1. Complete the table for these solids.

<table>
<thead>
<tr>
<th></th>
<th>Number of faces</th>
<th>Number of vertices</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid 1</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Solid 2</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Solid 3</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Solid 4</td>
<td>5</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Solid 5</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

2. Which shape belongs in which box? Write the numbers in the correct boxes.

- Plane shapes: 2, 3, 5, 7, 9, 10
- Rectangles: 2, 3
- Solids: 1, 4, 6, 8
- Quadrilaterals: 2, 3, 9

3. These plane shapes were cut out from coloured paper.

- Quadrilaterals: 1, 5, 6, 8, 11, 12
- Rectangles: 1, 8, 11
- Squares: 8, 11

4. How many different cuboids can you build from 12 unit cubes?

- a) Fill in the table.
- b) Circle the cuboids which have at least one square face.

<table>
<thead>
<tr>
<th>Cuboids</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Edge b</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Edge c</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
1. a) Draw over in the same colour the sets of lines which are **parallel**. Use different colours for different sets.
b) Colour the square at all the corners which are right angles.

2. This is part of the track from a model railway.

 Measure the distance between the two **horizontal** rails. 20 mm

3. Draw over in the same colour the sets of lines which are **parallel**. Use a different colour for each set. Colour the squares at corners which are **right angles**.

4. Complete the drawing to make **rectangles**.
1

Piggy bought different kinds of cakes for a party he was arranging.

a) Piggy wanted to taste each cake right away.
What part of these cakes did Piggy eat before the party?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1/3</td>
<td>1/2</td>
<td>1/4</td>
<td>1/3</td>
</tr>
</tbody>
</table>

b) After the party, Piggy checked on what had been left.
Colour the parts of the cakes he found.

- 1 quarter
- 1 half
- 1 third
- 1 quarter

2

Colour one half of each shape in red and the other half in blue.

3

Each drawing is only half of the picture. Complete the whole drawing.

a) b) c) d) e)

4

a) Tom had a length of wire which was 110 cm long.
He used half of it to make a model. What length of wire did he have left?

110 cm ÷ 2 = 55 cm

Answer: Tom had 55 cm of wire left.

b) Last month Lucy had £30 in her savings bank. Today, this amount is only half of what she has saved. How much money does Lucy have now?

£30 × 2 = £60

Answer: Lucy has £60 now.
1. Colour a quarter of each shape. **E.g:**

![Examples of quarter shapes]

2. **E.g:**

![Examples of red and green shaded shapes]

Colour one third of each shape in *red* and another third in *green*.

3. a) Each drawing is 1 third of a unit. Complete it to make the whole unit. **E.g:**

![Examples of unit drawings]

b) Each drawing is 1 quarter of a shape. Complete it to make the whole shape. **E.g**

![Examples of quarter drawings]

4. Join up the labels to the corresponding shapes.

![Label matching diagram]
1. Fill in the missing numbers. Write down the rule.

Rule: E.g. No. in centre × number in next section = number in outer section

2. Round these numbers to the next nearest whole ten.
 a) 33 ≈ 40
 57 ≈ 60
 96 ≈ 100
 b) 108 ≈ 110
 203 ≈ 210
 399 ≈ 400
 c) 556 ≈ 560
 411 ≈ 420
 666 ≈ 670

3. Write the Roman numerals below these numbers.
 a) 152 b) 74 c) 300 d) 99 e) 108
 CLXII LXXIV CCC XCIX CVIII

4. Practise calculation.
 a) 10 × 30 = 300
 9 × 30 = 270
 100 × 5 = 500
 30 × 8 = 240
 10 × 11 = 110
 b) 0 × 17 = 0
 150 ÷ 10 = 15
 90 ÷ 2 = 45
 1000 ÷ 5 = 200
 660 ÷ 6 = 110
 c) 15 × 4 = 60
 167 ÷ 1 = 167
 100 ÷ 2 = 50
 0 ÷ 19 = 0
 250 ÷ 50 = 5

5. a) How many hours and minutes have passed in an evening from:

 9 12 3 6 9 12 3 6

 1 hour
 40 minutes

 b) How many more minutes will it then be until midnight?

 55 minutes
1 Colour the correct number of marbles. Write a division about each picture.

E.g:

<table>
<thead>
<tr>
<th>1 third</th>
<th>1 quarter</th>
<th>1 sixth</th>
<th>1 eighth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24 ÷ 3 = 8
24 ÷ 4 = 6
24 ÷ 6 = 4
24 ÷ 8 = 3

2 How many hours and minutes do the hands on the clock show?

- 7 hours 30 minutes
- 11 hours 15 minutes
- 12 hours 45 minutes
- 3 hours 55 minutes

3 a) How many minutes does the minute hand on the clock show when it is pointing to these numbers? Complete the table.

<table>
<thead>
<tr>
<th>Minute hand points to:</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes shown</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
</tbody>
</table>

b) Shade the clocks to show how far the minute hand has gone. Join up the clocks which are the same.

5 minutes 15 minutes half an hour 3 quarters of an hour 30 minutes 45 minutes

4 Compare the two sides. Write the correct sign between them. (=, <, >)

a) half an hour < 35 minutes
b) 15 minutes = a quarter of an hour
c) 50 minutes > 3 quarters of an hour
d) 1 hour = 60 minutes
e) a quarter of an hour + 5 minutes < half an hour – 5 minutes
f) 20 minutes + half an hour > a quarter of an hour + half an hour
The clock is set at 12 noon.

Draw where the hands of the clock will be after these amounts of time:

- 12 h 15 min
- 12 h 30 min
- Quarter of an hour
- 12 h 20 min

Join up the equal quantities.

Complete the open sentences so that they are correct.

a) 3 quarters of an hour + a quarter of an hour = 1 hour.

b) 30 minutes + half an hour = 1 hour.

c) 20 minutes + half an hour + 10 minutes = 1 hour.

d) A quarter of an hour + a third of an hour + 25 minutes = 1 hour.

If the statement is correct, write a ✓ in the box. If not, write a ✗ and correct the mistake.

a) 1 hour = 60 minutes ✓

b) Half an hour = 20 minutes ✗

Half an hour = 30 minutes ✓

c) Half an hour = 2 quarters of an hour ✓

d) 20 minutes = 2 thirds of an hour ✗

20 minutes = 1 third of an hour ✓

e) 3 quarters of an hour = 45 minutes ✓

g) 2 thirds of an hour = 1 quarter of an hour + 5 minutes ✗

E.g: 2 thirds of an hour = half an hour + 10 minutes

g) 2 quarters of an hour = 1 quarter of an hour + 15 minutes ✓
1. Write the times shown on the clocks in 3 different ways.

 a) morning b) nearly mid-day c) afternoon d) evening e) night

 7 h 0 min 11 h 30 min 3 h 00 min 9 h 30 min 11 h 45 min
 7.00 am 11.30 am 3.00 pm 9.30 pm 11.45 pm
 07:00 11.30 15:00 21:30 23:45

2. Draw hands on the clocks to show the times given. Write the time in a different way below each clock.

 a) 4.00 am b) 8.30 pm c) 8.30 am d) 12.15 pm e) 0.15 am

 E.g: 04:00 20:30 8 h 30 min 12:15 0 h 15 min

3. Fill in the missing numbers.

 a) 1 hour = 60 minutes b) half a day = 12 hours
 1 minute = 60 seconds a quarter of a day = 6 hours
 1 day = 24 hours a third of a day = 8 hours
 2 days = 48 hours 3 quarters of an hour = 45 minutes

4. Complete the tables.

 a)

<table>
<thead>
<tr>
<th>Days</th>
<th>1</th>
<th>2</th>
<th>1 quarter</th>
<th>3 quarters</th>
<th>1 third</th>
<th>2 thirds</th>
<th>1 eighth</th>
<th>1 half</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>24</td>
<td>48</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

 H = D × 24 D = H ÷ 24

 b)

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>1 half</th>
<th>1 quarter</th>
<th>1 and a half</th>
<th>1 third</th>
<th>2 thirds</th>
<th>1 sixth</th>
<th>1 fifth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes</td>
<td>60</td>
<td>180</td>
<td>300</td>
<td>30</td>
<td>15</td>
<td>90</td>
<td>20</td>
<td>40</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
1 Colour the odd one out. Write the reason for your choice.

- 120 minutes
- 1 hour and 55 minutes
- 1 twelfth of a day
- 60 minutes
- 3 quarters of an hour
- 1 third of an hour
- 25 minutes
- 55 minutes
- 3 quarters of an hour

Reason: The other times are 2 hours; this one is 1 hour and 55 minutes.

2 Write the amounts of time in **increasing** order.

- 10 minutes
- 3 quarters of an hour
- half a day
- 35 minutes
- 1 third of an hour
- 1 quarter of an hour

10 minutes < 1 quarter of an hour < 1 third of an hour < 35 minutes < 3 quarters of an hour < half a day

3 *Sparrow and Trout* were arguing over the times in a day. Who is correct? Tick the correct answer and cross out the wrong one.

- 12 hours
- 14 hours
- 4 hours
- 45 minutes
- 15 minutes
- 40 minutes
- 2 hours
- 9 hours
- 18 minutes

- half a day
- 2 quarters of a day
- 1 sixth of a day
- 2 half hours
- a quarter of an hour
- 2 thirds of an hour
- 1 eighth of a day
- 3 tenths of an hour

- 30 hours
- 12 hours
- 4 hours
- 60 minutes
- 20 minutes
- 45 minutes
- 3 hours
- 20 minutes
Complete the open sentences so that they are correct.

E.g:

a) 1 fifth of an hour + four fifths of an hour = 1 hour.

b) 40 minutes + 1 third of an hour = 1 hour.

c) 10 minutes + half an hour + 20 minutes = 1 hour.

d) 3 quarters of an hour + 1 sixth of an hour + 5 minutes = 1 hour.

e) 2 thirds of an hour + 20 minutes = 1 hour.

f) minutes + 3 quarters of an hour = 1 hour.

g) 2 thirds of an hour + one third of an hour = 1 hour.

A train runs at different times of the day between 2 stations. Complete the table.

<table>
<thead>
<tr>
<th>Departs from Station A at:</th>
<th>Arrives at Station B at:</th>
<th>Journey time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:53</td>
<td>11:30</td>
<td>4 h 37 min</td>
</tr>
<tr>
<td>10:25</td>
<td>13:10</td>
<td>2 h 45 min</td>
</tr>
<tr>
<td>17:05</td>
<td>20:56</td>
<td>3 h 51 min</td>
</tr>
<tr>
<td>21:30</td>
<td>00:45</td>
<td>3 h 15 min</td>
</tr>
<tr>
<td>00:36</td>
<td>04:35</td>
<td>3 h 59 min</td>
</tr>
</tbody>
</table>

Practise division. Check with multiplication.

a) \(31 \div 5 = 6\) remainder 1

Check: \(1 + 6 \times 5 = 31\)

b) \(87 \div 9 = 9\) remainder 6

Check: \(6 + 9 \times 9 = 87\)

c) \(48 \div 7 = 6\) remainder 6

Check: \(6 + 6 \times 7 = 48\)

d) \(106 \div 10 = 10\) remainder 6

Check: \(6 + 10 \times 10 = 106\)

e) \(98 \div 3 = 32\) remainder 2

Check: \(2 + 32 \times 3 = 98\)

f) \(85 \div 60 = 1\) remainder 25

Check: \(25 + 1 \times 60 = 85\)
1

If this is 1 unit:

what is the value of each shaded part?

2

This is my garden.

I have already dug up part of it.

How much of the garden do I still have to dig?

Complete the table.

<table>
<thead>
<tr>
<th>Part already dug</th>
<th>1 fifth</th>
<th>3 quarters</th>
<th>1 quarter</th>
<th>3 fifths</th>
<th>1 half</th>
<th>2 tenths</th>
<th>6 tenths</th>
<th>4 fifths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part remaining</td>
<td>4 fifths</td>
<td>1 quarter</td>
<td>3 quarters</td>
<td>2 fifths</td>
<td>1 half</td>
<td>8 tenths</td>
<td>4 tenths</td>
<td>1 fifth</td>
</tr>
</tbody>
</table>

3

I have already drunk 3 quarters of a 2 litre bottle of lemonade.

a) What part of the lemonade is left?

b) How many cl of the lemonade is left?

c) How many cl of lemonade have I drunk?

E.g: I spent £110, which was 2 thirds of my money.

4

Write a context for the plan.

Solve it.

\[
\begin{align*}
z &= ? \\
\frac{\$110}{y} &= ? \\
2 \text{ thirds} &= x \\
x &= ?
\end{align*}
\]

a) What part of it do I have left? \((x)\)
b) How much money do I have left? \((y)\)
c) How much money did I have to begin with? \((z)\)

Answer: a) I have \(\frac{1}{3}\) left.
b) I have £55 left
c) I had £165 to begin with.
1. Complete the drawings.

If this is:
1 whole →
then this is:
1 half →
1 sixth →
1 eighth →
1 third →

2. Five children are running in a 240 m race. At this moment in time:
 - Tom has run 4 sixths of the distance.
 - Zoe has run 2 thirds of the distance.
 - Carol has run 3 quarters of the distance.
 - Jamie has run 3 sixths of the distance.
 - Sue has run half way.

Mark where each child is on the running track.

<table>
<thead>
<tr>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>160</td>
</tr>
<tr>
<td>Zoe</td>
<td>160</td>
</tr>
<tr>
<td>Carol</td>
<td>180</td>
</tr>
<tr>
<td>Jamie</td>
<td>120</td>
</tr>
<tr>
<td>Sue</td>
<td>120</td>
</tr>
</tbody>
</table>

3. Gerry spent £140 on his holiday. Joe spent 1 seventh more than Gerry.

a) How much money did Joe spend on his holiday?
 \[140 \div 7 + 140 = 160 \]
 Answer: Joe spent £160.

b) How much money did Gerry and Joe spend altogether?
 \[140 + 160 = 300 \]
 Answer: They spent £300 altogether.
Each number is the **sum** of the two numbers directly below it.

Fill in the missing numbers.

![Sum Example](image)

Each number is the **product** of the two numbers directly below it.

Fill in the missing numbers.

![Product Example](image)

In a school, each lesson starts on the hour and lasts for 45 minutes.

a) What part of an hour is:
 i) each lesson
 ii) each break?

b) The lessons start at 09:00 and lunch is at 13:00.
 How many lessons are there during the morning?

b) The lessons start at 09:00 and lunch is at 13:00.
 The lunch break is 30 minutes.

How many lessons are there during the morning?

![Lesson Time](image)

How many lessons are there during the morning?

![Lesson Time](image)

Fill in the missing items.

![Missing Items](image)

Fill in the missing items.

![Missing Items](image)
1. Complete each given part to make 2 whole units.

 E.g:
 a) 1 third
 b) 1 quarter
 c) 1 fifth

2. How much of their money did they each spend?

 a) Irene had 100 50 20 20 10 and spent 1 fifth of half of her money.
 Irene spent 20 p.

 b) George had 50 50 50 20 10 and spent half of 1 third of his money.
 George spent 30 p.

 c) Nick had 100 100 50 50 20 20 20 and spent 1 third of a half.
 Nick spent 60 p.

 d) Jane had 50 20 20 20 10 10 10 and spent 1 eighth of a quarter.
 Jane spent 5 p.

3. Colour the parts stated. Compare the two rectangles. Fill in the missing sign.

 E.g:
 a) 2 quarters > 1 eighth
 b) 1 third = 2 sixths
 c) 3 sixths < 5 sixths
 d) 4 fifths = 8 tenths

4. The middle number is the **product** of the 4 numbers around it.

 Fill in the missing numbers.
I planted roses in 80 square metres of my garden. This area is 1 fifth of my whole garden. How big is my garden?

$$5 \times 80 = 400$$

Answer: My garden is 400 square metres.

Complete the table.

<table>
<thead>
<tr>
<th>Unit</th>
<th>□</th>
<th>□□</th>
<th>□□□</th>
<th>□□□□</th>
<th>□□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td></td>
<td>□</td>
<td>□□</td>
<td>□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td>Value of shape</td>
<td>3</td>
<td>1 third</td>
<td>2</td>
<td>1 half</td>
<td>2 fifths</td>
</tr>
</tbody>
</table>

Colour these shapes in the grid so that the sum of each shape is 500.

What is:

a) 49 less than 123 [74]
b) 250 more than 125 [375]
c) 3 times more than 33 [99]
d) 1 fifth of 110 [22]
e) the difference between 97 and 48 [49]
f) 1 ninth of 81 [9]
g) the product of 18 and 4 [72]
h) the sum of 176 and 54? [230]

Join up the equal amounts.

- 900 − 179
- 267 + 233
- 678 − 253
- 77 + 48 + 81
- 425
- 1000 − 127
- 999 ÷ 9
- 700 − 9 × 9
- 1 quarter of 200
1. How many small squares are in the drawings? Write the numbers in the table.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

2. How many dots are in the drawings? Write the numbers in the table.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Write these numbers as digits. List them in increasing order.

- Six hundred and five, nine hundred and twenty, two hundred and fifty three, nine hundred and ninety nine, six hundred and fifty one, five hundred and sixty two
- Three hundred and four, Four hundred and thirty, Four hundred and three, Nine hundred and ten, One hundred and nine, Nine hundred and one

...253... < ...562... < ...605... < ...651... < ...920... < ...999...

4. Write these numbers in words.

- a) 304 Three hundred and four
- b) 430 Four hundred and thirty
- c) 403 Four hundred and three
- d) 910 Nine hundred and ten
- e) 109 One hundred and nine
- f) 901 Nine hundred and one
1. *Barry Bear* tried to write the same number in different ways but he made some mistakes.

Cross out the mistakes and correct them.

\[9 \text{ hundreds, 4 tens and 5 units} \]

\[9 \times 100 + 4 \times 10 + 5 \times 1 \]

\[900 + 50 + 4 \]

\[90 + 45 \]

\[800 + 100 + 45 \]

2. Create as many different 3-digit numbers as you can from the digits 1, 2, 3 and 4. Do not use a digit more than once in any number.

123 213 312 412
132 231 321 421
124 214 314 413
142 241 341 431
134 234 324 423
143 243 342 432

3. Which numbers was *Daffy Duck* thinking about?

a)

\[= 444 \]

b) If \(\square = 100, \) \(\square = 10, \) and \(* = 1 \)

i) \[= 213 \]

ii) \[= 415 \]

iii) \[= 559 \]

iv) \[= 412 \]

v) \[= 333 \]
What is the rule? Continue the sequence for another 10 terms. Rule: subtract 6
700, 694, 688, 682, 676, 670, 664, 658, 652, 646, 640, 634, 628,

Colour with the same colour or join up the equal numbers.

3 hundreds + 8 units 94 480 2 hundreds + 108 units
5 hundreds + 2 tens + 10 units 531 50 + 10 + 34
2 hundreds + 200 units + 8 tens 900 – 1 500 + 20 + 10
8 hundreds + 8 tens + 19 units 5 hundreds + 3 tens + 1 unit

Write the odd numbers smaller than 600 in set A.
Write the even numbers greater than 800 in set B.

Choose from the numbers in set U.

\[U = \{ 488, 852, 597, 921, 940, 179, 600, 978, 341, 89, 1000 \} \]

Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>568</td>
<td>5 \times 100 + 6 \times 10 + 8 \times 1</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>173</td>
<td>1 \times 100 + 7 \times 10 + 3 \times 1</td>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>902</td>
<td>9 \times 100 + 0 \times 10 + 2 \times 1</td>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>430</td>
<td>4 \times 100 + 3 \times 10 + 0 \times 1</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1245</td>
<td>1 \times 1000 + 2 \times 100 + 4 \times 10 + 5 \times 1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1050</td>
<td>1 \times 1000 + 0 \times 100 + 5 \times 10 + 0 \times 1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Write the numbers from set A in the correct boxes.

$$A = \{100, 305, 74, 0, 981, 1026, 1439, 1975, 2000, 1000\}$$

a) Add 12 to each number in A and write the result in B.

b) Decide whether the statements are true or false. Write ✔ or ✗ in the box.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>123</td>
</tr>
<tr>
<td>112</td>
<td>124</td>
</tr>
<tr>
<td>113</td>
<td>125</td>
</tr>
<tr>
<td>122</td>
<td>134</td>
</tr>
<tr>
<td>123</td>
<td>135</td>
</tr>
<tr>
<td>133</td>
<td>145</td>
</tr>
<tr>
<td>222</td>
<td>234</td>
</tr>
<tr>
<td>223</td>
<td>235</td>
</tr>
<tr>
<td>233</td>
<td>245</td>
</tr>
<tr>
<td>333</td>
<td>345</td>
</tr>
</tbody>
</table>

i) A contains all 3-digit numbers with digits 1, 2 and 3. Some missing - e.g. 311, 322 ✗

ii) B contains all 3-digit numbers with different digits from the set

$$\{1, 2, 3, 4, 5\}$$
and the digits are increasing. ✔

iii) None of the numbers in A have digits which are decreasing. ✔
1. Write the numbers as digits.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>b)</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>c)</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>d)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Write these numbers as digits. Which is more? Write in the correct sign (\(<, =, >\)).

a) 6 hundred and 5 = 605 \(<\) 650 = 6 hundred and 50
b) 9 hundreds + 2 tens = 920 \(>\) 919 = 9 hundreds + 1 ten + 9 units
c) 2 hundreds + 1 ten + 7 = 217 \(>\) 209 = 2 hundreds + 0 tens + 9 units
d) 7 hundred and 13 = 713 \(<\) 720 = 7 hundreds + 2 tens

Colour yellow the boxes which contain even numbers.

3. a) Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>320</td>
<td>3 \times 100 + 2 \times 10 + 0 \times 1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ii)</td>
<td>951</td>
<td>9 \times 100 + 5 \times 10 + 1 \times 1</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>iii)</td>
<td>888</td>
<td>8 \times 100 + 8 \times 10 + 8 \times 1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>iv)</td>
<td>603</td>
<td>6 \times 100 + 0 \times 10 + 3 \times 1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>v)</td>
<td>1071</td>
<td>1 \times 1000 + 0 \times 100 + 7 \times 10 + 1 \times 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vi)</td>
<td>3540</td>
<td>3 \times 1000 + 5 \times 100 + 4 \times 10 + 0 \times 1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

b) Write the numbers in the table in words.

i) Three hundred and twenty
ii) Nine hundred and fifty one
iii) Eight hundred and eighty eight
iv) Six hundred and three
v) One thousand and seventy one
vi) Three thousand five hundred and forty
1. Which numbers sit on the rungs of the number ladders? Fill in the missing numbers.

2. Practise calculation. Write the digits in the correct boxes.
 a) 2 + 5 = 7 20 + 50 = 70 200 + 500 = 700
 b) 7 + 8 = 15 70 + 80 = 150 700 + 800 = 1500
 c) 14 + 3 = 17 140 + 30 = 170 1400 + 300 = 1700
 d) 6 - 4 = 2 60 - 40 = 20 600 - 400 = 200
 e) 11 - 5 = 6 110 - 50 = 60 1100 - 500 = 600
 f) 20 - 8 = 12 200 - 80 = 120 2000 - 800 = 1200

3. Practise multiplication and division.
 a) 7 × 2 = 14 7 × 20 = 140 7 × 200 = 1400
 b) 12 ÷ 3 = 4 120 ÷ 3 = 40 1200 ÷ 3 = 400
 c) 8 × 6 = 48 8 × 60 = 480 80 × 6 = 480
 d) 42 ÷ 7 = 6 420 ÷ 7 = 60 420 ÷ 70 = 6
 e) 5 × 4 = 20 5 × 40 = 200 50 × 40 = 2000
 f) 27 ÷ 9 = 3 270 ÷ 9 = 30 270 ÷ 90 = 3

4. Study the numbers in set A. Complete the sentences so that they are correct.
 \[A = \{ 152, 125, 72, 34, 909, 999, 450 \} \]
 E.g: All these numbers . . . are whole numbers.
 a) Not all these numbers . . . are even numbers.
 b) None of these numbers . . . is a 1-digit number.
 c) There is at least one number which . . . is less than 100.
1. Calculate:

\[
\begin{align*}
26 + 13 & = 39 & 260 + 130 & = 390 \\
18 + 42 & = 60 & 180 + 420 & = 600 \\
56 + 44 & = 100 & 560 + 440 & = 1000 \\
135 + 48 & = 183 & 1350 + 480 & = 1830 \\
164 + 36 & = 200 & 1640 + 360 & = 2000 \\
135 + 48 & = 183 & 1460 – 180 & = 1280 \\
164 + 36 & = 200 & 1460 – 180 & = 1280 \\
58 – 32 & = 26 & 580 – 320 & = 260 \\
70 – 21 & = 49 & 700 – 210 & = 490 \\
100 – 59 & = 41 & 1000 – 590 & = 410 \\
146 – 18 & = 128 & 1460 – 180 & = 1280 \\
\end{align*}
\]

2. Calculate:

\[
\begin{align*}
a) \quad 7 \times 1 & = 7 & 11 \times 1 & = 11 \\
7 \times 10 & = 70 & 11 \times 10 & = 110 \\
7 \times 100 & = 700 & 11 \times 100 & = 1100 \\
b) \quad 19 \times 10 & = 190 & 119 \times 10 & = 1190 \\
7 \times 100 & = 700 & 19 \times 100 & = 1900 \\
c) \quad 900 + 1 & = 900 & 1000 + 1 & = 1001 \\
900 + 10 & = 90 & 1000 + 10 & = 1000 \\
900 + 100 & = 10 & 1000 + 100 & = 1000 \\
d) \quad 600 + 100 & = 600 & 800 + 100 & = 800 \\
600 + 10 & = 60 & 800 + 10 & = 800 \\
900 + 100 & = 9 & 1000 + 100 & = 1000 \\
1000 + 100 & = 10 & 1200 + 100 & = 1200 \\
10 \times 70 & = 700 & 10 \times 190 & = 1900
\end{align*}
\]

3. Write numbers in the circles so that the sum of the 3 numbers along each line is 1000. Choose from: 260, 280, 300, 320, 340, 360, 380, 400.

a) E.g:

\[
\begin{align*}
&340 \\
&300 \\
&400 \\
&1000 \\
&360 \\
&380 \\
&260
\end{align*}
\]

b) E.g:

\[
\begin{align*}
&360 \\
&340 \\
&300 \\
&280 \\
&260 \\
&400 \\
&320
\end{align*}
\]

4. Write the numbers as Roman numerals.

\[
\begin{align*}
a) \\
&I \\
&II \\
&III \\
&IV \\
&V \\
&VI \\
&VII \\
&VIII \\
&IX \\
&X \\
&XI \\
&XII \\
&0 \\
&1 \\
&2 \\
&3 \\
&4 \\
&5 \\
&6 \\
&7 \\
&8 \\
&9 \\
&10 \\
&11 \\
&12
\end{align*}
\]

\[
\begin{align*}
b) \\
&X \\
&XX \\
&XXX \\
&XL \\
&L \\
&LX \\
&LXX \\
&LXXX \\
&XC \\
&C \\
&CX \\
&CXX \\
&0 \\
&10 \\
&20 \\
&30 \\
&40 \\
&50 \\
&60 \\
&70 \\
&80 \\
&90 \\
&100 \\
&110 \\
&120
\end{align*}
\]

\[
\begin{align*}
c) \\
&C \\
&CC \\
&CCC \\
&CD \\
&D \\
&DC \\
&DCC \\
&DCCC \\
&CM \\
&M \\
&MC \\
&MCC \\
&0 \\
&100 \\
&200 \\
&300 \\
&400 \\
&500 \\
&600 \\
&700 \\
&800 \\
&900 \\
&1000 \\
&1100 \\
&1200
\end{align*}
\]
1
Write these numbers as Roman numerals.

a) \(100 + (50 + 10) + (1 + 1)\)
\(\text{C} + \text{L} + \text{II} = \text{CLXII}\)

b) \((500 + 100) + (50 - 10) + (1 + 1)\)
\(\text{D} + \text{X} + \text{II} = \text{DCXLII}\)

c) \(1000 + (500 + 100) + 1\)
\(\text{M} + \text{D} + \text{I} = \text{MDCI}\)

d) \((1000 - 100) + (50 + 10) + 5\)
\(\text{C} + \text{L} + \text{V} = \text{CLXV}\)

e) \(1000 + (100 + 100) + (5 + 1)\)
\(\text{M} + \text{C} + \text{VI} = \text{MCCVI}\)

f) \((500 + 100 + 100) + (10 + 10 + 10)\)
\(\text{DCC} + \text{XXX} = \text{DCCXXX}\)

2
How many pence do these items cost? Write the amounts as Arabic numbers.

a) \(24\)
\(\text{XXIV} = 24\)

b) \(555\)
\(\text{DLV} = \£5.55\)

c) \(73\)
\(\text{LXXIII} = \£2.14\)

d) \(182\)
\(\text{CLXXXII} = \£1.82\)

e) \(40\)
\(\text{XL} = \£2.14\)

f) \(214\)
\(\text{CCXIV} = \£1.79\)

g) \(1212\)
\(\text{MCCXII} = \£12.12\)

h) \(179\)
\(\text{CLXXIX} = \£1.79\)

3
Write these numbers as Roman numerals. For example:

\(628 = (500 + 100) + (10 + 10) + (5 + 1 + 1 + 1) = \text{DCXXVIII}\)

DC XX VIII

a) \(756 = (500 + 100 + 100) + 50 + (5 + 1) = \text{DCCLVI}\)

b) \(435 = (500 - 100) + (10 + 10 + 10) + 5 = \text{CDXXXV}\)

c) \(263 = (100 + 100) + (50 + 10) + (1 + 1 + 1) = \text{CCLXIII}\)

d) \(974 = (1000 - 100 + (50 + 10) + (5 - 1) = \text{CMLXXIV}\)

4
Which is more? How many more?

a) \(\text{CLIV} < \text{II} < \text{CLVI}\)

b) \(\text{DXXIX} \lessgtr \text{III} < \text{DXXXII}\)

c) \(\text{M} > \text{CXC} \lessgtr \text{DCCXX}\)

d) \(\text{CCCL} > \text{XXX} \lessgtr \text{CCCXX}\)

\(154 < 156\)
\(529 < 532\)

\(1000 \gtrless 810\)
\(350 \gtrless 320\)
1 Which numbers do the letters stand for? Write the numbers in the boxes.

a)

\[\begin{array}{cccccc}
 & a & b & c & d \\
0 & 50 & 160 & 210 & 270 \\
100 & & & & \\
200 & & & & \\
300 & & & & \\
\end{array} \]

b)

\[\begin{array}{cccccc}
 & a & b & c & d & e \\
0 & 60 & 160 & 340 & 480 & 560 \\
100 & & & & & \\
200 & & & & & \\
300 & & & & & \\
\end{array} \]

2 Join up the letters to the matching numbers.

\[\begin{array}{cccccccccccc}
460, & 510, & 600, & 605, & 798, & 850, & 972, & 975, & 1420, & 1600, & 1703 \\
a, & b, & c, & d, & e, & f, & g, & h, & i, & j, & k \\
400, & 500, & 600, & 600, & 600, & 600, & 600, & 600, & 600, & 600, & 600 \\
a, & b, & c, & d, & e, & f, & g, & h, & i, & j, & k \\
1400, & 1500, & 1400, & 1500, & 1400, & 1500, & 1400, & 1500, & 1400, & 1500, & 1400 \\
i, & j, & k, & l, & m, & n, & o, & p, & q, & r, & s \\
\end{array} \]

3 Which whole numbers make each statement true? Mark them on the number line. Write down the highest and lowest possible numbers.

a)

\[\begin{array}{cccccccccccc}
380, & < & \square & < & 450 \\
\square, & \square & \square & \square & \square & \square \\
0, & 100, & 200, & 300, & 400, & 500, & 600 \\
\end{array} \] \[\text{381 to 449} \]

b)

\[\begin{array}{cccccccccccc}
280, & \leq & \square & \leq & 380 \\
\square, & \square & \square & \square & \square & \square \\
0, & 100, & 200, & 300, & 400, & 500, & 600 \\
\end{array} \] \[\text{280 to 380} \]

4 Continue the sequences.

a)

\[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, \ldots \]

b)

\[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \ldots \]

c)

\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots \]

d)

\[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \ldots \]
Study the numbers in set B. Complete the sentences so that they are correct.

\[B = \{ 144, 273, 50, 18, 705, 1001, 850 \} \]

E.g:

a) All these numbers are whole numbers.

b) Not all these numbers have 3 digits.

c) None of these numbers has 5 digits.

d) There is at least one number which has 2 digits.

e) There are no numbers which have only 1 digit.

f) There is at least one number which is not a 2 or 3 digit number.

Fill in the missing numbers.

\[
\begin{align*}
500 & \quad -46 & \quad 454 & \quad -28 & \quad 426 & \quad +2 & \quad 213 & \quad \times 3 & \quad 639 & \quad +361 & \quad 1000 \\
500 & \quad +46 & \quad 454 & \quad +28 & \quad 426 & \quad \times2 & \quad 213 & \quad \div3 & \quad 639 & \quad -361 & \quad 1000
\end{align*}
\]

Write the operations in reverse order.

Complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th></th>
<th>475</th>
<th>625</th>
<th>10</th>
<th>217</th>
<th>37</th>
<th>475</th>
<th>118</th>
<th>111</th>
<th>456</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
<td>360</td>
<td>335</td>
<td>1002</td>
<td>555</td>
<td>926</td>
<td>525</td>
<td>382</td>
<td>765</td>
<td>394</td>
</tr>
<tr>
<td>☼</td>
<td>835</td>
<td>960</td>
<td>1012</td>
<td>772</td>
<td>963</td>
<td>1000</td>
<td>500</td>
<td>876</td>
<td>850</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{★} + \text{★} & = \text{★} + \text{★} \\
\text{★} - \text{★} & = \text{★} - \text{★} \\
\text{★} & = \text{★} - \text{★}
\end{align*}
\]

Write these numbers as Roman numerals.

a) 653 b) 402 c) 317 d) 528 e) 1010

DCLIII DDII CCCXVII DXXVIII MX...

A glass full of milk weighs 370 g. When the glass is half full of milk it weighs 290 g. What does the empty glass weigh?

\[
2 \times (370 - 290) = 2 \times 80 = 160 \\
370 - 160 = 210
\]

Answer: 210 g...
1. List the whole numbers which have these numbers as their nearest whole ten.
 a) 60: 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
 b) 100: 95, 96, 97, 98, 99, 100, 101, 102, 103, 104
 c) 580: 575, 576, 577, 578, 579, 580, 581, 582, 583, 584
 d) 1500: 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504
 e) 0: -5, -4, -3, -2, -1, 0, 1, 2, 3, 4

2. Mark on the number line the numbers which have these numbers as the nearest whole hundred:
 a) 500:
 b) 1000:

3. Decide whether the quantities in the answers are exact or approximate.
 Write $=$ or \approx in the boxes.
 a) Ann asked the shop assistant about the price of a computer.
 The shop assistant said, "It is £400." $=$
 b) Brian asked a policeman how far it was to the Library.
 The policeman said, "It is 400 metres further on." \approx
 c) Cindy asked her mother how many buttons were in her button box.
 Her mother said, "There must be 100 buttons in the box." \approx
 d) Dennis asked the storeman how many screws were in a packet.
 The storeman said, "There are 150 screws in a packet." $=$ or \approx

4. Round these numbers to the nearest:
 a) ten: 138 \approx 140, 134 \approx 130, 135 \approx 140, 574 \approx 570
 577 \approx 580, 575 \approx 580, 1405 \approx 1410, 1404 \approx 1400
 1408 \approx 1410, 992 \approx 990, 999 \approx 1000, 995 \approx 1000
 b) hundred: 992 \approx 1000, 999 \approx 1000, 995 \approx 1000, 138 \approx 100
 134 \approx 100, 135 \approx 100, 574 \approx 600, 577 \approx 600
 575 \approx 600, 1405 \approx 1400, 1404 \approx 1400, 1408 \approx 1400
List the whole numbers which:

a) round to 500 as the nearest hundred and have 5 as the tens digit.
....450, 451, 452, 453, 454, 455, 456, 457, 458, 459

b) round to 500 as the nearest hundred and have 4 as the tens digit.
....540, 541, 542, 543, 544, 545, 546, 547, 548, 549

c) round to 500 as the nearest hundred and also as the nearest ten.
....495, 496, 497, 498, 499, 500, 501, 502, 503, 504

Which digits can the letters represent so that if the numbers are rounded to:

a) the nearest ten, the value is 360
\[
\begin{array}{cccccccc}
5 & 6 & 3 & 3 & 5 & 6 & 5, 6, 7, 8, 9 & 0, 1, 2, 3, 4 \\
\end{array}
\]

b) the nearest hundred, the value is 400?
\[
\begin{array}{cccccccc}
5 & 0 & 4 & 5, 6, 7, 8, 9 & 0, 1, 2, 3, 4 & 0, 1, ..., 9 & 0, 1, ..., 9 \\
\end{array}
\]

Round these numbers to:

a) the nearest ten
b) the nearest hundred.
\[
\begin{array}{c}
1006 \approx 1010 \\
1005 \approx 1010 \\
1001 \approx 1000 \\
1753 \approx 1750 \\
1759 \approx 1760 \\
1750 \approx 1750 \\
\end{array}
\]
\[
\begin{array}{c}
1006 \approx 1000 \\
1005 \approx 1000 \\
1001 \approx 1000 \\
1753 \approx 1800 \\
1759 \approx 1800 \\
1750 \approx 1800 \\
\end{array}
\]

Two different numbers round to 300 as the nearest hundred. Is it possible that:

a) both numbers are less than 300
b) the smaller number is 100 less than the other number
c) one number has 5 and the other has 0 as the tens digits
d) both numbers are whole hundreds?
Estimate the length of the routes in the drawings first, then measure them.

How long are the routes really if 1 cm in the drawing means 10 m in real life?

<table>
<thead>
<tr>
<th>Estimate:</th>
<th>Length:</th>
<th>Length in real life:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write these lengths in millimetres.

| a) 2 cm = 20 mm, 11 cm = 110 mm, 105 cm = 1050 mm |
| b) 5 cm = 50 mm, 20 cm = 200 mm, 132 cm = 1320 mm |
| c) 9 and a half cm = 95 mm, 57 and a half cm = 575 mm, half a cm = 5 mm, 123 and a half cm = 1235 mm |

Change the units of length.

<table>
<thead>
<tr>
<th>a) 25 mm = 2 cm 5 mm</th>
<th>b) 2 m = 200 cm 0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 mm = 12 cm 5 mm</td>
<td>2 and a half m = 250 cm</td>
</tr>
<tr>
<td>82 mm = 8 cm 2 mm</td>
<td>12 m = 1200 cm</td>
</tr>
<tr>
<td>382 mm = 38 cm 2 mm</td>
<td>642 cm = 6 m 42 cm</td>
</tr>
</tbody>
</table>
1. Round these lengths to:
 a) the nearest 10 mm
 b) the nearest 100 mm

 184 mm ≈ 184 mm
 687 mm ≈ . . 690 mm . .
 185 mm ≈ . . 190 mm . .
 205 mm ≈ . . 210 mm . .
 100 mm ≈ . . 100 mm . .
 372 mm ≈ . . 370 mm . .

2. The length of a line is about 12 cm, rounded to the nearest cm. How long could the actual length of the line be?

 Draw 4 possible lines accurately. Write the actual length below each line.

 4 lines of different lengths, each one
 11 cm 5 mm ≤ length < 12 cm 5 mm
 (115 mm ≤ length < 125 mm)
 Correct lengths written below each line.

3. a) Write these lengths in millimetres.

 i) 12 cm = 120 mm
 ii) 3 cm 3 mm = 33 mm
 1 cm 2 mm = 12 mm
 10 cm 2 mm = 102 mm
 102 cm = 1020 mm
 120 cm = 1200 mm
 1 m 2 cm = 1020 mm
 1 m 2 mm = 1002 mm

 30 cm 3 mm = 303 mm
 30 cm 3 mm = 3003 mm
 33 cm 3 mm = 333 mm
 30 cm 30 mm = 330 mm

 b) List them in increasing order.

 i) 12 mm < 102 mm < 120 mm < 1002 mm < 1020 mm
 = 1020 mm < 1200 mm

 ii) 33 mm < 303 mm < 330 mm < 333 mm < 3003 mm
 < 3030 mm < 3300 mm
1. Round the lengths given in millimetres to the nearest centimetre. Follow this pattern:

\[
\begin{align*}
658 \text{ mm} & \approx 660 \text{ mm}, \quad 660 \text{ mm} = 66 \text{ cm} \\
658 \text{ mm} & \approx 66 \text{ cm}
\end{align*}
\]

a) \(324 \text{ mm} \approx \boxed{32} \text{ cm}\)
\(324 \text{ mm} = 32 \text{ cm}\)

b) \(530 \text{ mm} \approx \boxed{53} \text{ cm}\)
\(530 \text{ mm} = 53 \text{ cm}\)

c) \(799 \text{ mm} \approx \boxed{80} \text{ cm}\)
\(799 \text{ mm} = 80 \text{ cm}\)

d) \(2002 \text{ mm} \approx \boxed{200} \text{ cm}\)
\(2002 \text{ mm} = 200 \text{ cm}\)

2. Join up these numbers to the approximate place on the number line.

![Number line diagram]

3. a) Complete the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Rounded to nearest 10</th>
<th>Rounded to nearest 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>943</td>
<td>940</td>
<td>900</td>
</tr>
<tr>
<td>304</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>184</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>765</td>
<td>770</td>
<td>800</td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>550</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>247</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>805</td>
<td>810</td>
<td>800</td>
</tr>
</tbody>
</table>

b) List all the 3 digit whole numbers which have:
- 5 as the tens digit when rounded to the nearest ten, and also
- 5 as the hundreds digit when rounded to the nearest hundred.

3 digit numbers are:
- 450, 451, 452, 453, 454
- 545, 546, 547, 548, 549