1. Calculate the real distances if 1 cm on the diagram means 62 m in real life.

How far away does:

a) Bob live from Alan b) Carol live from Bob
c) David live from Carol d) Carol live from Alan
e) David live from Bob f) David live from Alan?

2. In a dense forest there are some clearings. In which of the clearings could you hide from someone? Write a ✓ or a ✗ inside each one.

a) b) c) d)

3. The two lines in each diagram are the diagonals of a quadrilateral. They are perpendicular to one another. Draw the quadrilaterals and measure their sides.

a) b) c) d) e)

4. How many faces, edges, and vertices does each solid have? What is its volume (in unit cubes)? What is its surface area (in unit squares)?

a) b) c) d)

<table>
<thead>
<tr>
<th></th>
<th>faces:</th>
<th>edges:</th>
<th>vertices:</th>
<th>volume:</th>
<th>area:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Draw over the sets of parallel lines in the same colour. Mark the right angles.

 i)
 ii)
 iii)
 iv)

Write C in the shapes which are **convex** and N in the shapes which are not convex.

2. In each diagram, one side of a polygon has been drawn.
 a) Complete the diagram to form a **triangle** which has:
 i) 1 right angle ii) 3 angles < a right angle iii) 1 angle > a right angle

 b) Complete the diagram to form a **quadrilateral** which has:
 i) 4 right angles ii) 2 right angles iii) no right angles

3. Colour the nets which could be folded to make a cube.
 a)
 b)
 c)
 d)
 e)
 f)
 g)
 h)

4. Complete these non-convex shapes so that they become **convex** shapes.
 a)
 b)
 c)
 d)
 e)

Page 52
List the letters of the shapes for which each statement is true.

a) It has 2 sides which are equal in length. ..

b) All its sides are equal. ...

c) Its opposite sides are equal. ..

d) It has a pair of perpendicular sides. ..

e) It has a pair of parallel sides. ..

f) It is symmetrical. ..

g) There is a right angle at every vertex. ..

h) Opposite sides are parallel to each other.

List the statements in Question 1 which are true for all

a) rectangles b) squares

Write the letters of the quadrilaterals in Question 1 in the correct set.

P: Opposite sides are parallel. ..

R: It has at least 1 right angle. ..

S: It has line symmetry. ..

C: It is convex. ...

a)

b)
1. Draw over the parallel lines in the same colour. Mark the right angles.

2. We labelled the vertices of this **pentagon** with letters and marked the angles.

 At which vertex is there:

 a) a right angle?
 b) an angle smaller than a right angle?
 c) an angle greater than a right angle?

3. Measure the sides of each rectangle. Calculate its perimeter and area.

 a) \[A = \] \[P = \]
 b) \[A = \] \[P = \]
 c) \[A = \] \[P = \]
 d) \[A = \] \[P = \]
 e) \[A = \] \[P = \]

4. The diagram shows the net of an open box drawn to a smaller scale.

 a) What shape was the box?
 b) How long were the edges of the box if 1 mm on the diagram means 1 cm in real life? Write them on the diagram.
 c) Draw the rectangle which is missing if the box had been covered.
1

The net for this box has been drawn to a smaller scale.

Scale: 1 mm → 2 cm

Measure the net, then calculate the real length, width and height of the box.

Real length = ...
Real width = ...
Real height = ...

2

The edges of a cuboid-shaped box are 4 cm, 3 cm and 2 cm. One of its faces is missing, so it is an open box. Which of the faces could be missing?

Draw nets in your exercise book to show each case.

3

Practise calculation.

10 × [] = 3000 [] × 1600 = 0 [] × 40 = 1600
90 × [] = 2700 1500 ÷ [] = 50 1970 ÷ [] = 197
[] × 50 = 25 000 90 ÷ [] = 45 [] ÷ 200 = 500
[] × 80 = 24 000 [] ÷ 5 = 200 [] ÷ 1900 = 1
[] × 11 = 11 000 [] ÷ 6 = 110 [] ÷ 5000 = 4
[] × 54 = 54 000 [] ÷ 7 = 700 [] ÷ 200 = 10
25 × [] = 50 000 8600 ÷ [] = 43 2000 ÷ [] = 4

4

Imagine this solid. Draw how it would look from three different views.
Make a ground plan too.

Top view

Side view

Front view

Ground plan

↓ ←
List the similar shapes. ...
Write the area inside each shape and the length of the perimeter below.

a) Draw shapes using 4 unit shapes.
b) Draw shapes using 9 unit shapes.

2

3

a) Reflect the letter N in the given axis (mirror line).

b) Stretch the letter N in the direction shown by the arrow.
1. i) Complete the drawings of fish F on the other grids.
ii) Colour the fish which is similar to fish F.

a) Draw over in the same colour the perimeters of similar shapes.
b) Colour in the same colour the shapes which are congruent.

c) Count the perimeter of each boat.
d) Count the area of each boat.

2. a) Draw over in the same colour the perimeters of similar shapes.
b) Colour in the same colour the shapes which are congruent.

3. a) Enlarge the boat to twice its size.
b) Reduce the boat to half its size.
c) Count the perimeter of each boat.
d) Count the area of each boat.
1. a) List the numbers of the houses which are similar to:

House A: House B:

House C: House D:

b) List the houses which are congruent to one another.

2. a) Write the perimeter and area of each shape using the units shown.

units:

\begin{align*}
\text{units:} & \quad \begin{array}{c}
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\text{5}
\end{array} \\
\text{\begin{array}{c}
\text{P} \\
\text{A} \\
\text{P} \\
\text{A} \\
\text{P}
\end{array}} & = \\
\begin{array}{c}
\text{P} \\
\text{A} \\
\text{P} \\
\text{A} \\
\text{P}
\end{array}
\end{align*}

b) What have we done to each shape to make the next shape?

3. a) Draw over in green the sides of the regular pentagons in i) and ii).

b) Colour blue the 5-pointed star in iii).

c) How many triangles, quadrilaterals and pentagons can you see in iv)?

d) Try to make a pentagon from a strip of paper like this.
1. Write the real distances on the sections below each map scale.

 a) \[
 \begin{array}{cccccc}
 0 & 2 & 4 & 6 & 8 & 10 \\
 \hline
 & | & | & | & | & \\
 \end{array}
 \]

 b) \[
 \begin{array}{cccccc}
 0 & 200 & 400 & 600 & 800 & 1000 \\
 \hline
 & | & | & | & | & \\
 \end{array}
 \]

2. Draw 2 parallel lines so that their distance apart is:
 a) 2 cm
 b) 2 and a half cm
 c) 35 mm

3. Which compass point would we reach if we:
 a) faced NW then turned 1 right angle to the right
 b) faced SE and turned 1 and a half right angles to the left
 c) faced SW and turned 2 right angles to the right
 d) faced NE and turned half a right angle to the right?

4. On each side of a cuboid-shaped box there is a different symbol.
 3 faces of the box look like this. The other 3 faces look like this.

 After cutting along some edges, we flattened out the box and got this net.

 Draw the other symbols on the correct faces.
1

a) **Enlarge** the house to twice its size.
 b) **Reduce** the house to half its size.
 c) What is the area of:
 i) the original house
 ii) the enlarged house
 iii) the reduced house?

2

a) **Reflect** the letter M in the given axis (mirror line).

b) **Stretch** the letter M in the direction shown by the arrows.

3

What is the area of a square which has 15 cm sides?

1. Write a number in the box so that the statement is true.
 a) \(27 \times 100 = 270 \times \underline{}\)
 b) \(130 \times 100 = 13 \times \underline{}\)

 \(49 \times 100 = 4900 \times \underline{}\)
 \(19 \times 1000 = 1900 \times \underline{}\)

 \(60 \times 100 = 1000 \times \underline{}\)
 \(160 \times 100 = 10 \times \underline{}\)

 \(34 \times 100 = 10 \times \underline{}\)
 \(20 \times 1000 = 100 \times \underline{}\)

 \(92 \times 100 = 920 \times \underline{}\)
 \(17 \times 1000 = 170 \times \underline{}\)

2. Do the operations in the correct order. Be careful with the brackets!
 a) \(700 + 300 \times 5 = (700 + 300) \times 5 = \)
 b) \(550 – 50 \times 9 = (550 – 50) \times 9 = \)
 c) \(200 + 300 \times 40 = (200 + 300) \times 40 = \)
 d) \(470 – 70 \times 5 = (470 – 70) \times 5 = \)

3. Fill in the missing quotients. Note how the dividends, divisors and quotients change.
 a) \(18 \div 6 = \)
 \(180 \div 60 = \)
 \(1800 \div 600 = \)
 \(1800 \div 6 = \)
 \(18000 \div 600 = \)
 \(18000 \div 6000 = \)
 b) \(20 \div 4 = \)
 \(200 \div 40 = \)
 \(2000 \div 400 = \)
 \(200 \div 4 = \)
 \(2000 \div 40 = \)
 \(20000 \div 400 = \)

4. Write how you estimate mentally, then do the multiplication.
 Compare the product with the estimated result.
 i) \(2351 \times 6 = \)
 \(E: \underline{}\)
 \(C: \underline{} \times 6\)

 ii) \(1278 \times 7 = \)
 \(E: \underline{}\)
 \(C: \underline{} \times 7\)

 b) \(8654 \div 4 = \)
 Estimate, calculate then check the result in your exercise book.
Do the calculations in the correct order and compare the results.

a) \(180 \times 6 - 5 = \)
\(180 \times 5 - 6 = \)
\(180 \times 6 - 5 \times 6 = \)
\(180 \times 5 - 6 \times 5 = \)

b) \(200 \times 4 + 5 = \)
\(200 \times 5 + 4 = \)
\(200 \times 5 + 4 \times 5 = \)
\(200 \times 4 + 5 \times 4 = \)

Do the calculations in the correct order and compare the results.

a) \(1600 \div 8 - 2 = \)
\(1600 \div (8 - 2) = \)
\(1600 \div 2 - 8 = \)
\((1600 - 8) \div 2 = \)
\(1600 \div 8 \div 2 = \)
\(1600 \div 2 - 8 \div 2 = \)

b) \(1600 \div 8 \times 2 = \)
\(1600 \div (8 \times 2) = \)
\(1600 \div 2 \times 8 = \)
\(1600 \times 2 \div 8 = \)
\((1600 \div 8) \times 2 = \)
\(1600 \times 8 \div 2 = \)
\(1600 \times (8 \div 2) = \)

Solve the problems in your exercise book. Do not forget any steps!

a) If there are 7 kg of beans in each box, how many kg of beans are in 1205 boxes?

b) How many kg do 405 bricks weigh if each brick weighs 8 kg?

\[E: \]
\[Check: \times 7 \]

\[+ \]
Write a plan, calculate and check the result in your exercise book. Write the answer as a sentence below.

a) Workmen are laying square floor tiles on the kitchen floor. They can fit 14 tiles along one side of the kitchen and 30 tiles along the adjoining side. How many tiles are needed to cover the floor?

Answer: ..

b) Donna has 130 buttons and Liz has 4 times more. How many buttons does Liz have?

Answer: ..

c) How much honey did the owner of the beehive collect if he stored 160 kg, which was 1 sixth of the honey, for feeding the bees during the winter?

Answer: ...

Write your plan here. Do the calculation and check the result in your exercise book. Write the answer as a sentence here.

a) Fred's age is 1 fifth of the age of his grandmother. How old is Fred if his grandmother is 65 years old? Plan:

Answer: ..

b) Bella has £720, which is 8 times as much as Paula has. How much does Paula have? Plan:

Answer: ...

c) The farmer's wife packed 480 eggs into boxes which could hold 6 eggs. How many boxes did she need? Plan:

Answer: ...

d) Diana left the country 210 days ago. How many weeks have gone by since then? Plan:

Answer: ...

Sam Snail was invited to his friend's house, which is 804 m from Sam's house. Sam left home at 8 am. He arrived after 11 am but before 12 noon.

a) What is the least number of metres that Sam could have gone every hour?

...

b) What is the most number of metres that Sam could have gone every hour?

...
1. Estimate in your head first, then do the multiplication.

 a) 897 × 6 507 × 9 516 × 8 476 × 7

 b) 3106 × 3 4057 × 2 1356 × 7 5634 × 5

2. Estimate in your head first, then do the division. Check your result.

 a) 3678 33472 6385 6

 b) 5497 7602 7403 6

 Checks:

3. Write the operation here. Estimate in your head, then do the calculation in your exercise book. Write the result again here.

 a) What is four times as much as three times 675?

 b) What is nine times as much as twice 591?

 c) What is half of 1 fifth of 3720?

 ..
1 Fill in the missing quotients. Note how the dividends, divisors and quotients change.
 a) \(21 \div 7 = \) \(210 \div 70 = \) \(2100 \div 700 = \)
 \(210 \div 7 = \) \(2100 \div 70 = \) \(21000 \div 700 = \)
 \(2100 \div 7 = \) \(21000 \div 70 = \) \(21000 \div 7000 = \)
 b) \(20 \div 5 = \) \(200 \div 50 = \) \(2000 \div 500 = \)
 \(200 \div 5 = \) \(2000 \div 50 = \) \(20000 \div 500 = \)
 \(2000 \div 5 = \) \(20000 \div 50 = \) \(20000 \div 5000 = \)

2 Join up the equal numbers.

\[
\begin{align*}
28 \times 100 & = 208 \times 100 & 36000 \div 10 & = 2080 \times 10 \\
2080 \times 10 & = 4280 \times 10 & 280 \times 10 & = 428 \times 100 \\
428 \times 100 & = 470 \times 10 & 47 \times 100 & = 360 \times 10 \\
360 \times 10 & = 2080 & 208 \times 10 & = 208 \times 10
\end{align*}
\]

3 Every day in a school there are 7 lessons, each of which lasts for 45 minutes.
 a) How many minutes each day are pupils in lessons?
 b) How many minutes in a week are pupils in lessons?
 c) How many minutes in 12 weeks are pupils in lessons?

4 Solve the problems in your exercise book.
 a) What is the distance between 75 telegraph poles, set 53 metres apart?
 b) Three sons were left £10 000 in their father's will. The eldest was left £100 more than each of the other two sons.
 How much money did each of the sons receive?

5 Write a number in each box to make the statement true.
 a) \(13 \times 1000 = 130 \times \) \(2500 \times 10 = 100 \times \) \(40 \times 100 = 1000 \times \)
 b) \(560 \times 10 = 2300 + \) \(29 \times 100 = 3000 - \) \(17000 \div 100 = 10 \times \)
1. Fill in the missing numbers and signs.
 a) \[45 + 37 \quad \quad \quad \quad \quad \quad 12 + 320 \quad + 127 \quad \quad \quad \quad \quad \quad 491 \]
 b) \[5093 - 410 \quad \quad \quad \quad \quad \quad 4760 + 1050 \quad - 2205 \quad \quad \quad \quad \quad \quad 8000 \]
 c) \[75 \div 3 \quad \quad \quad \quad \quad \quad 100 \times 80 \quad \div 20 \quad \quad \quad \quad \quad \quad 6000 \]
 d) \[400 \div 8 \quad \quad \quad \quad \quad \quad 254 \times 2 \quad \times 4 \quad \quad \quad \quad \quad \quad 1900 \]

2. Fill in the missing numbers.
 a) \[3800 + 1500 = 2800 + \quad \quad \quad \quad \quad \quad 7200 - 3500 = 6200 - \]
 b) \[4700 + 2600 = 6700 + \quad \quad \quad \quad \quad \quad 8100 - 4700 = 9100 - \]
 c) \[1600 + 6900 = 2000 + \quad \quad \quad \quad \quad \quad 6400 - 2800 = 6000 - \]

3. Work out the rule for each diagram. Fill in the missing numbers.
 a) \[\text{Diagram A} \]
 b) \[\text{Diagram B} \]

4.
 a) \[\begin{array}{ccc} 9 & 4 & 7 \\ \times 3 \end{array} \quad \begin{array}{ccc} 1 & 1 & 8 & 6 \\ \times 8 \end{array} \quad \begin{array}{ccc} 2 & 0 & 6 & 1 \\ \times 5 \end{array} \quad \begin{array}{ccc} 1 & 8 & 0 & 4 \\ \times 1 & 0 \end{array} \]
 b) \[\begin{array}{cccc} 5 & 6 & 0 & 7 & 9 \\ 8 & 9 & 4 & 0 & 7 \end{array} \quad \begin{array}{cccc} 3 & 2 & 5 & 0 & 1 \\ 1 & 0 & 2 & 9 & 1 & 0 \end{array} \]
1. Measure the different distances 'as the crow flies' on the map. Calculate the real distances if they are 1000 times the map measurements. Complete the table.

<table>
<thead>
<tr>
<th>Journey</th>
<th>Distance on map</th>
<th>Real distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB ≈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC ≈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD ≈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC ≈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD ≈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD ≈</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Solve the problems in your exercise book.
 a) The sum of two terms is 8061. One term is 2354. What is the other term?
 b) The difference is 3425. The reductant is 8106. What is the subtrahend?
 c) The difference is 3425. The subtrahend is 8106. What is the reductant?
 d) The product is 8500. One factor is 4. What is the other factor?
 e) The quotient is 582 and the divisor is 6. What is the dividend?

3. Calculate the operations in a simpler way.
 a) \[1 \ 3 \ 4 \ 5 \]
 b) \[6500 - (710 + 710 + 710 + 710 + 710) = \]
 c) \[8400 \div 2 \div 2 = \]
 d) \[723 \times 3 \times 3 = \]
1. Fill in the missing numbers if:

 - means + 2400 and means – 300

2.

 a) i) ii) iii) iv)

 \[
 \begin{array}{c}
 3436 \\
 + 5342 \\
 \hline
 678 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 3705 \\
 + 4138 \\
 \hline
 716 \\
 \end{array}
 \]

 b) i) ii) iii) iv)

 \[
 \begin{array}{c}
 6528 \\
 - 2405 \\
 \hline
 4173 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 7059 \\
 - 4265 \\
 \hline
 2794 \\
 \end{array}
 \]

3. The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers.

 a) \[
 \begin{array}{c}
 3200 \\
 \hline
 3000 \\
 \hline
 650 \quad 840 \\
 \end{array}
 \]

 b) \[
 \begin{array}{c}
 3600 \\
 \hline
 3200 \\
 \hline
 810 \quad 1850 \\
 \end{array}
 \]

4.

 a) i) ii) iii) iv)

 \[
 \begin{array}{c}
 1195 \\
 \times 5 \\
 \hline
 5475 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 3018 \\
 \times 3 \\
 \hline
 9054 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 1251 \\
 \times 6 \\
 \hline
 7506 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 2168 \\
 \times 9 \\
 \hline
 19512 \\
 \end{array}
 \]

 b) i) ii) iii) iv)

 \[
 \begin{array}{c}
 48060 \\
 \hline
 44100 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 79726 \\
 \hline
 74808 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 6444 \\
 \hline
 6156 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 812864 \\
 \hline
 869280 \\
 \end{array}
 \]
1. The number in the middle is the sum of the 4 numbers around it. Fill in the missing numbers.

![Sum of numbers diagram]

2. Mr. Silly did his divisions like this. Try to understand Mr. Silly's reasoning.

 a) \(4136 \div 4 = 134 \)
 b) \(9751 \div 3 = 325 \)
 c) \(6375 \div 5 = 12075 \)

 Check whether he is correct by estimation. Write a \(\checkmark \) if correct and a \(\times \) if wrong. Circle where he has made a mistake and do the calculation again correctly.

 Corrections:

3. Which is more? How many more? Write the correct sign and the difference.

 a) \(697 \times 3 + 802 \times 8 \)
 b) \(268 \times 7 + 144 \times 9 \)
 c) \(2357 \times 6 - 469 \times 4 \)

4. Calculate the operations in the correct order.

 a) \(843 + 248 \times 9 = \)
 b) \(7548 - 1212 \div 6 = \)

 \((843 + 248) \times 9 = \)
 \((7548 - 1212) \div 6 = \)

 \(843 \times 9 + 248 = \)
 \(7548 \div 6 - 1212 = \)
1. Solve the problem in your exercise book. Write only the answer here.
When Adam and Barry stand on the scales the reading is 47 kg.
When Adam and Clara stand on the scales the reading is 42 kg.
When Barry and Clara stand on the scales the reading is 45 kg.
a) What would the reading on the scales be if all 3 children stood on them?

b) What does each child weigh?

2. Break down 640 into its lowest factors in two ways.

 a)

 b)

 Write a multiplication about it.

 640 = ...

3. Work out the rule for each diagram. Fill in the missing numbers.

 a)

 b)

 c)

4. Mr. Clean bought a washing machine for £521 and a spin drier for £278 less.
He gave the cashier £800 in cash. How much change was he given?
Make a plan, estimate, calculate, check and write the answer as a sentence.

a) Helen had £3600 in her bank account and George had £2900. Each of them earned another £1500. Who has more money now and how much more?

b) Uncle Jack had £5400 and Aunt Molly had £4500. They each spent £1700. Who has more money left and how much more?

Solve the problems.

a) Fred gathered 3456 kg of green apples, 9576 kg of red apples and 986 kg of plums from his orchard. How much fruit did Fred gather altogether?

b) There were 10482 litres of water in a tank. The farmer used 7856 litres of the water to spray his fields. How much water was left in the tank?

Solve the problems.

a) A box full of apples weighs 39 kg. How many kg of apples are there in 80 boxes if an empty box weighs 5 kg?

b) How much do 19 jars of honey cost if each jar costs 680 p?

c) If 8 metres of material cost 4800 p, how much will 2 metres cost?
1. This sketch shows a park surrounded by 4 streets. Sarah started at one corner and followed the railings all the way around the edge of the park back to where she started. How far did Sarah walk?

Scale: 1 mm → 5 m

2. This sketch shows a bicycle route through a wood. Estimate, then measure the length of the route on the sketch with the help of a strip of paper. Calculate the length of the route in real life.

Scale: 1 mm → 100 m

3. Make a plan, estimate, calculate, check and write the answer as a sentence.

a) Bubbletown has 6718 inhabitants, which is 2576 less than Sudsville has. If 1289 people moved from Sudsville to Bubbletown, which town would have more people and how many more?

b) How much do 8 metres of curtain material cost if 1 m costs 2400 p?

c) Steve spent 1 third of his savings, £6500, on a new car.
 i) How much money did Steve have originally?
 ii) How much money does he have left?

d) Helen bought 4 matchbox cars for each of her two brothers. She spent 2400 p altogether. How much was each car?
1

Underline the important data. Write a plan here. Do the calculation and check it in your exercise book. Write the answer as a sentence here.

a) To celebrate the 250th anniversary of a school, 1260 guests were invited to a reception but only 987 attended.

How many people did not attend?
\textbf{Plan:}
\textbf{Answer:}

b) In a primary school, 120 pupils went to at least one workshop on Monday and 80 pupils went to at least one workshop on Tuesday. Each pupil went to a workshop at least one.

How many pupils might go to this school?
\textbf{Plan:}
\textbf{Answer:}

c) Nine of the same type of machine were put on a weighbridge before being loaded on to a train. The reading on the scale was 8577 kg. The cost of the transport was £171.

What did each machine weigh?
\textbf{Plan:}
\textbf{Answer:}

Solve these problems in your exercise book.

a) Charlie bought 6 kg 720 g of apples. Linda bought 7 kg 150 g more than Charlie. What weight of apples did Linda buy?

b) After 5 m 44 cm was cut off a length of ribbon, 6315 mm was left. How long was the ribbon to begin with?

c) Alex cycled at the same speed for 7 minutes. How far did he travel if he covered 352 m every minute?

d) The valve on a tank was left open by mistake and 8 litres of water flowed out every second.

The tank was empty after 547 seconds but in the final second only 2 litres of water flowed out. How much water was in the tank to begin with?

Is there enough data to answer the question? If there is, solve it.

a) Jenny was born on the 1st of May and weighed 3180 g. On the morning of the 25th of July she weighed 5 kg 615 g. How many days old was she on the 25th of July? How much weight had she put on since she was born?

b) They let out 2356 litres of water from a dam on Sunday. On Monday they let out 7105 litres. How much water did they let out during the 2 days? How many litres of water is still in the dam?
Make a plan, estimate, calculate, check and write the answer in your exercise book.

a) They put 3800 kg of meat into each of two vans. Then they put an extra 1600 kg of meat into one van and took out 500 kg of meat from the other. How much more meat did one van carry than the other van?

b) A lorry can carry, at most, 2100 kg of wood. How much wood could have been moved by the lorry after it has made 9 journeys?

c) In an orchard, 8706 kg of apples and 6954 kg of pears were picked. The apples were put into nets which could hold 8 kg each. The pears were packed into boxes which could hold 6 kg each. They filled 876 nets of apples and 876 boxes of pears. Which fruit did they have more of left over? How much more?

d) Leslie has saved £2856 and Ann has saved 6 times that amount. How much money does Ann have?

e) Emma has £3756 in her bank account, which is 6 times the amount that David has. How much money is in David's bank account?

f) This month, Paul has earned £2145, which is 1 seventh of the amount that he had in his bank account at the beginning of the month. How much did he have in his bank account at the beginning of the month?

g) Chris had saved £16 247. He spent 1 seventh of it on a holiday.
 i) How much money did he spend on his holiday?
 ii) How much money does he have left?

h) A motorcyclist covered 11 064 m in 8 minutes. A cyclist covered 2290 m in the same time. How much further did the motorcyclist travel than the cyclist?

Write T in the box if you think the statement is true and F if you think it is false.

a) 20 cl of sugar weighs the same as 20 cl of flour. F

b) 1 litre of water weighs the same as 1 litre of flour. F

c) 1 kg of salt takes up less space than 1 kg of sugar. F

d) 1 kg of flour weighs more than 1 kg of salt. T

e) A 10 cm cube made from wood takes up less space than a 10 cm cube made from marble. F
1 Do the calculations.
 a) 2 km 740 m + 3 km 38 m = ...
 b) 3 kg – 2 kg 860 g = ..
 c) 1 hour 25 minutes + 2 hours 45 minutes =
 d) 4 hours 5 minutes – 2 hours 20 minutes =
 e) (2 litres 450 ml) × 2 = ..
 f) (4 litres 50 ml) ÷ 3 = ..
 g) (2 hours 43 minutes) × 2 = ..
 h) (3 hours 18 minutes) ÷ 2 = ..

2 Fill in the missing signs. (> , <, =)
 a) 3060 □ 3006 b) 80 □ 8000 ÷ 10 c) 21 306 □ 21 406 – 100
 d) 476 × 2 □ 320 × 3 e) 32 178 □ 22 178 + 1001 f) 8.5 □ 9 – 1/2

3 Solve the problem in your exercise books.
 An open-air concert was attended by 2569 people. The organisers had sold 1360 adult tickets, 226 children’s tickets and the rest were sold to students.
 a) How many students could have attended the concert?
 b) If they actually sold 1100 student tickets, how many people were unable to get to the concert?

4 Fill in the missing numbers.
 a) 2000 + □ = 2050 b) 3000 + 400 + □ = 3480
 c) 886 – □ = 806 d) 4066 – □ = 2066
 e) 2000 + □ + 9 = 2849 f) 6271 – □ = 4385

5 Write the numbers as Roman numerals.
 a) 1305 b) 2020 c) 999 d) 652 e) 2001
 f) 2504 g) 1450 h) 1108 i) 586 j) 1263
A strip of paper is 1 unit long. What is the value of each shaded part?

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each rectangle is 1 unit. Colour the parts shown and compare them.

<table>
<thead>
<tr>
<th></th>
<th>a) (\frac{1}{2})</th>
<th>b) (\frac{1}{18})</th>
<th>c) (\frac{1}{5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The area of each rectangle is 1 unit. Colour the parts shown and compare them.

<table>
<thead>
<tr>
<th></th>
<th>a) (\frac{1}{6})</th>
<th>b) (\frac{1}{9})</th>
<th>c) (\frac{2}{6})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Each diagram is 1 unit. What part is not shaded?

a) ![Diagram A]

b) ![Diagram B]

c) ![Diagram C]

d) ![Diagram D]

Each shape is 1 unit. Colour the fractions shown and compare them.

a) \(\frac{1}{12}\)

\(\frac{1}{6}\)

\(\frac{1}{4}\)

\(\frac{1}{3}\)

b) \(\frac{1}{2}\)

\(\frac{1}{5}\)

\(\frac{1}{10}\)

\(\frac{1}{20}\)

Draw 1 unit if the diagram is the fraction of a unit shown.

a) \(\frac{1}{2}\)

\(2\) units

b) \(\frac{1}{3}\)

\(3\) units

c) \(\frac{1}{4}\)

d) \(\frac{2}{5}\)

e) \(2\) units

f) \(\frac{1}{3}\)

g) \(\frac{2}{4}\)

h) \(\frac{3}{2}\)

Write additions about the diagrams.

a) ![Addition A]

b) ![Addition B]

c) ![Addition C]

d) ![Addition D]

e) ![Addition E]
1. Each large square is 1 unit. What part of the unit is shaded? Is it more or less than 1 half, or equal to 1 half? Write the fraction and the missing sign.

a)

b)

c)

d)

e)

f)

2. Each shape is 1 unit. Colour the fraction shown above each unit.

a)

b)

c)

3. Join up each fraction to the matching point on the number line.

4.

\[
\begin{align*}
\frac{1}{2} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{5}{2} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{3}{10} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{8}{100} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{1}{5} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{1}{10} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{1}{100} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml} \\
\frac{70}{100} \text{ litre} &= \underline{\hspace{2cm}} \hspace{1cm} \text{ cl} = \underline{\hspace{2cm}} \hspace{1cm} \text{ ml}
\end{align*}
\]
1. Each hexagon is 1 unit. What part of the unit is shaded? Is it more or less than 2 thirds, or equal to 2 thirds? Write the fraction and the missing sign.

a)

\[
\begin{array}{c}
\text{Hexagon 1} \\
\text{2/3 shaded}
\end{array}
\]

b)

\[
\begin{array}{c}
\text{Hexagon 2} \\
\text{2/3 shaded}
\end{array}
\]

c)

\[
\begin{array}{c}
\text{Hexagon 3} \\
\text{2/3 shaded}
\end{array}
\]

d)

\[
\begin{array}{c}
\text{Hexagon 4} \\
\text{2/3 shaded}
\end{array}
\]

e)

\[
\begin{array}{c}
\text{Hexagon 5} \\
\text{2/3 shaded}
\end{array}
\]

f)

\[
\begin{array}{c}
\text{Hexagon 6} \\
\text{2/3 shaded}
\end{array}
\]

2. Write the fraction marked by each dot below the number line.

a)

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\]

b)

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\]

c)

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\]

d)

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\]

3. Each rectangle is 1 unit. Colour the fraction of the unit shown.

a) i) \(\frac{3}{4}\)

\[
\begin{array}{c}
\text{Rectangle 1} \\
\text{3/4 shaded}
\end{array}
\]

ii) \(\frac{4}{3}\)

\[
\begin{array}{c}
\text{Rectangle 2} \\
\text{4/3 shaded}
\end{array}
\]

b) i) \(\frac{5}{4}\)

\[
\begin{array}{c}
\text{Rectangle 3} \\
\text{5/4 shaded}
\end{array}
\]

ii) \(\frac{4}{5}\)

\[
\begin{array}{c}
\text{Rectangle 4} \\
\text{4/5 shaded}
\end{array}
\]

4. Change the quantities. Fill in the missing numbers.

a) \(\frac{1}{2}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{3}{2}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{1}{4}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{1}{10}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{3}{2}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{1}{10}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{3}{5}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

\(\frac{75}{100}\) kg = \[\text{]}\] g

\[
\begin{array}{c}
\text{kg} \\
\text{g}
\end{array}
\]

b) \(\frac{1}{2}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{3}{2}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{3}{5}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{1}{10}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{4}{10}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{3}{100}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{60}{100}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]

\(\frac{523}{1000}\) km = \[\text{]}\] m

\[
\begin{array}{c}
\text{km} \\
\text{m}
\end{array}
\]
1. Join up each fraction to the matching point on the number line.

\[
\begin{array}{cccccccc}
\frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{5}{6} & \frac{9}{6} & \frac{11}{2} & \frac{21}{6} & \frac{25}{6}
\end{array}
\]

2. Complete the fractions.

a) \(\frac{1}{2} = \square = \frac{4}{6} = \square = \frac{10}{100} = \square\)

b) \(\frac{1}{4} = \square = \frac{2}{20} = \square = \frac{25}{30} = \square\)

c) \(\frac{1}{3} = \square = \frac{2}{12} = \square = \frac{100}{30} = \square\)

3. Fill in the missing quantities.

a) 1 hour = \square minutes
b) \(\frac{1}{4}\) hour = \square minutes

c) 1\(\frac{1}{2}\) hours = \square minutes
d) \(\frac{1}{5}\) hour = \square minutes

e) \(2\frac{1}{4}\) minutes = \square seconds
f) \(\frac{3}{5}\) minute = \square seconds

g) \(1\frac{1}{6}\) minutes = \square seconds
h) \(\frac{1}{10}\) minute = \square seconds

4. Draw a shape using 9 unit squares which has a perimeter length:

a) as small as possible
b) as large as possible.