for 0, 1 and 7.

Make sure you know all the multiplication facts by heart.
1. **Ollie Owl** collects operations which result in 28, **Dennis Deer** collects those which result in 40 and **Freddy Fox** collects the others. Join them up.

![Diagram](image)

2. Colin had £48. He was given £15 for his birthday by each of his 3 aunts. How much money does he have now?

Calculation: $48 + 15 + 15 + 15 = 48 + 3 \times 15 = 93$

Answer: Colin now has £93.

3. Fill in the missing numbers.

 a) $7 \times \boxed{8} = 56$

 b) $\boxed{30} + 3 = 10$

 c) $13 \times 7 = \boxed{91}$

 $9 \times \boxed{3} = 27$

 $35 + 7 = 5$

 $24 \times 4 = \boxed{96}$

 $6 \times \boxed{3} = 18$

 $14 + 2 = 7$

 $15 \times 6 = \boxed{90}$

 $4 \times \boxed{8} = 32$

 $54 + 6 = 9$

 $3 \times 16 = \boxed{48}$

 $5 \times \boxed{9} = 45$

 $72 + 8 = 9$

 $6 \times 16 = \boxed{96}$

 $3 \times \boxed{7} = 21$

 $12 + 4 = 3$

 $3 \times 17 = \boxed{51}$

4. Do the calculation in each part and colour it according to the result.

 25 *Dark blue*

 12 *Red*

 10 *Yellow*

 16 *Brown*

 64 *Green*

 24 *White*

 45 *Light blue*
Complete the table. Multiply the numbers in the top row by 4, 7 and 8.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
<td>77</td>
<td>84</td>
<td>91</td>
<td>98</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>88</td>
<td>96</td>
<td>104</td>
<td>112</td>
<td>120</td>
</tr>
</tbody>
</table>

Practise multiplication.

a) $4 \times 3 = \boxed{12}$
b) $7 \times 7 = \boxed{49}$
c) $2 \times 8 = \boxed{16}$

$2 \times 7 = \boxed{14}$
$3 \times 9 = \boxed{27}$
$4 \times 0 = \boxed{0}$

$6 \times 8 = \boxed{48}$
$6 \times 4 = \boxed{24}$
$3 \times 1 = \boxed{3}$

$5 \times 6 = \boxed{30}$
$9 \times 9 = \boxed{81}$
$10 \times 1 = \boxed{10}$

$7 \times 4 = \boxed{28}$
$8 \times 5 = \boxed{40}$
$10 \times 10 = \boxed{100}$

What is the value of each purse? Write a multiplication below each picture.

a) $3 \times 5 = \boxed{15}$

b) $6 \times 10 = \boxed{60}$

c) $7 \times 2 = \boxed{14}$

$3 \times 50 = \boxed{150}$

$6 \times 100 = \boxed{600}$

$7 \times 20 = \boxed{140}$

James had 37 marbles. He won 11 marbles from each of his 3 friends. How many marbles does James have now?

$37 + 11 + 11 + 11 = 37 + 3 \times 11 = 70$

70 marbles
Answer the questions with divisions. Check with multiplications.

\[
\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

a) For how many \(\frac{2}{1} \) s can you exchange these 20 \(\frac{1}{1} \) s?

\[\text{Calculation: } 20 \div 2 = 10 \ldots \ldots \ldots \text{ Check: } 10 \times 2 = 20 \ldots \ldots \ldots\]

b) For how many \(\frac{5}{1} \) s can you exchange these 20 \(\frac{1}{1} \) s?

\[\text{Calculation: } 20 \div 5 = 4 \ldots \ldots \ldots \text{ Check: } 4 \times 5 = 20 \ldots \ldots \ldots\]

c) For how many \(\frac{10}{1} \) s can you exchange these 20 \(\frac{1}{1} \) s?

\[\text{Calculation: } 20 \div 10 = 2 \ldots \ldots \ldots \text{ Check: } 2 \times 10 = 20 \ldots \ldots \ldots\]

Answer the questions with divisions. Check with multiplications.

How many marbles would each child get if these marbles were shared equally among:

a) 2 children \[\text{Calculation: } 20 \div 2 = 10 \ldots \ldots \text{ Check: } 10 \times 2 = 20 \ldots \ldots \ldots\]

b) 5 children \[\text{Calculation: } 20 \div 5 = 4 \ldots \ldots \ldots \text{ Check: } 4 \times 5 = 20 \ldots \ldots \ldots\]

c) 10 children \[\text{Calculation: } 20 \div 10 = 2 \ldots \ldots \ldots \text{ Check: } 2 \times 10 = 20 \ldots \ldots \ldots\]

d) 20 children \[\text{Calculation: } 20 \div 20 = 1 \ldots \ldots \ldots \text{ Check: } 1 \times 20 = 20 \ldots \ldots \ldots\]

e) 1 child? \[\text{Calculation: } 20 \div 1 = 20 \ldots \ldots \ldots \text{ Check: } 20 \times 1 = 20 \ldots \ldots \ldots\]

Colour different fractions of the shape.

\[\text{E.g:}\]

\[\begin{array}{c}
\text{a) } \frac{1}{2} \\
\text{b) } \frac{1}{5} \\
\text{c) } \frac{1}{10}
\end{array}\]

Draw a line 9 cm long. Divide it into thirds.

\[9 \text{ cm } \div 3 = 3 \text{ cm}\]
1. Write a division about each picture. Check with a multiplication.
 a)
 ![Diagram]
 \[28 \div 7 = 4\] \[Check: 7 \times 4 = 28\]
 b)
 ![Diagram]
 \[56 \div 8 = 7\] \[Check: 8 \times 7 = 56\]

2. Write a division to show how 32 marbles can be shared equally among:
 a) 2 children \[32 \div 2 = 16\]
 b) 4 children \[32 \div 4 = 8\]
 c) 8 children \[32 \div 8 = 4\]

3. Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>Legs</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
<th>56</th>
<th>64</th>
<th>72</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Chairs</td>
<td>0</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Spiders</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Practise division.
 a) \[80 \div 8 = \square\] \[10\]
 b) \[32 \div 4 = \square\] \[8\]
 c) \[16 \div 8 = \square\] \[2\]
 \[40 \div 10 = \square\] \[4\]
 \[40 \div 4 = \square\] \[10\]
 \[160 \div 8 = \square\] \[20\]
 \[40 \div 5 = \square\] \[8\]
 \[64 \div 8 = \square\] \[8\]
 \[160 \div 80 = \square\] \[2\]
 \[24 \div 4 = \square\] \[6\]
 \[16 \div 8 = \square\] \[2\]
 \[12 \div 4 = \square\] \[3\]
 \[16 \div 2 = \square\] \[8\]
 \[14 \div 2 = \square\] \[7\]
 \[120 \div 4 = \square\] \[30\]
 \[72 \div 8 = \square\] \[9\]
 \[35 \div 5 = \square\] \[7\]
 \[0 \div 4 = \square\] \[0\]
Write a division about each picture. Check it with a multiplication.

a) \[
\begin{array}{cccccccc}
\triangle & \triangle & \triangle & \triangle & \triangle & \triangle & \triangle \\
\end{array}
\]
\[21 \div 3 = 7 \]
Check: \[3 \times 7 = 21\]

b) \[
\begin{array}{cccccc}
\square & \square & \square & \square & \square & \square \\
\end{array}
\]
\[48 \div 6 = 8 \]
Check: \[6 \times 8 = 48\]

c) \[
\begin{array}{cccccc}
\blacklozenge & \blacklozenge & \blacklozenge & \blacklozenge & \blacklozenge & \blacklozenge \\
\end{array}
\]
\[54 \div 9 = 6 \]
Check: \[9 \times 6 = 54\]

Write a division to show how 54 sweets can be shared equally among:

a) 3 children\[54 \div 3 = 18\]

b) 6 children\[54 \div 6 = 9\]

c) 9 children\[54 \div 9 = 6\]

Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>0123689</th>
<th>1215182124273033365490</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\triangle)</td>
<td>0 – – 1 2 – 3 4 5 6 7 8 9 10 11 12 18 30</td>
<td></td>
</tr>
<tr>
<td>(\bigcirc)</td>
<td>0 – – 1 2 – 3 – 4 5 6 9 15</td>
<td></td>
</tr>
<tr>
<td>(\square)</td>
<td>0 – – 1 - 2 - 3 - 4 6 10</td>
<td></td>
</tr>
</tbody>
</table>

4

a) \[60 + 6 = \boxed{10}\]
b) \[36 + 9 = 4\]
c) \[18 + 3 = \boxed{6}\]

\[60 + 3 = \boxed{20}\]
\[54 + 9 = 6\]
\[180 + 3 = \boxed{60}\]

\[42 + 6 = \boxed{7}\]
\[48 + 8 = 6\]
\[180 + 30 = \boxed{6}\]

\[25 + 5 = \boxed{5}\]
\[12 + 3 = 4\]
\[36 + 6 = 6\]

\[81 + 9 = \boxed{9}\]
\[70 + 10 = 7\]
\[9 + 9 = 1\]

\[72 + 8 = \boxed{9}\]
\[28 + 4 = 7\]
\[0 + 3 = 0\]
Complete the table.

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>21</th>
<th>25</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>49</th>
<th>56</th>
<th>63</th>
<th>70</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

2

Divide the 35 sticks into 7 equal groups. Check your calculation in two ways.

Calculation: \(35 \div 7 = 5 \) ...

Check: \(7 \times 5 = 35 \) Check: \(5 \times 7 = 35 \)

3

Help *Barry Bear* find the matching lids for these honey pots.

- \(36 \div 4 + 2 \) HONEY
- \(49 \div 7 \) HONEY
- \(40 + 4 - 10 \) HONEY
- \(56 + 8 - 3 \) HONEY
- \(42 + 6 + 5 \) HONEY
- \(45 + 5 \) HONEY

4

Follow the arrows, do what they tell you and write the final number in the house.

- \(20 + 2 \rightarrow 2 \)
- \(20 + 5 \rightarrow 2 \)
- \(20 \times 1 \rightarrow -15 \)
- \(20 + 24 \rightarrow 35 \)
- \(20 \times 7 \rightarrow 5 \)
- \(20 + 8 \rightarrow 40 \)

5

Try to solve this difficult puzzle!

E.g:

```

```

Draw the dominoes in the square so that each row, column and diagonal has the same number of dots.

```

```

Page 14
Pull out the data. Make a plan. Do the calculation and check it.

a) Each taxi can take 6 people. How many taxis will be needed for 30 people?

Plan: \(30 \div 6 \)

Calculation: \(30 \div 6 = 5 \)

Check: \(5 \times 6 = 30 \)

Answer: 5 taxis are needed.

b) 45 sweets are divided equally among 7 children. How many sweets will each child get?

Plan: \(45 \div 7 \)

Calculation: \(45 \div 7 = 6 \), remainder 3
Check: \(3 + 6 \times 7 = 45 \)

Answer: Each child will get 6 sweets. There will be 3 sweets remaining.

Practise division.

a) \(50 \div 5 = \boxed{10} \)
b) \(16 \div 2 = \boxed{8} \)
c) \(14 \div 2 = \boxed{7} \)

\[\begin{align*}
70 \div 10 & = \boxed{7} \\
40 \div 10 & = \boxed{4} \\
140 \div 20 & = \boxed{7} \\
80 \div 2 & = \boxed{40} \\
40 \div 5 & = \boxed{8} \\
10 \div 2 & = \boxed{5} \\
18 \div 2 & = \boxed{9} \\
45 \div 5 & = \boxed{9} \\
35 \div 5 & = \boxed{7} \\
15 \div 5 & = \boxed{3} \\
100 \div 2 & = \boxed{50}
\end{align*} \]

Which shape has a half, a quarter, an eighth of it shaded?
Join up the shapes to the matching parts.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 half</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 quarter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 eighth</td>
<td></td>
</tr>
</tbody>
</table>

a) It takes 3 and a half minutes to boil an egg. How long will it take to boil 3 eggs? *Three and a half minutes*.

b) There are 4 sisters in a family. Each of them has one brother. How many children are in this family? *5 children (4 girls and 1 boy)*
1. Grandpa gave 23 marbles to his 3 grandchildren. They want to share out the marbles equally.
 How many marbles will each grandchild get and how many marbles will remain?

 \[
 \text{Calculation: } 23 \div 3 = 7, \text{ remainder } 2 \quad \text{Check: } 2 + 7 \times 3 = 23
 \]

 \[
 \text{Answer: They will get } 7 \text{ marbles each. There will be } 2 \text{ marbles remaining.}
 \]

2. What are the secret numbers? Do the calculations, then check your answer.
 a) I thought of a number. I divided it by 9 and the result was 6, remainder 3.
 What is the number I was thinking of?

 \[
 \text{Calculation: } 3 + 6 \times 9 = 57.
 \]

 \[
 \text{Check: } 57 \div 9 = 6, \text{ remainder } 3.
 \]

 \[
 \text{Answer: } 57
 \]

 b) I divided 47 by a number and the remainder was 2. What was the number?

 \[
 \text{Calculation: } 47 \div 5 = 9, \text{ remainder } 2 \text{, or } 47 \div 9 = 5, \text{ remainder } 2, \text{ etc.}
 \]

 \[
 \text{Check: } 2 + 9 \times 5 = 2 + 45 = 47, \text{ etc.}
 \]

 \[
 \text{Answer: } 5 \text{ or } 9 \text{, or } 3 \text{ or } 15
 \]

3. a) Circle in blue the numbers which give a remainder of 1 when divided by 2.
 b) Circle in green the numbers which give a remainder of 2 when divided by 3.
 c) Circle in red the numbers which give a remainder of 3 when divided by 4.

4. Tom has 78 stamps in his collection. He has already filled 2 stamp albums.
 How many stamps will go into a third album if each album can hold 30 stamps?

 \[
 \text{Calculation: } 78 - 2 \times 30 = 18
 \]

 \[
 \text{Check: } 18 + 2 \times 30 = 78
 \]

 \[
 \text{Answer: 18 stamps will go into a third album.}
 \]

5. 1 quarter of a line is 2 and a half cm long. \(4 \times 2 \text{ and a half cm} = 10 \text{ cm}\)
 Draw the whole line. \[
 \overbrace{\text{---} }^{10 \text{ cm}}
 \]
1. Practise division. What is the remainder? Check it with a multiplication.

a) \[14 + 3 = 4 \quad 19 + 2 = 9 \quad 17 + 6 = 2\]
 Check: \[2 + 4 \times 3 = 14 \quad 1 + 9 \times 2 = 19 \quad 5 + 2 \times 6 = 17\]

b) \[28 + 9 = 3 \quad 33 + 5 = 6 \quad 24 + 6 = 4\]
 Check: \[1 + 3 \times 9 = 28 \quad 3 + 6 \times 5 = 33 \quad 4 \times 6 = 24\]

c) \[47 + 5 = 9 \quad 54 + 6 = 9 \quad 38 + 9 = 4\]
 Check: \[2 + 9 \times 5 = 47 \quad 9 \times 6 = 54 \quad 2 + 4 \times 9 = 38\]

2. During one week, Billy took 8 p out of his piggy bank every day.
 How much money was in Billy's piggy bank at the beginning of the week if 4 p remained at the end?

 Calculation: \[4 + 8 \times 7 = 60\]
 Check: \[60 \div 7 = 8, \text{ remainder } 4\]

 Answer: 60 p was in the piggy bank at the beginning of the week.

3. Change £1 coins into £5 notes.

 Complete the table.

<table>
<thead>
<tr>
<th>£1</th>
<th>10</th>
<th>16</th>
<th>24</th>
<th>43</th>
<th>18</th>
<th>35</th>
<th>52</th>
<th>61</th>
<th>77</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>£5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>£1 remaining</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Which number does each letter represent? Fill in the missing numbers.

 \[8 \times a = 16 \quad 6 \times b = 24 \quad c \times 3 = 24 \quad d \times 7 = 42 \quad 12 + e = 3\]
 \[a = 2 \quad b = 4 \quad c = 8 \quad d = 6 \quad e = 4\]

 \[f + 9 = 7 \quad g + 8 = 7 \quad 35 + h = 5 \quad 14 + i = 3, \text{ remainder } 2\]
 \[f = 63 \quad g = 56 \quad h = 7 \quad i = 4\]

 \[36 + j = 4, \text{ remainder } 4 \quad k + 9 = 9, \text{ remainder } 3 \quad l + 7 = 9, \text{ remainder } 1\]
 \[j = 8 \quad k = 84 \quad l = 64\]
If the 1st of January was a Saturday, which dates in January were:

a) Saturdays ... 1st, 8th, 15th, 22nd, 29th

b) Tuesdays ... 4th, 11th, 18th, 25th

c) Fridays? .. 7th, 14th, 21st, 28th

List the whole numbers which make the inequalities true.

a) $8 \times 6 < a < 7 \times 8$
 a: 49, 50, 51, 52, 53, 54, 55, 56 (48 < a < 56)

b) $40 \div 8 < b < 72 \div 9$
 b: 6, 7 (5 < b < 8)

c) $3 \times 9 – 19 \geq c$
 c: 8, 7, 6, 5, 4, 3, 2, 1, 0 (–1, –2, …) (8 $\geq c$)

d) $16 – 36 + 4 \leq d$
 d: 7, 8, 9, 10, … (7 $\leq d$)

Write the operations without brackets if possible so that the result is the same. Do the calculations as a check.

a) $(2 + 8) \times 7 = 2 \times 7 + 8 \times 7 = 70$

b) $(11 – 3) \times 9 = 11 \times 9 – 3 \times 9 = 72$

c) $(21 + 14) \div 7 = 21 \div 7 + 14 \div 7 = 5$

d) $(24 – 8) \div 4 = 24 \div 4 – 8 \div 4 = 4$

e) $80 \div (12 – 4) = 80 \div 8 = 10$

f) $72 \div (3 + 6) = 72 \div 9 = 8$

Do the calculations with and without brackets.

a) Grandma has 3 grandsons and 5 granddaughters. On her birthday, each grandchild gave her 7 flowers. How many flowers was she given altogether?

 Calculation: $(3 + 5) \times 7 = 8 \times 7 = 56$ or $3 \times 7 + 5 \times 7 = 21 + 35 = 56$

 Answer: Grandma was given 56 flowers altogether.

b) The 3 children in a family were given 90 p by Dad and 60 p by Mum. They shared the money equally. How much money did they each get?

 Calculation: $(90 + 60) \div 3 = 90 \div 3 + 60 \div 3 = 30 + 20 = 50$

 Answer: The children had 50 p each.
Do the calculations in the correct order.

a) \[54 + 5 \times 4 + 6 + 2 = 54 + 20 + 3 = 77\]

b) \[40 + 3 \times 8 + 18 + 9 = 40 + 24 + 2 = 66\]

c) \[76 - 7 \times 8 - 8 + 4 = 76 - 56 - 2 = 18\]

d) \[92 - 4 \times 3 - 72 + 8 = 92 - 12 - 9 = 71\]

Do the calculations in the correct order.

a) \[60 \div 6 + 4 \times 2 - 2 = 10 + 8 - 2 = 16\]

b) \[60 \div 6 + 4 \times (2 - 2) = 60 \div 6 + 4 \times 0 = 10 + 0 = 10\]

c) \[60 + (6 + 4) \times 2 - 2 = 60 + 10 \times 2 - 2 = 6 \times 2 - 2 = 12 - 2 = 10\]

d) \[(60 + 6 + 4) \times 2 - 2 = (10 + 4) \times 2 - 2 = 14 \times 2 - 2 = 28 - 2 = 26\]

e) \[60 \div (6 + 4 \times 2 - 2) = 60 \div 12 = 5\]

f) \[60 \div (6 + 4) \times (2 - 2) = 60 \div 10 \times 0 = 6 \times 0 = 0\]

Four children were given £90. They spent £30 and then shared the remaining money equally. How much money did they each get?

Plan: No. of children is 4. Given £90. Spent £30. Had left \(90 - 30\)

Calculation: \(90 - 30 \div 4 = 60 \div 4 = 15\)

or \(90 \div 4 - 30 \div 4 = 22.50\) p - \(7.50\) p = £15

Answer: They each got £15.

Fill in the missing numbers so that the equations are true, both horizontally and vertically.

E.g:

<table>
<thead>
<tr>
<th>3</th>
<th>×</th>
<th>8</th>
<th>÷</th>
<th>6</th>
<th>= 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>÷</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 × 2 × 9 = 18

| × | × | ÷ | | | |

9 × 4 ÷ 6 = 6

27 = 16 = 9
1. Practise division. What is the remainder? Check it with a multiplication.

 a) \[13 \div 4 = \square\]
 \[12 \div 9 = \square\]
 \[16 \div 7 = \square\]

 \[\text{remainder} \ 1\]
 \[\text{remainder} \ 3\]
 \[\text{remainder} \ 2\]

 \[
 \begin{align*}
 1 + 3 \times 4 &= 13 \\
 3 + 1 \times 9 &= 12 \\
 2 + 7 \times 2 &= 16 \\
 \end{align*}

 \[\text{Check} \]

 b) \[29 \div 8 = \square\]
 \[35 \div 3 = \square\]
 \[26 \div 4 = \square\]

 \[\text{remainder} \ 5\]
 \[\text{remainder} \ 2\]
 \[\text{remainder} \ 2\]

 \[
 \begin{align*}
 5 + 8 \times 3 &= 29 \\
 2 + 11 \times 3 &= 35 \\
 2 + 4 \times 6 &= 26 \\
 \end{align*}

 \[\text{Check} \]

 c) \[45 \div 7 = \square\]
 \[56 \div 4 = \square\]
 \[39 \div 8 = \square\]

 \[\text{remainder} \ 6\]
 \[\text{remainder} \ 0\]
 \[\text{remainder} \ 7\]

 \[
 \begin{align*}
 3 + 7 \times 6 &= 45 \\
 4 \times 14 &= 56 \\
 7 + 8 \times 4 &= 39 \\
 \end{align*}

 \[\text{Check} \]

2. Which number does each letter represent? Fill in the missing numbers.

 \[5 \times a = 25 \quad 7 \times b = 42 \quad c \times 4 = 36 \quad d \times 6 = 54 \quad 16 + e = 4\]
 \[a = \square \quad b = \square \quad c = \square \quad d = \square \quad e = \square\]

 \[f + 7 = 9 \quad g + 7 = 8 \quad 45 + h = 9 \quad 53 + i = 10, \text{ remainder} \ 3\]
 \[f = \square \quad g = \square \quad h = \square \quad i = \square\]

 \[40 + j = 6, \text{ remainder} \ 4 \quad k + 10 = 9, \text{ remainder} \ 1 \quad l + 3 = 7, \text{ remainder} \ 1\]
 \[j = \square \quad k = \square \quad l = \square\]

3. List the whole numbers which make the inequalities true.

 a) \[5 \times 6 < \square < 9 \times 4\]
 \[\square: \ 31, 32, 33, 34, 35\]

 b) \[35 + 5 \leq \square \leq 81 + 9\]
 \[\square: \ 7, 8, 9\]

 c) \[6 \times 6 - 4 \times 7 > \square\]
 \[\square: \ 0, 1, 2, 3, 4, 5, 6, 7\]

 d) \[15 \times 5 \leq \square \leq 10 \times 8\]
 \[\square: \ 76, 77, 78, 79, 80\]

4. I thought of a number. I divided it by 7 and the result was 8, remainder 6. What is the number I was thinking of?

 \[\text{Calculation: } \square \times 8 + 6 = 62\]
 \[\text{Check: } 62 \div 7 = 8, \text{ remainder} \ 6\]
 \[\text{Answer: } 62\]
Imagine the size of these things in real life. Estimate their real lengths. Which letter could be written in which box?

\[
\begin{align*}
1 \text{ m} &< e < 2 \text{ m} \\
8 \text{ cm} &< b < 10 \text{ cm} \\
20 \text{ cm} &< a < 30 \text{ cm} \\
4 \text{ m} &< d < 5 \text{ m} \\
10 \text{ m} &< c < 20 \text{ m}
\end{align*}
\]

Estimate, then measure accurately, the total length of the lines.

a)

b)

c)

d)

e)

Fill in the missing numbers.

a) \(1 \text{ m } 30 \text{ cm} = \boxed{130} \text{ cm}\)

b) \(1 \text{ m } 50 \text{ cm} = \boxed{150} \text{ cm}\)

c) \(1 \text{ m } 100 \text{ cm} = \boxed{2} \text{ m} = \boxed{200} \text{ cm}\)

d) \(1 \text{ m } 26 \text{ cm} = \boxed{126} \text{ cm}\)

e) \(1 \text{ m } 80 \text{ cm} = \boxed{180} \text{ cm}\)

f) \(1 \text{ m } 7 \text{ cm} = \boxed{107} \text{ cm}\)

Mr. Silly estimated some quantities. If you agree with him, write a ✔. If you disagree, write a ✗ and correct his mistake.

a) My friend Bob is about 135 m tall. ✗ 135 cm

b) A matchbox is about 5 mm wide. ✗ 5 cm or 50 mm

c) A pupil's desk is about 70 mm high. ✗ 70 cm

d) My pencil is about 15 cm long. ✔

e) My pet rabbit has ears about 120 mm long. ✔
1. Which capacity would be measured by which unit? Join up the containers to a suitable standard unit.

![Diagram showing containers of different sizes: ml, cl, litre]

2. What could the rule be? Fill in the missing numbers and complete the diagram.

\[
\begin{align*}
10 \text{ cl} &= 100 \text{ ml}, & 100 \text{ ml} + & \text{ ml} = 100 \text{ ml} \\
50 \text{ ml} &= 5 \text{ cl}, & 5 \text{ cl} + & 5 \text{ cl} = 10 \text{ cl} \\
60 \text{ ml} &= 6 \text{ cl}, & 60 \text{ ml} + & 40 \text{ ml} = 100 \text{ ml} \\
4 \text{ cl} &= 40 \text{ ml}, & 40 \text{ ml} + & 60 \text{ ml} = 100 \text{ ml} \\
& & 18 \text{ ml} + & 82 \text{ ml} = 100 \text{ ml}
\end{align*}
\]

3. For a picnic, we made some lemonade and poured it into 50 cl, 80 cl and 1 litre bottles.

The graph shows the number of each size of bottle that we filled.

Do the calculations and answer the questions in your Exercise Books.

a) How many of each size of bottle did we fill? 50 cl: 8 \times 50 \text{ cl}; 80 \text{ cl}: 4 \times 80 \text{ cl}; 1 \text{ litre}: 13 \times 1 \text{ litre}

b) How much lemonade did we pour into each size of bottle?

C) How much lemonade did we make altogether? 2020 cl

b) 50 cl bottles: 400 \text{ cl}; 80 \text{ cl} bottles: 320 \text{ cl}; 1 \text{ litre} bottles: 13 \text{ litres}
1. How much do you think they weigh in real life? Join up each picture to the suitable quantity.

2. Fill in the missing numbers and units.
 a) $1 \text{ kg} = 1000 \text{ g}$
 b) half a kg = 500 g
 c) one and a half kg = 1500 g
 d) . . . quarter of a . . kg = 250 g
 e) 1 tonne = 1000 kg
 f) half a tonne = 500 kg

3. All the 23 pupils in a class were weighed. The results are arranged in increasing order. Boys are shown by black bars and girls by white bars.

 a) Which weight is the most common? 34 kg
 b) What is the weight of the 6th pupil from the left? 30 kg
 c) What is the weight of the 6th pupil from the right? 36 kg
 d) What is the weight of the pupil in the middle? 34 kg
1. a) Colour in the same colour the clocks where the hands are mirror images.

 b) Write below each clock the number of whole hours it shows.

 ![Clocks](image)

 10 hours 7 hours 5 hours 3 hours 2 hours 9 hours

2. Write below each clock how many hours and minutes the hands show.

 ![Clocks](image)

 6 hours 9 hours 2 hours 12 hours

 15 minutes 35 minutes 50 minutes 0 minutes

3. There are 24 hours in a day. The clock started at midnight as:

 Draw where the hour and minute hands would be after:

 ![Clocks](image)

 9 hours 22 hours 15 hours 7 hours 18 hours 23 hours

 45 minutes 15 minutes 30 minutes 45 minutes 55 minutes 15 minutes

4. Change the measures of time. Write the calculations and fill in the results.

 a) 8 weeks 6 days = \(8 \times 7 + 6\) = 62 days

 b) 3 days 8 hours = \(3 \times 24 + 8\) = 80 hours

 c) 2 hours 45 minutes = \(2 \times 60 + 45\) = 165 minutes

 d) 3 minutes 10 seconds = \(3 \times 60 + 10\) = 190 seconds

5. How many hours and minutes have passed from:

 ![Clocks](image) to ![Clocks](image)

 1 hour

 50 minutes
1. Fill in the missing numbers and units.
 a) 2 litres = 200 cl
 d) 3 litres 50 cl = 350 cl
 b) 5 litres = 500 cl
 e) 2 and a half litres = 250 cl
 c) 9 litres = 900 cl
 f) 40 cl = 400 ml

2. What do you think they would weigh in real life? Write the letters in the circles.

 a) chicken leg
 b) boy
 c) sausages
 d) man
 e) cheese
 f) pig

 100 kg < f < 200 kg
 30 kg < b < 40 kg
 60 kg < d < 90 kg

 500 g < a < 800 g
 1000 g < e < 2000 g
 100 g < c < 200 g

3. Change the measures of time. Fill in the missing numbers.
 a) 73 days = 10 weeks 3 days
 b) 68 minutes = 1 hour 8 minutes
 c) 135 minutes = 2 hours 15 minutes
 d) 15 months = 1 year 3 months

4. Rachel emptied her piggy bank and counted the coins she had saved.

 The graph shows the number of each type of coin in Rachel's piggy bank.

 a) How many coins did Rachel have in her piggy bank altogether?
 ... 25 ...

 b) How much money had she saved?
 10 × 5.5p + 6 × 10p + 3 × 50p + 6 × £1 = £8.60 p
1 a) Toss a coin 20 times with a partner so that you have 10 tosses each. Keep a tally of your results in this table. (A tally is | | | | etc.)

<table>
<thead>
<tr>
<th>Pupil data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
</tr>
<tr>
<td>Tail</td>
</tr>
<tr>
<td>Total number of throws</td>
</tr>
</tbody>
</table>

b) Write the results for the whole class in this table.

<table>
<thead>
<tr>
<th>Class data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
</tr>
<tr>
<td>Tails</td>
</tr>
<tr>
<td>Total number of Heads</td>
</tr>
<tr>
<td>Total number of Tails</td>
</tr>
<tr>
<td>Total number of Tosses</td>
</tr>
</tbody>
</table>

c) Which result happened most often?

2 a) Throw a dice 20 times with a partner so that you have 10 throws each. Keep a tally of the results in this table.

<table>
<thead>
<tr>
<th>Pupil data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Total number of throws</td>
</tr>
</tbody>
</table>

b) Write the results for the whole class in this table.

<table>
<thead>
<tr>
<th>Class data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

c) Which number was thrown:
 i) most often
 ii) least often?
1. The graph shows how many km a bird flew each month during a year.

 ![Graph showing monthly distances flown by a bird](image)

 a) How far did it fly in January? \[60\] km
 b) How far did it fly in March? \[30\] km
 c) In which month did it fly the furthest? January
 d) In which month did it fly the least distance? August
 e) In which months did it fly exactly 20 km? June and September
 f) In which months did it fly over 50 km? January and May

2. The pictogram shows how many times the pupils in a class went swimming during the month of July.

 ![Pictogram showing swimming times](image)

 a) Complete the table.

<table>
<thead>
<tr>
<th>Number of Swims</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pupils</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

 b) How many pupils went swimming at least once? 22
 c) How many pupils went swimming at least 3 times? 15
 d) Which number of times did exactly 5 pupils go swimming? 2
 e) Which number of times was the most common? 3
1. *Kanga* the kangaroo is teaching little *Tangy* to jump further. They practise jumping only on weekdays and have a rest at the weekend. The graph shows the longest jumps they each made every weekday for 2 weeks.

![Graph showing Kanga and Tangy's jumps](image)

a) What is the **range** of *Kanga*'s jumps? From **6** m to **12** m

b) On which day did *Tangy* jump furthest? **Thursday, 2nd week**

c) On which day did *Tangy* get tired? **Friday, 1st week**

d) In which week did *Tangy* try hardest? **2nd week**

2. One day, *Piggy* decided to climb the huge pine tree in Fairy-tale Forest. The table shows *Piggy*'s progress. Use the table to complete the graph.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m)</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>50</td>
<td>55</td>
<td>70</td>
</tr>
</tbody>
</table>

The table shows *Piggy*'s progress. Use the table to complete the graph.
1

Donald Dog was practising weighing. He numbered all his bones and weighed each one. Then he made this graph.

![Graph of bone masses](image)

a) Which bone was: i) heaviest \(3\)
ii) lightest? \(4\)
b) Which two bones weighed the same? \(1\) and \(5\)
c) Write the data from the graph in this table.

<table>
<thead>
<tr>
<th>Bone number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>300</td>
<td>500</td>
<td>800</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>700</td>
</tr>
</tbody>
</table>

2

The graph shows the number of inhabitants of Domble Land.

![Graph of population](image)

Population

a) When was the population: i) highest \(1999\)
ii) lowest? \(1993\)
b) When was there no change? \(1997 - 1998\)
c) When was there a decrease? \(1999 - 2000\)
d) Complete the table using data from the graph.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>200</td>
<td>300</td>
<td>250</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>600</td>
<td>550</td>
</tr>
</tbody>
</table>
Collect data on birthdays for all the pupils in your class.

a) Keep a tally of the number of birthdays on each **day** (1st to 31st) of the month in this table.

 Birthdays on each day of the month

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

b) Keep a tally of the number of birthdays in each **month** (January to December) in this table.

 Birthdays in each month

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

c) Keep a tally of the number of pupils in your class who were born in each **year**.

 Year of birth

......

d) Which is the **most** common:
 i) day ii) month iii) year?

e) Which is the **least** common:
 i) day ii) month iii) year?

f) Will this result be the same for all classes in your school?
 Why? ..