Count the amount in the box and write the number in the place-value table.

\[
\begin{array}{ccc}

\text{H} & \text{T} & \text{U} \\
1 & 4 & 7 \\
\end{array}
\]

2

a) Write the numbers as digits.

i) seventy eight \(78\)
ii) one hundred and seventy eight \(178\)
iii) eight \(8\)
iv) one hundred and eight \(108\)
v) one hundred and eighty \(180\)
vi) one hundred and eighty seven \(187\)
vii) seventy \(70\)

b) List these numbers in **increasing** order.

\[8 < 70 < 78 < 108 < 178 < 180 < 187\]

3

Fill in the missing numbers. Join up the given numbers to the number line.

\[
\begin{array}{c}
56 \quad 79 \quad 95 \quad 91 \quad 111 \quad 104 \\
50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100 \quad 110 \\
\end{array}
\]

\[
\begin{array}{c}
156 \quad 179 \quad 195 \quad 191 \quad 211 \quad 204 \\
150 \quad 160 \quad 170 \quad 180 \quad 190 \quad 200 \quad 210 \\
\end{array}
\]

4

a) What will the milometer show when we have gone another mile?

\[
\begin{array}{c}
0149 \\
0150 \\
0178 \\
0179 \\
\end{array}
\]

\[
\begin{array}{c}
0189 \\
0190 \\
0170 \\
0171 \\
\end{array}
\]

\[
\begin{array}{c}
0199 \\
0200 \\
0128 \\
0129 \\
\end{array}
\]

\[
\begin{array}{c}
0138 \\
0139 \\
0150 \\
0149 \\
\end{array}
\]

b) What did the milometer show 1 mile ago?

\[
\begin{array}{c}
0179 \\
0178 \\
0179 \\
0178 \\
\end{array}
\]

\[
\begin{array}{c}
0171 \\
0170 \\
0129 \\
0150 \\
\end{array}
\]

\[
\begin{array}{c}
0128 \\
0128 \\
0149 \\
0149 \\
\end{array}
\]
1. Write additions or subtractions about the pictures.

<table>
<thead>
<tr>
<th>Had</th>
<th>Was given</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>170</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>170</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>170</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
</tbody>
</table>

2. Write operations about the jumps along the number lines.

<table>
<thead>
<tr>
<th>Had</th>
<th>Was given</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 + 30 = 150</td>
<td></td>
</tr>
<tr>
<td>180 - 50 = 130</td>
<td></td>
</tr>
<tr>
<td>60 + 80 = 140</td>
<td></td>
</tr>
<tr>
<td>150 - 70 = 80</td>
<td></td>
</tr>
<tr>
<td>120 + 30 = 150</td>
<td></td>
</tr>
<tr>
<td>60 + 40 + 40 = 140</td>
<td></td>
</tr>
<tr>
<td>150 - 50 - 20 = 80</td>
<td></td>
</tr>
</tbody>
</table>

3. Practise calculation.

<table>
<thead>
<tr>
<th>Had</th>
<th>3 + 4 = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 + 4 = 17</td>
<td></td>
</tr>
<tr>
<td>30 + 40 = 70</td>
<td></td>
</tr>
<tr>
<td>130 + 40 = 170</td>
<td></td>
</tr>
<tr>
<td>30 + 140 = 170</td>
<td></td>
</tr>
<tr>
<td>7 - 5 = 2</td>
<td></td>
</tr>
<tr>
<td>17 - 5 = 12</td>
<td></td>
</tr>
<tr>
<td>17 - 15 = 2</td>
<td></td>
</tr>
<tr>
<td>70 - 50 = 20</td>
<td></td>
</tr>
<tr>
<td>170 - 50 = 120</td>
<td></td>
</tr>
<tr>
<td>170 - 150 = 20</td>
<td></td>
</tr>
</tbody>
</table>

4. Roberta keeps some of her money in a piggy bank and some of it in a purse. How much does Roberta have altogether? Complete the table.

<table>
<thead>
<tr>
<th>Pence in</th>
<th>80</th>
<th>180</th>
<th>30</th>
<th>120</th>
<th>50</th>
<th>60</th>
<th>30</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pence in</td>
<td>20</td>
<td>20</td>
<td>170</td>
<td>40</td>
<td>130</td>
<td>40</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>Pence in total</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>160</td>
<td>180</td>
<td>100</td>
<td>160</td>
<td>190</td>
</tr>
</tbody>
</table>
1. Who has more money? How much more?

<table>
<thead>
<tr>
<th></th>
<th>Anne</th>
<th>Brian</th>
<th></th>
<th>Colin</th>
<th>Diana</th>
<th></th>
<th>Ella</th>
<th>Fred</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1</td>
<td></td>
<td>101</td>
<td>92</td>
<td></td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>A:</td>
<td>100 + 3 × 10 = 130</td>
<td>B:</td>
<td>100 + 3 × 1 = 103</td>
<td>C:</td>
<td>50 + 4 × 10 + 2 = 92</td>
<td>D:</td>
<td>100 + 1 = 101</td>
<td>E:</td>
</tr>
<tr>
<td></td>
<td>130 > 103</td>
<td></td>
<td></td>
<td>101 > 92</td>
<td></td>
<td></td>
<td>156 = 156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130 – 103 = 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diana has 9 more.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Practise calculation:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 2 + 8 =</td>
<td>10</td>
<td>20 + 80 =</td>
<td>100</td>
<td>2 + 9 =</td>
<td>11</td>
<td>20 + 90 =</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>b) 3 + 7 =</td>
<td>10</td>
<td>30 + 70 =</td>
<td>100</td>
<td>3 + 9 =</td>
<td>12</td>
<td>30 + 90 =</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>c) 10 – 4 =</td>
<td>10</td>
<td>100 – 40 =</td>
<td>60</td>
<td>12 – 4 =</td>
<td>8</td>
<td>120 – 40 =</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>d) 10 – 9 =</td>
<td>10</td>
<td>100 – 90 =</td>
<td>10</td>
<td>17 – 9 =</td>
<td>8</td>
<td>170 – 90 =</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>e) 90 + 40 =</td>
<td>130</td>
<td>80 + 50 =</td>
<td>130</td>
<td>90 – 40 =</td>
<td>50</td>
<td>180 – 50 =</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>f) 200 – 30 =</td>
<td>170</td>
<td>200 – 130 =</td>
<td>70</td>
<td>200 – 110 =</td>
<td>90</td>
<td>200 – 10 =</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

3. Anne has £80 and Bob has £60.

a) How much money do they have altogether? £80 + £60 = £140.

b) How much money will they have altogether if:

i) Anne is given an extra £10 £90 + £60 = £150

ii) Bob spends £20 £80 + £40 = £120

iii) they each spend £40 £40 + £20 = £60 (or £140 – £80 = £60)

iv) Anne spends £50 and Bob is given an extra £90? £80 – £50 + £60 + £90 = £180

4. The 3 numbers along each line add up to 200. Write in the missing numbers.

Choose from:

a) 40, 50, 60, 70, 80, 90

b) 30, 40, 50, 60, 70, 80, 90, 100
1. How many lettuces are in the gardens? Write additions and multiplications.

 a) ____________________________

 \[\cdots \cdot 5 + 5 + 5 + 5 + 5 = 25 \]

 \[5 \times 5 = 25 \]

 b) ____________________________

 \[5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 50 \]

 \[10 \times 5 = 50 \]

 \[5 \times 10 = 50 \]

2. Frog jumps 10 units at a time and Sparrow jumps 5 units at a time along the number line. Draw their jumps and write the numbers they land on if:

 a) they start from 100

 ![Number line diagram]

 \[100 \rightarrow 110 \rightarrow 120 \rightarrow 130 \rightarrow 140 \rightarrow 150 \rightarrow 160 \]

 \[5 + 5 + 5 + 5 + 5 = 25 \]

 \[5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 50 \]

 \[10 \times 5 = 50 \]

 b) they start from 60.

 ![Number line diagram]

 \[60 \rightarrow 70 \rightarrow 80 \rightarrow 90 \rightarrow 100 \rightarrow 110 \rightarrow 120 \]

 \[13 \times 5 = 65 \]

 \[65 \div 5 = 13 \]

3. Write an addition, a multiplication and a division about each picture.

 a) ____________________________

 \[\cdots \cdot 50 + 15 = 65 \]

 \[13 \times 5 = 65 \]

 \[65 \div 5 = 13 \]

 b) ____________________________

 \[50 + 50 + 50 + 50 + 50 + 50 + 50 = 350 \]

 \[50 \times 7 = 350 \]

 \[350 \div 10 = 35 \]

1. Sue spent some money on sweets. How much did she have left?

Complete the table.

<table>
<thead>
<tr>
<th>Had (p)</th>
<th>100</th>
<th>200</th>
<th>90</th>
<th>190</th>
<th>150</th>
<th>180</th>
<th>150</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent (p)</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>160</td>
<td>140</td>
<td>110</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>Had left (p)</td>
<td>50</td>
<td>150</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>70</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

2. Use only the digits 0, 1, 2, 3, 4 or 5. Which of these digits can be put in the units, tens or hundreds boxes so that the numbers are

a) exactly divisible by 5:

<table>
<thead>
<tr>
<th>0/5</th>
<th>012345</th>
<th>12345</th>
<th>0/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>200</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

b) exactly divisible by 10:

<table>
<thead>
<tr>
<th>0/5</th>
<th>012345</th>
<th>12345</th>
<th>0/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

3. Fill in the missing numbers.

a) $4 + 7 = \underline{11}$

b) $5 + 8 = \underline{13}$

c) $20 - 5 = \underline{15}$

d) $30 - 6 = \underline{24}$

e) $75 - 9 = \underline{66}$

4. a) What will the milometer show when we have gone another 10 miles?

b) What did the milometer show 10 miles ago?

5. Which different 1-digit numbers could a, b and c be if $a + b + c = 14$ and $a \times b \times c = 84$?

E.g: $a = \underline{3}$, $b = \underline{4}$, $c = \underline{7}$
Complete the table.

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
</tr>
</tbody>
</table>

2

a) Exchange these amounts for £2 coins. Draw the £2 coins in the boxes.

<table>
<thead>
<tr>
<th>£12</th>
<th>£12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>2 2 2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>2 2 2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>2 2 2</td>
</tr>
</tbody>
</table>

b) Exchange these amounts for £20 notes. Draw the £20 notes.

<table>
<thead>
<tr>
<th>£120</th>
<th>£120</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 10 10 20 20</td>
<td></td>
</tr>
<tr>
<td>10 10 10 20 20</td>
<td></td>
</tr>
<tr>
<td>10 10 10 20 20</td>
<td></td>
</tr>
</tbody>
</table>

3

Practise calculation.

a) \(\frac{6 \times 10}{10} = 60 \)

b) \(\frac{0 \times 10}{10} = 0 \)

c) \(\frac{20 \times 3}{10} = 60 \)

\(\frac{7 \times 5}{10} = 35 \)

\(\frac{40 \div 10}{10} = 4 \)

\(\frac{16 \div 2}{2} = 8 \)

\(\frac{25 \times 2}{10} = 50 \)

\(\frac{60 \div 2}{2} = 30 \)

\(\frac{200 \div 2}{2} = 100 \)

\(\frac{20 \times 7}{10} = 140 \)

\(\frac{160 \div 8}{2} = 20 \)

\(\frac{0 \div 20}{20} = 0 \)

\(\frac{11 \times 10}{10} = 110 \)

\(\frac{180 \div 6}{2} = 30 \)

\(\frac{150 \div 5}{20} = 3 \)

4

Among how many children can 60 apples be shared equally if we do not cut up any apples? Show your answer by writing divisions.

\(\frac{60a \div 2}{1} = 30a \)

\(\frac{60a \div 3}{1} = 20a \)

\(\frac{60a \div 4}{1} = 15a \)

\(\frac{60a \div 5}{1} = 12a \)

\(\frac{60a \div 6}{1} = 10a \)

\(\frac{60a \div 7}{1} = 8a \)

\(\frac{60a \div 8}{1} = 7a \)

\(\frac{60a \div 9}{1} = 6a \)

\(\frac{60a \div 10}{1} = 5a \)

\(\frac{60a \div 11}{1} = 4a \)

\(\frac{60a \div 12}{1} = 3a \)

\(\frac{60a \div 13}{1} = 2a \)

\(\frac{60a \div 14}{1} = 1a \)

\(\frac{60a \div 15}{1} = 0a \)
1. Practise calculation.
 a) \[40 + 90 - 20 = \boxed{110}\]
 \[180 - 60 - 50 = \boxed{70}\]
 \[110 - 40 + 90 = \boxed{160}\]
 b) \[6 \times 10 \times 2 = \boxed{120}\]
 \[150 \div 5 \div 10 = \boxed{3}\]
 \[16 \div 2 \times 5 \div 10 = \boxed{4}\]
 c) \[110 - 5 \times 8 = \boxed{70}\]
 \[90 - 60 \div 10 = \boxed{84}\]
 \[9 \times 10 - 45 \div 5 = \boxed{81}\]
 d) \[5 \times 7 + 100 = \boxed{135}\]
 \[130 \div 10 + 10 = \boxed{23}\]
 \[180 - 8 \times 10 - 40 = \boxed{60}\]

2. Which of the numbers 0, 1, 2, 3, 4 or 5 could be put in the place of the missing digits so that the numbers are even? List the possible 3-digit numbers.
 a) \[\boxed{1 50, 152, 154}\]
 c) \[\boxed{16, 116, 216, 316, 416, 516}\]
 b) \[\boxed{1 5 None - always odd (as the final digit is 5)}\]
 d) \[\boxed{1 0 100, 102, 104}\]

3. Write a plan, do the calculation and write the answer as a sentence.
 a) Henry had 70 p. He paid a bill with five 10 p coins.
 How much money did he have left?
 \[70 - 5 \times 10 = 70 - 50 = 20\]
 Answer: Henry had 20 p left.

 b) Judith paid a bill with ten 5 p coins and had 70 p left.
 How much money did she have at first?
 \[70 + 10 \times 5 = 120\]
 Answer: Judith had 120 p at first.

 c) Sue has 70 p. A sweet costs 1 tenth of her money.
 How much will Sue pay if she buys 5 sweets?
 \[5 \times (70 \div 10) = 5 \times 7 = 35\]
 Answer: Sue pays 35 p.

4. Solve the number puzzle.
 \[\begin{array}{ccc}
 a & 1 & b \\
 d & 1 & 5 \\
 e & 2 & 2 \\
 \end{array}\]
 \[\begin{array}{ccc}
 a & 200 \div 10 - 9 \\
 b & 12 + 70 \times 2 \\
 c & 400 \div 2 + 2 \div 1 \\
 \end{array}\]

Page 37
1. Fill in the missing items.
 a) $1\text{ m }72\text{ cm} = \underline{172}\text{ cm}$
 $148\text{ cm} = \underline{1}\text{ m }48\text{ cm}$
 b) $1\text{ m }8\text{ cm} = \underline{108}\text{ cm}$
 $1\text{ and a half metres} = \underline{150}\text{ cm}$
 c) $1\text{ litre }25\text{ cl} = \underline{125}\text{ cl}$
 $151\text{ cl} = \underline{1}\text{ litres }51\text{ cl}$
 d) $1\text{ litre }5\text{ cl} = \underline{105}\text{ cl}$
 $1\text{ and a half litres} = 150\text{ cl}$
 e) $2\text{ litres} \rightarrow \underline{2}\text{ kg}$
 $1\text{ km} > 300\text{ m}$
 f) $200\text{ g} < 1\text{ kg}$
 $130\text{ cl} > 1\text{ litre}$

2. Mrs Mouse had 180 g of cheese. Help her to work out how much cheese has been eaten and how much remains. Complete the table.

<table>
<thead>
<tr>
<th>Eaten (g)</th>
<th>0</th>
<th>140</th>
<th>170</th>
<th>25</th>
<th>132</th>
<th>75</th>
<th>34</th>
<th>115</th>
<th>40</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remaining (g)</td>
<td>180</td>
<td>40</td>
<td>10</td>
<td>155</td>
<td>48</td>
<td>105</td>
<td>146</td>
<td>65</td>
<td>140</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule: $180\text{ g} = E + R$
$E = 180\text{ g} - R$
$R = 180\text{ g} - E$

3. Fill in the missing numbers and standard units.
 a) $45\text{ cm} \times 2 = \underline{90}\text{ cm}$
 $180\text{ kg} \div 10 = \underline{18}\text{ kg}$
 b) $150\text{ litres} \div 5 = \underline{30}\text{ litres}$
 $23\text{ litres} \times 5 = \underline{115}\text{ litres}$
 c) $1\text{ m }30\text{ cm} \div 2 = \underline{65}\text{ cm}$
 $1\text{ m }30\text{ cm} \times 5 = \underline{650}\text{ cm}$

4. Write a plan, do the calculation and write the answer as a sentence.
 a) Sarah's younger brother is 90 cm tall. Sarah is 40 cm taller than her brother. How tall is Sarah?

 $90 + 40 = 130$

 Answer: Sarah is $1\text{ m }30\text{ cm}$ tall.

 b) A desk is 70 cm high. We put 6 books, each 5 cm thick, one on top of the other on the desk. If we put a pencil on top of the pile of books, how far will the pencil be from the floor?

 $70 + (6 \times 5) = 100$

 Answer: The pencil will be 1 m from the floor.
Write additions or subtractions about the pictures.

1

<table>
<thead>
<tr>
<th>Had (p)</th>
<th>Was given (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

70 p + 26 p = 96 p

<table>
<thead>
<tr>
<th>Had (£)</th>
<th>Was given (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

£170 + £26 = £196

<table>
<thead>
<tr>
<th>Had (p)</th>
<th>Spent (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

63 p – 23 p = 40 p

<table>
<thead>
<tr>
<th>Had (£)</th>
<th>Spent (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

£163 – £23 = £140

For each sequence, complete the rule and write the next 3 terms.

2

a) This sequence is increasing by 20. 27, 47, 67, . . . 87, . . . 107, . . . 127,.
b) This sequence is increasing by 30. 9, 39, . . . 69, . . . 99, . . . 129,.
c) This sequence is decreasing by 30. 196, 166, . . . 136, . . . 106, . . . 76,.
d) This sequence is decreasing by 40. 200, 160, . . . 120, . . . 80, . . . 40,.

Practise calculation.

3

a) 27 + 60 = 87
b) 70 + 19 = 89
c) 36 – 20 = 16

27 + 160 = 187
70 + 119 = 189
136 – 20 = 116
127 + 60 = 187
170 + 19 = 189
136 – 120 = 16

Fill in the missing numbers.

4

a) 50 + 26 = 76
b) 40 + 13 = 53
c) 153 – 40 = 113

50 + 126 = 176
40 + 113 = 153
179 – 139 = 40

29 + 10 = 39
43 + 50 = 93
146 – 16 = 130

29 + 110 = 139
43 + 150 = 193
135 – 120 = 15

Greg and Helen have 58 postcards altogether. Greg has 30 more than Helen. How many cards do they each have?

Helen: 14
Greg: 44

(58 – 30) ÷ 2 = 28 ÷ 2 = 14
1. Write these numbers in the correct boxes.

 0, 3, 6, 7, 9, 13, 22, 34, 67, 88, 102, 112, 123, 156, 187

<table>
<thead>
<tr>
<th>Even</th>
<th>Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 6, 22, 34, 88, 102, 112, 156</td>
<td>3, 7, 9, 13, 67, 123, 187</td>
</tr>
</tbody>
</table>

2. Write the rule and fill in the missing numbers.

 Rule: .

 (outer number) ÷ (middle number) = innermost number

3. The same shape means the same number. The number in the middle is the **sum** of the 4 numbers around it. Fill in the missing numbers. Choose from: 10, 20, 30, 40, 50, 60 or 70.

4. Fill in the numbers missing from the snakes. Write the rules in their heads.

 a) 109 113 117 121 125 129 133 137 141 145 Add 4

 b) 155 149 143 137 131 125 119 113 107 101 Subtract 6

5. Join up the equal amounts.

 - \(36 \div 6 + 100\)
 - \(4 \times 15 \div 6\)
 - 3 quarters of 40
 - 1 fifth of 125
 - 2 thirds of 18, minus 2
 - \(57 + 7 \times 7\)
 - 1 half of 50
 - \((72 + 18) \div 3\)
1. How many pence are in the boxes? Write a multiplication about each picture.
 a) $6 \times 2 = 12$ p
 b) $6 \times 20 = 120$ p
 c) $3 \times 5 = 15$ p
 d) $3 \times 50 = 150$ p

2. Complete the table.

 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|----|----|----|----|----|----|----|----|----|----|
3 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | 57 | 60 |
6 | 66 | 72 | 78 | 84 | 90 | 96 | 102| 108| 114| 120|
9 | 99 | 108| 117| 126| 135| 144| 153| 162| 171| 180|

3. Calculate the products and quotients.
 a) $6 \cdot 3 = 18$, $60 \cdot 3 = 180$, $6 \cdot 30 = 180$
 b) $9 \cdot 2 = 18$, $90 \cdot 2 = 180$, $9 \cdot 20 = 180$
 c) $15 \div 3 = 5$, $150 \div 3 = 50$, $150 \div 30 = 5$
 d) $12 \div 6 = 2$, $120 \div 6 = 20$, $120 \div 60 = 2$

4. Fill in the missing numbers.
 a) $3 \cdot 4 = 12$, $6 \cdot 4 = 24$, $50 \cdot 3 = 150$, $2 \cdot 90 = 180$
 b) $18 \div 2 = 9$, $180 \div 2 = 90$, $180 \div 20 = 9$, $180 \div 9 = 20$
 c) $20 \div 5 = 4$, $200 \div 50 = 4$, $200 \div 5 = 40$, $200 \div 20 = 10$

5. a) Andrew has 90 football stickers, 3 times more than David.
 How many stickers does David have?
 $90 \div 3 = 30$
 Answer: David has 30 stickers.

 b) Emma saved £30, which was 1 sixth of the amount that Vicky saved.
 How much did Vicky save?
 $6 \times 30 = 180$
 Answer: Vicky saved £180.
1. Pack these apples in boxes of 9. How many boxes will be filled and how many apples will remain? E.g:

3 boxes will be filled and 7 apples will remain.

2. Exchange the £1 coins for £10 notes. How many £1 coins will remain? Complete the table.

<table>
<thead>
<tr>
<th>(£1) coins</th>
<th>46</th>
<th>75</th>
<th>100</th>
<th>107</th>
<th>140</th>
<th>63</th>
<th>121</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>(£10) notes</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>£s remaining</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

3. Practise division. Check with multiplication.

<table>
<thead>
<tr>
<th></th>
<th>19</th>
<th>25</th>
<th>30</th>
<th>27</th>
<th>53</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>$\frac{19}{2} = \frac{9}{1}$</td>
<td>$\frac{25}{6} = \frac{4}{1}$</td>
<td>$\frac{30}{9} = \frac{3}{1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>$1 + 9 \times 2 = 19$</td>
<td>$1 + 4 \times 6 = 25$</td>
<td>$3 + 3 \times 9 = 30$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>$\frac{27}{5} = \frac{5}{2}$</td>
<td>$\frac{53}{6} = \frac{8}{5}$</td>
<td>$\frac{134}{20} = \frac{6}{14}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>$2 + 5 \times 5 = 27$</td>
<td>$5 + 8 \times 6 = 53$</td>
<td>$14 + 6 \times 20 = 134$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Each box can hold 6 eggs. How many boxes can be filled and how many eggs will remain? Complete the table. Complete the rule.

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>45</th>
<th>50</th>
<th>121</th>
<th>185</th>
<th>123</th>
<th>182</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>filled</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>remaining</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

$E = B \cdot 6 + R$
1 Write additions and subtractions about the pictures.
E.g:

a) \[
\begin{array}{c}
\text{100} \\
\text{20} \\
\text{5} \\
\text{1}
\end{array}
\quad 146 + 4 = 150
\]
\[
\begin{array}{c}
\text{2} \\
\text{2} \\
\text{2}
\end{array}
\quad 150 - 146 = 4
\]

b) \[
\begin{array}{c}
\text{50} \\
\text{10} \\
\text{5} \\
\text{2}
\end{array}
\quad 168 + 7 = 175
\]
\[
\begin{array}{c}
\text{2} \\
\text{5}
\end{array}
\quad 175 - 168 = 7
\]

2 Calculate the sums and differences.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95 + 8 = 103</td>
<td>135 + 8 = 143</td>
<td>102 − 5 = 97</td>
<td>182 − 5 = 177</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94 + 7 = 101</td>
<td>154 + 7 = 161</td>
<td>104 − 8 = 96</td>
<td>154 − 8 = 146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 + 9 = 105</td>
<td>176 + 9 = 185</td>
<td>103 − 6 = 97</td>
<td>123 − 6 = 117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Practise calculation.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 124 + 18 ÷ 3 = 130</td>
<td>152 + 48 ÷ 6 = 160</td>
<td>45 ÷ 9 + 165 = 170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) 180 − 36 ÷ 6 = 174</td>
<td>110 − 63 ÷ 9 = 103</td>
<td>120 ÷ 6 − 7 = 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) 68 + 30 + 6 = 104</td>
<td>168 + 30 + 6 = 204</td>
<td>68 + 130 + 6 = 204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) 65 − 40 − 7 = 18</td>
<td>165 − 40 − 7 = 118</td>
<td>165 − 140 − 7 = 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Write a plan, do the calculation, check the answer and write it as a sentence.

a) Peter is 1 m 34 cm tall and Sarah is 8 cm taller. How tall is Sarah?
1 m 34 cm + 8 cm = 1 m 42 cm

Answer: Sarah is 1 m 42 cm tall.

b) A shop had 126 kg of apples in stock. This was 9 kg more than the amount of grapes in stock. How many kg of grapes were in the shop?
126 kg − 9 kg = 117 kg

Answer: There were 117 kg of grapes in the shop.

c) There was 1 litre 50 cl of water in a jug. Another 50 cl of water was poured into the jug. How much water was in the jug then?
1 litre 50 cl + 50 cl = 2 litres

Answer: There were 2 litres of water in the jug then.
1 Write operations about the picture.

\[3 \times 7 = 10 \times 7 + 3 \times 7 = 70 + 21 = 91\]

\[7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 = 91\]

2 Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>56</td>
<td>60</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>96</td>
<td>104</td>
<td>112</td>
<td>120</td>
<td>128</td>
<td>136</td>
<td>144</td>
<td>152</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
<td>84</td>
<td>91</td>
<td>98</td>
<td>105</td>
<td>112</td>
<td>119</td>
<td>126</td>
<td>133</td>
<td>140</td>
</tr>
</tbody>
</table>

3 Practise multiplication and division.

a) \(3 \times 4 = \boxed{12}\) \(3 \times 40 = \boxed{120}\) \(30 \times 4 = \boxed{120}\)

b) \(2 \times 8 = \boxed{16}\) \(20 \times 8 = \boxed{160}\) \(2 \times 80 = \boxed{160}\)

c) \(16 \div 4 = \boxed{4}\) \(160 \div 4 = \boxed{40}\) \(160 \div 40 = \boxed{4}\)

d) \(14 \div 7 = \boxed{2}\) \(140 \div 7 = \boxed{20}\) \(140 \div 70 = \boxed{2}\)

4 Fill in the missing numbers.

a) \(6 \times \boxed{3} = 18\)
\(9 \times \boxed{8} = 72\)
\(7 \times \boxed{9} = 63\)
\(8 \times \boxed{6} = 48\)
\(0 \times \boxed{7} = 0\)

b) \(\boxed{40} \times 4 = 160\)
\(4 \times 30 = 120\)
\(20 \times 9 = 180\)
\(3 \times 60 = 180\)
\(10 \times 7 = 70\)

c) \(20 \div \boxed{4} = 5\)
\(180 \div \boxed{2} = 90\)
\(36 \div 4 = 9\)
\(160 \div 8 = 20\)
\(49 \div 7 = 7\)
1. List the numbers which make the inequality true.
 a) \[70 \div 5 > \square > 200 \div 10\] \[\square: \text{Impossible} \]
 b) \[8 \cdot 4 + 14 < \star \leq 11 \cdot 5 - 5\] \[\star: \quad 47, 48, 49, 50 . . . \]
 c) \[81 \div 9 \cdot 3 \geq \triangle > 100 \div 5\] \[\triangle: \quad 21, 22, 23, 24, 25, 26, 27\]

2. A 1st class stamp costs 27 p and a 2nd class stamp costs 21 p.
 a) Complete the table.

<table>
<thead>
<tr>
<th>Number of:</th>
<th>21 p stamps</th>
<th>27 p stamps</th>
<th>Total cost (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 p stamps</td>
<td>1</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>2 p stamps</td>
<td>2</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>0 p stamps</td>
<td>0</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>1 p stamps</td>
<td>1</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>2 p stamps</td>
<td>2</td>
<td>2</td>
<td>96</td>
</tr>
</tbody>
</table>

 b) I paid exactly £1 65 p for stamps. How many 1st class and how many 2nd class stamps did I buy?

 \[4 \times 21 + 3 \times 27 = 84 + 81 = 165\]

 Answer: I bought 3 1st class stamps and 4 2nd class stamps

3. How many different results can you find? Use +, −, or \(\times\) signs.

 \[
 \begin{align*}
 70 & + 10 + 3 = 83 & 70 & \times 10 - 3 = 697 \\
 70 & + 10 - 3 = 77 & 70 & + 10 \times 3 = 100 \\
 70 & - 10 + 3 = 63 & 70 & - 10 \times 3 = 40 \\
 70 & - 10 - 3 = 57 & 70 & \times 10 \times 3 = 2100 \\
 70 & \times 10 + 3 = 703 & 70 & 10 \square 3 = \square
 \end{align*}
 \]

4. Fill in the missing numbers and complete the drawings.
1. Write the calculations in two ways to match the arrows on the number lines.

 a) Dennis had saved £67. He was given £35 for his birthday. How much money does he have now?

 ![Number Line]

 1) £67 + £30 + £5 = £102 2) £67 + £5 + £30 = £102

 b) Sandra had 84 p. She bought a drink for 28 p. How much money does Sandra have now?

 ![Number Line]

 1) 84 p − 20 p − 8 p = 56 p 2) 84 p − 8 p − 20 p = 56 p

2. Calculate:

 a) 36 + 20 = 56 36 + 23 = 59 136 + 20 = 156 136 + 23 = 159
 b) 57 + 8 = 65 57 + 38 = 95 157 + 8 = 165 157 + 38 = 195
 c) 76 − 30 = 46 76 − 34 = 42 176 − 30 = 146 176 − 34 = 142
 d) 92 − 50 = 42 92 − 56 = 36 192 − 50 = 142 192 − 56 = 136

3. The sum of any two adjacent numbers is the number directly above them.

 The numbers in the bottom row increase by 4.

 Fill in the missing numbers.

4. E.g:

<table>
<thead>
<tr>
<th></th>
<th>89</th>
<th>83</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>59</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>77</td>
<td>71</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

 Fill in the numbers missing from the magic square.

 The sums of the numbers in each row, column or diagonal are equal.
1. Write the calculation **without** brackets so that the result is the same.

a) $128 + (30 + 5) = 163$
 $128 + 30 + 5 = 163$

b) $127 - (50 + 1) = 76$
 $127 - 50 - 1 = 76$

c) $146 - (90 - 16) = 72$
 $146 - 90 + 16 = 72$

d) $(50 - 7) \times 3 = 129$
 $50 \times 3 - 7 \times 3 = 129$

e) $(160 + 8) \div 8 = 21$
 $160 \div 8 + 8 \div 8 = 21$

2. Calculate:

a) $20 \times 6 = 120$
 $20 \times (6 - 1) = 100$
 $20 \times (6 \div 2) = 60$
 $20 \times (6 + 2) = 160$
 $20 \times (6 \div 0) = 0$
 $20 \times (6 + 4) = 200$

b) $160 \div 8 = 20$
 $160 \div (8 \div 2) = 40$
 $160 \div (8 - 4) = 40$
 $160 \div (8 - 6) = 80$
 $160 \div (8 \div 1) = 20$

3. Fill in the results and colour the matching sections to find the hidden number.

```
142 - 6 \times 7 = 100  (20 + 3) \times 8 = 184
(120 - 40) \times 3 = 240  (140 + 7) \div 7 = 21
(70 - 25 + 55) \times 2 = 200  62 + 20 \times 4 = 142
(30 + 8) \times 5 = 190  30 \times 4 - 5 = 115
(20 + 8) \times 7 = 196  6 \times (30 + 2) = 192
```

The hidden number is 35.

4. Write the calculations in two ways, with and without brackets.

a) Seven children went to gather chestnuts. They gathered 56 kg. Three of the children just played and did not collect any. Share the chestnuts equally among the children who collected them. How many chestnuts will each child take home?

1) $\frac{56 \text{ kg}}{7 - 3} = \frac{56 \times 4}{4} = 14 \text{ kg}$

Answer: Each child took home 14 kg of chestnuts.

b) Steve had £1 50 p. The 6 members in Steve’s gang spent £1 80 p altogether on sweets. Each paid the same amount. How much did Steve have left?

1) $150 \div (180 \div 6) = 120$ p.

Answer: Steve had £1 20 left.
1. Fill in the missing quantities.

<table>
<thead>
<tr>
<th>1 metre</th>
<th>30 cm</th>
<th>half a metre</th>
<th>600 mm</th>
<th>75 cm</th>
<th>8 cm</th>
<th>500 mm</th>
<th>10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 cm</td>
<td>half a metre</td>
<td>400 mm</td>
<td>25 cm</td>
<td>92 cm</td>
<td>500 mm</td>
<td>90 cm</td>
<td></td>
</tr>
</tbody>
</table>

2. a) Add up the first 10 positive whole numbers.

\[
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 .
\]

b) Find an easier way to do the calculation, using the diagram to help you.

\[
(10 \times 1) \times (9 \times 2) + (8 \times 3) = (7 \times 4) + (6 \times 5)
\]

\[
= 5 \times 11 = 55
\]

3. Continue the sequences by writing the next 6 terms. What is the rule?

a) \[
\begin{array}{c}
1 \\
3 \\
5
\end{array}
\]

1, 3, 5, . . . 7 . . . 9 . . . 11 . . . 13 . . . 15 . . . 17 . . .

Rule: Add 2

b) \[
\begin{array}{c}
1 \\
4 \\
9
\end{array}
\]

1, 4, 9, . . . 16 . . . 25 . . . 36 . . . 49 . . . 64 . . . 81 . . .

Rule: \(1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4, \ldots \) etc.

4. Fill in the numbers missing from the number strips.

a) \[
\begin{array}{cccccccccccc}
\end{array}
\]

b) \[
\begin{array}{cccccccccccc}
\end{array}
\]

c) \[
\begin{array}{cccccccccccc}
\end{array}
\]

5. Continue the sequences and write the rules.

Rule: Add 6, subtract 3

b) 150, 143, 157, 150, 164, 157, 171, 164, 178, 171, . . .

Rule: Subtract 7, add 14
1. Draw a red dot at the whole ten nearest the number given.

 a) \[134 \]
 b) \[188 \]
 c) \[253 \]
 d) \[309 \]
 e) \[175 \]
 f) \[246 \]

2. List the whole numbers for which the nearest whole ten would be:
 a) \[60 \approx 55, 56, 57, 58, 59, 60, 61, 62, 63, 64\]
 b) \[100 \approx 95, 96, 97, 98, 99, 100, 101, 102, 103, 104\]
 c) \[210 \approx 205, 206, 207, 208, 209, 210, 211, 212, 213, 214\]

3. Which digits can be written instead of the squares so that the nearest whole ten is 260? List all the possible 3-digit numbers. (\(\approx\) means nearly equal to)
 a) \[5 2 \approx 260\] \(\text{None possible}\)
 b) \[6 4 \approx 260\] \(264\)
 c) \[2 5 \approx 260\] \(255\)
 d) \[2 3 \approx 260\] \(263\)
 e) \[2 5 \approx 260\] \(255, 256, 257, 258, 259\)
 f) \[2 6 \approx 260\] \(260, 261, 262, 263, 264\)

4. Two different numbers can be rounded to 70 as the nearest whole ten.
 a) Is it possible that both numbers are less than 70?
 \(\text{Yes; e.g. 65 and 66}\)
 b) Is it possible that one of the numbers is 10 less than the other?
 \(\text{No}\)
 c) Is it possible that one of them has 5 and the other has 0 as the units digits?
 \(\text{Yes; 65 and 70}\)
 d) Is it possible that both numbers are whole tens?
 \(\text{No}\)
1. Fill in the missing numbers and signs.

\[
\begin{align*}
163 & \quad + \quad 27 & \quad \Rightarrow & \quad 190 \\
190 & \quad - \quad 26 & \quad \Rightarrow & \quad 164 \\
164 & \quad + \quad 29 & \quad \Rightarrow & \quad 193 \\
193 & \quad - \quad 12 & \quad \Rightarrow & \quad 181 \\
181 & \quad - \quad 13 & \quad \Rightarrow & \quad 168
\end{align*}
\]

2. List the numbers which make the statement true.

\[
170 < \quad \square + 40 < 190 - 15
\]

\[
\therefore : \quad 131, \quad 132, \quad 133, \quad 134 \quad \ldots \ldots .
\]

3. Write the answers as Roman numerals.

\[
\begin{align*}
a) \quad CXIII & \quad - \quad XI = CII \\
b) \quad LXXXI & \quad + \quad IX = XC \\
c) \quad CCX & \quad + \quad L = CCLX \\
d) \quad XL & \quad \times \quad II = \quad LXXX \\
e) \quad XLII & \quad \div \quad VII = \quad VI \\
f) \quad LX & \quad + \quad XL = \quad C
\end{align*}
\]

E.g:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
8 & 9 & 4 \\
7 & 6 & 5
\end{array}
\]

Using each of the numbers 1 to 9 once only, make an **anti-magic square**.

The sums of the numbers along each row, column and diagonal must all be different.

4. Write the calculation **without** brackets so that the result is the same.

\[
\begin{align*}
a) \quad 147 & \quad - \quad (50 & \quad - \quad 6) = \quad 103 \quad .147 & \quad - \quad 50 & \quad + \quad 6 \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
b) \quad 200 & \quad + \quad (66 & \quad - \quad 9) = \quad 257 \quad .200 & \quad + \quad 66 & \quad - \quad 9 \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
c) \quad 135 & \quad - \quad (40 & \quad - \quad 12) = \quad 107 \quad .135 & \quad - \quad 40 & \quad + \quad 12 \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
d) \quad (20 & \quad - \quad 3) & \quad \times \quad 7 = \quad 119 \quad .20 & \quad \times \quad 7 & \quad - \quad 3 \times 7 \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
e) \quad (120 & \quad + \quad 50) & \quad \div \quad 10 = \quad 17 \quad .120 & \quad \div \quad 10 & \quad + \quad 50 & \quad \div \quad 10 \quad \ldots \ldots \ldots \ldots \ldots \ldots \\
\end{align*}
\]

5. Draw over the parts of the number line which can be **rounded** to the same whole ten as the number marked. Label the highest and lowest possible whole numbers.

\[
\begin{align*}
a) & \quad 80 \quad \cdots \quad 85 \quad \cdots \quad 90 \quad \cdots \quad 94 \quad \cdots \quad 100 \\
b) & \quad 100 \quad \cdots \quad 105 \quad \cdots \quad 110 \quad \cdots \quad 114 \quad \cdots \quad 200 \\
c) & \quad 220 \quad \cdots \quad 225 \quad \cdots \quad 230 \quad \cdots \quad 234 \quad \cdots \quad 240 \\
d) & \quad 350 \quad \cdots \quad 355 \quad \cdots \quad 360 \quad \cdots \quad 364 \quad \cdots \quad 370
\end{align*}
\]