1. Write below each pattern the number of mirror lines it has.

 a) 1
 b) 1
 c) 2
 d) 1
 e) 4
 f) 0
 g) 0
 h) 4

2. Colour each shape so that it has:

 a) exactly one mirror line
 E.g: ————

 b) more than one mirror line
 E.g: ————

 c) no mirror lines
 E.g: ————

3. Reflect the shape in different ways. The broken lines are the mirror lines.

4. Draw the mirror image of each shape.

 a)
 b)
 c)
1. Colour the unit squares using only 3 colours. Do not use the same colour for adjoining unit squares. Make every large square different.

E.g:

If a pattern is symmetrical, then draw in the mirror line(s).

2. Draw a line around 5 unit squares in different ways.

If a shape is **symmetrical**, draw in any mirror lines.

E.g:

3. Reflect the shape in one **axis** first. Then reflect the shape and its mirror image in the other **axis**. Draw the mirror lines of the whole shape.

E.g:

a)

b)

c)

d)

e)

f)

Page 112
1. Colour the row in which the ducks are mirror images of each other.

2. Complete the drawings so that each duck is exactly the same as the first duck.

 a) b) c) d) e) f) g) h)

Join up the pairs which are mirror images of each other.

3. Draw the duck on these grids.

 a) b) c) d)

4. Draw the mirror image of the mouse.

 a) b) c)
1

Colour in the same colour shapes which are similar to
i) rectangle 1 ii) rectangle 2 iii) rectangle 3.
Use a different colour for each set of shapes.

This is a plan of a garden. Scale: 1 cm represents 1 m in real life.

a) In which direction does the entrance face? N
b) In real life, what is the:
 i) length of the garden, L = 12 m
 ii) width of the garden? W = 8 m
(or vice versa)
c) The broken line shows Hedgehog's route. Draw where he goes next if he walks 9 m East, then 6.5 m North, then 4.5 m West, then 1 m North.
1. Practise calculation.
 a) \(60 + 120 + 6 = 186\)
 b) \(689 - 50 \times 3 = 539\)
 c) \(100 \times 7 + 3 = 703\)
 d) \(250 + 5 + 20 = 275\)
 e) \((379 + 221) + 3 = 603\)
 f) \(320 + 8 - 4 = 324\)
 g) \(250 \times 4 - 160 \div 8 = 980\)
 h) \(1450 - 70 \div 10 = 1443\)

2. Larry Lamb has done his homework. He had to write 4 numbers in different ways. Mark his work and correct any mistakes. Help him to finish the last number.
 a) \(4 \times H + 5 \times T + 3 \times U, \ 400 + 50 + 3, \ 4 \times 100 + 5 \times 100 + 3 \times 1\)
 b) \(1 \times T + 8 \times H + 7 \times U, \ \text{MDCCCVII}, \ 1 \times 1000 + 8 \times 100 + 7 \times 1\)
 c) \(9 \times H + 2 \times T, \ \text{CMII}, \ \text{CMXX}, \ 9 \times 100 + 2 \times 10 + 0 \times 1\)

 E.g: \(2 \times H + 6 \times T + 9 \times U, \ 269 \times U, \ \text{CXLIX}, \ 2 \times 100 + 6 \times 10 + 9 \times 1\)

3. Draw the mirror image of each shape.
 a)
 b)
 c)

4. The sides of a rectangular pond are 4 m 50 cm and 3 m 50 cm.
 Draw a plan of the pond. Use a ruler. Let 1 m in real life be 1 cm on your plan.

 How long in real life is the wall around the pond?

 \[
P = 450 \text{ cm} + 350 \text{ cm} + 450 \text{ cm} + 350 \text{ cm} \\
 = 1600 \text{ cm} \\
 = 16 \text{ m}
 \]

 Draw a water lily in the middle of the pond.

Plan of pond. 1 cm represents 1 m.
1 Colour any large shape which is similar to the small shaded shape inside it.

2 Colour similar shapes in the same colour.

3 a) Write the letters of similar shapes below.
 Similar: A, D, E, I; B, G; C, H
b) Draw over parallel lines in the same colour.
c) Mark right angles with red squares.

4 a) Copy this bird's head in your exercise books.
 b) Enlarge it to 2 times and 3 times its size.
 Accurate drawings on squared paper.
1

This picture is a smaller copy of a larger picture.

Scale: 1 mm on the copy means 1 cm on the real picture.

a) By how much was the real picture reduced? 1 tenth

b) How long were the sides of the real picture? 32 cm and 40 cm

c) How long is the perimeter of this copy? $P = 2 \times \text{width} + 2 \times \text{height}$
 $= 2 \times 32 \text{ mm} + 2 \times 40 \text{ mm}$
 $= 64 \text{ mm} + 80 \text{ mm} = 144 \text{ mm}$

d) What length of wood would be needed to make a frame for the real picture? P of real picture $= 10 \times 14 \text{ cm} 4 \text{ mm}$
 $= 144 \text{ cm} (1 \text{ m} 44 \text{ cm})$

2

This is an enlarged copy of the front cover of a tiny book.

Draw the real book cover if the smaller side is 2 cm long.

What is the length of the larger side of the real book? The larger side is 3 cm long.

3

This is the ground plan of a room.

Scale: 1 mm on the plan means 10 cm in real life.

a) In the plan, measure the
 i) width of the room: 45 mm
 ii) length of the room: 35 mm

b) In real life:
 i) what is the width of the door? 70 cm
 ii) what is the width of each window? 100 cm
 iii) what length of wood would be needed to make the skirting board around the bottom of the walls? Length of skirting board:
 $2 \times (450 \text{ cm} + 350 \text{ cm}) - 70 \text{ cm}$
 $= 2 \times 800 \text{ cm} - 70 \text{ cm}$
 $= 1600 \text{ cm} - 70 \text{ cm}$
 $= 1530 \text{ cm} (= 15 \text{ m} 30 \text{ cm})$
1. These solids have been built from unit cubes. Join up the solids which are **mirror images** of each other.

![Solids A, B, C, D](image)

2. Build these solids. How many units did you use for each one?

 a) 4 **unit cubes**
 b) 8 **unit cubes**
 c) 4 **2-unit cuboids**
 d) 6 **2-unit cuboids**
 e) 4 **2-unit cuboids**

3. Write how many unit cubes have been used to build each of these **cuboids**. Think about what is the relationship between them.

 a) 1 unit cube
 b) 8 unit cubes
 c) 2 unit cubes
 d) 8 unit cubes

 a) (1 × 1 × 1)
 b) (2 × 2 × 2)
 c) (2 × 1 × 1)
 d) (4 × 2 × 1)

 a) 27 unit cubes
 b) 54 unit cubes
 c) 64 unit cubes
 d) 216 unit cubes

 a) (3 × 3 × 3)
 b) (6 × 3 × 3)
 c) (4 × 4 × 4)
 d) (12 × 6 × 3)
Write as many 3-digit numbers as you can from the numbers 2, 3, 5 and 7.

\[
\begin{align*}
235 & \quad 325 & \quad 523 & \quad 723 \\
237 & \quad 327 & \quad 527 & \quad 725 \\
253 & \quad 352 & \quad 532 & \quad 732 \\
257 & \quad 357 & \quad 537 & \quad 735 \\
273 & \quad 372 & \quad 572 & \quad 752 \\
275 & \quad 375 & \quad 573 & \quad 753
\end{align*}
\]

2

a) Build solids from unit cubes to match each of these ground plans.

\[
\begin{align*}
i) & \quad \begin{array}{ccc}
1 & 2 & 3 \\
_ & _ & _ \\
1 & 2 & 3
\end{array} & \quad \text{ii) } & \quad \begin{array}{ccc}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array} & \quad \text{iii) } & \quad \begin{array}{ccc}
2 & 1 & 2 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}
\end{align*}
\]

b) How many unit cubes are needed to build each solid?

\[
\begin{align*}
i) & \quad 18 \text{ unit cubes} & \quad ii) & \quad 14 \text{ unit cubes} & \quad iii) & \quad 13 \text{ unit cubes}
\end{align*}
\]

c) Which solid is symmetrical? Draw the line of symmetry (mirror line). Solids in i) and ii) are symmetrical.

3

a) Rita built a solid from 6 unit cubes. She drew how it looks from above and made a ground plan.

Draw in the grid what Rita's solid would look like from the front and side.

\[
\begin{array}{c|c|c|c|c}
\text{Top view} & \text{Ground plan} & \text{Front view} & \text{Side view} \\
\hline
\text{E.g.:} & & & \\
\begin{array}{cc}
2 & 2 \\
1 & 1
\end{array} & & & \\
\end{array}
\]

b) Build solids from 6 unit cubes to match the views from the top. Make a ground plan and draw the front and side views in the grids.

\[
\begin{array}{c|c|c|c|c}
\text{Top view} & \text{Ground plan} & \text{Front view} & \text{Side view} \\
\hline
\text{E.g.:} & & & \\
i) & & & \\
\begin{array}{cc}
2 & 1 \\
2 & 1
\end{array} & & & \\
i) & & & \\
\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1
\end{array} & & & \\
i) & & & \\
\begin{array}{ccc}
1 & 1 & 2 \\
1 & 1
\end{array} & & & \\
\end{array}
\]
How many of the units shown are the area and perimeter of shapes A to J?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area:</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>48</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>48</td>
<td>108</td>
<td>75</td>
</tr>
<tr>
<td>Perimeter:</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>

How would you fit the furniture into the bedroom? Draw a plan to show it.

E.g:

The scale of the plan is: 1 mm on the plan → 4 cm in real life.

Measure in the plan the sides of the room and the items of furniture. Calculate the real lengths and write them beside each line in the plan.
1. Circle in *red* the rectangles which have 1 half shaded.
Circle in *blue* the rectangles which have 1 third shaded.
Circle in *green* the rectangle which has 1 quarter shaded.

![Rectangles with shaded parts]

2. a) Anna invited 5 friends to her birthday party. She cut her cake into 6 equal pieces. What part of the cake did each child get?

 Each child had one sixth of the cake,

 b) How was the block of ice-cream divided up if each person at the table got 1 seventh of it?

 The block was divided into 7 equal parts.

 c) This is how *Mrs Mouse* cut up the cheese to give to her 8 children. Did they each get 1 eighth of the cheese?

 No. The parts shown are not of equal sizes.

3. Colour the parts of the shapes given.

 E.g:

 ![Shapes with shaded parts]

 a) 4 eighths
 b) 3 quarters
 c) 1 half
 d) 3 eighths
 e) 1 third

4. A strip of paper is 1 unit long. What is the value of each shaded part?

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1 half</td>
</tr>
<tr>
<td>b)</td>
<td>1 third</td>
</tr>
<tr>
<td>c)</td>
<td>1 quarter</td>
</tr>
<tr>
<td>d)</td>
<td>1 sixth</td>
</tr>
<tr>
<td>e)</td>
<td>1 ninth</td>
</tr>
<tr>
<td>f)</td>
<td>1 tenth</td>
</tr>
<tr>
<td>g)</td>
<td>1 twelfth</td>
</tr>
</tbody>
</table>

Page 121
This is 1 unit.

What part of this unit is each of these drawings?

a) 4 eighths b) 2 quarters c) 2 eighths d) 1 eighth e) 4 eighths f) 7 eighths
 1 half 1 quarter 1 eighth 2 quarters; 1 half

draw:

2 This rectangle is 1 unit:

Draw:

a) 1 half b) 1 sixth c) 1 quarter d) 1 third e) 2 halves f) 1 twelfth
 g) 5 sixths h) 5 twelfths

3 A line is 1 unit long. Measure and colour over these parts of the line.

a) 3 cm b) 6 cm c) 2 cm d) 4 cm e) 1 cm
 1 half 2 halves (= 1) 1 third 2 thirds 1 sixth
f) 4 cm g) 15 mm h) 45 mm
 4 sixths (= 2 thirds) 1 quarter 3 quarters

36 mm
 3 fifths

4 Which positive whole numbers can be written instead of the letters?

a × 1 half < 1 a: 1, 2, 3, 4, 5, ... b × 1 half = 1 b: 2, ... 3

c × 1 half > 1 c: 3, 4, 5, ... d × 1 quarter < 1 d: 1, 2, 3, ...

e × 1 quarter = 1 e: 4, ... f × 1 quarter > 1 f: 5, 6, 7, ...
1. **Circle:**

 E.g:
 - a) 1 half
 - b) 1 quarter
 - c) 1 third

2. **Fill in the missing numbers. If 1 unit is , what are these parts?**
 - a) 1 half
 - b) 2 halves
 - c) 3 halves
 - b) 1 third
 - b) 2 thirds
 - c) 3 thirds
 - d) 1 quarter
 - b) 2 quarters
 - c) 3 quarters
 - d) 4 quarters
 - d) 5 quarters
 - d) 6 sixths
 - 7 sixths
 - 9 sixths

 Colour:
 - red the shapes = 1
 - green the shapes > 1

3. **Draw the whole unit if this is:**
 - a) 1 half
 - Total line length = 4 cm
 - b) 1 quarter
 - Total line length = 12 cm
 - c) 1 fifth
 - Total line length = 10 cm
 - d) 1 third
 - Total line length = 12 cm
1. If this solid is 1 unit: , what part of a unit are these solids?

a) 11 twelfths
b) 9 twelfths; 3 quarters
c) 8 twelfths; 4 sixths; 2 thirds
d) 6 twelfths; 3 sixths; 1 half
e) 3 twelfths; 1 quarter
f) 5 twelfths
g) 4 twelfths; 2 sixths; 1 third

2. Only the minute hand is on the clock. What part of an hour does it show?

a) 20 minutes
b) 5 minutes
c) 12 minutes
d) 60 minutes
e) 45 minutes

3. Fill in the missing numbers.

a) 2 fifths + 3 fifths = 1
b) 3 quarters + 1 quarters = 1
c) 2 sixths + 4 sixths = 1
d) 5 eighths + 3 eighths = 1
e) 3 tenths + 7 tenths = 1
f) 5 hundredths + 95 hundredths = 1

4. Fill in the missing numbers.

a) half a metre = 50 cm
1 fifth of a metre = 20 cm
1 tenth of a metre = 10 cm
3 quarters of a metre = 75 cm
3 fifths of a metre = 60 cm
7 tenths of a metre = 70 cm
11 hundredths of a metre = 11 cm
b) half a kg = 500 g
1 quarter of a kg = 250 g
1 tenth of a kg = 100 g
3 quarters of a kg = 750 g
5 tenths of a kg = 500 g
2 fifths of a kg = 400 g
9 hundredths of a kg = 90 g
Only the minute hands are on the clocks. How many minutes do they show?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
<td>c)</td>
<td>d)</td>
<td>e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>half an hour</td>
<td>1 twelfth of an hour</td>
<td>1 quarter of an hour</td>
<td>1 sixth of an hour</td>
<td>1 tenth of an hour</td>
</tr>
<tr>
<td>30 min.</td>
<td>5 min.</td>
<td>15 min.</td>
<td>10 min.</td>
<td>6 min.</td>
</tr>
</tbody>
</table>

How many millimetres are in these parts of 10 cm?

a) 1 half
 b) 1 fifth
 c) 1 tenth
 d) 1 quarter

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
<td>c)</td>
<td>d)</td>
</tr>
<tr>
<td>50 mm</td>
<td>20 mm</td>
<td>10 mm</td>
<td>25 mm</td>
</tr>
</tbody>
</table>

Fill in the missing numbers. ('min' means 'minutes' and 'hrs' means 'hours')

a) half an hour = 30 min
 b) half a day = 12 hrs

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
<td>c)</td>
<td>d)</td>
</tr>
</tbody>
</table>
| 3 quarters of an hour = 45 min
 3 fifths of an hour = 36 min
 2 thirds of an hour = 40 min
 5 sixths of an hour = 50 min |
| 2 thirds of a day = 16 hrs
 3 quarters of a day = 18 hrs
 5 eighths of a day = 15 hrs
 1 twelfth of a day = 2 hrs |
| 3 tenths of an hour = 18 min
 2 and a half hours = 150 min |
| 1 and a half days = 36 hrs
 5 half days = 60 hrs |

Draw 1 unit if this is:

E.g:
a) 3 quarters
b) 1 sixth
c) 7 eighths
d) 1 and a half

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
<td>c)</td>
<td>d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw a line 14 cm long. Colour over 3 sevenths of it.
1. Write in the missing sign to make the statement correct. Check on the grids.
 a) \(349 + 572 \text{ } < \text{ } 727\) + 199

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

 b) \(942 - 443 \text{ } > \text{ } 849\) − 367

<table>
<thead>
<tr>
<th>9</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Write as many different 3-digit numbers as you can from these numbers using each digit only once.
 a) 7, 8 and 9
 789, 798, 879, 897, 978, 987

 b) 3, 4, 5 and 6
 345, 346, 354, 356, 364, 365,
 435, 436, 453, 456, 463, 465,
 534, 536, 543, 546, 563, 564,
 634, 635, 643, 645, 653, 654

3. Write these numbers in the correct place in the diagrams.
 0, 4, 13, 30, 72, 95, 100, 321, 679, 1000, 1006, 1027, 2000

 a) Even | Odd
 | 0 | 4 | 72 |
 | 100 | 30 |
 | 1006 | 1000 |
 | 2000 | 13 | 321 |
 | 679 | 1027 |

 b) Whole tens | Not whole tens
 | 0 | 30 |
 | 100 | 1000 |
 | 679 | 2000 |
 | 1006 | 1027 |

 c) 3-digit | Not 3-digit
 | 100 | 0 | 72 |
 | 13 | 30 | 95 |
 | 1006 | 1000 |
 | 1027 | 2000 |

 d) Whole hundreds | Not whole hundreds
 | 100 | 0 | |
 | 1000 | 13 | 95 |
 | 679 | 2000 |
 | 1006 | 1027 |

4. Which numbers can be written instead of the shapes?
 a) \(440 - 10 \times 8 = 315 + 45\)
 \(\star : \text{ } 8 \text{ } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{ Check: } 440 - 10 \times 8 = 440 - 80 = 360\)
 b) \(726 - 571 + 7 = 161\)
 \(\bigcirc : \text{ } 7, 8, 9, \ldots \ldots \ldots \ldots \text{ Check: E.g. } 726 - 571 + 8 = 155 + 8 = 163 > 161\)
1
Tick the operations which answer the problem and then do the calculations.
Lee had a £10 note and 22 p. He spent £2.56, then his sister gave him 35 p.
How much money does Lee have now?

In pence:

- \(1022 + 256 - 35 = \)
- \(1022 - 256 - 35 = \)
- \(1022 - 256 + 35 = 766 + 35 = 801\) (p)
- \(1022 + 256 + 35 = \)
- \(1022 - (256 - 35) = \)

2
Make a plan, do the calculation and write the answer in a sentence.

Hetty Hedgehog had 347 apple pips. She got 172 orange pips from her Mum. Then she swapped 268 apple pips for grape pips with a friend.
How many pips does Hetty Hedgehog have now?

Plan: \(347 + 172 - 268 + 268 = \) (or \(347 + 172 = \))

Answer: Hetty Hedgehog has 519 pips now.

3
a) A 2 litre bottle was full of water. We poured out 35 cl of water.
 How much water is left in the bottle? \(200 \text{ cl} - 35 \text{ cl} = 165 \text{ cl} (= 1 \text{ litre 65 cl})\)
 \(165 \text{ cl} \text{ of water is left in the bottle.} \)

b) A 2 litre bottle contained 35 cl of water. We poured in another 35 cl of water. How much water is in the bottle now? \(35 \text{ cl} + 35 \text{ cl} = 70 \text{ cl}\)
 \(70 \text{ cl of water is in the bottle now.} \)

c) A 2 litre bottle contained 36 cl of water. We poured out 10 cl 9 ml of water.
 How much water is left in the bottle? \(36 \text{ cl} - 10 \text{ cl 9 ml} = 360 \text{ ml} - 109 \text{ ml}\)
 \(= 251 \text{ ml of water is left in the bottle.} \)

4
Last April, it rained on 3 fifths of the days.

a) On how many days did it rain? \(3 \times (30 \div 5) = 18\)
 It rained on 18 days.

b) Did it rain on more than half the days? No.

c) What part of April was dry? \(2\text{ fifths of April was dry.} \)
1. Write the temperature below the thermometers. Write in the missing sign.
 \[\begin{align*}
 &a) \quad 6^\circ C > 1^\circ C \\
 &b) \quad -3^\circ C > -9^\circ C \\
 &c) \quad -5^\circ C < 2^\circ C
 \end{align*} \]

2. Mark the temperatures on the thermometers. Which is higher and by how much?
 \[\begin{align*}
 &a) \quad 5^\circ C > -5^\circ C \\
 &b) \quad -9^\circ C < 0^\circ C \\
 &c) \quad -1^\circ C > -10^\circ C
 \end{align*} \]

3. How much does each child have? Who has more? Write in the missing sign.
 - 1 means £1 in cash
 - 1 means £1 in debt

 \[\begin{align*}
 &a) \quad \text{Ann} \quad \text{Paul} \quad 2 > -2 \\
 &b) \quad \text{Ben} \quad \text{Rose} \quad 0 = 0 \\
 &c) \quad \text{Colin} \quad \text{Sonia} \quad -2 < 1
 \end{align*} \]

4. Complete the drawings to make the statements correct.
 E.g:
 \[\begin{align*}
 &a) \quad \text{Alice's balance is } -£6: \quad 1 \quad 1 \quad -1 \\
 &b) \quad \text{Barry's balance is } £3: \quad 1 \quad 1 \quad 1 \quad -1 \quad -1 \quad 1 \quad 1 \\
 &c) \quad \text{Carol's balance is } £0: \quad 1 \quad 1 \quad 1 \quad -1 \quad -1 \quad -1 \quad -1 \quad -1 \\
 &d) \quad \text{Dan's balance is } -£4: \quad 1 \quad 1 \quad 1 \quad -1 \\
 &e) \quad \text{Eve's balance is } £5: \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad -1
 \end{align*} \]
Join up the fruit to the corresponding point on the number line.

How much money does each child really have? \(\textcircled{1} \) means £1 in cash \(\text{–1} \) means £1 in debt

Write the amounts in increasing order.

Lisa Charlie Billy Clare Diane

\[
\begin{array}{c}
\text{Lisa} \\
\text{Charlie} \\
\text{Billy} \\
\text{Clare} \\
\text{Diane}
\end{array}
\]

\[
\begin{array}{c}
\text{£3} \\
\text{£4} \\
\text{£2} \\
\text{£0} \\
\text{£5}
\end{array}
\]

\[
-4 < -3 < 0 < 2 < 5
\]

Draw two different ways of showing these amounts. Use \(\textcircled{1} \) and \(\text{–1} \)

E.g:

a) \(-£3 = \)

b) £3 =

c) £0 =

Wendy went to Austria for a winter holiday. One day, she decided to note down the outside temperature every hour. She made this table to show her data.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

a) When was it: i) coldest 8.00 am or 08.00 hours ii) warmest? 3.00 pm or 15.00 hours

b) Write the temperatures in increasing order.

\[-10 < -9 < -6 < -3 < -2 < -1 < 0 < 3 < 4 < 6 < 7 < 8 < 9\]
1. Which positive whole numbers can be written instead of the shapes?
 a) $936 + \bigtriangleup < 541 + 449$
 $\bigtriangleup: \quad \ldots, 2, 3, \ldots, 53 \ldots \ldots$
 b) $500 - 69 < 333 \bigcirc \leq 433$
 $\bigcirc: \quad \ldots, 99, 100 \ldots \ldots$

2. Round these numbers to the nearest ten.
 a) $1876 \approx 1880$
 b) $555 \approx 560$
 c) $210 \approx 210$
 d) $99 \approx 100$
 e) $-4 \approx 0$
 f) $-8 \approx -10$

3. Continue the sequences.
 a) $950, 800, 650, \ldots, 500, 350, 200, 50, -100, -250, \ldots \ldots$
 b) $-10, -8, -6, \ldots, -4, -2, 0, 2, 4, 6, 8, 10, \ldots \ldots$

4. Robert went on a skiing holiday to Andorra. One day, he read the thermometer outside his hotel every hour from 6.00 am to 6.00 pm. These are his data.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-8</td>
</tr>
<tr>
<td>7</td>
<td>-10</td>
</tr>
<tr>
<td>8</td>
<td>-7</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>-2</td>
</tr>
</tbody>
</table>

Help Robert to complete the graph.
1. How much is in the picture? Fill in the missing numbers.

\[\begin{align*}
&\quad 50 \quad 1000 \\
&\quad 400 \quad 400 \quad 400 \quad 400 \quad 400 \quad 400 \quad 1000 \\
&\quad 5 \times 400 = 2000 \quad 2 \times 1000 = 2000
\end{align*} \]

What is \(30 \times 50\)? \(\ldots 1500 \ldots\)

2. Write additions and multiplications about the pictures.

E.g:

a) \(\begin{align*}
&\quad 1 \quad 1 \quad 1 \quad 1 \\
&\quad 1 \quad 1 \quad 1 \quad 1 \\
&\quad 1 \quad 1 \quad 1 \quad 1
\end{align*} \)

\(4 + 4 + 4 = 12\)

\(3 + 3 + 3 + 3 = 12\)

\(4 \times 3 = 12\)

\(3 \times 4 = 12\)

b) \(\begin{align*}
&\quad 10 \quad 10 \quad 10 \\
&\quad 10 \quad 10 \quad 10 \\
&\quad 10 \quad 10 \quad 10
\end{align*} \)

\(40 + 40 + 40 = 120\)

\(30 + 30 + 30 + 30 = 120\)

\(40 \times 3 = 120\)

\(30 \times 4 = 120\)

c) \(\begin{align*}
&\quad 100 \quad 100 \quad 100 \quad 100 \\
&\quad 100 \quad 100 \quad 100 \quad 100 \\
&\quad 100 \quad 100 \quad 100 \quad 100
\end{align*} \)

\(400 + 400 + 400 = 1200\)

\(300 + 300 + 300 + 300 = 1200\)

\(3 \times 400 = 1200\)

\(4 \times 300 = 1200\)

3. Three brothers were each left 257 dollars in their American uncle's will.

How much did their uncle leave them in total? Fill in the missing numbers.

A:

\[\begin{align*}
&\quad 100 \quad 100 \\
&\quad 50 \quad 5 \quad 2
\end{align*}\]

\[3 \times \left(\begin{array}{c} 200 + 50 + 7 \end{array} \right) \]

\[\begin{align*}
&\quad 600 \\
&\quad 150 \\
&\quad 21
\end{align*}\]

Their uncle left them 771 dollars.

4. Write the results. Underline the operation which is impossible.

\[
\begin{align*}
3 \times 0 & = 0 \quad 8 \times 3 & = 24 \\
4 \times 5 & = 20 \quad 20 \div 5 & = 4 \\
6 \times 2 & = 12 \quad 9 \times 8 & = 72 \\
10 \times 9 & = 90 \quad 5 \times 3 & = 15 \\
30 \div 3 & = 10 \quad 24 \div 4 & = 6 \\
8 \div 6 & = 48 \quad 20 \div 5 & = 4 \\
16 \div 2 & = 8 \quad 10 \div 0 & = \\
5 \div 3 & = 15 \quad 6 \times 4 & = 24 \\
8 \times 3 & = 24 \quad 54 \div 9 & = 6
\end{align*}\]
Fill in the missing numbers.

a) \(4 \times \underline{3} = 12\)
\[\underline{28} + 4 = 7\]
\[8 \times 5 = 40\]
\[45 + \underline{5} = 9\]

b) \(3 \times \underline{8} = 24\)
\[18 + 6 = 3\]
\[0 \times 7 = 0\]
\[28 + \underline{7} = 4\]

c) \(5 \times \underline{7} = 35\)
\[15 + 3 = 5\]
\[2 \times 8 = 16\]
\[6 + \underline{2} = 3\]

d) \(6 \times \underline{8} = 48\)
\[30 + 5 = 6\]
\[1 \times 9 = 9\]
\[2 + \underline{1} = 2\]

e) \(9 \times \underline{8} = 72\)
\[32 + 8 = 4\]
\[9 \times 6 = 54\]
\[63 + \underline{9} = 7\]

Write additions and multiplications about the pictures.

E.g:

a) \[\begin{array}{ccc}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2 \\
\end{array}\]
\[6 + 6 + 6 = 18\]
\[3 \times 3 \times 2 = 18\]
\[9 \times 2 = 18\]

b) \[\begin{array}{ccc}
20 & 20 & 20 \\
20 & 20 & 20 \\
20 & 20 & 20 \\
\end{array}\]
\[60 + 60 + 60 = 180\]
\[3 \times 3 \times 20 = 180\]
\[9 \times 20 = 180\]

c) \[\begin{array}{ccc}
200 & 200 & 200 \\
200 & 200 & 200 \\
200 & 200 & 200 \\
\end{array}\]
\[600 + 600 + 600 = 1800\]
\[3 \times 3 \times 200 = 1800\]
\[9 \times 200 = 1800\]

Fill in the missing products. Note how they change.

a) \(5 \times 3 = \underline{15}\)
\(50 \times 3 = \underline{150}\)
\(5 \times 30 = \underline{150}\)
\(5 \times 300 = \underline{1500}\)
\(50 \times 30 = \underline{1500}\)
\(50 \times 300 = \underline{1500}\)

b) \(8 \times 2 = \underline{16}\)
\(80 \times 2 = \underline{160}\)
\(8 \times 20 = \underline{160}\)
\(8 \times 200 = \underline{1600}\)
\(80 \times 20 = \underline{1600}\)
\(80 \times 200 = \underline{1600}\)

c) \(3 \times 3 = \underline{9}\)
\(30 \times 3 = \underline{90}\)
\(3 \times 30 = \underline{90}\)
\(3 \times 300 = \underline{900}\)
\(30 \times 30 = \underline{900}\)
\(30 \times 300 = \underline{900}\)

d) \(4 \times 5 = \underline{20}\)
\(40 \times 5 = \underline{200}\)
\(4 \times 50 = \underline{200}\)
\(4 \times 500 = \underline{2000}\)
\(40 \times 50 = \underline{2000}\)
\(40 \times 500 = \underline{2000}\)

How many pennies does each person have? Calculate in different ways.

<table>
<thead>
<tr>
<th>John</th>
<th>Katy</th>
<th>Lorna</th>
<th>Michael</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>(2)</td>
<td>(100)</td>
<td>(20)</td>
</tr>
</tbody>
</table>

E.g:

John:
40 p + 8 p = 48 p; 4 × 10 p + 4 × 2 p = 48 p; 4 × 12 p = 48 p
400 p + 80 p = 480 p; 4 × 100 p + 4 × 20 p = 400 p + 80 p = 480 p
150 p + 6 p + 3 p = 159 p; 3 × 50 p + 3 × 2 p + 3 × 1 p = 159 p; 3 × 53 p = 159 p
1500 p + 60 p + 30 p = 1590 p;
3 × 500 p + 3 × 20 p + 3 × 10 p = 1500 p + 60 p + 30 p = 1590 p;
3 × 530 p = 1590 p
Fill in the missing products.

1. a) $6 \times 10 = \boxed{60}$
 b) $5 \times 10 = \boxed{50}$
 c) $30 \times 3 = \boxed{90}$
 $6 \times 4 = \boxed{24}$
 $5 \times 7 = \boxed{35}$
 $5 \times 3 = \boxed{15}$
 $6 \times 14 = \boxed{84}$
 $5 \times 17 = \boxed{85}$
 $35 \times 3 = \boxed{105}$

2. a) $3 \times 24 = \boxed{72}$
 b) $6 \times 12 = \boxed{72}$
 c) $3 \times 12 = \boxed{36}$
 $3 \times 240 = \boxed{720}$
 $6 \times 120 = \boxed{720}$
 $3 \times 120 = \boxed{360}$

3. Estimate the product (P). Is the estimate more or less than the exact product?
 a) 227×4
 i) Rounding 227 to the nearest hundred:
 $P \approx \boxed{200} \times 4 = \boxed{800} \quad P > 800$
 ii) Rounding 227 to the nearest ten:
 $P \approx \boxed{230} \times 4 = \boxed{920} \quad P < 920$
 b) 468×6
 i) Rounding 468 to the nearest hundred:
 $P \approx \boxed{500} \times 6 = \boxed{3000} \quad P < 3000$
 ii) Rounding 468 to the nearest ten:
 $P \approx \boxed{470} \times 6 = \boxed{2820} \quad P < 2820$

4. Estimate the product by rounding to the nearest ten.
 a) $162 \times 5 \approx \boxed{160} \times 5 = \boxed{800} \quad 162 \times 5 > 800$
 b) $177 \times 4 \approx \boxed{180} \times 4 = \boxed{720} \quad 177 \times 4 < 720$
 c) $315 \times 3 \approx \boxed{320} \times 3 = \boxed{960} \quad 315 \times 3 < 960$
 d) $231 \times 4 \approx \boxed{230} \times 4 = \boxed{920} \quad 231 \times 4 > 920$

5. In your exercise book, estimate, calculate and check the answer. Write it below.
 Grandpa gave £1.35 to each of his 4 grandchildren. How much did he give them altogether?
 $135 \times 4 = 540 \text{p} \quad \text{He gave them £5.40 altogether}$
Write a plan, estimate the answer to the nearest 10 p, then do the calculation.

Ribbon costs £2.54 per metre.
How much do 3 metres cost?

Cost of 1 metre: £2.54 = 254 p; cost of 3 metres = 3 \times 254 p . . .

Estimate: \[3 \times 254 \approx 3 \times 250 = 3 \times 200 + 3 \times 50 = 750 \ (p) \]

Calculation: \[3 \times 254 = 3 \times 200 + 3 \times 50 + 3 \times 4 = 762 \ (p) \]

Answer: 3 metres of ribbon cost 762 p (= £7.62)

Estimate the result in your head first, then do the calculation.

a) \[32 \times 30 = 960 \]
 \[24 \times 20 = 480 \]
 \[16 \times 50 = 800 \]
 \[38 \times 20 = 760 \]

b) \[14 \times 60 = 840 \]
 \[17 \times 50 = 850 \]
 \[13 \times 70 = 910 \]
 \[21 \times 40 = 840 \]

c) \[56 \times 30 = 1680 \]
 \[40 \times 37 = 1480 \]
 \[89 \times 20 = 1780 \]
 \[50 \times 34 = 1700 \]

Three classes have each raised £321 for charity. How much have they raised altogether? Estimate in your head, then complete the drawing and calculations.

Answer: They have raised £963 altogether.

Think about what the diagram means. Fill in the missing numbers.

\[73 \times 3 = 219 \]

\[70 \times 3 + 3 \times 3 \]

\[210 + 9 \]
Are the inequalities correct? Mark with a ✔️ or a ✗. Correct the mistakes.

a) $-8 < -2$ ✔️ b) $-20 < -10$ ✗ c) $-5 < 5$ ✔️ d) $-6 > -7$ ✔️

e) $-10 < -9$ ✔️ f) $-15 > -20$ ✔️ g) $0 < -1$ ✗ h) $-50 < -2$ ✔️

Round these numbers to the next nearest ten.

a) $1056 \approx 1060$ b) $705 \approx 710$ c) $112 \approx 120$

b) $1966 \approx 1970$ b) $550 \approx 560$ d) $401 \approx 410$

c) $-6 \approx 0$ e) $3 \approx 10$ f) $1005 \approx 1010$

Write these numbers as Roman numerals.

a) 1250 b) 2628 c) 599 d) 1973 e) 444

$MCCL$ $MMDCXXVIII$ $D XCIX$ $MCMLXXIII$ $CDXLIV$

Draw a picture using straight lines. Choose a starting point. Write instructions on how you drew it for a friend to copy. (L: Left, R: Right, U: Up, D: Down)

E.g:

Start, R14, D7, L1, U5, L12, D5, L1, U7.

Complete the drawing and the calculations.

$5000 \times 3 = 5000 \times 10 \times 10 \times 10$

Start, R14, D7, L1, U5, L12, D5, L1, U7.
Fill in the missing products. Note how they change.

a) $60 \times 3 = 180$ $60 \times 6 = 360$ $60 \times 9 = 540$ $60 \times 12 = 720$

b) $40 \times 5 = 200$ $40 \times 10 = 400$ $40 \times 15 = 600$ $40 \times 25 = 1000$

c) $4 \times 2 = 8$ $40 \times 2 = 80$ $400 \times 2 = 800$ $40 \times 20 = 800$

d) $3 \times 5 = 15$ $30 \times 5 = 150$ $300 \times 5 = 1500$ $30 \times 50 = 1500$

e) $4 \times 24 = 96$ $8 \times 12 = 96$ $16 \times 6 = 96$ $2 \times 48 = 96$

$4 \times 240 = 960$ $8 \times 120 = 960$ $16 \times 60 = 960$ $2 \times 480 = 960$

Fill in the missing products.

a) $5 \times 100 = 500$ b) $4 \times 3 = 12$ c) $7 \times 8 = 56$

$5 \times 20 = 100$ $30 \times 3 = 90$ $7 \times 30 = 210$

$5 \times 1 = 5$ $200 \times 3 = 600$ $7 \times 100 = 700$

$5 \times 121 = 605$ $234 \times 3 = 702$ $7 \times 138 = 966$

Estimate first, then calculate using addition and multiplication.

a) $\begin{array}{c}202 \\ 202 \\ 202 \\ +202
d\end{array} E: \begin{array}{c}808 \\ 808 \\ 808\end{array} 4 \times 202 \times 4$

b) $\begin{array}{c}302 \\ 302 \\ +302
d\end{array} E: \begin{array}{c}906 \\ 906 \\ 906\end{array} 3 \times 3 \times 3$

c) $\begin{array}{c}423 \\ 423 \\ +423
d\end{array} E: \begin{array}{c}846 \\ 846 \\ 846\end{array} 201 \times 2$

d) $\begin{array}{c}201 \\ 201 \\ 201 \\ +201
d\end{array} E: \begin{array}{c}1005 \\ 1005 \\ 1005 \end{array} 201 \times 5$

4. a) Kate bought 3 chocolate bars at 82 pence each. How much did she pay altogether?

Answer: Kate paid 246 p (= £2.46) altogether.

b) A brick weighs 4 kg. How heavy are 412 bricks?

Answer: 412 bricks weigh 1648 kg.
Estimate first, then complete the addition and multiplication.

a) $E: 70 \times 6 = 420$

```
\[
\begin{array}{c}
7 & 1 \\
\hline
7 & 1 \\
7 & 1 \\
7 & 1 \\
7 & 1 \\
\hline
+ 7 & 1 \\
\hline
4 & 2 & 6
\end{array}
\]
\[
\begin{array}{c}
7 & 1 \\
\hline
7 & 1 \\
\hline
\hline
4 & 2 & 6
\end{array}
\]
```

b) $E: 200 \times 4 = 800$

```
\[
\begin{array}{c}
2 & 0 & 1 \\
\hline
2 & 0 & 1 \\
2 & 0 & 1 \\
\hline
+ 2 & 0 & 1 \\
\hline
8 & 0 & 4
\end{array}
\]
\[
\begin{array}{c}
2 & 0 & 1 \\
\hline
2 & 0 & 1 \\
\hline
\hline
8 & 0 & 4
\end{array}
\]
```

c) $E: 530 \times 2 = 1060$

```
\[
\begin{array}{c}
5 & 3 & 4 \\
\hline
5 & 3 & 4 \\
\hline
\hline
1 & 0 & 6 & 8
\end{array}
\]
\[
\begin{array}{c}
5 & 3 & 4 \\
\hline
5 & 3 & 4 \\
\hline
\hline
1 & 0 & 6 & 8
\end{array}
\]
```

d) $E: 210 \times 5 = 1050$

```
\[
\begin{array}{c}
2 & 1 & 1 \\
\hline
2 & 1 & 1 \\
2 & 1 & 1 \\
2 & 1 & 1 \\
\hline
+ 2 & 1 & 1 \\
\hline
1 & 0 & 5 & 5
\end{array}
\]
\[
\begin{array}{c}
2 & 1 & 1 \\
\hline
2 & 1 & 1 \\
\hline
\hline
1 & 0 & 5 & 5
\end{array}
\]
```

Estimate first, then do the multiplications.

a) $E: 800$

```
\[
\begin{array}{c}
4 & 2 & 2 \\
\hline
8 & 4 & 4
\end{array}
\]
```

b) $E: 1200$

```
\[
\begin{array}{c}
4 & 2 & 2 \\
\hline
1 & 2 & 6 & 6
\end{array}
\]
```

```
\[
\begin{array}{c}
4 & 2 & 2 \\
\hline
1 & 6 & 8 & 8
\end{array}
\]
```

b) $E: 900$

```
\[
\begin{array}{c}
3 & 2 & 1 \\
\hline
9 & 6 & 3
\end{array}
\]
```

```
\[
\begin{array}{c}
4 & 2 & 1 \\
\hline
1 & 2 & 6 & 3
\end{array}
\]
```

```
\[
\begin{array}{c}
6 & 2 & 1 \\
\hline
1 & 8 & 6 & 3
\end{array}
\]
```

c) $E: 160$

```
\[
\begin{array}{c}
8 & 4 \\
\hline
1 & 6 & 8
\end{array}
\]
```

```
\[
\begin{array}{c}
8 & 0 & 4 \\
\hline
1 & 6 & 0 & 8
\end{array}
\]
```

```
\[
\begin{array}{c}
4 & 0 & 2 \\
\hline
1 & 6 & 0 & 8
\end{array}
\]
```

3

a) Each flower on an apple tree has 5 petals. How many petals are on a branch with 243 flowers?

Answer: There are 1215 flowers on the branch.

b) Workmen laid 106 m of pavement a day from Monday to Friday. How many metres did they lay in a week?

Answer: They laid 530 m in a week.
1. Complete the table.
(Do the calculations in your exercise books if you need to.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>a × c</th>
<th>a × b</th>
<th>b × c</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>5</td>
<td>3</td>
<td>1200</td>
<td>2000</td>
<td>15</td>
</tr>
<tr>
<td>450</td>
<td>6</td>
<td>4</td>
<td>1800</td>
<td>2700</td>
<td>24</td>
</tr>
</tbody>
</table>

2. Fill in the missing numbers.

a)

b)

c)

3. Calculate the products.

a)

b)

c)

4. Fill in the missing factors.

a)

b)

c)

Page 138
1

a) How many triangles can you see in this diagram? 5

b) How many triangles would you see in
i) 51 of these diagrams
\[
51 \times 5 = 255
\]
ii) 102 of these diagrams?
\[
102 \times 5 = 510
\]
Answer: 255 triangles
Answer: 510 triangles

2

a) How many circles make this teddy bear's head? 6

b) How many circles would you need to draw to make
i) 72 teddy bear heads
\[
72 \times 6 = 432
\]
ii) 105 teddy bear heads?
\[
105 \times 6 = 630
\]
Answer: 432 circles
Answer: 630 circles

3

There are 24 hours in 1 day. How many hours are there in
a) 1 week 168 hrs
\[
24 \times 7 = 168
\]
b) 4 weeks?
\[
168 \times 4 = 672
\]
1 week = 7 days = 168 hrs 4 weeks = 28 days = 672 hrs

4

Is it possible to answer the questions with the data given? Colour Yes or No

a) A car goes at a steady speed and covers 125 m in 1 minute. What distance does it cover in 8 minutes? Yes No

b) Jenny weighed herself and her weight was 29 kg. What is the total weight of 9 children? Yes No

c) Uncle Andrew put up fence posts an equal distance apart. He used 9 fence posts. How long was the fence? Yes No

d) A centipede has 478 legs. How many legs do 3 centipedes have? Yes No

5

A bee flies steadily at 217 mm per second.

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>0</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (mm)</td>
<td>217</td>
<td>434</td>
<td>1085</td>
<td>0</td>
<td>868</td>
<td>2170</td>
</tr>
</tbody>
</table>

A bee flies steadily at 217 mm per second. Complete the table.
1. Calculate the answers using multiplication.

a) Six workers earned £409 each. How much did they earn altogether?
 Answer: They earned £2454 altogether.

b) A salesman drives 423 km each working day. How far does he drive from Monday to Friday?
 Answer: He drives 2115 km altogether.

2. Estimate in your head first, then do the additions and multiplications.

a) Hundreds Tens Units $\begin{array}{c|c|c}
 & & \\
 100 & 10 & 10 \\
 + & 100 & 10 & 10 \\
 & 100 & 10 & 10 \\
\end{array}$
 $\begin{array}{c|c|c}
 & & \\
 125 & 125 & \\
 + & 250 & 250 \\
 & 284 & 284 \\
\end{array}$

b) Thousands Hundreds Tens Units $\begin{array}{c|c|c|c}
 & & & \\
 1000 & 100 & 10 & 10 \\
 + & 1000 & 100 & 10 & 10 \\
 & 1000 & 100 & 10 & 10 \\
\end{array}$
 $\begin{array}{c|c|c|c}
 & & & \\
 428 & 428 & 428 & 428 \\
 + & 428 & 428 & 428 & 428 \\
 & 1284 & 1284 & 1284 & 1284 \\
\end{array}$

3. Fill in the missing digits. Check that the multiplication is correct.

a) 320×3 960 432×2 864
b) 214×3 642 161×5 805

c) 125×3 375 182×4 728

d) 226×3 678 172×4 688