1. Calculate the real distances if 1 cm on the diagram means 62 m in real life.

 A B C D

 How far away does:
 a) Bob live from Alan 124 m.
 b) Carol live from Bob 186 m.
 c) David live from Carol 248 m.
 d) Carol live from Alan 310 m.
 e) David live from Bob 434 m.
 f) David live from Alan? 558 m.

2. In a dense forest there are some clearings. In which of the clearings could you hide from someone? Write a ✔ or a ✗ inside each one.

 a) ✗ b) ✗ c) ✔ d)

3. The two lines in each diagram are the diagonals of a quadrilateral. They are perpendicular to one another. Draw the quadrilaterals and measure their sides.

 a) b) c) d) e)

 (Approximate measurements)

4. How many faces, edges, and vertices does each solid have? What is its volume (in unit cubes)? What is its surface area (in unit squares)?

 a) b) c) d)

 faces: 6 edges: 12 vertices: 8 volume: 16 area: 40
 faces: 6 edges: 12 vertices: 8 volume: 8 area: 24
 faces: 9 edges: 21 vertices: 14 volume: 7 area: 24
 faces: 8 edges: 18 vertices: 12 volume: 6 area: 22
1. Draw over the sets of **parallel lines** in the same colour. Mark the **right angles**.

 ![Diagrams](image)

 Write C in the shapes which are **convex** and N in the shapes which are not convex.

2. In each diagram, one side of a polygon has been drawn.
 a) Complete the diagram to form a **triangle** which has:

 ![Diagrams](image)

 E.g:
 i) 1 right angle ii) 3 angles < a right angle iii) 1 angle > a right angle

 b) Complete the diagram to form a **quadrilateral** which has:

 ![Diagrams](image)

 E.g:
 i) 4 right angles ii) 2 right angles iii) no right angles

3. Colour the nets which could be folded to make a cube.

 ![Diagrams](image)

 a) b) c) d) e) f) g) h)

4. Complete these non-convex shapes so that they become **convex** shapes.

 ![Diagrams](image)

 E.g:
 a) b) c) d) e)
List the letters of the shapes for which each statement is true.

a) It has 2 sides which are equal in length. \[B, C, D, E, F, G, I, J, K \]
b) All its sides are equal. \[E, J, K \]
c) Its opposite sides are equal. \[B, E, I, J, K \]
d) It has a pair of perpendicular sides. \[A, C, E, G, H, I, K \]
e) It has a pair of parallel sides. \[B, E, F, H, I, J, K \]
f) It is symmetrical. \[C, D, E, F, I, J, K \]
g) There is a right angle at every vertex. \[E, I, K \]
h) Opposite sides are parallel to each other. \[B, E, I, J, K \]

List the statements in Question 1 which are true for all

a) rectangles \[all \ except \ b) \] b) squares \[all \ of \ them \]

Write the letters of the quadrilaterals in Question 1 in the correct set.

P: Opposite sides are parallel.

R: It has at least 1 right angle.

S: It has line symmetry.

C: It is convex.

a)

```markdown
<table>
<thead>
<tr>
<th>Quadrilaterals</th>
</tr>
</thead>
<tbody>
<tr>
<td>D F L</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>B J</td>
</tr>
</tbody>
</table>
```

b)

```markdown
<table>
<thead>
<tr>
<th>Quadrilaterals</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>S</td>
</tr>
</tbody>
</table>
```

Page 53
1. Draw over the parallel lines in the same colour. Mark the right angles.

2. We labelled the vertices of this pentagon with letters and marked the angles.

 At which vertex is there:
 a) a right angle? \[D \]
 b) an angle smaller than a right angle? \[A \text{ and } B \]
 c) an angle greater than a right angle? \[C \text{ and } E \]

3. Measure the sides of each rectangle. Calculate its perimeter and area.

 a) \[3 \text{ cm} \]
 b) \[2 \text{ cm} \]
 c) \[1 \text{ cm} \]

 \[A = 6 \text{ cm}^2 \]
 \[P = 10 \text{ cm} \]

 \[A = 4 \text{ cm}^2 \]
 \[P = 8 \text{ cm} \]

 \[A = 8 \frac{1}{2} \text{ cm}^2 \]
 \[P = 19 \text{ cm} \]

 \[A = 196 \text{ mm}^2 \]
 \[P = 56 \text{ mm} \]

 \[A = 625 \text{ mm}^2 \]
 \[P = 100 \text{ mm} \]

 \[A = 121 \text{ mm}^2 \]
 \[P = 44 \text{ mm} \]

4. The diagram shows the net of an open box drawn to a smaller scale.

 a) What shape was the box? cuboid
 b) How long were the edges of the box if 1 mm on the diagram means 1 cm in real life? Write them on the diagram.
 c) Draw the rectangle which is missing if the box had been covered.
The net for this box has been drawn to a smaller scale.

Measure the net, then calculate the real length, width and height of the box.

Real length = .40 cm . Real width = .30 cm . Real height = .20 cm .

The edges of a cuboid-shaped box are 4 cm, 3 cm and 2 cm.

One of its faces is missing, so it is an open box.

Which of the faces could be missing?

Draw nets in your exercise book to show each case.

E.g:

Practise calculation.

10 × 300 = 3000 0 × 1600 = 0 40 × 40 = 1600
90 × 30 = 2700 1500 ÷ 30 = 50 1970 ÷ 10 = 197
500 × 50 = 25 000 90 ÷ 2 = 45 100000 ÷ 200 = 500
300 × 80 = 24 000 1000 ÷ 5 = 200 1900 ÷ 1900 = 1
1000 × 11 = 11 000 660 ÷ 6 = 110 20000 ÷ 5000 = 4
1000 × 54 = 54 000 4900 ÷ 7 = 700 2000 ÷ 200 = 10
25 × 2000 = 50 000 8600 ÷ 200 = 43 2000 ÷ 500 = 4

Imagine this solid. Draw how it would look from three different views. Make a ground plan too.
1

Here is a grid with unit shapes labeled A to L. Units are marked as follows:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Write the area inside each shape and the length of the perimeter below.

2

a)
Draw shapes using 4 unit shapes.

b)
Draw shapes using 9 unit shapes.

i)

ii)

3

a)
Reflect the letter N in the given axis (mirror line).

b)
Stretch the letter N in the direction shown by the arrow.

See Lesson Plans for Year 4 at http://www.cimt.plymouth.ac.uk/projects/mepres/primary/default.htm
1. i) Complete the drawings of fish F on the other grids.
 ii) Colour the fish which is similar to fish F.

 a)
 b)
 c)
 d)

2. a) Draw over in the same colour the perimeters of similar shapes.
 b) Colour in the same colour the shapes which are congruent.

3. P = 16 units
 A = 24 triangles

 P = 32 units
 A = 96 triangles

 P = 8 units
 A = 6 triangles

 a) Enlarge the boat to twice its size.
 b) Reduce the boat to half its size.
 c) Count the perimeter of each boat.
 d) Count the area of each boat.
a) List the numbers of the houses which are **similar** to:

- House A: 2, 3, 9, 12
- House B: 1, 10, 11
- House C: 4, 7, 8
- House D: 5, 6

b) List the houses which are **congruent** to one another.

- A is congruent to 12; B is congruent to 11; D is congruent to 6

2

a) Write the perimeter and area of each shape using the units shown.

<table>
<thead>
<tr>
<th>Units</th>
<th>(P)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>36</td>
</tr>
</tbody>
</table>

- \(P \) = 10, 4
- \(A \) = 10, 4, 20, 16, 30

b) What have we done to each shape to make the next shape?

1. Rotation by 1 right angle
2. Enlargement \(\times 2 \)
3. Rotation by 1 right angle
4. Enlargement by 1 and a half

3

a) Draw over in **green** the sides of the regular pentagons in i) and ii).

b) Colour **blue** the 5-pointed star in iii).

c) How many triangles, quadrilaterals and pentagons can you see inside the solid lines in iv)?

- 10 triangles; 10 quadrilaterals; 6 pentagons

d) Try to make a pentagon from a strip of paper like this.
1. Write the real distances on the sections below each map scale.
 a) \[\begin{array}{c}
 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \\
 \hline
 1600 \text{ m} \\
 \hline
 5 \text{ km} \\
 \hline
 9 \text{ km}
 \end{array} \]
 b) \[\begin{array}{c}
 0 \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000 \\
 \hline
 160 \text{ m} \\
 \hline
 500 \text{ m} \\
 \hline
 900 \text{ m}
 \end{array} \]

2. Draw 2 parallel lines so that their distance apart is:
 a) 2 cm
 b) 2 and a half cm
 c) 35 mm

3. Which compass point would we reach if we:
 a) faced NW then turned 1 right angle to the right \ldots \text{NE} \ldots
 b) faced SE and turned 1 and a half right angles to the left \ldots \text{N} \ldots
 c) faced SW and turned 2 right angles to the right \ldots \text{NE} \ldots
 d) faced NE and turned half a right angle to the right? \ldots \text{E} \ldots

4. On each side of a cuboid-shaped box there is a different symbol.
 3 faces of the box look like this.
 The other 3 faces look like this.

 After cutting along some edges, we flattened out the box and got this net.

 Draw the other symbols on the correct faces.
1

a) **Enlarge** the house to twice its size.
 b) **Reduce** the house to half its size.

c) What is the area of:
 i) the original house
 ii) the enlarged house
 iii) the reduced house?

 33 unit squares
 132 unit squares
 8 and a quarter unit squares

2

a) **Reflect** the letter M in the given axis (mirror line).

b) **Stretch** the letter M in the direction shown by the arrows.

3

What is the area of a square which has 15 cm sides?

15 \times 15 = 225 \text{ (cm}^2)\)
Write a number in the box so that the statement is true.

a) \(27 \times 100 = 270 \times \boxed{10} \)

b) \(130 \times 100 = 13 \times \boxed{1000} \)

\(49 \times 100 = 4900 \times \boxed{1} \)

\(19 \times 1000 = 1900 \times \boxed{10} \)

\(60 \times 100 = 1000 \times \boxed{6} \)

\(160 \times 100 = 10 \times \boxed{1600} \)

\(34 \times 100 = 10 \times \boxed{340} \)

\(20 \times 1000 = 100 \times \boxed{200} \)

\(92 \times 100 = 920 \times \boxed{10} \)

\(17 \times 1000 = 170 \times \boxed{100} \)

Do the operations in the correct order. Be careful with the brackets!

a) \(700 + 300 \times 5 = 2200 \) \((700 + 300) \times 5 = 5000 \)

b) \(550 - 50 \times 9 = 100 \) \((550 - 50) \times 9 = 4500 \)

c) \(200 + 300 \times 40 = 12200 \) \((200 + 300) \times 40 = 20000 \)

d) \(470 - 70 \times 5 = 120 \) \((470 - 70) \times 5 = 2000 \)

Fill in the missing quotients. Note how the dividends, divisors and quotients change.

a) \(18 \div 6 = 3 \) \(180 \div 60 = 3 \) \(1800 \div 600 = 3 \)

\(180 \div 6 = 30 \) \(1800 \div 60 = 30 \) \(18000 \div 600 = 30 \)

\(1800 \div 6 = 300 \) \(18000 \div 600 = 30 \) \(18000 \div 6000 = 3 \)

b) \(20 \div 4 = 5 \) \(200 \div 40 = 5 \) \(2000 \div 400 = 5 \)

\(200 \div 4 = 50 \) \(2000 \div 40 = 50 \) \(20000 \div 400 = 50 \)

\(2000 \div 4 = 500 \) \(20000 \div 40 = 500 \) \(20000 \div 400 = 5 \)

Write how you estimate mentally, then do the multiplication. Compare the product with the estimated result.

\(2351 \times 6 = \)

\(E: \boxed{2400} \times 6 = \boxed{14400} \)

\(C: \boxed{2351} \times 6 = \boxed{14106} \)

\(1278 \times 7 = \)

\(E: \boxed{130} \times 7 = \boxed{9100} \)

\(C: \boxed{1278} \times 7 = \boxed{8946} \)

\(8654 \div 4 = 2163 \text{ r } 2 \)

Estimate, calculate then check the result in your exercise book.
1

Do the calculations in the correct order and compare the results.

a) \[180 \times 6 - 5 = 1075\] \[180 \times 5 - 6 = 894\] \[180 \times 6 - 5 \times 6 = 1050\] \[180 \times 5 - 6 \times 5 = 870\] \[180 \times 6 - 5 \times 6 = 1050\] \[180 - 6 \times 5 = 150\] \[180 \times (6 - 5) = 180\]

b) \[200 \times 4 + 5 = 805\] \[200 \times 5 + 4 = 1004\] \[200 \times 5 + 4 \times 5 = 1020\] \[200 \times 4 + 5 \times 4 = 820\] \[200 \times 4 + 5 	imes 4 = 820\] \[200 \times (4 + 5) = 1800\]

2

Do the calculations in the correct order and compare the results.

a) \[1600 \div 8 - 2 = 198\] \[1600 \div (8 - 2) = 266 \text{ r } 4\] \[1600 \div 2 - 8 = 792\] \[(1600 - 8) \div 2 = 796\] \[1600 - 8 \div 2 = 1596\] \[1600 \div 2 - 8 \div 2 = 796\]

b) \[1600 \div 8 \times 2 = 400\] \[1600 \div (8 \times 2) = 100\] \[1600 \div 2 \times 8 = 6400\] \[1600 \times 2 \div 8 = 400\] \[(1600 \div 8) \times 2 = 400\] \[1600 \times 8 \div 2 = 6400\] \[1600 \times (8 \div 2) = 6400\]

3

Solve the problems in your exercise book. Do not forget any steps!

a) If there are 7 kg of beans in each box, how many kg of beans are in 1205 boxes? There are 8435 kg of beans in 1205 boxes.

b) How many kg do 405 bricks weigh if each brick weighs 8 kg? 405 bricks would weigh 3240 kg.

4

\[E: \quad 5600 \div 7 = 800 \quad 6300 \div 7 = 900\]
So estimate is between 800 and 900.

Check:

\[
\begin{array}{cccc}
8 & 7 & 5 \\
\times & 7 \\
6 & 1 & 2 & 5 \\
\end{array}
\]

\[
\begin{array}{cccc}
6 & 1 & 2 & 9 \\
\end{array}
\]
Write a plan, calculate and check the result in your exercise book. Write the answer as a sentence below.

a) Workmen are laying square floor tiles on the kitchen floor. They can fit 14 tiles along one side of the kitchen and 30 tiles along the adjoining side. How many tiles are needed to cover the floor?
 \[\text{Answer: 420 tiles are needed to cover the floor.} \]

b) Donna has 130 buttons and Liz has 4 times more. How many buttons does Liz have?
 \[\text{Answer: Liz has 520 buttons.} \]

c) How much honey did the owner of the beehive collect if he stored 160 kg, which was 1 sixth of the honey, for feeding the bees during the winter?
 \[\text{Answer: The owner collected 960 kg of honey.} \]

Write your plan here. Do the calculation and check the result in your exercise book. Write the answer as a sentence here.

a) Fred's age is 1 fifth of the age of his grandmother. How old is Fred if his grandmother is 65 years old? \[\text{Plan: 65 years ÷ 5} \]
 \[\text{Answer: Fred is 13 years old.} \]

b) Bella has £720, which is 8 times as much as Paula has. How much does Paula have? \[\text{Plan: £720 ÷ 8} \]
 \[\text{Answer: Paula has £90.} \]

c) The farmer's wife packed 480 eggs into boxes which could hold 6 eggs. How many boxes did she need? \[\text{Plan: 480 eggs ÷ 6 eggs} \]
 \[\text{Answer: She needed 80 boxes.} \]

d) Diana left the country 210 days ago. How many weeks have gone by since then? \[\text{Plan: 210 days ÷ 7 days} \]
 \[\text{Answer: 30 weeks have gone by.} \]

Sam Snail was invited to his friend's house, which is 804 m from Sam's house. Sam left home at 8 am. He arrived not before 11 am but not after 12 noon.

a) What is the least number of metres that Sam could have gone every hour?
 \[\text{The least number of metres that Sam could have gone every hour is 201 m.} \]

b) What is the most number of metres that Sam could have gone every hour?
 \[\text{The most number of metres Sam could have gone every hour is 268 m.} \]
1. Estimate in your head first, then do the multiplication.

 a)
 \[
 \begin{array}{ccc}
 \text{8} & \text{9} & \text{7} \\
 \times & \text{6} \\
 \hline
 \text{5} & \text{3} & \text{8} & \text{2}
 \end{array}
 \quad \begin{array}{ccc}
 \text{5} & \text{0} & \text{7} \\
 \times & \text{9} \\
 \hline
 \text{4} & \text{5} & \text{6} & \text{3}
 \end{array}
 \quad \begin{array}{ccc}
 \text{5} & \text{1} & \text{6} \\
 \times & \text{8} \\
 \hline
 \text{4} & \text{1} & \text{2} & \text{8}
 \end{array}
 \quad \begin{array}{ccc}
 \text{4} & \text{7} & \text{6} \\
 \times & \text{7} \\
 \hline
 \text{3} & \text{3} & \text{3} & \text{2}
 \end{array}
 \]

 b)
 \[
 \begin{array}{ccc}
 \text{3} & \text{1} & \text{0} & \text{6} \\
 \times & \text{3} \\
 \hline
 \text{9} & \text{3} & \text{1} & \text{8}
 \end{array}
 \quad \begin{array}{ccc}
 \text{4} & \text{0} & \text{5} & \text{7} \\
 \times & \text{2} \\
 \hline
 \text{8} & \text{1} & \text{1} & \text{4}
 \end{array}
 \quad \begin{array}{ccc}
 \text{1} & \text{3} & \text{5} & \text{6} \\
 \times & \text{7} \\
 \hline
 \text{9} & \text{4} & \text{9} & \text{2}
 \end{array}
 \quad \begin{array}{ccc}
 \text{5} & \text{6} & \text{3} & \text{4} \\
 \times & \text{5} \\
 \hline
 \text{2} & \text{8} & \text{1} & \text{7} & \text{0}
 \end{array}
 \]

2. Estimate in your head first, then do the division. Check your result.

 a)
 \[
 \begin{array}{c}
 \text{2} & \text{2} & \text{6} \\
 \hline
 \text{3} & \text{6} & \text{7} & \text{8} \\
 \hline
 \text{6} & \text{3} & \text{7} & \text{2}
 \end{array}
 \quad \begin{array}{c}
 \text{1} & \text{5} & \text{7} & \text{r} 1 \\
 \hline
 \text{3} & \text{4} & \text{7} & \text{2} \\
 \hline
 \text{3} & \text{8} & \text{5} & \text{6} \quad \text{r} 4
 \end{array}
 \quad \begin{array}{c}
 \text{6} & \text{4} & \text{2} \\
 \hline
 \text{3} & \text{8} & \text{5} & \text{6}
 \end{array}
 \]

 Checks:
 \[226 \times 3 = 678\]
 \[1157 \times 3 + 1 = 3472\]
 \[642 \times 6 + 4 = 3856\]

 b)
 \[
 \begin{array}{c}
 \text{9} & \text{9} & \text{r} 2 \\
 \hline
 \text{5} & \text{4} & \text{9} & \text{7} \\
 \hline
 \text{4} & \text{5}
 \end{array}
 \quad \begin{array}{c}
 \text{8} & \text{6} \\
 \hline
 \text{7} & \text{6} & \text{0} & \text{2} \\
 \hline
 \text{5} & \text{7} & \text{r} 4
 \end{array}
 \quad \begin{array}{c}
 \text{5} & \text{7} & \text{6} \\
 \hline
 \text{4} & \text{0} & \text{3} & \text{6}
 \end{array}
 \]

 Checks:
 \[99 \times 5 + 2 = 497\]
 \[86 \times 7 = 602\]
 \[576 \times 7 + 4 = 4036\]

3. Write the operation here. Estimate in your head, then do the calculation in your exercise book. Write the result again here.

 a) What is four times as much as three times 675? \(675 \times 3 \times 4 = 8100\)

 b) What is nine times as much as twice 591? \(591 \times 2 \times 9 = 10638\)

 c) What is half of 1 fifth of 3720? \(3720 \div 5 \div 2 = 372\)
1. Fill in the missing quotients. Note how the dividends, divisors and quotients change.
 a) \(21 \div 7 = 3\) \(210 \div 70 = 3\) \(2100 \div 700 = 3\)
 \(210 \div 7 = 30\) \(2100 \div 70 = 30\) \(21 000 \div 7000 = 30\)
 \(2100 \div 7 = 300\) \(21 000 \div 70 = 300\) \(21 000 \div 7000 = 3\)
 b) \(20 \div 5 = 4\) \(200 \div 50 = 4\) \(2000 \div 500 = 4\)
 \(200 \div 5 = 40\) \(2000 \div 50 = 40\) \(20 000 \div 5000 = 40\)
 \(2000 \div 5 = 400\) \(20 000 \div 50 = 400\) \(20 000 \div 5000 = 4\)

2. Join up the equal numbers.
 \[28 \times 100 \quad 208 \times 100 \quad 36 \,000 \div 10 \]
 \[2080 \times 10 \quad 428 \times 10 \quad 280 \times 10 \]
 \[428 \times 100 \quad 470 \times 10 \quad 47 \times 10 \]
 \[360 \times 10 \quad 2080 \times 10 \quad 208 \times 10 \]

3. Every day in a school there are 7 lessons, each of which lasts for 45 minutes.
 a) How many minutes each day are pupils in lessons? \[315 \text{ minutes} \ldots . . . \]
 b) How many minutes in a week are pupils in lessons? \[1575 \text{ minutes} \ldots . . . \]
 c) How many minutes in 12 weeks are pupils in lessons? \[18900 \text{ minutes} \ldots . . . \]

 a) What is the distance between 75 telegraph poles, set 53 metres apart?
 The distance is 3922 m.
 b) Three sons were left £10 000 in their father's will. The eldest was left £100 more than each of the other two sons.
 How much money did each of the sons receive?
 The eldest received £3400. The other two sons received £3300 each.

5. Write a number in each box to make the statement true.
 a) \(13 \times 1000 = 130 \times \boxed{100}\) \(2500 \times 10 = 100 \times \boxed{250}\)
 b) \(560 \times 10 = 2300 + \boxed{3300}\) \(29 \times 100 = 3000 - \boxed{100}\)
 \(40 \times 100 = 1000 \times \boxed{4}\) \(17 \,000 \div 100 = 10 \times \boxed{17}\)
1. Fill in the missing numbers and signs.

 a) \[45 + 37 \quad -70 \quad 82 \quad + \quad 320 \quad +127 \quad 332 \quad +32 \quad 459 \quad - \quad 491 \]

 b) \[5093 - 410 \quad +77 \quad 4683 \quad +1050 \quad 5810 \quad -2205 \quad 3605 \quad -4395 \quad 8000 \]

 c) \[75 \div 3 \quad \times4 \quad 25 \quad \times80 \quad 100 \quad \times8000 \quad \div20 \quad 400 \quad \times15 \quad 6000 \]

 d) \[400 \div8 \quad +204 \quad 50 \quad \times2 \quad 254 \quad \times4 \quad 508 \quad \times4 \quad 2032 \quad -132 \quad 1900 \]

2. Fill in the missing numbers.

 a) \[3800 + 1500 = 2800 + \quad 2500 \]

 b) \[7200 - 3500 = 6200 - \quad 2500 \]

 c) \[4700 + 2600 = 6700 + \quad 600 \]

 d) \[8100 - 4700 = 9100 - \quad 5700 \]

 e) \[1600 + 6900 = 2000 + \quad 6500 \]

 f) \[6400 - 2800 = 6000 - \quad 2400 \]

3. Work out the rule for each diagram. Fill in the missing numbers.

 a)

 b)

4.

 a)

 b)

Page 66
Measure the different distances 'as the crow flies' on the map.
Calculate the **real** distances if they are 1000 times the map measurements.

Complete the table.

<table>
<thead>
<tr>
<th>Journey</th>
<th>Distance on map</th>
<th>Real distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB ≈</td>
<td>16 mm</td>
<td>16 m</td>
</tr>
<tr>
<td>AC ≈</td>
<td>50 mm</td>
<td>50 m</td>
</tr>
<tr>
<td>AD ≈</td>
<td>63 mm</td>
<td>63 m</td>
</tr>
<tr>
<td>BC ≈</td>
<td>32 mm</td>
<td>32 m</td>
</tr>
<tr>
<td>BD ≈</td>
<td>47 mm</td>
<td>47 m</td>
</tr>
<tr>
<td>CD ≈</td>
<td>10 mm</td>
<td>10 m</td>
</tr>
</tbody>
</table>

Solve the problems in your exercise book.

a) The sum of two terms is 8061. One term is 2354.
What is the other term?
\[8061 - 2354 = 5707 \]

b) The difference is 3425. The reductant is 8106.
What is the subtrahend? \[8106 - 3425 = 4681 \]

c) The difference is 3425. The subtrahend is 8106.
What is the reductant? \[8106 + 3425 = 11531 \]

d) The product is 8500. One factor is 4.
What is the other factor? \[8500 \div 4 = 2125 \]

e) The quotient is 582 and the divisor is 6.
What is the dividend? \[582 \times 6 = 3492 \]

Calculate the operations in a simpler way.

a) \[\begin{array}{c}
1 \ 3 \ 4 \ 5 \\
1 \ 3 \ 4 \ 5 \\
1 \ 3 \ 4 \ 5 \\
1 \ 3 \ 4 \ 5 \\
1 \ 3 \ 4 \ 5 \\
+1 \ 3 \ 4 \ 5 \\
\end{array} \]

b) \[6500 - (710 + 710 + 710 + 710 + 710) = 6500 - (710 \times 5) = 2950 \]

c) \[8400 \div 2 \div 2 = 8400 \div 8 = 1050 \]

d) \[723 \times 3 \times 3 = 723 \times 9 = 6507 \]

\[1345 \times 8 = 10760 \]
1. Fill in the missing numbers if:

- means $+2400$ and $-$ means -300

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>4600</td>
<td>6700</td>
<td>8800</td>
</tr>
<tr>
<td>2200</td>
<td>4300</td>
<td>6400</td>
<td>8500</td>
</tr>
</tbody>
</table>

2. a) i) $3436 + 5342 = 8778$
 ii) $5678 + 4281 = 9959$
 iii) $3705 + 4138 = 7843$
 iv) $3716 + 8395 = 12111$

 b) i) $6528 - 2405 = 4123$
 ii) $4173 - 1046 = 3127$
 iii) $7059 - 4265 = 2794$
 iv) $12345 - 3429 = 8916$

3. The sum of any two adjacent numbers is the number directly above them.

Fill in the missing numbers.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5990</td>
<td>2790</td>
<td>3200</td>
<td>2790</td>
</tr>
<tr>
<td>650</td>
<td>3200</td>
<td>490</td>
<td>3200</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8040</td>
<td>3600</td>
<td>4440</td>
<td>3600</td>
</tr>
<tr>
<td>650</td>
<td>3200</td>
<td>490</td>
<td>3200</td>
</tr>
</tbody>
</table>

4. a) i) $11975 \times 5 = 5975$
 ii) $3018 \times 3 = 9054$
 iii) $1251 \times 6 = 7506$
 iv) $2168 \times 9 = 19512$

 b) i) $2015 - 8 = 1907$
 ii) $1389 - 7 = 1382$
 iii) $740 - 4 = 736$
 iv) $1608 - 8 = 1536$
1. The number in the middle is the sum of the 4 numbers around it. Fill in the missing numbers.

![Diagram with numbers 3900, 3200, 8400, 800, 500, 1000, 7100, 2000, 900, 11800, 2100, 1700.]

2. Mr. Silly did his divisions like this. Try to understand Mr. Silly's reasoning.

 a) \(4136 \div 4 = 1034\)
 \(013\)
 \(16\)
 0 left out

 b) \(9751 \div 3 = 3250\)
 \(07\)
 \(15\)
 \(01\)
 0 left out; remainder 1 left out

 c) \(6375 \div 5 = 12075\)
 \(13\)
 \(37\)
 \(25\)
 0

 Check whether he is correct by estimation. Write a √ if correct and a × if wrong. Circle where he has made a mistake and do the calculation again correctly.

 Corrections:
 a) \(4000 \div 4 = 1000\)
 b) \(9000 \div 3 = 3000\)
 c) \(6000 \div 5 = 1200\)

 \(4136 \div 4 = 1034\)
 \(9751 \div 3 = 3250\)
 \(6375 \div 5 = 1275\)

3. Which is more? How many more? Write the correct sign and the difference.

 a) \(697 \times 3 + 802 \times 8\) > \(697 \times 8 - 802 \times 3\)

 \(5337\)

 b) \(268 \times 7 + 144 \times 9\) > \(268 \times 9 - 144 \times 7\)

 \(1768\)

 c) \(2357 \times 6 - 469 \times 4\) > \(2357 \times 4 + 469 \times 6\)

 \(24\)

4. Calculate the operations in the correct order.

 a) \(843 + 248 \times 9 = 3075\)

 \((843 + 248) \times 9 = 9819\)

 b) \(7548 - 1212 \div 6 = 7346\)

 \((7548 - 1212) \div 6 = 1056\)

 \(843 \times 9 + 248 = 7835\)

 \(7548 \div 6 - 1212 = 46\)
1

Solve the problem in your exercise book. Write only the answer here.

When Adam and Barry stand on the scales the reading is 47 kg.
When Adam and Clara stand on the scales the reading is 42 kg.
When Barry and Clara stand on the scales the reading is 45 kg.

a) What would the reading on the scales be if all 3 children stood on them?
The reading on the scales would be 67 kg.

b) What does each child weigh?
Adam weighs 22 kg, Barry weighs 25 kg and Clara weighs 20 kg.

2

Break down 640 into its lowest factors in two ways.

a)
\[
\begin{array}{c}
640 \\
\times 2 \\
\times 5 \\
\times 4 \\
\times 2 \\
\times 2 \\
\times 2 \\
320 \\
\times 10 \\
\times 2 \\
\times 8 \\
\times 4 \\
\times 2 \\
\times 2 \\
\times 2 \\
10 \\
\times 5 \\
\times 4 \\
\times 2 \\
\times 2 \\
\times 2 \\
32 \\
\times 2 \\
\times 2 \\
\times 2 \\
8 \\
\times 2 \\
\times 2 \\
\times 2 \\
4 \\
\times 2 \\
\times 2 \\
\times 2 \\
1 \\
\end{array}
\]

b)
\[
\begin{array}{c}
640 \\
\times 10 \\
\times 2 \\
\times 8 \\
\times 4 \\
\times 2 \\
\times 2 \\
\times 2 \\
64 \\
\times 2 \\
\times 2 \\
\times 2 \\
8 \\
\times 2 \\
\times 2 \\
\times 2 \\
8 \\
\times 2 \\
\times 2 \\
\times 2 \\
2 \\
\end{array}
\]

Write a multiplication about it.

\[640 = 2 \times 5\]

3

Work out the rule for each diagram. Fill in the missing numbers.

a)

Rules:
Outer \times centre = inner

b)

Outer \div inner = centre (or = 9)

Centre (or ?) \times inner = outer

4

Mr. Clean bought a washing machine for £521 and a spin drier for £278 less. He gave the cashier £800 in cash. How much change was he given? £36
Make a plan, estimate, calculate, check and write the answer as a sentence.

a) Helen had £3600 in her bank account and George had £2900. Each of them earned another £1500. Who has more money now and how much more?

 Plan: Each now has £1500 more than they had at the start.

 C: 3600 – 2900 = 700

 Answer: Helen still has £700 more than George.

b) Uncle Jack had £5400 and Aunt Molly had £4500. They each spent £1700. Who has more money left and how much more?

 Plan: Each now has £1700 less than they had at the start.

 C: 5400 – 4500 = 900

 Answer: Uncle Jack still has £900 more left than Aunt Molly.

Solve the problems.

a) Fred gathered 3456 kg of green apples, 9576 kg of red apples and 986 kg of plums from his orchard. How much fruit did Fred gather altogether?

 Plan: 3456 kg + 9576 kg + 986 kg

 E: 3000 + 10000 + 1000 = 14000

 C: 3456 + 9576 + 986 = 14018

 Answer: Fred gathered 14018 kg of fruit altogether.

b) There were 10482 litres of water in a tank. The farmer used 7856 litres of the water to spray his fields. How much water was left in the tank?

 Plan: 10482 litres – 7856 litres

 E: 10000 – 8000 = 2000

 C: 10482 – 7856 = 2626

 Answer: There were 2626 litres of water left in the tank.

Solve the problems.

a) A box full of apples weighs 39 kg. How many kg of apples are there in 80 boxes if an empty box weighs 5 kg?

 Apples in 1 box: 39 kg – 5 kg = 34 kg

 Apples in 80 boxes: 34 kg x 80 = 2720 kg

 Answer: There are 2720 kg of apples in 80 boxes.

b) How much do 19 jars of honey cost if each jar costs 680 p?

 Plan: 680 x 19

 C: 680 x 19 = 12920 p = £129.20

 Answer: 19 jars of honey cost £129.20.

c) If 8 metres of material cost 4800 p, how much will 2 metres cost?

 1 m: 4800 p ÷ 8 = 600 p

 2 m: 600 p x 2 = 1200 p = £12

 Answer: 2 metres of material will cost £12.
This sketch shows a park surrounded by 4 streets.

Sarah started at one corner and followed the railings all the way around the edge of the park back to where she started.

How far did Sarah walk?

\[
P: (115 \text{ m} + 190 \text{ m}) \times 2 = 610 \text{ m}
\]

Answer: Sarah walked 610 m.

This sketch shows a bicycle route through a wood.

Estimate, then measure the length of the route on the sketch with the help of a strip of paper.

Calculate the length of the route in real life.

\[
E: 130 \text{ mm} \\
M: 128 \text{ mm} \\
C: 128 \text{ m} \times 100 = 12800 \text{ m} (\text{approximately}) = 12 \text{ km} 800 \text{ m}
\]

The actual length of the rope is 12 km 800 m (approximately).

Make a plan, estimate, calculate, check and write the answer as a sentence.

a) *Bubbletown* has 6718 inhabitants, which is 2576 less than *Sudsville* has.
 If 1289 people moved from *Sudsville* to *Bubbletown*, which town would have more people and how many more?

\[
\begin{align*}
B: \text{Now has } & 6718 \\
S: \text{Now has } & 6718 + 2576 = 9294 \\
\text{would have } & 6718 + 1289 = 8007 \\
\text{would have } & 9294 - 1289 = 8005
\end{align*}
\]

Bubbletown would have 2 more people than *Sudville*.

b) How much do 8 metres of curtain material cost if 1 m costs 2400 p?

\[
1 \text{ m costs } 2400 \text{ p} \quad \frac{2}{4} \quad \frac{0}{0} \times 8 \quad \frac{1}{9} \quad \frac{2}{0} \quad \frac{0}{0}
\]

8 m of curtain material costs $2400 \times 8 = 19200 \text{ p} = £192

\[= £192\]

c) Steve spent 1 third of his savings, £6500, on a new car.

i) How much money did Steve have originally?

\[
\begin{align*}
\text{Spent: } & 1 \text{ third } \rightarrow £6500 \\
\text{Had originally: } & 3 \text{ thirds } \rightarrow £6500 \times 3 = £19500
\end{align*}
\]

ii) How much money does he have left?

\[
\begin{align*}
\text{Had left: } & 2 \text{ thirds } \rightarrow £6500 \times 2 = £13000
\end{align*}
\]

Steve had £19500 originally and has £13000 left.

d) Helen bought 4 matchbox cars for each of her two brothers. She spent 2400 p altogether. How much was each car?

\[
\begin{align*}
\text{Bought: } & 4 \text{ cars } \times 2 = 8 \text{ cars} \\
\text{Spent: } & 2400 \text{ p} = £24 \\
8 \text{ cars cost } & £24 \\
1 \text{ car cost } & £24 \div 8 = £3 \\
\text{Each car cost } & £3
\end{align*}
\]
Underline the important data. Write a plan here. Do the calculation and check it in your exercise book. Write the answer as a sentence here.

a) To celebrate the 250th anniversary of a school, 1260 guests were invited to a reception but only 987 attended.
How many people did not attend? \(\text{Plan: } 1260 - 987\).
\(\text{Answer: } 273 \text{ people did not attend.}\)

b) In a primary school, 120 pupils went to at least one workshop on Monday and 80 pupils went to at least one workshop on Tuesday. Each pupil went to a workshop at least once.
How many pupils might go to this school? \(\text{Plan: } \text{Least no. pupils } = 120\) \
\(\text{Greatest no. } = 120 + 80\).
\(\text{Answer: } \text{The number of pupils who go to this school is equal to or more than 120 and less than or equal to 200.}\)

c) Nine of the same type of machine were put on a weighbridge before being loaded on to a train. The reading on the scale was 8577 kg. The cost of the transport was £171.
What did each machine weigh? \(\text{Plan: } 8577 \div 9\).
\(\text{Answer: } \text{Each machine weighed 953 kg.}\)

Solve these problems in your exercise book.

a) Charlie bought 6 kg 720 g of apples. Linda bought 7 kg 150 g more than Charlie. What weight of apples did Linda buy?
\(\text{Linda bought } 13 \text{ kg 870 g of apples.}\)

b) After 5 m 44 cm was cut off a length of ribbon, 6315 mm was left. How long was the ribbon to begin with?
\(\text{The length of the ribbon was 11 m 75 cm 5 mm.}\)

c) Alex cycled at the same speed for 7 minutes. How far did he travel if he covered 352 m every minute?
\(\text{Alex travelled } 2 \text{ km 464 m.}\)

d) The valve on a tank was left open by mistake and 8 litres of water flowed out every second. The tank was empty after 547 seconds but in the final second only 2 litres of water flowed out. How much water was in the tank to begin with?
\(\text{There were } 4370 \text{ litres in the tank to begin with.}\)

Is there enough data to answer the question? If there is, solve it.

a) Jenny was born on the 1st of May and weighed 3180 g.
On the morning of the 25th of July she weighed 5 kg 615 g.
How many days old was she on the 25th of July? \(\checkmark\)
How much weight had she put on since she was born? \(\checkmark\)
\(\text{On 25th July Jenny was 86 days old. She had put on } 2 \text{ kg 435 g.}\)

b) They let out 2356 litres of water from a dam on Sunday. On Monday they let out 7105 litres. How much water did they let out during the 2 days? \(\checkmark\)
How many litres of water are still in the dam? \(\times\) Not enough information to solve second problems.

During the 2 days they let out 9461 litres of water.
Make a plan, estimate, calculate, check and write the answer in your exercise book.

a) They put 3800 kg of meat into each of two vans. Then they put an extra 1600 kg of meat into one van and took out 500 kg of meat from the other. How much more meat did one van carry than the other van?
 The first van carried 2100 kg more than the other.

b) A lorry can carry, at most, 2100 kg of wood. How much wood could have been moved by the lorry after it has made 9 journeys?
 The lorry could have moved 18900 kg of wood.

c) In an orchard, 8706 kg of apples and 6954 kg of pears were picked. The apples were put into nets which could hold 8 kg each. The pears were packed into boxes which could hold 6 kg each. They filled 876 nets of apples and 876 boxes of pears. Which fruit did they have more of left over? How much more?
 They had the same quantity of each fruit left over. (1698 kg)

d) Leslie has saved £2856 and Ann has saved 6 times that amount. How much money does Ann have?
 Ann has £17136.

e) Emma has £3756 in her bank account, which is 6 times the amount that David has. How much money is in David's bank account?
 David has £626 in his bank account.

f) This month, Paul has earned £2145, which is 1 seventh of the amount that he had in his bank account at the beginning of the month. How much did he have in his bank account at the beginning of the month?
 Paul had £15015 in his bank account at the beginning of the month.

g) Chris had saved £16 247. He spent 1 seventh of it on a holiday.
 i) How much money did he spend on his holiday? Chris spent £2321.
 ii) How much money does he have left? Chris has £13926 left.

h) A motorcyclist covered 11 064 m in 8 minutes. A cyclist covered 2290 m in the same time. How much further did the motorcyclist travel than the cyclist?
 The motorcyclist travelled 8 km 774 m further.

Write T in the box if you think the statement is true and F if you think it is false.

a) 20 cl of sugar weighs the same as 20 cl of flour.
 F

b) 1 litre of water weighs the same as 1 litre of flour.
 F

c) 1 kg of salt takes up less space than 1 kg of sugar.
 T

d) 1 kg of flour weighs more than 1 kg of salt.
 F

e) A 10 cm cube made from wood takes up less space than a 10 cm cube made from marble.
 F
Do the calculations.

a) \(2 \text{ km} \ 740 \text{ m} + 3 \text{ km} \ 38 \text{ m} = .5 \text{ km} \ 778 \text{ m}\)

b) \(3 \text{ kg} - 2 \text{ kg} \ 860 \text{ g} = .140 \text{ g}\)

c) \(1 \text{ hour} \ 25 \text{ minutes} + 2 \text{ hours} \ 45 \text{ minutes} = .4 \text{ hours} \ 10 \text{ minutes}\)

d) \(4 \text{ hours} \ 5 \text{ minutes} - 2 \text{ hours} \ 20 \text{ minutes} = .1 \text{ hour} \ 45 \text{ minutes}\)

e) \((2 \text{ litres} \ 450 \text{ ml}) \times 2 = .4 \text{ litres} \ 900 \text{ ml}\)

f) \((4 \text{ litres} \ 50 \text{ ml}) \div 3 = .1 \text{ litre} \ 350 \text{ ml}\)

g) \((2 \text{ hours} \ 43 \text{ minutes}) \times 2 = .5 \text{ hours} \ 26 \text{ minutes}\)

h) \((3 \text{ hours} \ 18 \text{ minutes}) \div 2 = .1 \text{ hour} \ 39 \text{ minutes}\)

Fill in the missing signs. (>, <, =)

a) \(3060 > 3006\) b) \(80 < 8000 \div 10\) c) \(21 \ 306 = 21 \ 406 - 100\)

d) \(476 \times 2 < 320 \times 3\) e) \(32 \ 178 > 22 \ 178 + 1001\) f) \(8.5 = 9 - \frac{1}{2}\)

An open-air concert was attended by 2569 people. The organisers had sold 1360 adult tickets, 226 children's tickets and the rest were sold to students.

a) How many students could have attended the concert?

983 students could have attended the concert.

b) If they actually sold 1100 student tickets, how many people were unable to get to the concert?

117 people were unable to attend the concert.

Fill in the missing numbers.

a) \(2000 + 50 = 2050\) b) \(3000 + 400 + 80 = 3480\)

c) \(886 - 80 = 806\) d) \(4066 - 2000 = 2066\)

e) \(2000 + 840 + 9 = 2849\) f) \(6271 - 1886 = 4385\)

Write the numbers as Roman numerals.

a) \(1305\) b) \(2020\) c) \(999\) d) \(652\) e) \(2001\)

\(\text{MCCCV} \quad \text{MMXX} \quad \text{CMXCIX} \quad \text{DCLII} \quad \text{MMI}\)

f) \(2504\) g) \(1450\) h) \(1108\) i) \(586\) j) \(1263\)

\(\text{MMDIV} \quad \text{MCDL} \quad \text{MCVIII} \quad \text{DLXXXVI} \quad \text{MCCLXIII}\)
1
A strip of paper is 1 unit long. What is the value of each shaded part?

<table>
<thead>
<tr>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 unit
- 1 twelfth
- 1 sixth
- 1 quarter
- 1 third
- 1 half

2
Each rectangle is 1 unit. Colour the parts shown and compare them.

E.g.:

- a) \(\frac{1}{2}\) > \(\frac{1}{3}\) > \(\frac{1}{4}\) > \(\frac{1}{6}\)
- b) \(\frac{1}{18}\) < \(\frac{1}{9}\) < \(\frac{1}{6}\) < \(\frac{1}{3}\)
- c) \(\frac{1}{5}\) > \(\frac{1}{10}\) > \(\frac{1}{15}\) > \(\frac{1}{30}\)

3
The area of each rectangle is 1 unit. Colour the parts shown and compare them.

E.g.:

- a) \(\frac{1}{6}\) < \(\frac{2}{6}\) < \(\frac{3}{6}\) < \(\frac{4}{6}\)
- b) \(\frac{1}{9}\) < \(\frac{2}{9}\) < \(\frac{3}{9}\) < \(\frac{4}{9}\)
- c) \(\frac{4}{4}\) > \(\frac{3}{4}\) > \(\frac{2}{4}\) > \(\frac{1}{4}\)
- d) \(\frac{8}{8}\) > \(\frac{6}{8}\) > \(\frac{4}{8}\) > \(\frac{2}{8}\)
1. Each diagram is 1 unit. What part is not shaded?
 a) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{a_diagram}
 \\
 \frac{5}{8}
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{b_diagram}
 \\
 \frac{2}{4} \left(= \frac{1}{2}\right)
 \end{array}
 \]
 c) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{c_diagram}
 \\
 \frac{6}{10} \left(= \frac{3}{5}\right)
 \end{array}
 \]
 d) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{d_diagram}
 \\
 \frac{5}{10} \left(= \frac{1}{2}\right)
 \end{array}
 \]

2. Each shape is 1 unit. Colour the fractions shown and compare them.
 E.g:
 a) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{a_shape}
 \\
 \frac{1}{12}
 \end{array}
 \] \[<\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{b_shape}
 \\
 \frac{1}{6}
 \end{array}
 \] \[<\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{c_shape}
 \\
 \frac{1}{4}
 \end{array}
 \] \[<\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{d_shape}
 \\
 \frac{1}{3}
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{a_shape}
 \\
 \frac{1}{2}
 \end{array}
 \] \[>\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{b_shape}
 \\
 \frac{1}{5}
 \end{array}
 \] \[>\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{c_shape}
 \\
 \frac{1}{10}
 \end{array}
 \] \[>\]
 \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{d_shape}
 \\
 \frac{1}{20}
 \end{array}
 \]

3. Draw 1 unit if the diagram is the fraction of a unit shown.
 a) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{a_shape}
 \\
 \frac{1}{2}
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{b_shape}
 \\
 \frac{1}{3}
 \end{array}
 \]
 c) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{c_shape}
 \\
 \frac{1}{4}
 \end{array}
 \]
 d) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{d_shape}
 \\
 \frac{2}{3}
 \end{array}
 \]
 e) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{e_shape}
 \\
 \text{2 units}
 \end{array}
 \]
 f) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{f_shape}
 \\
 \text{3 units}
 \end{array}
 \]
 g) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{g_shape}
 \\
 \frac{2}{4}
 \end{array}
 \]
 h) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{h_shape}
 \\
 \frac{3}{2}
 \end{array}
 \]

4. Write additions about the diagrams.
 a) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{a_diagram_plus}
 \\
 \frac{1}{4} + \frac{1}{3} = \frac{2}{5} = 1
 \end{array}
 \]
 b) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{b_diagram_plus}
 \\
 \frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1
 \end{array}
 \]
 c) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{c_diagram_plus}
 \\
 \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1
 \end{array}
 \]
 d) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{d_diagram_plus}
 \\
 \frac{1}{3} + \frac{4}{5} = \frac{5}{5} = 1
 \end{array}
 \]
 e) \[
 \begin{array}{c}
 \includegraphics[width=0.1\textwidth]{e_diagram_plus}
 \\
 \frac{1}{6} + \frac{5}{6} = \frac{6}{6} = 1
 \end{array}
 \]
Each large square is 1 unit. What part of the unit is shaded? Is it more or less than 1 half, or equal to 1 half? Write the fraction and the missing sign.

a) \(\frac{8}{16} = \frac{1}{2} \) b) \(\frac{6}{16} < \frac{1}{2} \) c) \(\frac{7}{16} < \frac{1}{2} \) d) \(\frac{10}{16} > \frac{1}{2} \) e) \(\frac{9}{16} > \frac{1}{2} \) f) \(\frac{8}{16} = \frac{1}{2} \)

Each shape is 1 unit. Colour the fraction shown above each unit.

a) \(\frac{1}{2} \) b) \(\frac{2}{2} \) c) \(\frac{3}{2} \) d) \(\frac{4}{2} \)

b) \(\frac{1}{3} \) c) \(\frac{2}{3} \) d) \(\frac{3}{3} \) e) \(\frac{5}{3} \)

c) \(\frac{2}{10} \) d) \(\frac{4}{10} \) e) \(\frac{10}{10} \) f) \(\frac{16}{10} \)

a) to c): configuration of shapes coloured may vary; the number of squares/triangles coloured must be accurate.

Join up each fraction to the matching point on the number line.

\(\frac{1}{4} \) \(\frac{3}{4} \) \(\frac{1}{2} \) \(\text{1 and a half} \) \(\frac{5}{4} \) \(\frac{8}{4} \) \(\frac{23}{4} \)

\(\frac{1}{2} \) litre = 50 cl = 500 ml \(\frac{1}{5} \) litre = 20 cl = 200 ml
\(\frac{5}{2} \) litre = 250 cl = 2500 ml \(\frac{1}{10} \) litre = 10 cl = 100 ml
\(\frac{3}{10} \) litre = 30 cl = 300 ml \(\frac{1}{100} \) litre = 1 cl = 10 ml
\(\frac{8}{100} \) litre = 8 cl = 80 ml \(\frac{70}{100} \) litre = 70 cl = 700 ml
1. Each hexagon is 1 unit. What part of the unit is shaded? Is it more or less than 2 thirds, or equal to 2 thirds? Write the fraction and the missing sign.

- a) = \(\frac{16}{24}\)
- b) > \(\frac{18}{24}\)
- c) < \(\frac{10}{24}\)
- d) = \(\frac{16}{24}\)
- e) < \(\frac{14}{24}\)
- f) > \(\frac{17}{24}\)

2. Write the fraction marked by each dot below the number line.

- a)
 0 \(\frac{1}{8}\) \(\frac{5}{8}\) 1 \(\frac{1}{4}\) 2 \(\frac{1}{2}\) 3

- b)
 0 \(\frac{1}{2}\) 1 \(\frac{1}{2}\) 2 \(\frac{1}{2}\) 3

- c)
 0 \(\frac{2}{3}\) 1 \(\frac{1}{3}\) \(\frac{2}{3}\) 2 \(\frac{2}{3}\) 3

- d)
 0 \(\frac{1}{10}\) \(\frac{1}{2}\) \(\frac{11}{10}\) \(\frac{6}{10}\) 2 \(\frac{3}{10}\) 3

3. Each rectangle is 1 unit. Colour the fraction of the unit shown.

- a) i) \(\frac{3}{4}\)
- b) i) \(\frac{5}{4}\)
- a) to c): configuration of shapes coloured may vary; the number of squares coloured must be accurate.

4. Change the quantities. Fill in the missing numbers.

- a)
 \[\frac{1}{2}\] kg = 500 g \[\frac{3}{2}\] kg = 1500 g \[\frac{1}{4}\] kg = 250 g \[\frac{1}{10}\] kg = 100 g
 \[\frac{1}{5}\] kg = 200 g \[\frac{3}{5}\] kg = 600 g \[\frac{1}{100}\] kg = 10 g
 \[\frac{75}{100}\] kg = 750 g

- b)
 \[\frac{1}{2}\] km = 500 m \[\frac{3}{2}\] km = 1500 m \[\frac{3}{5}\] km = 600 m \[\frac{1}{10}\] km = 100 m
 \[\frac{4}{10}\] km = 400 m \[\frac{3}{100}\] km = 30 m \[\frac{60}{100}\] km = 600 m
 \[\frac{523}{1000}\] km = 523 m
1. Join up each fraction to the matching point on the number line.

![Number line with fractions and points](image)

2. Complete the fractions.

 a) \(\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \frac{3}{6} = \frac{5}{10} = \frac{10}{20} = \frac{50}{100} = \frac{250}{500} \)

 b) \(\frac{1}{4} = \frac{4}{16} = \frac{2}{8} = \frac{5}{20} = \frac{8}{32} = \frac{25}{100} = \frac{100}{400} = \frac{50}{200} \)

 c) \(\frac{1}{3} = \frac{2}{6} = \frac{4}{12} = \frac{3}{9} = \frac{5}{15} = \frac{8}{24} = \frac{10}{30} = \frac{100}{300} = \frac{1000}{3000} \)

3. Fill in the missing quantities.

 a) 1 hour = 60 minutes
 b) \(\frac{1}{4} \) hour = 15 minutes

 c) 1\(\frac{1}{2} \) hours = 90 minutes
 d) \(\frac{1}{5} \) hour = 12 minutes

 e) 2\(\frac{1}{4} \) minutes = 135 seconds
 f) \(\frac{3}{5} \) minute = 36 seconds

 g) 1\(\frac{1}{6} \) minutes = 70 seconds
 h) \(\frac{1}{10} \) minute = 6 seconds

4. Draw a shape using 9 unit squares which has a perimeter length:

 a) as small as possible (P = 12 units)
 b) as large as possible (P = 20 units)