1. Alan went on a cycling tour. He kept a note of how far he had cycled every 10 minutes. He made this graph to show his data.

Use the graph to help you complete the table.

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. This graph shows the approximate height above sea level of famous places. Use the graph to help you fill in the missing numbers.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>1500</th>
<th>1000</th>
<th>500</th>
<th>0</th>
<th>−500</th>
<th>−1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

1. Ben Nevis ≈ [] m
2. Mount Snowdon ≈ [] m
3. The Dead Sea ≈ [] m
4. Hay Tor, Dartmoor ≈ [] m
5. Death Valley, USA ≈ [] m
6. Straits of Gibraltar ≈ [] m
What are the perimeter and area of each of these diagrams if:

i) the perimeter is measured in units and the area in units?

a) $P = \boxed{\quad}$ units $A = \boxed{\quad}$ units

b) $P = \boxed{\quad}$ units $A = \boxed{\quad}$ units

ii) the perimeter is measured in units and the area in units?

a) $P = \boxed{\quad}$ units $A = \boxed{\quad}$ units

b) $P = \boxed{\quad}$ units $A = \boxed{\quad}$ units

Measure the sides of each rectangle in mm and write the lengths beside them. Calculate the perimeter of each rectangle in mm and write it inside the shape.

How many unit cubes does each of these cuboids contain? This is their volume.

a) Volume = unit cubes

b) Volume = unit cubes

c) Volume = unit cubes
A, B, C and D are places on a map.

Scale:
1 mm on the map → 20 m in real life.

a) Measure each line on the map in mm and write its length beside it.
b) In how many ways can you get from A to D? What distance is each route?

<table>
<thead>
<tr>
<th>Route</th>
<th>Distance on map</th>
<th>Distance in real life</th>
</tr>
</thead>
<tbody>
<tr>
<td>A . . .</td>
<td>...............</td>
<td>.....................</td>
</tr>
<tr>
<td>A . . .</td>
<td>...............</td>
<td>.....................</td>
</tr>
<tr>
<td>. . . .</td>
<td>...............</td>
<td>.....................</td>
</tr>
<tr>
<td>. . . .</td>
<td>...............</td>
<td>.....................</td>
</tr>
</tbody>
</table>

Study the diagram. Fill in missing numbers.

Do the calculations in your exercise books. Fill in the missing numbers.

a) 24 × 70 ml = [] ml = [] cl = [] ℓ [] cl

b) 125 × 6 cl = [] cl = [] ℓ [] cl = [] ℓ [] ml

c) 174 × 9 cl + 135 × 3 cl = [] ℓ [] cl = [] ℓ [] ml

What is the mass of:
a) 8 tablespoons of flour if 1 tablespoon of flour weighs 15 g?
b) 7 tablespoons of sugar if 1 tablespoon of sugar weighs 23 g?
c) 4 tablespoons of salt if 1 tablespoon of salt weighs 28 g?
d) 2 tablespoons of flour, 3 tablespoons of sugar and 4 tablespoons of salt?

.................................
1. Write each of these times in a different way. Follow the example.
 a) 13:45 = 1.45 pm
 b) 16:30 =
 c) 20:12 =
 d) 22:58 =
 e) 23:04 =
 f) 00:00 =

2. How many hours and minutes have passed from:
 a) 08:20 to 10:10
 b) 07:45 to 09:15
 c) 10:42 to 14:10
 d) 18:20 one day to 08:30 the next day?

3. Fill in the missing numbers.
 a) i) 7 hours = ___ min
 ii) 15 hours = ___ min
 iii) 4 hrs 45 min = ___ min
 iv) 15 hrs 10 min = ___ min
 b) i) 68 min = ___ h ___ min
 ii) 75 min = ___ h ___ min
 iii) 135 min = ___ h ___ min
 iv) 301 min = ___ h ___ min
 c) i) 10 wks 5 days = ___ days
 ii) 25 wks 3 days = ___ days
 iii) 50 wks 2 days = ___ days
 iv) 52 wks 1 day = ___ days
 d) i) 3 min = ___ seconds
 ii) 8 min = ___ seconds
 iii) 5 min 15 sec = ___ sec
 iv) 20 min 42 sec = ___ sec
 e) i) 121 sec = ___ min ___ sec
 ii) 250 sec = ___ min ___ sec
 iii) 372 sec = ___ min ___ sec
 iv) 360 sec = ___ min ___ sec

4. a) If the taps are turned on full for 1 minute, 7 litres of water runs into the bath. How much water would have run into the bath after 2 hours?

 b) A car travels 22 m in 1 second. How far has the car gone after 1 minute?
We ran water from a tap into a large square-based glass container. We made a note of the water level every 10 seconds.

a) Complete the table.

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>60</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water level (mm)</td>
<td>0</td>
<td>30</td>
<td>120</td>
<td>210</td>
<td>240</td>
<td>330</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Draw dots on the graph to show the data in the table. Join up the dots.

c) Write the rule in different ways. $L =$ Level of water, $T =$ Time

$$L = \quad T = \quad L \div T =$$

1 kg of tomatoes costs £2.08. Complete the table to show what several kg cost.

<table>
<thead>
<tr>
<th>Quantity (kg)</th>
<th>1</th>
<th>6</th>
<th>4</th>
<th>9</th>
<th>5</th>
<th>7</th>
<th>1 and a half</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (pence)</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the volume of each of these cuboids?

a) $V =$ unit cubes

b) $V =$ unit cubes
Write multiplications and divisions about the diagrams

a)

b)

Write two divisions about each diagram.

a)
 i)
 ii)
 iii)

b)
 i)
 ii)
 iii)

Do the divisions. Check them in your head with multiplications.

a)
b)
c)
d)
e)
f)

de)
e)
f)

Divide the amount into 4 equal parts.

1 quarter:
Write these numbers in the correct number set.

0, 5, 8, 9, 12, 16, 17, 27, 40, 44, 45, 72, 80, 81, 90, 96

a) Divisible by 8 Not divisible by 8

b) Multiples of 9 Not multiples of 9

Write these numbers in the correct number set.

3, 9, 8, 1, 36, 12, 4, 6, 18, 11, 2, 5, 10, 53, 72, 0

What is the rule? Complete the table and the graph.

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 5</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Circle the number which you think is the odd one out. Give a reason.

a) 60, 90, 180, 30, 50, 300 ..

b) 553, 690, 885, 730, 560, 355 ...
Do the divisions. Check them in your head with multiplications.

a) \(189 \div 9 = \)
b) \(126 \div 3 = \)
c) \(168 \div 8 = \)
d) \(155 \div 5 = \)

\[
\begin{align*}
1890 \div 9 & = 210 \\
1260 \div 3 & = 420 \\
1680 \div 8 & = 210 \\
1550 \div 5 & = 310
\end{align*}
\]

2

a) Circle the numbers in this list which are divisible by 3.

0, 7, 9, 60, 67, 69, 1500, 1568, 1569

b) Circle the numbers in this list which are multiples of 4.

0, 4, 6, 80, 84, 86, 1200, 1284, 1286

3

Write the whole numbers from 0 to 20 in the correct column in the table. Draw dots in the graph to show the remainders.

<table>
<thead>
<tr>
<th>Remainder after dividing by 7</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Are these statements true? Write a ✓ if it is true and a ✗ if it is false.

a) If we divide a number by 7, the remainder is less than 7. ✓

b) If we divide a number by 7, the remainder can be 7. ✗

c) If the remainder is 0 after dividing by 7, the number is a multiple of 7. ✓

d) If we divide a number by 7, then 7 different remainders are possible. ✓

4

Write the whole numbers between 10 and 25 in the correct number sets.
1

Peter, Rob and Sally have the same amount of money in their bank accounts. Altogether, they have £969. Circle what each of them has.

\[
\begin{array}{cccccccccccc}
100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10
\end{array}
\]

Complete the calculation.

\[
969 \div 3 = 900 \div 3 + 60 \div 3 + 9 \div 3 = \underline{} + \underline{} + \underline{} = \underline{}
\]

2

Fill in the missing numbers.

a) \[
840 \div 4 = 800 \div 4 + \underline{} \div 4 = \underline{} + \underline{} = \underline{}
\]
\[
630 \div 3 = \underline{} + 30 \div 3 = \underline{} + \underline{} = \underline{}
\]

b) \[
650 \div 5 = 500 \div 5 + \underline{} \div 5 = \underline{} + \underline{} = \underline{}
\]
\[
768 \div 4 = 400 \div 4 + \underline{} \div 4 + 8 \div 4 = \underline{} + \underline{} = \underline{}
\]

3

Fill in the missing numbers.

a) \[
246 \div 2 = \underline{} \quad 369 \div 3 = \underline{} \quad 484 \div 4 = \underline{}
\]
\[
505 \div 5 = \underline{} \quad 848 \div 4 = \underline{} \quad 848 \div 8 = \underline{}
\]
\[
693 \div \underline{} = 231 \quad 864 \div \underline{} = 432
\]

b) \[
824 \div 4 = \underline{} \quad 606 \div 3 = \underline{} \quad 618 \div 6 = \underline{}
\]
\[
906 \div 6 = \underline{} \quad 615 \div 5 = \underline{} \quad \underline{} \div 5 = 104
\]
1. Divide the amount into:
 a) 5 equal parts
 \[\begin{array}{cccccc}
 100 & 100 & 100 & 100 & 100 \\
 1 & 1 & 1 & 1 & 1
\end{array}\]

 b) 3 equal parts
 \[\begin{array}{cccccccc}
 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\]

2. a) Write the whole numbers less than 31 in the correct sets.
 b) Write the labels missing from each of the number sets in the diagram.

<table>
<thead>
<tr>
<th>Divisible by 5</th>
<th>Not divisible by 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divisible by 2</td>
<td></td>
</tr>
<tr>
<td>Not divisible by 2</td>
<td></td>
</tr>
</tbody>
</table>

 \[\begin{array}{cccc}
 0 & 6 & 12 & 18 \\
 14 & 16 & 20 & 22 \\
 26 & 28 & 3 & 9 & 15 & 21 & 27 \\
 13 & 19 & 23 & 25 & 1 & 5 & 7 & 11 & 29 \\
\end{array}\]

3. Make a plan. Estimate, calculate and check the result. Write the answer.
 a) Alice had £648 in her bank account. She spent 1 eighth of it. How much did she spend?

 \[\text{Plan:} \quad \text{Estimate:} \quad \text{Calculation:} \quad \text{Check:} \quad \text{Answer:}\]

 b) Ben had £648 in his bank account. Frank had 1 quarter of Ben's amount. How much did Frank have in his account?

 \[\text{Plan:} \quad \text{Estimate:} \quad \text{Calculation:} \quad \text{Check:} \quad \text{Answer:}\]
1. Colour: • the △ blue if the number is divisible by 3.
 • the ○ red if the number is divisible by 6.
 • the □ yellow if the number is divisible by 9.

 3 6 9 12 15 18 21 24 27 30 33 36 39 44

2. In a flower shop, the roses were tied in bunches of 3. Complete the table.

<table>
<thead>
<tr>
<th>Number of roses</th>
<th>264</th>
<th>453</th>
<th>360</th>
<th>531</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of roses</td>
<td>27</td>
<td>49</td>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>

3. A container was full of water. One eighth of the water was poured out.
How much water was poured out if the full container held:

 a) 16 litres

 Plan: ..
 Calculation:
 Answer: ..

 b) 304 litres

 Plan: ..
 Calculation:
 Answer: ..

 c) 1576 litres?

 Plan: ..
 Calculation:
 Answer: ..

4. Share the amount equally among the groups of people. Complete the table.

<table>
<thead>
<tr>
<th>Total amount</th>
<th>501</th>
<th>374</th>
<th>895</th>
<th>764</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Amount each</td>
<td>100</td>
<td>128</td>
<td>110</td>
<td>123</td>
</tr>
<tr>
<td>Amount remaining</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dividend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remainder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. a) How much money could Neil have? He has more than £50 but less than £100. He could change his money exactly into £2 coins or £5 notes.

b) How many pupils can be in this class? There are less than 30 pupils. The pupils can sit in groups of 2 or 3 or 4 without any pupil being left out.

2. Is it possible to answer the question with the data given? If it is, solve it.
 a) 10 kg of bananas costs £9.40. What is the price of 1 kg of bananas?
 b) Steve bought 10 different bars of chocolate and paid £12.00 altogether. What was the price of 1 bar of chocolate?
 c) Karen is 9 years old. She weighs 27 kg. What did she weigh when she was 1 year old?
 d) 3 men worked steadily and painted a 540 m fence in 9 days. How many days would it have taken 1 man to paint the same fence?

3. Write the data. Make a plan. Estimate, calculate, check and write the answer.
 a) A spider has 8 legs. How many spiders have 864 legs?

 Data: 1 spider: 8 legs, Plan:
 ? spiders: 864 legs Estimate:
 Calculation: ...
 Answer: ..
 b) A flower has 5 petals. How many flowers have 685 petals in total?

 Data: Plan:
 Estimate:
 Calculation: ...
 Answer: ..
1. I have 3 bags of marbles. Bag A contains 10 marbles, Bag B contains 20 marbles and Bag C contains 30 marbles. One marble in each bag is red.

 a) Join up each statement to the correct label.

 i) If I take out 1 marble from Bag A with my eyes shut, it will be red.

 ii) If I take out 20 marbles from Bag B with my eyes shut, none will be red.

 iii) If I take out 2 marbles from each bag with my eyes shut, one will be blue.

 b) Which bag gives me the best chance of picking the red marble?

2. a) Toss a £1 coin and a £2 coin at the same time. Do this 15 times.

 i) Keep a note of how each coin lands in this table. Total each row.

 ii) Collect and write the Class data in the right hand column.

<table>
<thead>
<tr>
<th>Tosses</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Pupil Total</th>
<th>Class Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1</td>
<td></td>
</tr>
<tr>
<td>£2</td>
<td></td>
</tr>
</tbody>
</table>

 Number of tosses

 b) £1 £2 Pupil Total Class Total

 i) Write your own data in this table.

 ii) Collect and write the Class data in the right hand column.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Pupil Total</th>
<th>Class Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and Head</td>
<td></td>
</tr>
<tr>
<td>Head and Tail</td>
<td></td>
</tr>
<tr>
<td>Tail and Head</td>
<td></td>
</tr>
<tr>
<td>Tail and Tail</td>
<td></td>
</tr>
</tbody>
</table>

 Number of tosses

3. You asked for a 2-scoop ice-cream, saying, "Chocolate or strawberry please". Colour the ice-creams to show what you could be given.
1

Throw a dice 20 times. Keep a tally in the table. Write the total for each row. Collect the Class data and write them in the right hand column.

<table>
<thead>
<tr>
<th>Tally of 20 throws</th>
<th>Pupil Totals</th>
<th>Class Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) How many times would you expect to throw a 4 if you threw a dice
 i) 600 times ii) 1200 times?

b) What would be the probability of throwing
 i) a 6 ii) at least 5 iii) an even number?

2

Throw two dice at the same time 36 times. Keep a tally in these tables.

<table>
<thead>
<tr>
<th>1?</th>
<th>2?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>1 2</td>
<td>2 2</td>
</tr>
<tr>
<td>1 3</td>
<td>2 3</td>
</tr>
<tr>
<td>1 4</td>
<td>2 4</td>
</tr>
<tr>
<td>1 5</td>
<td>2 5</td>
</tr>
<tr>
<td>1 6</td>
<td>2 6</td>
</tr>
</tbody>
</table>

Collect the Class data. Rub out your tally marks and write the Class data in the tables. Use the Class data to complete this table.

<table>
<thead>
<tr>
<th>Sum of both dice</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td></td>
</tr>
</tbody>
</table>

3

How could a 3-scoop ice-cream be made from vanilla or strawberry or lemon?
1. Write the data. Make a plan. Estimate, calculate, check and write the answer.
4 tickets cost £5.68. How much would 7 of these tickets cost?

Data: .. Plan: ..
.. Estimate: ..

Calculation: ..
Answer: ..

2. You ask for a 3-scoop ice-cream saying, "Chocolate and strawberry and vanilla please". Colour the ice-creams to show what you could be given.

![Ice-creams](image)

3. A marble is dropped into this maze. It has an equal chance of falling to the left or to the right.

a) In how many ways can the marble come out at:
 i) A
 ii) B
 iii) C
 iv) D?

b) Where is it more likely to come out?

c) What is the ratio of the chance of it coming out at A, B, C or D?

 A B C D
 ↓

 A:B:C:D

4. Do the operations in the correct order. Do the calculations in your exercise books.

a) $1500 ÷ 5 + 25 \times 4 = \underline{\text{\hspace{1cm}}}$

b) $(712 - 268) ÷ 2 + 20 = \underline{\text{\hspace{1cm}}}$

c) $20 \times 90 - 640 ÷ 8 = \underline{\text{\hspace{1cm}}}$

d) $735 ÷ 7 \times 3 = \underline{\text{\hspace{1cm}}}$

e) $591 - 9 \times 50 + 41 = \underline{\text{\hspace{1cm}}}$

f) $111 - 68 - 180 ÷ 6 = \underline{\text{\hspace{1cm}}}$

g) $1827 ÷ 3 - 360 ÷ 40 = \underline{\text{\hspace{1cm}}}$

h) $(823 - 157) ÷ 3 \times 2 = \underline{\text{\hspace{1cm}}}$

5. Colour equal values in the same colour.

- 1 tenth of 200
- 1800 ÷ 90
- 2 thirds of 300
- 450 ÷ 5 - 70

160 ÷ 8
1000 ÷ 50

Page 155
Write these numbers as Roman numerals. Follow the example.

1) 743 = (500 + 200) + (50 – 10) + 3 = DCC + XL + III =
2) 287 = ...
3) 934 = ...
4) 1099 = ...

a) Change the Roman numerals to Arabic numbers.

DIX = []
MCMXLV = []
CMIV = []
CDXVI = []
MCXI = []
CMXCIX = []

b) Write the Arabic numbers in decreasing order.

c) Subtract the 5th number from the 3rd number.
Write the difference as Roman numerals.

d) Divide the 2nd number by 11.
Write the quotient as Roman numerals.

Above the entrance to a church, there is a Roman number:

MDCCXCI

a) When do you think the church was built?

b) What Roman number is on the crypt if it was built 153 years before the main church?

a) What rule has been used to make these secret codes?

CILLA → 201
SHEILA → 51
EXAMPLE → 1060
IVANHOE → 6
MUM → 2000

Rule:

b) Use the rule to find the secret numbers and the missing signs. (<, =, >)

i) ELEPHANT →
ii) BALL circle BALI
CROCODILE →
CAT circle PACK
CADILLAC →
PEN circle PIN

c) Use the rule to write a secret code for 2101.
1. Correct the equations.
 a) VII + V = III
 b) XII + III = X
 c) XI + XXX = X

2. Join up the equal values.
 a) CDLXXIX < CDLXXXIII
 b) CMXCVIII < MIV
 c) DCLIV < 936
 d) 428 < 654
 e) 1042 < CDXXVIII
 f) MXLII < CMXXXVI

3. Do the calculations. Write the operations using Roman numerals.
 a) \[
 \begin{array}{c}
 1 \quad 2 \quad 7 \\
 + \quad 3 \quad 4 \quad 8 \\
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 6 \quad 7 \quad 1 \\
 - \quad 5 \quad 5 \quad 8 \\
 \end{array}
 \]
 c) \[
 \begin{array}{c}
 2 \quad 3 \quad 5 \\
 \times \quad 3 \\
 \end{array}
 \]
 d) 847 ÷ 7 =

4. a) Which Roman numerals could be written instead of the shapes to make the statements true?
 i) CDLXXIX < < CDLXXXIII
 ii) CMXCVIII < < MIV
 b) Correct the equations.
 i) VII − II = II
 ii) XII + VIII = X
 iii) V − XV = X + 1
1. Make a plan. Do the calculation, check it and write the answer in a sentence.

a) Tim has £648, 6 times the amount Laura has. How much does Laura have?

 Plan:

 Calculation:

 Check:

 Answer:

b) Gordon has £648. Lenny has twice as much. How much does Lenny have?

 Plan:

 Calculation:

 Check:

 Answer:

2. What data are needed? Make a plan. Calculate, check and write the answer.

a) 3 boys and 4 girls were travelling on a 42-seater bus.
 Their tickets cost £15.47 altogether. How much was each ticket?

 Plan:

 Calculation:

 Check:

 Answer:

b) John had to fill an empty 540 litre container from a 1200 litre container full of water. He used a 4 litre and a 5 litre bucket to transfer the water each time. How many journeys did he make?

 Plan:

 Calculation:

 Check:

 Answer:

3. What was the balance each day? (Do the calculations in your exercise book.)

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>Outgoings</td>
<td>Income</td>
</tr>
<tr>
<td>£3.56</td>
<td>£2.18</td>
<td>£1.05</td>
</tr>
<tr>
<td>Balance:</td>
<td></td>
<td>Balance:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>Outgoings</td>
<td>Income</td>
</tr>
<tr>
<td>£1.43</td>
<td>£3.25</td>
<td>£7.25</td>
</tr>
<tr>
<td>£5.18</td>
<td>£1.89</td>
<td>£9.48</td>
</tr>
<tr>
<td>Balance:</td>
<td></td>
<td>Balance:</td>
</tr>
</tbody>
</table>
1 How much money does Alan have? Complete the table.

<table>
<thead>
<tr>
<th>Had (p)</th>
<th>128</th>
<th>556</th>
<th>436</th>
<th>216</th>
<th>405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was given (p)</td>
<td>342</td>
<td>223</td>
<td>578</td>
<td>329</td>
<td>149</td>
</tr>
<tr>
<td>Now has (p)</td>
<td>674</td>
<td>971</td>
<td>583</td>
<td>752</td>
<td></td>
</tr>
</tbody>
</table>

\[N = \quad H = \quad W = \]

2 Susie and Penny have £754 altogether in their bank accounts. How much can they each have? Complete the table.

<table>
<thead>
<tr>
<th>(S) (£)</th>
<th>321</th>
<th>276</th>
<th>187</th>
<th>639</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (£)</td>
<td>542</td>
<td>138</td>
<td>456</td>
<td>223</td>
<td>752</td>
</tr>
</tbody>
</table>

\[754 = \quad S = \quad P = \]

3 a) Kim has 4 times the amount of money that Leslie has. Leslie has £176. How much do they have altogether?

b) Andrea had £6.42. She bought some flowers for £2.35. The money she has left is 1 third of the money her sister has. How much does her sister have?

c) Eve had £5.64. She bought some sweets with 1 quarter of her money. How much did she have left?

4 What is the price of 7 tickets if 4 tickets cost £9.24?

4 tickets cost \[\]

7 tickets cost \[\]

5 Calculate the balance.

a)

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 \\
\end{array}
\]

b)

\[
\begin{array}{cccc}
10 & 10 & -10 & -10 \\
-10 & -10 & -10 & -10 \\
10 & -10 & -10 & -10 \\
-10 & -10 & -10 & 10 \\
\end{array}
\]

c)

\[
\begin{array}{cccc}
10 & 10 & -10 & -10 \\
-10 & -10 & -10 & -10 \\
-10 & -10 & -10 & -10 \\
-10 & -10 & -10 & -10 \\
\end{array}
\]
1. What data are needed? Make a plan. Calculate, check and write the answer.
Twins Peter and John's 2 sisters and 3 cousins clubbed together to buy them books for their birthday. Paul's 5 books cost £8.70 altogether and John's 3 books cost £10.35 altogether.
How much did each sister or cousin pay if they shared the total cost?

Plan: Calculation:

Check: Answer:

2. Join up these numbers to the approximate place on the number line.

3. The middle number is the product of the 4 numbers around it. Fill in the missing numbers.

4. Colour the parts stated. Compare the two rectangles. Fill in the missing sign.
a) 5 eighths 7 eighths
b) 7 tenths 1 half
c) 3 quarters 3 eighths
d) 3 fifths 1 quarter

5. Continue the sequence in Roman numerals.
MCL, MC, ML,
1. Colour similar shapes in the same colour.

2. Colour similar rectangles in the same colour.

3. Enlarge each shape to twice its size.
 a)
 b)

4. Lengthen this line to 3 times its length.
Join up the shapes which are **congruent**. (exactly the same)

This is a plan of a school. Measure each side of the rectangles in the plan.

1. The whole site

 ① Sports Hall
 ② School Building
 ③ Playing fields
 ④ Playground

 Scale: 1 mm → 1 m

 Calculate the lengths in real life. Write both sets of data in the table.

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
</tr>
</thead>
<tbody>
<tr>
<td>On plan:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In real life:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is an enlarged drawing of *Flea’s* briefcase. Measure its sides, then calculate what they would be in real life. Write both sets of data in the table.

<table>
<thead>
<tr>
<th>Scale: 1 cm → 1 tenth of a cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>On plan: Length (cm)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>In real life: Length (cm)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
</tbody>
</table>
1. **A** is a common **vertex** (corner) of 4 similar shapes.
 a) How many times has the smallest shape been enlarged to make the others?
 \[\ldots \text{ times, } \ldots \text{ times, } \ldots \text{ times} \]
 b) What are their perimeters in \[\longrightarrow \text{ units?} \]
 \[P_1 = 8 \text{ units} \]
 \[P_2 = \underline{\text{units}} \]
 \[P_3 = \underline{\text{units}} \]
 \[P_4 = \underline{\text{units}} \]
 c) What are their areas in \[\square \text{ units?} \]
 \[A_1 = 3 \text{ squares} \]
 \[A_2 = \underline{\text{squares}} \]
 \[A_3 = \underline{\text{squares}} \]
 \[A_4 = \underline{\text{squares}} \]

2. **A** is a common vertex of 4 similar triangles.
 a) How many times has the smallest triangle been enlarged to make the others?
 \[\ldots \text{ times, } \ldots \text{ times, } \ldots \text{ times} \]
 b) What are their perimeters in \[\longrightarrow \text{ units?} \]
 \[P_1 = 3 \text{ units} \]
 \[P_2 = \underline{\text{units}} \]
 \[P_3 = \underline{\text{units}} \]
 \[P_4 = \underline{\text{units}} \]
 c) What are their areas in \[\triangle \text{ units?} \]
 \[A_1 = 1 \text{ triangle} \]
 \[A_2 = \underline{\text{triangles}} \]
 \[A_3 = \underline{\text{triangles}} \]
 \[A_4 = \underline{\text{triangles}} \]

3. This is a reduced photocopy of a painting. **Scale:** 10 mm → 20 cm in real life.
 a) Measure the sides of the photocopy.
 \[w_1 = \ldots \ldots \text{ mm}, \ h_1 = \ldots \ldots \text{ mm} \]
 b) Calculate the sides of the painting.
 \[w_2 = \ldots \ldots \text{ cm}, \ h_2 = \ldots \ldots \text{ cm} \]
 c) What length of wood would be needed to make a frame for the painting?
 \[\ldots \]
 d) What area of glass would be needed to cover the painting?
 \[\ldots \]
1. Measure the sides of the triangle, quadrilateral and pentagon. Write the lengths on the diagrams.

- a)
- b)
- c)

Measure and mark the sides on the horizontal lines.

- a)
 \[P = \square \quad \text{mm} = \square \quad \text{cm} \quad \square \quad \text{mm} \]
- b)
 \[P = \square \quad \text{mm} = \square \quad \text{cm} \quad \square \quad \text{mm} \]
- c)
 \[P = \square \quad \text{mm} = \square \quad \text{cm} \quad \square \quad \text{mm} \]

2. Count how many of the given units are in the perimeter and area of each shape.

- a)
- b)
- c)
- d)

- a)
 \[P = \quad \text{unit squares} \]
- b)
 \[P = \quad \text{unit squares} \]
- c)
 \[P = \quad \text{unit squares} \]
- d)
 \[P = \quad \text{unit squares} \]

3. Divide up each shape into rectangles and triangles. Write the area of each smaller shape inside it. Write the total area of each shape in the box.

- a)
- b)

- a)
 \[A = \quad \text{unit squares} \]
- b)
 \[A = \quad \text{unit squares} \]
Reduce each shape to half its size.

a)

b)

Copy this drawing on the different grids.

a)

b)

c)

d)

e)

f)

This is an enlarged copy of Ant’s postage stamp.

Scale: 1 cm on the copy → 1 tenth of a mm on the real stamp

a) Measure the sides of this copy.

\[w_1 = \ldots \ \text{cm}, \ h_1 = \ldots \ \text{cm} \]

b) Calculate the sides of the real stamp.

\[w_2 = \ldots \ldots \ldots \ldots \ \text{mm} \]

\[h_2 = \ldots \ldots \ldots \ldots \ \text{mm} \]

c) What is the perimeter of Ant’s stamp?

d) How many seeds would Ant need to collect to buy 29 of these stamps? ..
This solid has been built from unit cubes. Draw different views of it.

<table>
<thead>
<tr>
<th>Front view</th>
<th>Top view</th>
<th>Right side view</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ground plan

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Build the solids with unit cubes. Fill in the ground plan for each one.

a) ![Solid a](image4.png)

b) ![Solid b](image5.png)

c) ![Solid c](image6.png)

How many unit cubes were needed to build each solid? This is their **volume**.

a)
b)
c)

a) Reduce this cuboid to:
 i) half its size
 ii) 1 third of its size.

b) Enlarge this cuboid to:
 i) twice its size
 ii) 3 times its size.

c) What is the volume of each of the 6 cuboids? Write it beside them.
In how many different ways can you colour the flags *red, white, green* and *blue*? Use every colour only once in each flag.

How many different ways are possible?

Andrea, Becky and Carol are sitting around a circular table. Colour the tables where the girls are sitting in the same order.

How many different orders are possible?

- a) In how many different ways can you build a tower 4 units high using 1, 2, 3 or 4 unit rods? Draw the possible ways.

- b) If you could use only 1 or 2 unit rods, how many ways are possible?

Alan, Brian and Charlie go to a summer camp. There are only 2 bedrooms in their hut. One room has 2 beds and the other has 3 beds.

Show on the diagram the different ways they could share rooms.
1. a) Colour the windmills *red*, *white*, *yellow* and *green* so that each one is different from the others.

b) *Mr. Silly* does not know his compass directions. He paints the letters N, E, S and W on the compass at random. What chance does he have of painting the compass correctly?

2. Write the letters E, I, F and L in every possible order. Circle meaningful words.

<table>
<thead>
<tr>
<th>E I F L</th>
<th>I E F L</th>
<th>F E I L</th>
<th>L E I F</th>
</tr>
</thead>
<tbody>
<tr>
<td>E I L F</td>
<td>I E L F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a computer printed the 4 letters randomly, what chance would there be of it printing a meaningful word?

3. How many different faces can you draw if you choose from these features?

 Eyes: ☺ or ~ Nose: < or △ Mouth: — or — or —

 ![Face Options](image_url)

If a machine painted features on 120 faces at random, how many faces would you expect to be smiling?

4. Andrew, Betty, Cliff and Dorothy went sledging with one 2-seater sledge. Show the different ways they can take turns on the sledge.

 A B A C
Which numbers do the pictures show? Write them in the place-value table.

a)

b)

c)

Write the digits in the place-value table, then write the number.

<table>
<thead>
<tr>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>9</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>6</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8000</td>
<td>500</td>
<td>40</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>50</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practise calculation.

a) 4 + 5 = 40 + 50 = 400 + 500 = 4000 + 5000 =
 9 − 2 = 90 − 20 = 900 − 200 = 9000 − 2000 =

b) 3 × 8 = 3 × 80 =
 6 × 9 = 6 × 90 =
 7 × 4 = 70 × 4 =

c) 45 ÷ 5 = 450 ÷ 5 =
 56 ÷ 7 = 560 ÷ 7 =
 27 ÷ 3 = 270 ÷ 3 =
These houses were built with wooden blocks. Draw their front, top and side views on a grid sheet or in your exercise books.

Five children are in a badminton tournament. They all have to play one another. How many matches will be played altogether?

a) List in increasing order all the 3-digit numbers which have digits 1 or 2.

b) List in decreasing order all the 2-digit numbers which have digits 1, 2 or 3.

Two boys and two girls had enough money for 1 ride in a dodgem car at the fair. They drew lots to see who would be the passenger and who would steer. What chance was there of the two girls riding together?

Write the numbers below the dots.

a)

b)

c)

Fill in the missing numbers.

a) i) 1 km = m ii) 1 km 564 m = m
 iii) 2 km = m iv) 4 km 105 m = m
 v) 7 km = m vi) 8 km 16 m = m

b) i) 1 m = mm ii) 1 m 45 cm = cm mm
 iii) 5 m = mm iv) 3 m 70 cm 2 mm = mm
 v) 8 m = mm vi) 5 m 6 cm 3 mm = mm

Change the weights to the given units.

a) 1028 g = kg g b) 1 kg 26 g = g
 2300 g = kg g 3 kg 157 g = g
 3005 g = kg g 8 kg 60 g = g
 416 g = kg g 9 kg 2 g = g

Change the capacities to the given units.

a) 75 cl = ml b) 736 ml = cl ml
 138 cl = ml 502 ml = cl ml
 205 cl = ml 1028 ml = cl ml
 3 l 26 cl = ml 4342 ml = cl ml

What is the capacity of the container if we could fill it with:

a) forty 65 cl jugs of water
b) sixteen 8 litre buckets of water
c) six hundred and forty 5 cl glasses?

Tick the bigger quantity.

a) 3 quarters of 240 cm or 5 sixths of 240 cm
b) 5 eighths of 1600 g or 1 half of 1600 g
c) 3 sixths of 3000 l or 3 fifths of 3000 l
1 Write the whole numbers not less than 0 and not greater than 24 in the correct sets.

a) \[0 \leq \text{number} \leq 24\]
 - Multiple of 3
 - Multiple of 4

b) | Multiple of 3 | Not a multiple of 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple of 4</td>
<td></td>
</tr>
<tr>
<td>Not a multiple of 4</td>
<td></td>
</tr>
</tbody>
</table>

What can you say about the numbers in the shaded areas?

2 a) List the numbers which have a hundreds digit greater than 7, a tens digit less than 3, and a units digit which is odd and not greater than 3.

b) What is their sum?

c) Which of them are divisible by 3?

3 List all the 3-digit numbers in which:

a) the sum of the 3 digits is 5,

b) the product of the 3 digits is 4,

c) the sum of the 3 digits is 4.

4 Make two 3-digit numbers using the numbers 0, 1, 3, 4, 5 and 8 so that:

a) their sum is the least possible, and

b) their sum is the greatest possible, and

c) their difference is the least possible, and

d) their difference is the greatest possible.
1 Fill in the missing numbers.

a) + 60
 \[
 \begin{array}{c}
 659 \\
 + 8
 \end{array}
 \]

b) + 80
 \[
 \begin{array}{c}
 976 \\
 + 9
 \end{array}
 \]

2 Colour the shapes on the grid and fill in the missing numbers if the sum of the numbers in each shape is 1000.

\[
\begin{array}{cccccccc}
400 & 290 & 350 & 170 & 280 & 170 \\
310 & 260 & 510 & 200 & 430 & 420 \\
440 & 270 & 930 & 100 & 120 & 580 \\
350 & 140 & 230 & 260 & 280 & 390 \\
\end{array}
\]

3 Colour a route through the maze so that the sum of the numbers passed is:

a) 350

b) 1200

4 How many routes lead from A to G, H, I and J if you can only move down to the left or to the right? Write the letters of each route in order.
Write the missing numbers in the puzzles if the sum of the 3 numbers along each side is 1500. Choose from:

a) 420, 400, 520, 540, 560, 580
b) 540, 560, 580, 480, 500, 520, 400, 460

Bunny can only escape from the maze by passing through numbers which add up to 1200. Draw possible paths he could take. Use a different colour for each one.

Fill in the missing numbers.

a) $90 \times \bigcirc \times 4$
 $\times 2$
 $\times 3$
 90×4
 $\div 2$
 $\div 3$
 $90 \times \bigcirc$

b) $80 \div \bigcirc \div 4$
 $\times 2$
 $\times 5$
 $80 \div 4$
 $\div 2$
 $\div 5$
 $80 \div \bigcirc$
 $\div 4$

How many triangles can you see in each diagram?

a)
 b)
 c)
 d)
1

Change the lengths to the given units.

a) \[18 \text{ cm} = \underline{} \text{ mm} \]
b) \[242 \text{ mm} = \underline{} \text{ cm} \underline{} \text{ mm} \]
\[240 \text{ cm} = \underline{} \text{ mm} \]
\[480 \text{ mm} = \underline{} \text{ cm} \underline{} \text{ mm} \]
\[5 \text{ cm} \underline{30} \text{ mm} = \underline{} \text{ mm} \]
\[1263 \text{ mm} = \underline{} \text{ cm} \underline{} \text{ mm} \]
\[61 \text{ cm} \underline{9} \text{ mm} = \underline{} \text{ mm} \]
\[4004 \text{ mm} = \underline{} \text{ cm} \underline{} \text{ mm} \]

2

You are visiting a wildlife park and want to see all the animals.

This is the map of the park.

Scale: 1 mm on the map → 1 m in real life

![Map of the Park]

a) Measure each line on the map and write the length beside it.

b) Calculate the distances in real life and write in brackets beside the lines.

c) Begin and end at **Start**. Write the letter of each animal to show the routes.

i) Find a route which allows you to visit all the animals.
Total length = .

ii) Try to find a route which is less than 310 metres.
Total length = .

d) i) The ice-cream van is half-way between the elephants and the giraffes. Draw a dot on the map to show it and label it V.

ii) The toilets are 30 m from the elephants on the road to the lions. Draw a cross on the map to show them and label it T.