Imagine that this shape continues in any direction without ending, so it represents a **plane**. The **rays** \(a \) and \(b \) are drawn from the same starting point, \(P \).

We call the two parts of the plane **angles**.

We call the measure of them an **angle** too.

Mark in **red** the angle which is greater than the other.

2

Draw these angles. (r.a. means ’right angle’)

\[\alpha = 2 \text{ r. a.} \quad \beta = \frac{1}{2} \text{ r. a.} \quad \gamma = 1.5 \text{ r. a.} \quad \delta = 3 \text{ r. a.} \quad \epsilon = 3.5 \text{ r. a.} \]

3

Start at the compass direction North and draw the rotations asked for.

a) [Clock](#) 3 right angles clockwise

b) [Clock](#) 2 right angles anti-clockwise

c) [Clock](#) half a right angle clockwise

d) [Clock](#) 3 and a half right angles anti-clockwise

4

Write down the angle formed by the arms of the clock in right angles.

a) [Clock](#)

b) [Clock](#)

c) [Clock](#)

d) [Clock](#)

5

In your exercise book, draw a quadrilateral (if it is possible) which has:

a) only one right angle

b) two adjacent right angles and two angles which are **not** right angles

c) exactly 3 right angles

d) 4 right angles.
1. Measure these angles using a protractor and write their sizes in the boxes.

\[\alpha \approx \beta \approx \gamma = \delta = \]

2. Measure these angles with a protractor and write their sizes in the boxes.

\[\alpha \approx \beta \approx \]

3. Use a ruler and protractor to draw the given angles.

a) 60°
b) 20°
c) 55°
d) 110°
e) 240°
f) 340°

4. Measure the angles of the triangle and add them up.

\[\alpha \approx \beta \approx \gamma \approx \]

\[\alpha + \beta + \gamma = \]
Write the name of the type of angle in the box, then measure the angle.

1

a) \(O \rightarrow \frac{b}{a} \) \hspace{1cm} \underline{\text{angle}} \; \alpha = \underline{\hspace{1cm}} ^\circ

b) \hspace{1cm} \underline{\text{angle}} \; \beta = \underline{\hspace{1cm}} ^\circ

c) \hspace{1cm} \underline{\text{angle}} \; \gamma = \underline{\hspace{1cm}} ^\circ

d) \hspace{1cm} \underline{\text{angle}} \; \delta = \underline{\hspace{1cm}} ^\circ

e) \hspace{1cm} \underline{\text{angle}} \; \epsilon = \underline{\hspace{1cm}} ^\circ

f) \hspace{1cm} \underline{\text{angle}} \; \phi = \underline{\hspace{1cm}} ^\circ

g) \hspace{1cm} \underline{\text{angle}} \; \gamma = \underline{\hspace{1cm}} ^\circ

2

Measure or calculate the angles marked on the clock.

\(\angle a = \underline{\hspace{1cm}} \) \hspace{1cm} \(\angle b = \underline{\hspace{1cm}} \)

\(\angle c = \underline{\hspace{1cm}} \) \hspace{1cm} \(\angle d = \underline{\hspace{1cm}} \)

\(\angle e = \underline{\hspace{1cm}} \)

3

Measure or calculate the angles between the given compass directions.

a) N and NE \hspace{1cm} b) N and E

c) N and SE \hspace{1cm} d) N and SW

e) NE and SE \hspace{1cm} f) E and NW

g) W and SSW \hspace{1cm} h) E and NNE
Here is a sketch of some mountain peaks and the corresponding map.

Sketch

Map

a) You are at the bridge (A) and want to walk to White Peak.

 On the map, draw and measure the **angle** at point A between North and your planned direction of travel.

 Write the angle and draw it on the compass diagram.

b) You have reached the top of White Peak and want to continue to North Ridge.

 Measure the angle, in a **clockwise** direction, between North and your next planned direction of travel.

 Write the angle and draw it on the compass diagram.

Draw turns from North by the given angles. Write the new compass directions below.

- a) + 90°
- b) − 135°
- c) − 45°
- d) + 225°
- e) − 270°

a) How many degrees is the angle between:

 i) N and NE

 ii) NNE and ENE?

 b) If a ship sails NNE and then turns to the right by 90°, in which compass direction is the ship travelling now?

 c) If we are facing ESE and turn to the right by 45°, in which direction are we facing now?

In your exercise book, write the angle made by the minute hand of a clock as it moves:

- a) 5 minutes
- b) 10 minutes
- c) 20 minutes
- d) 45 minutes
- e) 1 minute.
Measure the angles of this quadrilateral and add them up.

\[\alpha \approx \beta \approx \gamma \approx \delta \approx \]

\[\alpha + \beta + \gamma + \delta \approx \]

Start at the compass direction North and draw the rotations asked for. Write the new compass directions below the diagrams.

a) You are facing North and turn clockwise to face South-East. Through what angle do you turn?

b) You are facing North-West and turn anti-clockwise through 90°. In which direction are you now facing?

c) After turning anti-clockwise through 225°, you are facing East. In which direction were you facing at the start?

d) You make 4 equal turns from NE to SE. What angle is each turn?
If the diagram has **line symmetry**, draw the lines of symmetry in *red*. If the diagram has **rotational symmetry**, mark the centre of rotation in *green*.

1.
 - a)
 - b)
 - c)
 - d)
 - e)
 - f)
 - g)
 - h)

2. **Reflect** the shape in the mirror line. Label the corresponding points A', B', etc.

 - a)
 - b)
 - c)

3. If the shape has line symmetry, draw the lines of symmetry. If the shape has rotational symmetry, mark the centre of rotation and label it C.

 - a)
 - b)
 - c)
 - d)
 - e)
 - f)
 - g)
 - h)

4. Draw the **mirror image** of each shape and label the corresponding points.

 - a)
 - b)
 - c)
 - d)
 - e)
1. Reflect quadrilateral ABCD in the x-axis, then reflect its image in the y-axis.

Fill in the missing signs.

- AB
- A'B'
- A"B"
- CD
- C'D'
- C"D"
- BC
- B'C'
- B"C"
- DA
- D'A'
- D"A"

2. a) Reflect the mouse in the y-axis. Label the image of point A with A', etc.
 b) Reflect the original mouse in the x-axis. Label the image of A with A*, etc.
 c) Reflect the image in a) in the x-axis. Label the image of A' with A'', etc.

3. Draw lines of symmetry on the polygons.

4. Imagine that the whole plane is reflected in mirror line t.
 Are these statements true or false? Write T or F.
 a) Each half plane determined by t is a reflection of the other. \square
 b) Every point in the plane has just 1 image point. \square
 c) The image of any line is also a line. \square
 d) The image of a point on the mirror line is the point itself. \square
 e) The image of a line perpendicular to the mirror line is the line itself. \square
 f) The length of a line segment is greater than the length of its image. \square
 g) The size of any angle is equal to the size of its image. \square
 h) The midpoint between any point A and its image A' lies on the mirror line. \square
1. Which of these shapes is symmetrical? Draw the lines of symmetry.

![Shapes](image1)

2. Reflect the word PETER: a) in the x-axis b) in the y-axis.

![Reflect](image2)

3. Two translations were done one after the other. Replace them with just one translation. Draw arrows between the corresponding points on the diagram (e.g. A → A''). Measure the distance of each translation and write it below the arrow. How much shorter is your translation than the sum of the two given?

![Translations](image3)

4. Translate the mouse by adding 7 to the first coordinate and 3 to the second coordinate of each vertex.

![Translation](image4)
1. a) Reflect the points P, Q and R in line e.
 b) Draw the triangles PQR and P'Q'R'.
 c) Measure the angles in each triangle and add them up.

2. Join up **congruent** shapes in red and **similar** but not congruent shapes in blue.

3. Translate the shape according to the given vector (arrow).
 a) A × [vector]
 b) A → B
 c) C

4. List the houses which are **similar** to one another.

5. In your exercise book, list **similar** pairs of shapes.
 Write the ratio of enlargement or reduction beside each pair.
1. How many lines of symmetry do each of these letters have? Draw them all.

A E I O U

2. If the shape has **line symmetry**, draw the lines of symmetry in *red*.
 If the shape has **rotational symmetry**, mark the centre of rotation in *green*.
 If the shape is a **polygon**, colour it *yellow*.

 a)
 b)
 c)

3. **Reflect** each shape in the *mirror line*. Label the corresponding points A’, B’, etc.

 a) mirror line
 b) mirror line
 c) mirror line

4. **Reflect** the quadrilateral in the *x*-axis, then **reflect** its image in the *y*-axis.

 Are these statements true or false?
 a) BC = B'C'
 b) BC = B''C''
 c) BC // B'C'
 d) BC // B''C''
 e) BC ⊥ B'C''

Page 90
1. a) **Enlarge** the square in the ratio of:
 i) 2:1 ii) 3:1.
 Write the area inside each square.

 b) **Reduce** the triangle in the ratio of
 i) 2:3 ii) 1:3.

 c) **Enlarge** the semicircle in the ratio of:
 i) 2:1 ii) 3:1.

2. Continue enlarging the rhombus, the triangle and the regular hexagon. Write their areas as sequences in your exercise book.

3. Continue dividing the large shape into **congruent** (equal) parts.

4. Colour **similar** triangles in the same colour. Calculate their areas in your exercise book.
1. In your exercise book, calculate the **real** area of the gardens shown in these plans.

 a) Fill in the coordinates of the points.
 \[\begin{array}{c}
 A (_,_), B (_,_), C (_,_), D (_,_), E (_,_)
 \end{array} \]

 b) Complete the drawing of the third cuboid.

2. a) Fill in the coordinates of the points.
 \[\begin{array}{c}
 y
 \end{array} \]

 b) Divide the coordinates of each point by 3.
 \[\begin{array}{c}
 A' (_,_), B' (_,_), C' (_,_), D' (_,_), E' (_,_)
 \end{array} \]

 Draw the new shape.

 c) Change each of the original coordinates to its **opposite** number.
 \[\begin{array}{c}
 A'' (_,_), B'' (_,_), C'' (_,_), D'' (_,_), E'' (_,_)
 \end{array} \]

 Draw the new shape.

3. a) Complete the drawing of the third cuboid.

 \[\begin{array}{c}
 a = 3, 6, \ldots \quad b = 2, 4, \ldots \quad c = 1, 2, \ldots \quad A = 22, \ldots \quad V = 6, \ldots
 \end{array} \]

 Continue the sequences for sides \(a, b, c\) and for area \(A\) and volume \(V\) in your exercise book.

 b) Continue the sequences for \(a, A\) and \(V\) in your exercise book.
 \[\begin{array}{c}
 a = 1, 2, 3, \ldots \quad A = 6, 24, \ldots \quad V = 1, 8, \ldots
 \end{array} \]
1. Reflect the shapes in axis \(t \).

a) Write the coordinates of the shape.
 \[A (\; , \;), \; B (\; , \;), \; C (\; , \;), \; D (\; , \;), \; E (\; , \;) \]

b) Rotate the shape by \(-90^\circ \) around point O. Write the new coordinates.
 \[A' (\; , \;), \; B' (\; , \;), \; C' (\; , \;), \; D' (\; , \;), \; E' (\; , \;) \]

c) Repeat the rotation with the image. Write the new coordinates.
 \[A'' (\; , \;), \; B'' (\; , \;), \; C'' (\; , \;), \; D'' (\; , \;), \; E'' (\; , \;) \]

2. a) Write the coordinates of the shape.
 \[A (\; , \;), \; B (\; , \;), \; C (\; , \;), \; D (\; , \;), \; E (\; , \;) \]

b) Rotate the shape by \(-90^\circ \) around point O. Write the new coordinates.
 \[A' (\; , \;), \; B' (\; , \;), \; C' (\; , \;), \; D' (\; , \;), \; E' (\; , \;) \]

c) Repeat the rotation with the image. Write the new coordinates.
 \[A'' (\; , \;), \; B'' (\; , \;), \; C'' (\; , \;), \; D'' (\; , \;), \; E'' (\; , \;) \]

3. Write the coordinates of the points in the original diagram and in its images in your exercise book. What kind of transformations have been done?
1. a) **Translate** shape F so that the coordinates of point C' are (5, 2).

b) **Reflect** the original shape F in the x-axis.

c) **Rotate** the original shape F by 90° around point O.

d) **Rotate** the original shape F by 180° around point O.

2. a) **Reflect** shape ABCDE in line e.

b) **Reflect** its image in line f.

c) **Translate** the image 4 units to the right.

d) **Rotate** the last shape by −60° around point O. Repeat the rotation several times.

3. a) Write beside each solid how many planes of symmetry it has.

i)

ii)

iii)

iv)

b) Which type of solid is formed by rotating each of the shaded shapes around the given axis?

Write the names in your exercise book.
1

a) **Enlarge** the rectangle in the ratio of:
 i) 2:1 ii) 3:1.
 Write the area and perimeter of each shape.

b) **Enlarge** the parallelogram in the ratio of:
 i) 3:2 ii) 3:1

2

Colour **similar** triangles in the same colour. Calculate their areas in your exercise book.

3

a) Write the coordinates of these points.
 A (,), B (,), C (,),
 D (,), E (,), F (,),
 G (,), H (,), I (,),
 J (,), K (,), L (,),
 M (,)

b) Reflect the shape in the x-axis. Write the coordinates of:
 A' (,), E' (,), J' (,)

c) Reflect the new shape in the y-axis. Write the coordinates of:
 A'' (,), E'' (,), J'' (,)

d) How have the coordinates of the original points changed to make the third shape?
1

a) If this square is 1 unit, what part of the unit is each grid square?

b) Compare the fractions. Fill in the missing signs. (<, >, =)

i) \(\frac{1}{9} \square \frac{2}{9} \)

ii) \(\frac{3}{9} \square \frac{5}{9} \)

iii) \(\frac{6}{9} \square \frac{3}{9} \)

iv) \(\frac{4}{9} \square \frac{2}{9} \)

v) \(\frac{9}{9} \square \frac{7}{9} \)

vi) \(\frac{4}{9} \square \frac{7}{9} \)

vii) \(\frac{8}{9} \square \frac{9}{9} \)

viii) \(\frac{11}{9} \square \frac{15}{9} \)

2

Each rectangle is 1 unit.

a) Colour red one part of each of the rectangles. Write below it what fraction the red part is of the whole unit.

b) List the fractions in decreasing order.

3

\[
\begin{array}{cccc}
\frac{3}{4} & \quad & -\frac{1}{2} & \quad & \frac{4}{4} & \quad & -\frac{5}{4}
\end{array}
\]

a) Write beside each fraction its opposite value.

b) Use your ruler to measure and draw appropriate ticks on the number line, then mark on it and label all the eight fractions.

c) Write the fractions in increasing order.

4

Write these fractions in increasing order.

a) \(\frac{8}{12}, \quad -\frac{1}{12}, \quad -\frac{12}{12}, \quad \frac{5}{12}, \quad -\frac{13}{12}, \quad \frac{14}{12}, \quad -\frac{18}{12} \)

b) \(-\frac{3}{2}, \quad \frac{3}{8}, \quad \frac{3}{5}, \quad \frac{3}{2}, \quad -\frac{3}{4}, \quad -\frac{3}{12}, \quad \frac{3}{7}, \quad -\frac{3}{6} \)
1. Each pentagon is 1 unit. Colour the given fractions and compare them. (<, > or =)

\[
\begin{array}{cccccccc}
\frac{1}{5} & \square & \frac{2}{5} & \square & \frac{3}{5} & \square & \frac{4}{5} & \square & \frac{5}{5} & \square \\
\end{array}
\]

2. Each circle is 1 unit. Colour two parts in each circle.

Write the fractions coloured below the circles and compare them. (<, > or =)

3. a) Mark these fractions and their opposite values on the number line.

\[
\frac{3}{2}, \quad -\frac{6}{3}, \quad \frac{4}{5}, \quad -\frac{5}{6}, \quad \frac{1}{2}, \quad -\frac{2}{3}
\]

b) List all the marked fractions in increasing order.

4. Fill in the missing numbers.

a) \[
\begin{array}{cccccccc}
\frac{1}{2} + \square &= 1 & \frac{1}{3} + \square &= 1 & \frac{2}{3} + \square &= 1 & \frac{3}{3} + \square &= 1 \\
\frac{3}{7} + \square &= 1 & \square + \frac{2}{9} &= 1 & \frac{4}{5} + \square &= 1 & \frac{4}{5} + \square &= 2 \\
\end{array}
\]

b) \[
\begin{array}{cccccccc}
1 - \frac{2}{2} &= \square & 1 - \frac{1}{2} &= \square & 1 - \frac{0}{2} &= \square & 1 - \frac{3}{4} &= \square \\
2 - \frac{4}{5} &= \square & 1 - \frac{3}{7} &= \square & 2 - \frac{6}{5} &= \square & 3 - \frac{2}{5} &= \square \\
\end{array}
\]

5. Compare the fractions. Fill in the missing signs. (<, > or =)

a) \[
\frac{2}{15} \square \frac{7}{15}
\]
b) \[
\frac{6}{7} \square \frac{1}{7}
\]
c) \[
-\frac{2}{8} \square -\frac{3}{8}
\]
d) \[
\frac{51}{10} \square \frac{52}{10}
\]
e) \[
\frac{4}{8} \square \frac{4}{10}
\]
f) \[
\frac{3}{2} \square \frac{3}{4}
\]
g) \[
-\frac{1}{3} \square -\frac{1}{2}
\]
h) \[
\frac{40}{50} \square \frac{40}{100}
\]
Write different forms of the same quantities from the diagram.

Each hexagon is 1 unit.

Which form of the fraction shaded do they each show?

Write each of these fractions in at least 5 different forms.

a) \(\frac{2}{3} = \)

b) \(\frac{4}{7} = \)

c) \(\frac{0}{6} = \)

d) \(\frac{11}{11} = \)

a) Simplify these fractions.

i) \(\frac{6}{10} = \)

ii) \(\frac{24}{72} = \)

iii) \(\frac{4}{8} = \)

iv) \(\frac{15}{45} = \)

v) \(\frac{8}{5} = \)

vi) \(\frac{8}{4} = \)

b) Compare the fractions and write them in increasing order.

..
1. List the numbers marked on the number line in increasing order and continue the sequence.

2. Fill in the missing numerators and denominators. Write other forms of the numbers.
 a) \(\frac{3}{4} = \frac{6}{8} = \square = \square = \frac{15}{\square} = \square = \)
 b) \(\frac{6}{5} = \square = \square = \frac{18}{\square} = 1 + \square = 1\frac{\square}{5} = \)
 c) \(\frac{12}{3} = \square = \square = \frac{4}{\square} = \square = \)

3. Compare the fractions in each pair. Fill in the missing signs. (\(<\), \(\rangle\) or \(=\))
 a) \(\frac{3}{4} \square \frac{5}{8} \)
 b) \(\frac{4}{5} \square \frac{8}{10} \)
 c) \(\frac{7}{9} \square \frac{2}{3} \)
 d) \(\frac{23}{50} \square \frac{4}{10} \)
 e) \(\frac{2}{3} \square \frac{5}{8} \)
 f) \(\frac{1}{4} \square \frac{1}{5} \)
 g) \(\frac{5}{6} \square \frac{7}{9} \)
 h) \(\frac{40}{30} \square \frac{25}{20} \)

4. a) Draw a line segment 12 cm long in your exercise book.
 i) Colour 2 thirds of it in red. How long is the red part?
 ii) Colour 1 quarter of 2 thirds of the line segment in blue.
 How long is the blue part?

 b) Draw another line segment 12 cm long in your exercise book.
 i) Colour 1 quarter of it in yellow. How long is the yellow part?
 ii) Colour 2 thirds of 1 quarter of the line segment in green.
 How long is the green part?

5. How many centimetres are in:
 a) 2 fifths of 10 metres
 b) 2 fifths of 1 metre?
1. a) If this square is 1 unit, what part of the unit is 1 grid square?

b) Compare the fractions. Fill in the missing signs. (<, >, =)

i) \(\frac{1}{16}\) \(\quad\) \(\frac{3}{16}\)

ii) \(\frac{5}{16}\) \(\quad\) \(\frac{1}{4}\)

iii) \(\frac{12}{16}\) \(\quad\) \(\frac{6}{8}\)

iv) \(\frac{8}{16}\) \(\quad\) \(\frac{7}{16}\)

v) \(\frac{5}{16}\) \(\quad\) \(\frac{1}{2}\)

vi) \(\frac{1}{4}\) \(\quad\) \(\frac{4}{16}\)

vii) \(\frac{17}{16}\) \(\quad\) \(\frac{19}{16}\)

viii) \(\frac{16}{16}\) \(\quad\) \(\frac{7}{8}\)

2. Fill in the missing numerators and denominators.

a) \(\frac{4}{12} = \frac{\square}{3}\)

b) \(\frac{3}{\square} = \frac{1}{2}\)

c) \(\frac{15}{20} = \frac{\square}{4}\)

d) \(\frac{\square}{10} = \frac{1}{2}\)

e) \(\frac{5}{\square} = \frac{1}{3}\)

f) \(\frac{4}{8} = \frac{\square}{32}\)

g) \(\frac{3}{7} = \frac{\square}{21}\)

h) \(\frac{\square}{48} = \frac{3}{4}\)

3. a) Mark these fractions on the number line.

\[\ldots\quad \frac{3}{5}, \quad -\frac{1}{5}, \quad \frac{6}{5}, \quad \frac{4}{10}, \quad -\frac{6}{10}, \quad \frac{4}{5}\]

b) List all the fractions in decreasing order.

4. Compare the quantities. Fill in the missing signs. (> , < , =)

a) 1\(\frac{1}{2}\) litres \(\quad\) 1500 ml

b) 1\(\frac{1}{4}\) litres \(\quad\) 1500 ml

c) 1\(\frac{2}{3}\) hours \(\quad\) 100 minutes

d) 1\(\frac{1}{3}\) days \(\quad\) 30 hours

e) 2\(\frac{1}{4}\) km \(\quad\) 2500 m

f) 1\(\frac{2}{3}\) years \(\quad\) 20 months

g) 1\(\frac{1}{20}\) m \(\quad\) 105 cm

h) 1\(\frac{4}{5}\) kg \(\quad\) 1400 g

5. Compare the fractions. Fill in the missing signs. (< , > , =)

a) \(\frac{3}{4}\) \(\quad\) \(\frac{7}{8}\)

b) \(\frac{1}{7}\) \(\quad\) \(\frac{1}{6}\)

c) \(-\frac{2}{9}\) \(\quad\) \(-\frac{1}{3}\)

d) \(\frac{4}{10}\) \(\quad\) \(\frac{20}{50}\)

e) \(\frac{2}{3}\) \(\quad\) \(\frac{3}{4}\)

f) \(\frac{1}{7}\) \(\quad\) \(\frac{4}{28}\)

g) \(\frac{30}{25}\) \(\quad\) \(\frac{25}{20}\)

h) \(\frac{15}{45}\) \(\quad\) \(\frac{2}{6}\)
1

Put these numbers into three groups.

\[
\begin{align*}
\frac{1}{8} & \quad \frac{2}{4} & \quad \frac{3}{2} & \quad \frac{5}{8} & \quad \frac{7}{2} & \quad \frac{4}{4} & \quad \frac{6}{6} & \quad \frac{3}{8} & \quad \frac{7}{9} & \quad \frac{8}{8} & \quad \frac{7}{6} \\
\end{align*}
\]

Less than 1: ...

Equal to 1: ...

Greater than 1: ...

2

What part of each diagram is shaded? Write the fraction and show it as as an addition.

a) 1

b) 1

c) 1

d) 1

3

Andrew planted 2 ninths of his garden with strawberries and 5 ninths of his garden with gooseberries.

a) Shade the part used for strawberries in red and the part used for gooseberries in green.

b) What part of his garden did Andrew use to plant the fruit?

c) What part of his garden did he not use to plant the fruit?

4

a) In your exercise book, write each fraction as an addition so that one of the terms is a whole number and the other is a fraction.

Example \(\frac{7}{3} = 1 + \frac{4}{3} = 2 + \frac{1}{3} \)

i) \(\frac{9}{7} \) iii) \(\frac{49}{22} \)

ii) \(\frac{16}{5} \)

iv) \(\frac{13}{4} \)

b) Write each sum as a single fraction.

Example \(2 + \frac{3}{5} = \frac{13}{5} \)

i) \(1 + \frac{1}{2} \)

ii) \(1 + \frac{2}{3} \)

iii) \(3 + \frac{1}{5} \)

iv) \(5 + \frac{2}{7} \)

v) \(3 + \frac{7}{4} \)

vi) \(6 + \frac{2}{9} \)

5

a) \(\frac{1}{4} + \frac{3}{4} + \frac{7}{4} + \frac{2}{4} = \)

b) \(\frac{7}{3} - \frac{2}{3} = \)

c) \(\frac{9}{11} + \frac{3}{11} - \frac{1}{11} - \frac{5}{11} = \)

d) \(\frac{110}{50} - \frac{41}{50} + \frac{12}{50} = \)
1. a) Draw a rectangle which has an area of 6 cm².
 Colour \(\frac{3}{4} \) of its area.

 b) Draw a rectangle which has an area of \(\frac{3}{4} \) cm².

2. a) Write the numbers below the dots marked on the number line.

 b) Calculate:
 i) \(A + B \)
 ii) \(B + C \)
 iii) \(A + C \)
 iv) \(B + D \)
 v) \(A + D \)
 vi) \(C + D \)

 c) How far is:
 i) \(A \) from \(B \)
 ii) \(B \) from \(C \)
 iii) \(A \) from \(C \)
 iv) \(B \) from \(D \)
 v) \(A \) from \(D \)
 vi) \(C \) from \(D \)?

3. Answer each question by writing an operation.

 a) How much should we add to \(\frac{3}{10} \) to get \(\frac{8}{10} \)?

 b) How much more is \(\frac{4}{11} \) than \(\frac{1}{11} \)?

 c) How much should be added to \(1 \) to get \(\frac{7}{5} \)?

 d) How much more is \(\frac{8}{5} \) than \(1 \)?

 e) How much should be added to \(\frac{6}{9} \) to get \(\frac{11}{9} \)?

4. a) \(\frac{3}{6} + \frac{1}{6} + \frac{5}{6} + \frac{2}{6} = \)
 b) \(1 + \frac{3}{8} = \)
 c) \(6 + \frac{5}{9} = \)

 d) \(\frac{4}{7} - \frac{3}{7} = \)
 e) \(1 - \frac{3}{8} = \)
 f) \(6 - \frac{5}{9} = \)
 g) \(\frac{13}{9} - 1 = \)

 h) \(\frac{3}{8} - 1 = \)
 i) \(\frac{3}{10} + \frac{4}{10} - \frac{7}{10} - \frac{2}{10} = \)
 j) \(\frac{2}{3} - \left(-\frac{2}{3}\right) = \)
Do the calculations.

a) \(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \)

b) \(\frac{2}{5} + \frac{1}{5} = \)

c) \(\frac{5}{8} - \frac{2}{8} = \)

d) \(\frac{3}{7} + \frac{1}{7} + \frac{2}{7} = \)

e) \(\frac{8}{10} + \frac{3}{10} - \frac{5}{10} + \frac{2}{10} = \)

f) \(\frac{3}{9} - \frac{7}{9} = \)

g) \(1\frac{2}{3} + \frac{1}{3} = \)

h) \(2\frac{8}{9} - \frac{5}{9} = \)

i) \(4\frac{2}{3} - 3\frac{1}{3} = \)

Calculate the sums and differences. Use the diagrams to help you.

a)

i) \(\frac{3}{5} + \frac{2}{10} = \)

ii) \(\frac{3}{5} - \frac{2}{10} = \)

iii) \(\frac{1}{2} + \frac{4}{10} - \frac{3}{5} = \)

b)

i) \(\frac{3}{8} + \frac{1}{4} = \)

ii) \(\frac{5}{8} - \frac{1}{2} = \)

iii) \(\frac{3}{8} + \frac{1}{2} - \frac{1}{4} = \)

c)

i) \(\frac{2}{9} + \frac{2}{3} = \)

ii) \(\frac{8}{9} - \frac{2}{3} = \)

iii) \(\frac{1}{9} + \frac{2}{3} - \frac{4}{9} = \)

Calculate the sums and differences. Write details in your exercise book if necessary.

a) \(\frac{2}{5} + \frac{3}{10} = \)

b) \(\frac{5}{12} + \frac{3}{4} = \)

c) \(\frac{1}{3} + \frac{2}{9} - \frac{3}{18} = \)

d) \(\frac{6}{2} + \frac{4}{10} + \frac{3}{5} = \)

e) \(\frac{3}{5} - \frac{4}{10} = \)

f) \(\frac{11}{12} - \frac{3}{4} = \)

g) \(\frac{3}{7} - \frac{2}{21} = \)

h) \(\frac{21}{12} - \frac{4}{3} = \)

i) \(\frac{1}{2} - \frac{7}{6} = \)

Start from 0 and draw these steps along the number line one after the other. Convert the fractions first. Where do you end up? Mark it and label it.

\[
\begin{align*}
\frac{3}{4} & \quad - \frac{1}{2} \\
\frac{3}{8} & \quad - \frac{1}{4} \\
\frac{2}{4} & \quad - \frac{5}{8} \\
\frac{1}{2} & \quad -1
\end{align*}
\]

Solve the equations. Draw suitable number lines in your exercise book if necessary.

a) \(\frac{1}{3} + a = \frac{3}{3} \)

b) \(\frac{3}{8} - b = \frac{1}{8} \)

c) \(\frac{7}{4} + c = \frac{11}{4} \)

\[a = \ldots \quad b = \ldots \quad c = \ldots \]

d) \(d - \frac{3}{7} = \frac{2}{7} \)

e) \(e + \frac{7}{9} = 1 \)

f) \(1 + f = \frac{6}{5} \)

\[d = \ldots \quad e = \ldots \quad f = \ldots \]
1 Use the diagram to help you do the calculations.
 a) \(\frac{1}{3} + \frac{1}{4} = \)
 b) \(\frac{2}{3} + \frac{1}{12} - \frac{1}{4} = \)

2 Use the diagram to help you do the calculations.
 a) \(\frac{1}{3} + \frac{2}{5} = \)
 b) \(\frac{2}{3} - \frac{2}{5} = \)
 c) \(\frac{1}{5} + \frac{2}{3} - \frac{3}{5} = \)

3 Use the diagram to help you do the calculations.
 a) \(\frac{1}{4} + \frac{2}{5} = \)
 b) \(\frac{4}{5} - \frac{1}{4} = \)
 c) \(\frac{1}{2} + \frac{3}{5} - \frac{3}{10} - \frac{3}{20} = \)

4 Add \(\frac{2}{3} \) and \(\frac{5}{7} \) in different ways. Complete the diagrams and equations.
 a) \(\frac{2}{3} + \frac{5}{7} = \)
 b) \(\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \)
 c) \(\frac{5}{7} = \frac{10}{14} = \)
1. Jim planted $\frac{3}{8}$ of his vegetable garden with beetroot and one quarter of it with leeks.
 a) Shade the part used for beetroot in red and the part used for leeks in green.
 b) What part of the vegetable garden has not yet been used?

2. a) $\frac{1}{4} + a = \frac{3}{4}$
 b) $\frac{5}{7} - b = \frac{1}{7}$
 c) $\frac{7}{5} + c = \frac{9}{5}$

 $a = \ldots \ldots$
 $b = \ldots \ldots$
 $c = \ldots \ldots$

 d) $d - \frac{5}{9} = \frac{4}{9}$
 e) $e + \frac{3}{8} = 2$
 f) $1 + f = \frac{7}{6}$

 $d = \ldots \ldots$
 $e = \ldots \ldots$
 $f = \ldots \ldots$

 a) John had £10. He spent one fifth of his money on a book and one tenth on a torch. How much money does he have left?
 b) Sally had a collection of 300 stamps but lost interest in it. She sold 120 stamps and gave one third of what was left to her brother.
 i) How many stamps did she give to her brother?
 ii) How many stamps does Sally still have left?

4. Calculate the sums and differences.
 a) $\frac{3}{5} + \frac{3}{10} =$
 b) $\frac{7}{8} + \frac{1}{4} =$
 c) $\frac{1}{2} + \frac{1}{10} - \frac{2}{5} =$
 d) $\frac{4}{11} + \frac{5}{11} - \frac{2}{11} =$
 e) $\frac{7}{12} - \frac{1}{3} =$
 f) $\frac{5}{7} - \frac{5}{21} =$
 g) $\frac{2}{3} + \frac{2}{9} - \frac{3}{18} =$
 h) $\frac{1}{4} + \frac{3}{8} - \frac{5}{16} =$
 i) $1 \frac{1}{5} - \frac{3}{10} =$

5. a) What has been done to $\frac{7}{8}$ to get $\frac{1}{2}$?
 b) What has been done to $\frac{10}{17}$ to get 2?
 c) What has been done to $\frac{3}{10}$ to get $\frac{3}{5}$?
 d) What has been done to 3 to get $\frac{3}{4}$?
 a) i) \(\frac{3}{7} + \frac{2}{7} = \) ii) \(\frac{13}{20} - \frac{6}{20} = \) iii) \(1 - \frac{5}{9} = \) iv) \(1 + \frac{3}{8} = \)
 b) i) \(\frac{4}{10} + \frac{2}{5} = \) ii) \(\frac{3}{4} - \frac{5}{8} = \) iii) \(\frac{5}{6} + \frac{1}{3} - \frac{1}{2} = \)

2. This 3 \(\times \) 8 rectangle is 1 unit. Use it to help you do the additions and subtractions.
 a) i) \(\frac{3}{8} + \frac{4}{8} = \) ii) \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \) iii) \(\frac{7}{8} - \frac{3}{4} = \)
 b) i) \(\frac{2}{3} + \frac{1}{8} = \) ii) \(\frac{1}{3} + \frac{3}{8} = \) iii) \(\frac{7}{8} - \frac{2}{3} = \)
 c) i) \(\frac{1}{6} + \frac{5}{24} = \) ii) \(\frac{5}{8} - \frac{1}{6} = \) iii) \(\frac{5}{12} + \frac{7}{24} - \frac{1}{8} = \)

3. People in Britain need to heat their houses for 7 months of the year.
 a) For what part of the year do British people plan not need to heat their houses?
 Plan:
 Answer: ...
 b) For how many months will British people plan heat their houses over the next 5 years?
 Answer: ...

4. The 3 jugs each have a capacity of 5 litres. The first jug is a third full, the second jug is half full and the third jug is a quarter full of water.
 If all the water is poured into one of the jugs plan what part of the jug will be filled?
 Answer: ...

5. a) What part of each square is shaded? i) .. ii) .. iii) ..
 b) Subtract the smallest from the greatest fraction.
Solve the equations.

\[
\begin{align*}
a) \quad \frac{1}{2} + a &= \frac{3}{2} & b) \quad \frac{3}{4} - b &= \frac{1}{4} & c) \quad \frac{7}{8} + c &= \frac{11}{8} & d) \quad d - \frac{3}{7} &= \frac{2}{7} \\
a &= \ldots \ldots \quad b &= \ldots \ldots \quad c &= \ldots \ldots \quad d &= \ldots \ldots \\
e) \quad e + \frac{7}{9} &= 1 & f) \quad 1 + f &= \frac{6}{5} & g) \quad 2 - g &= \frac{7}{5} & h) \quad h - \frac{5}{6} &= 1 \\
e &= \ldots \ldots \quad f &= \ldots \ldots \quad g &= \ldots \ldots \quad h &= \ldots \ldots \\
\end{align*}
\]

a) What part of the unit square is shaded?

b) What part is not shaded?

c) What area is shaded if the area of the unit square is 64 m²?

The first number in a sequence is \(\frac{2}{3}\). We know that each of the other terms is \(\frac{1}{2}\) more than the previous term. Write down the first five terms and add them up.

\[a_1; \quad a_2; \quad a_3; \quad a_4; \quad a_5;\]

\[a_1 + a_2 + a_3 + a_4 + a_5;\]

Mum made 18 butterfly cakes for Saturday tea.

a) If Andrew ate \(\frac{1}{3}\) of them, how many cakes did he eat?

b) If Bella ate \(\frac{2}{9}\) of them, how many cakes did she eat?

c) If Christine ate \(\frac{2}{6}\) of them, how many cakes did she eat?

d) If Mum ate what was left, how many cakes did she eat?

Three eighths of a 4 m 24 cm long pipe was cut off.

a) What part of the pipe was left?

b) How many cm were cut off? Plan:
Do the calculations. Write details in your exercise book where needed.

a) i) \(\frac{4}{15} + \frac{9}{15} = \) ii) \(\frac{14}{20} - \frac{9}{20} = \) iii) \(\frac{1}{2} + \frac{5}{3} + \frac{1}{3} - 1 = \)

b) i) \(\frac{3}{2} + \frac{3}{10} = \) ii) \(\frac{17}{18} \) – \(\frac{2}{3} = \) iii) \(\frac{5}{15} + \frac{1}{5} - \frac{1}{3} = \)

c) i) \(\frac{4}{7} + \frac{1}{6} = \) ii) \(\frac{4}{5} - \frac{3}{11} = \) iii) \(\frac{1}{2} + \frac{1}{3} - \frac{2}{5} = \)

d) i) \(\frac{3}{10} + \frac{6}{15} = \) ii) \(\frac{7}{9} - \frac{1}{6} = \) iii) \(\frac{7}{12} + \frac{3}{4} - \frac{9}{20} = \)

Calculate:

a) \(\frac{2}{3} \) of 60 metres
b) \(\frac{1}{4} \) of 3 hours
c) \(\frac{7}{5} \) of 40 litres
d) \(2\frac{1}{4} \) times 80 kg

Calculate the whole quantity if:

a) \(\frac{2}{3} \) of it is 60 metres
b) \(\frac{1}{4} \) of it is 3 hours
c) \(\frac{7}{5} \) of it is 35 litres
d) \(2\frac{1}{4} \) times it is 90 kg

Jim was putting up a 120 m fence around his garden. On the first day he put up \(\frac{3}{5} \) of the fence. How many metres of fence did he still have to put up?

I had 24 marbles. I lost 1 third of them, then I lost another 12 marbles.

a) How many marbles did I have left?
b) What part of the 24 marbles did I have left?
Exchange the quantities.

a) \(1 \text{ week} = \underline{\text{days}}, \quad 1 \text{ day} = \underline{\text{week}}, \quad 4 \text{ days} = \underline{\text{week}}\)

b) \(4 \text{ m} = \underline{\text{cm}}, \quad 1 \text{ cm} = \underline{\text{m}}, \quad 27 \text{ cm} = \underline{\text{m}}\)

c) \(2 \text{ h} = \underline{\text{min}}, \quad 1 \text{ min} = \underline{\text{hour}}, \quad 40 \text{ min} = \underline{\text{hour}}\)

d) \(17 \text{ litres} = \underline{\text{cl}}, \quad 17 \text{ cl} = \underline{\text{litre}}, \quad 320 \text{ ml} = \underline{\text{litre}}\)

Exchange the quantities. Do the calculations in your exercise book.

2

a) \(20 \text{ min} = \underline{\text{hour}}, \quad 45 \text{ min} = \underline{\text{hour}}, \quad 90 \text{ min} = \underline{\text{hours}}\)

b) \(\frac{1}{2} \text{ hour} = \underline{\text{min}}, \quad \frac{2}{5} \text{ hour} = \underline{\text{min}}, \quad \frac{61}{60} \text{ hour} = \underline{\text{min}}\)

c) \(70 \text{ cm} = \underline{\text{m}}, \quad 110 \text{ cm} = \underline{\text{m}}, \quad 3 \text{ cm} = \underline{\text{m}}\)

d) \(\frac{1}{5} \text{ m} = \underline{\text{cm}}, \quad \frac{9}{4} \text{ m} = \underline{\text{cm}}, \quad \frac{3}{50} \text{ m} = \underline{\text{cm}}\)

e) \(43 \text{ cl} = \underline{\text{litre}}, \quad 350 \text{ g} = \underline{\text{kg}}, \quad 11 \text{ m} = \underline{\text{km}}\)

f) \(\frac{5}{4} \text{ litres} = \underline{\text{cl}}, \quad \frac{42}{1000} \text{ kg} = \underline{\text{g}}, \quad \frac{32}{1000} \text{ km} = \underline{\text{m}}\)

Calculate the sums and differences.

3

a) \(\frac{3}{50} + \frac{41}{50} - \frac{10}{50} = \underline{}\)

b) \(\frac{6}{14} + \left(-\frac{9}{14}\right) = \underline{}\)

c) \(\frac{5}{21} - \left(-\frac{2}{21}\right) = \underline{}\)

d) \(\frac{-8}{15} + \left(-\frac{4}{15}\right) = \underline{}\)

e) \(-\frac{7}{10} - \left(-\frac{2}{5}\right) = \underline{}\)

f) \(-\frac{7}{10} - \left(+\frac{2}{5}\right) = \underline{}\)

Fill in the missing numbers. Do the calculations in your exercise book.

4

a) \(\frac{4}{5} + \underline{} = \frac{7}{5}\)

b) \(\frac{11}{8} - \underline{} = \frac{3}{4}\)

c) \(\underline{} + \frac{4}{9} = \frac{3}{9}\)

d) \(\underline{} - \frac{2}{3} = \frac{1}{6}\)

e) \(\frac{8}{7} - \underline{} + 2 = 3\)

f) \(\frac{5}{6} - \underline{} = \underline{}\)

Charlie spends a quarter of every week-day in school and 1 third of the day sleeping. How many hours does he have left for doing other things?
1. Calculate the quantities.
 a) \(\frac{3}{4} \) of 12 hours
 b) \(\frac{4}{5} \) of 200 m
 c) \(\frac{4}{3} \) of 60 kg
 d) \(3 \frac{1}{8} \) times 40 litres

2. Calculate the whole quantity if:
 a) \(\frac{3}{4} \) of it is 12 hours
 b) \(\frac{4}{5} \) of it is 200 m
 c) \(\frac{4}{3} \) of it is 60 kg
 d) \(3 \frac{1}{8} \) times it is 50 litres

3. The farmer had some chickens. He sold \(\frac{5}{8} \) of them and had 180 chickens left. How many chickens did the farmer have at first?

4. Exchange the quantities.
 a) \(\frac{1}{2} \) min = __ sec
 b) \(\frac{7}{10} \) kg = __ g
 c) \(\frac{2}{5} \) km = __ m
 d) \(\frac{3}{10} \) litre = __ ml
 e) \(\frac{1}{6} \) hour = __ min
 f) \(\frac{3}{4} \) yr = __ month
 g) 40 cl = __ litre
 h) 75 cm = __ m
 i) 200 g = __ kg
 j) 40 min = __ hour
 k) 6 hours = __ day
 l) 3 days = __ week

5. Solve these problems in your exercise book.
 a) Ann bought some mini chocolate eggs. She gave half of them to her nephews and nieces and used a quarter of them to decorate her Easter cake. She had 9 eggs left. How many mini chocolate eggs did she buy?
 b) Mary made 96 small cakes. She took 2 thirds of them to the school fair and gave an eighth of them to her neighbours. How many cakes did Mary have left?