1 a) Use a ruler to draw the required parts of this 10 cm line segment.

1 unit

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
</tr>
</tbody>
</table>

i) \(\frac{1}{5} \)

ii) \(\frac{1}{4} \)

iii) \(\frac{85}{100} \)

iv) \(\frac{41}{100} \)

b) Express the fractions in hundredths and percentages.

i) \(\frac{1}{5} = \) \(\square \) \(\rightarrow \) \(\square \) \(\square \) \(\square \) \(\square \)

ii) \(\frac{1}{4} = \) \(\square \) \(\rightarrow \) \(\square \) \(\square \) \(\square \) \(\square \)

iii) \(\frac{85}{100} \) \(\rightarrow \) \(\square \)

iv) \(\frac{41}{100} \) \(\rightarrow \) \(\square \)

2 Use the diagrams to help you do the calculations.

a) \(\frac{2}{7} \times 3 = \)

b) \(\frac{2}{3} \times 2 = \)

c) \(\frac{2}{3} \times 3 = \)

d) \(\frac{4}{7} \times 2 = \)

3 In your exercise book, write each sum as a multiplication, then do the calculation.

a) \(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \)

b) \(\frac{2}{7} + \frac{2}{7} + \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \)

c) \(\frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} = \)

d) \(\left(\frac{1}{3} \right) + \left(\frac{1}{3} \right) = \)

4 In your exercise book, write each multiplication as an addition, then do the calculation.

a) \(\frac{3}{4} \times 4 = \) b) \(\frac{2}{3} \times 5 = \) c) \(\frac{4}{7} \times 6 = \) d) \(\frac{2}{9} \times 3 = \) e) \(\frac{7}{6} \times 12 = \)

5 In your exercise book, calculate the sums and differences in two different ways.

a) \(\left(\frac{3}{5} + \frac{7}{5} \right) \times 2 = \) b) \(\left(\frac{6}{7} - \frac{5}{3} \right) \times 3 = \) c) \(\left(\frac{1}{2} + \frac{7}{3} \right) \times 6 = \)
1

Calculate the products, reducing them to their simplest form where relevant.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{4}{5} \times 2 = $ & b) $\frac{3}{8} \times 4 = $ & c) $\frac{3}{4} \times 8 = $</td>
<td></td>
</tr>
<tr>
<td>d) $\frac{5}{12} \times 8 = $ & e) $\frac{5}{8} \times 12 = $ & f) $\frac{5}{11} \times 0 = $</td>
<td></td>
</tr>
</tbody>
</table>

2

Fill in the missing numbers. Check that they make the statements true.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{2}{5} \times \boxed{} = \frac{4}{5}$ & b) $\boxed{} \times \frac{5}{9} = \frac{15}{9}$ & c) $\frac{3}{10} \times \boxed{} = \frac{30}{10}$</td>
<td></td>
</tr>
<tr>
<td>d) $\frac{5}{8} \times \boxed{} = \frac{5}{4}$ & e) $\boxed{} \times 4 = \frac{10}{3}$ & f) $\frac{5}{\boxed{}} \times \boxed{} = 10$</td>
<td></td>
</tr>
</tbody>
</table>

3

Write each calculation in different ways.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\left(\frac{3}{2} + \frac{1}{3}\right) \times 12 = $ & b) $\left(\frac{4}{5} - \frac{2}{3}\right) \times 4 = $</td>
<td></td>
</tr>
</tbody>
</table>

4

Answer each question by writing a division. Use the diagram to help you.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) What is half of a third? & b) What is a third of a quarter?</td>
<td></td>
</tr>
<tr>
<td>c) What is a quarter of a third? & d) What is a fifth of 10 twelfths?</td>
<td></td>
</tr>
<tr>
<td>e) What is a third of 3 quarters? & f) What is a quarter of 16 twelfths?</td>
<td></td>
</tr>
</tbody>
</table>

5

a) One third of the unit has been divided into 5 equal parts. Write a division about the part which has been shaded twice.

b) Do the division and show it on the diagram in a). $\frac{2}{3} \div 5 = $

c) Do the division. Amend the diagram to show it. $\frac{4}{3} \div 2 = $
1. Do the calculations.
 a) \(\frac{3}{4} + \frac{5}{6} = \)
 b) \(\frac{4}{5} - \frac{3}{10} = \)
 c) \(\frac{2}{5} \times 10 = \)
 d) \(\frac{5}{8} \div 4 = \)

2. Solve the equations and inequality. Check your solutions.
 a) \(x \times 4 = \frac{3}{4} \)
 b) \(y + 5 \times y = \frac{12}{5} \)
 c) \(6 \times z - z < \frac{5}{8} \)

3. The 4th, 5th and 6th terms of a sequence are given. Complete the sequence so that the first 10 terms are listed.
 a) \(\frac{4}{3}, \frac{8}{3}, \frac{16}{3}, \)
 b) \(\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \)
 c) \(\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \)
 d) \(\frac{18}{5}, \frac{6}{5}, \frac{2}{5}, \)
 e) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \)

4. The area of a rectangle is \(\frac{80}{3} \) m\(^2\). The length of a side is 6 m.
 a) What length is the adjacent side of the rectangle?
 \(b = \)
 b) Calculate the perimeter of the rectangle.
 \(P = \)

5. Find a rule and complete the table. Write the rule in different ways.
 \(a = \)

<table>
<thead>
<tr>
<th></th>
<th>15/3</th>
<th>10</th>
<th>1/7</th>
<th>2/9</th>
<th>3/10</th>
<th>10/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td>1/35</td>
<td>3/10</td>
<td>1/15</td>
<td></td>
</tr>
</tbody>
</table>

a) \(\frac{5}{8} + \frac{3}{16} = \)
b) \(\frac{3}{5} + \frac{7}{15} = \)
c) \(\frac{3}{7} + \frac{1}{8} = \)
d) \(\frac{3}{4} - \frac{5}{8} = \)
e) \(\frac{12}{15} - \frac{2}{5} = \)
f) \(\frac{3}{8} - \frac{3}{12} = \)
g) \(\frac{5}{6} \times 6 = \)
h) \(\frac{4}{9} \times 6 = \)
i) \(\frac{5}{8} \times 4 = \)
j) \(\frac{6}{7} \div 3 = \)
k) \(\frac{5}{7} \div 5 = \)
l) \(\frac{5}{6} \div 4 = \)

a) \(\frac{5}{6} + \frac{1}{4} - \frac{2}{3} = \)
b) \(\frac{9}{6} \div 6 \times 4 = \)
c) \(\frac{7}{6} \times (7 - 4) = \)
d) \(\frac{8}{3} - \frac{3}{4} \times 6 = \)

a) How many hours are in \(\frac{3}{14} \) of a week?
b) What part of a week is half a day?
c) How many days is \(\frac{24}{3} \) of an hour?

4. Which natural numbers could be written instead of each of the shapes?

a) \(\boxed{} < \frac{11}{9} \)
b) \(\frac{5}{53} < \triangle < \frac{10}{53} \)
c) \(\frac{7}{3} \div \boxed{} > 1 \)

\(\boxed{} : \) \(\triangle : \) \(\boxed{} : \)

5. Solve the problem in your exercise book.

A 10 cm cube can hold 1 litre of water. What height would the water level be in the cube if we pour in to it:

a) \(\frac{1}{2} \) a litre
b) \(\frac{3}{4} \) of a litre
c) 25 cl
d) 800 cm\(^3\)?

6. What part of the whole unit is shaded? Write the fraction in different forms in your exercise book.

a) \(\boxed{} \)
b) \(\triangle \)

a) \(\frac{3}{8} + \frac{7}{20} = \)

b) \(\frac{4}{7} + \frac{11}{21} = \)

c) \(\frac{2}{9} + \frac{3}{8} = \)

d) \(\frac{5}{6} - \frac{1}{3} = \)

e) \(\frac{5}{12} - \frac{1}{3} = \)

f) \(\frac{11}{15} - \frac{3}{5} = \)

g) \(\frac{3}{4} \times 8 = \)

h) \(\frac{2}{15} \times 5 = \)

i) \(\frac{7}{8} \times 4 = \)

j) \(\frac{5}{9} \div 5 = \)

k) \(\frac{4}{7} \div 2 = \)

l) \(\frac{3}{8} \div 4 = \)

2. Which natural numbers could be written instead of each of the shapes?

a) \(\frac{\bigcirc}{7} < \frac{5}{7} \)

b) \(\frac{3}{23} < \frac{\bigtriangleup}{23} < \frac{8}{23} \)

c) \(\frac{9}{5} - \frac{\bigtriangleup}{10} > 1 \)

\(\bigcirc \):

\(\bigtriangleup \):

\(\bigtriangleup \):

3. Solve the equations and inequality. Check your solutions.

a) \(x \times 3 = \frac{2}{5} \)

b) \(y + 3 \times y = \frac{20}{3} \)

c) \(5 \times z - z < \frac{4}{7} \)

\(x = \)

\(y = \)

\(z < \)

4. Answer each question by writing a division. Use the diagram to help you.

a) What is half of a quarter?

b) What is a quarter of a half?

c) What is a quarter of a quarter?

d) What is a third of 9 sixteenths?

5. a) The perimeter of a square flower-pot is 3 quarters of a metre in length.

What is the length of each side:

i) in metres

ii) in cm?

b) Sally poured 2 thirds of a litre of fruit juice equally into 4 cups.

How much fruit juice was in each cup?

Give your answer:

i) in litres

ii) in cl.

Page 115
Join the numbers to the corresponding points on the number line.

\[1.4 \quad -0.60 \quad 0.35 \quad -1.2 \quad 1.7 \quad 0.65 \quad \frac{80}{100} \quad 1 + \frac{9}{10}\]

List the marked numbers in order if:

a) \(x = 10\) ...

b) \(x = 1\) ...

c) \(x = 0.1\) ...

List the fractions as decimals in increasing order. Write < or = signs between them.

\[
\frac{3}{10} \quad \frac{1}{100} \quad \frac{27}{100} \quad \frac{30}{100} \quad \frac{84}{100} \quad \frac{70}{100} \quad \frac{16}{10} \quad \frac{160}{100} \quad \frac{7}{10}
\]

Write the decimals as fractions, or as the sum of a whole number and a fraction. Write them in the place-value table.

a) \(3.02 = \)

b) \(0.7 = \)

c) \(30.46 = \)

d) \(500.8 = \)

e) \(100.09 = \)

Write the quantities in different units.

Example \(8.3 \text{ m} = 8 \text{ m} 30 \text{ cm} = 830 \text{ cm} = 8300 \text{ mm} = 0.0083 \text{ km}\)

a) \(4.6 \text{ litres} = \)

b) \(3.067 \text{ km} = \)

c) \(151.4 \text{ litres} = \)

d) \(65.2 \text{ kg} = \)
Convert each pair of fractions so that they have equal denominators. Compare them.

a) \(\frac{6}{10} \quad \frac{50}{100}\)
b) \(\frac{7}{10} \quad \frac{14}{100}\)
c) \(\frac{5}{100} \quad \frac{20}{100}\)
d) \(\frac{9}{10} \quad \frac{90}{100}\)
e) \(\frac{5}{10} \quad \frac{51}{100}\)
f) \(\frac{161}{1000} \quad \frac{16}{100}\)

Convert the decimal numbers to hundredths and compare them.

a) 0.6
b) 0.06
c) 0.7
d) 0.70
e) 0.11
f) 0.01

Write three numbers between the two decimals.

a) 3.4

 < 3.6
b) 5.2

 < 5.3
c) −0.2

 < 0.1
d) 2.9

 < 3

Write the next nearest whole number less than and greater than the decimal number.

a)

 < 4.7

 <
b)

 < 7.26

 <
c)

 < 0.09

 <
d)

 < 99.99

 <
e)

 < 101.01

 <
f)

 < 2.306

 <

Write the next nearest tenths less than and greater than the decimal numbers.

a)

 < 5.21

 <
b)

 < 3.85

 <
c)

 < 21.06

 <
d)

 < 0.44

 <
e)

 < 5.01

 <
f)

 < 0.97

 <

Round the decimals to the nearest whole number.

2.4 ≈ 6.8 ≈ 43.5 ≈ 59.9 ≈ 99.65 ≈

Round the decimals to the nearest tenth.

6.34 ≈ 5.56 ≈ 8.4 ≈ 10.20 ≈ 5.076 ≈

A melon weighed 3 kg on scales which are accurate to the nearest tenth of a kg. Write an inequality for the actual mass of the melon.
1. We had 30 m 58 cm of parcel tape and used 14 m 26 cm. How much parcel tape do we have left? Write the subtraction in the tables.

<table>
<thead>
<tr>
<th>10 m</th>
<th>1 m</th>
<th>10 cm</th>
<th>1 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In cm:</th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In m:</th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Write each decimal as the sum of units, tenths and hundredths, then do the subtraction in decimal form and fractional form.

\[\begin{array}{cccc}
2 & 0 & 4 & 8 \\
- & 1 & 4 & 1 & 6 \\
\end{array} \]

\[= 20 + \frac{4}{10} + \frac{8}{100} = \]

3. Do the subtractions, then check them with additions.

a) \[\begin{array}{cccc}
2 & 2 & 8 & 3 \\
- & 1 & 3 & 0 & 0 \\
\end{array} \]

b) \[\begin{array}{cccc}
2 & 2 & 0 & 0 \\
- & 1 & 8 & 4 & 3 \\
\end{array} \]

4. Estimate the result here by rounding each decimal to the nearest whole number, then do the calculation accurately in your exercise book.

a) \[2.24 + 21.56 + 0.75 \approx \]

b) \[31 + 3.1 + 0.31 + 0.031 \approx \]

c) \[26.68 – 19.35 \approx \]

d) \[37.5 – 8.37 \approx \]

5. Solve the problem in your exercise book.

Dad bought a water melon which weighed 6.5 kg. At lunch, Mum ate 500 g, Irene ate 3 quarters of a kg, Steve ate 1.2 kg and Dad ate 1.5 kg. How much was left for dinner?
Estimate first by rounding to the nearest tenth, then do the calculations accurately.

a) $4.12 + 29.35 + 0.87 \approx $

b) $7.05 + 27.6 + 6.715 + 37.17 \approx $

c) $34.67 - 25.58 \approx $

d) $85.49 - 16 \approx $

Practise addition.

a) \[\begin{array}{c}
5 & 6 & 3 \\
2 & 8 & 4 \\
0 & 9 & 1
\end{array} \]

b) \[\begin{array}{c}
1 & 3 & 0 \\
8 & 4 & 5 \\
7 & 4
\end{array} \]

c) \[\begin{array}{c}
5 & 0 & 0 \\
6 & 0 & 3
\end{array} \]

d) \[\begin{array}{c}
1 & 0 & 5 \\
0 & 4
\end{array} \]

Practise subtraction. Check with addition.

a) \[\begin{array}{c}
9 & 4 & 6 & 5 \\
6 & 1 & 3 & 2
\end{array} \]

b) \[\begin{array}{c}
2 & 4 & 1 & 5 \\
9 & 8
\end{array} \]

c) \[\begin{array}{c}
6 & 1 & 6 & 4 \\
3 & 4 & 8
\end{array} \]

d) \[\begin{array}{c}
4 & 0 & 0 & 0 \\
2 & 5 & 3 & 5
\end{array} \]

Answer each question by writing an equation.

a) What should be added to 1.2 to get 1.7?

b) What should be subtracted from 3.5 to get 3.50?

c) What should be subtracted from 3.58 to get 3.08?

d) What should be added to 1.25 to get 1.35?

e) If I add 13.48 to a number, the sum is 72.25. What is the number?

f) If I subtract 18.6 from a number, the result is 3.1. What is the number?
1. Write the sums as decimals in the place-value table, then add them up.

\[
\begin{align*}
a) & \quad \frac{18}{10} + \frac{7}{100} + \frac{3}{1000} = \quad \text{T U t h th} \\
b) & \quad \frac{8}{100} + \frac{7}{1000} = \\
c) & \quad 70 + \frac{3}{10} + \frac{8}{1000} = \\
d) & \quad 8 + \frac{1}{100} + \frac{37}{1000} = \\
\end{align*}
\]

2. Compare the decimal numbers. Fill in the missing signs. (<, > or =)

a) 5.89 \quad b) 0.03 \quad c) 3.087 \quad d) 1.45

\[
\begin{align*}
e) & \quad 4.0 \\
f) & \quad 0.699 \\
g) & \quad 8.1 \\
h) & \quad 7.099 \\
\end{align*}
\]

3. Write these numbers in increasing order.

a) 0.008, 0.09, 0.08, 0.009, 0.89

b) 3.25, 3.205, 3.025, 3.502, 3.52

c) 4.386, 4.683, 4.638, 4.9, 4.099

4. Practise addition and subtraction. Check the subtractions in your exercise book.

\[
\begin{align*}
a) & \quad \begin{array}{c}
273 \\
+ 675
\end{array} \\
b) & \quad \begin{array}{c}
273 \\
+ 718
\end{array} \\
c) & \quad \begin{array}{c}
01 \\
+ 00
\end{array} \\
d) & \quad \begin{array}{c}
099 \\
+ 200
\end{array} \\
e) & \quad \begin{array}{c}
376 \\
- 36
\end{array} \\
f) & \quad \begin{array}{c}
142 \\
- 36
\end{array} \\
g) & \quad \begin{array}{c}
861 \\
- 525
\end{array} \\
h) & \quad \begin{array}{c}
700 \\
- 342
\end{array}
\end{align*}
\]

5. Fill in the missing numbers.

a) 7.2 litres = _

_

cl = _

cl = _

litres _

ml = _

ml

b) _

km = _

km _

m = 2803 m = _

_

cm

c) _

kg = 2 kg 47 g = _

g

d) _

sec = _

min = _

hours _

min = 3.25 hours
1. A chemist was making up some medicine and measured out 3 different liquids very carefully in these quantities: 28 ml, 2.4 cl and 20.5 cl. How much liquid did he measure out altogether?

Plan:

Answer: ..

2. Sally went shopping for an outfit for a wedding and made a list of what she had spent.

 a) Write the amounts in the place-value table and grid. (£1 = 100 p)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>U</td>
<td>t</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 1 hat: £38.99 p
 1 dress: £40.50
 1 pair of shoes: £26.70 p
 1 handbag: £34.50

 +

 b) How much did Sally spend altogether? ..

 c) If Sally had £200 in her bank account at the start of her shopping trip, how much did she have left at the end? ...

3. Use the diagram to help you do this addition in different ways.

 \[
 \frac{1}{5} + 0.3 + \frac{17}{100} + \frac{1}{10} + 0.21
 \]

 Calculate using:

 a) fractions: ..

 b) decimals: ..

 c) percentages: ...

4. Solve the problems in your exercise book. Write only the answers here.

 a) A rectangular games court has sides of length 45.8 m and 15.6 m. How long is the fence around it if the gate is 2.2 m wide?

 b) The price of a bottle of medicine is £11.80, which includes the cost of the bottle. If the bottle costs £5.20 less than the medicine, how much are you paying for:

 i) the medicine
 ii) the bottle?
Write each addition as a multiplication and calculate the result.

a) \[0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 =\]

b) \[15.7 + 15.7 + 15.7 + 15.7 + 15.7 + 15.7 + 15.7 + 15.7 + 15.7 + 15.7 =\]

If a sheet of paper is 0.12 mm thick, what is the thickness in mm of these amounts of paper? Write the measures in the place-value table.

<table>
<thead>
<tr>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 10 sheet notepad:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a 100 leaf exercise book:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a 1000 leaf encyclopædia:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a 10 000 sheet pack of paper:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 equal-sized pearls weigh 480 g. How much do 10 such pearls weigh? How much does 1 such pearl weigh? Write the weights in the table, then write divisions about them.

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pearls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 pearls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pearl:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

£1 = 100 p

a) How many £s is:
 i) 70 p
 ii) £270
b) How many £s is:
 i) of £630
 ii) of £4750

Practise calculation.

a) \[0.3 \times 100 =\]

b) \[3.45 \times 10 =\]

c) \[605 \div 100 =\]

d) \[574 \div 10 =\]

e) \[0.87 \times 10 =\]

f) \[0.303 \times 100 =\]

g) \[1.39 \div 10 =\]

h) \[45.7 \div 100 =\]

i) \[0.07 \times 10 =\]

j) \[0.05 \times 100 =\]

k) \[0.81 \div 10 =\]

l) \[30.06 \div 10 =\]
Write each operation in a shorter way and calculate the result.

a) \(2.7 + 2.7 + 2.7 + 2.7 =\)

b) \(13.26 + 13.26 + 13.26 + 13.26 + 13.26 =\)

c) \(0.83 + 0.83 + 0.83 =\)

\[\begin{array}{c}
\text{a) The length of each side of a square is 52.4 cm.}
\end{array}\]

Write the length of its perimeter in cm, mm and metres.

\[P = \]

b) The length of the sides of a rectangle are: \(b = 6.42\) cm and \(a = 2 \times b.\)

What is the length of its perimeter?

\[P = \]

3

Calculate the products. Estimate the result mentally first.

a) \[
\begin{array}{c}
8 \quad 1 \\
\times 3
\end{array}
\]

b) \[
\begin{array}{c}
5 \quad 6 \quad 2 \\
\times 5
\end{array}
\]

c) \[
\begin{array}{c}
1 \quad 5 \quad 0 \quad 6 \\
\times 7
\end{array}
\]

d) \[
\begin{array}{c}
1 \quad 0 \quad 2 \quad 1 \quad 0 \\
\times 1 \quad 1
\end{array}
\]

4

Which is more? Calculate in your exercise book, then fill in the missing signs.

a) 43 times 2.5 m \[\square\] 25 times 5.3 m

b) 0 times 197 kg \[\square\] 197 times 0 kg

c) 12 times 4.8 litres \[\square\] 48 times 1.2 litres

5

Solve the problems in your exercise book and write the answers in a sentence here.

a) Pete has £36 50 p. Olivia has twice as much and Sue has 3 times as much as Pete. If they put all their money together, do they have enough to buy a television which costs £210?

Answer: ...

b) The units of measure used when measuring angles are degrees (°) and minutes (').

If \(1° = 60'\), how many degrees is 6 times \(12° 30'\)?

Answer: ...
Calculate the products.

a) Calculate $\frac{3}{5}$ of 840 m.

b) Calculate 0.6 of 840 m.

c) Calculate 60% of 840 m.

Which number am I thinking of? Write a plan and do the calculation.

a) Half of the number I am thinking of is 2.3 more than 3.8.
What is my number?

b) If I subtract 10.4 from the number I am thinking of, the difference is 3 times 1.2.
What is my number?

c) If I add 4.3 to the number I am thinking of, the sum is 5 times 2.3.
What is my number?

Find a rule and complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th>a</th>
<th>0.4</th>
<th>1</th>
<th>$\frac{1}{3}$</th>
<th>4</th>
<th>$\frac{2}{9}$</th>
<th>10.1</th>
<th>0.9</th>
<th>$-\frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>2.4</td>
<td>6</td>
<td>2</td>
<td>$\frac{6}{7}$</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$b = \quad a =$
1.
Use the diagram to help you do this addition in different ways.

\[0.2 + \frac{1}{10} + \frac{37}{100} + 0.17 + \frac{3}{100} \]

Calculate using:

a) fractions: ..

b) decimals: ..

c) percentages: ...

2.
Practise calculation.

a) \(0.4 \times 100 = \)

b) \(5.62 \times 10 = \)

c) \(684 \div 10 = \)

d) \(68.4 \div 10 = \)

e) \(0.09 \times 10 = \)

f) \(0.37 \times 100 = \)

g) \(14.3 \div 10 = \)

h) \(20.5 \div 10 = \)

i) \(0.49 \div 10 = \)

j) \(0.06 \times 100 = \)

k) \(4.274 \times 10 = \)

l) \(0.037 \times 100 = \)

3.

a) Calculate \(\frac{2}{5}\) of 760 km. ...

b) Calculate 20% of 760 km. ...

c) Calculate 0.6 of 760 km. ...

4.
Find a rule and complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.2</th>
<th>3</th>
<th>(\frac{2}{5})</th>
<th>2</th>
<th>(\frac{3}{5})</th>
<th>(\frac{1}{6})</th>
<th>9.2</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1.0</td>
<td>15</td>
<td>2</td>
<td>-</td>
<td>(\frac{5}{7})</td>
<td>3.5</td>
<td>-(\frac{1}{4})</td>
<td>0.75</td>
</tr>
</tbody>
</table>

\[x = \quad y = \]

5.
Compare each pair of numbers. Fill in the missing signs. (<, > or =)

a) \(\frac{47}{100} \quad \square \quad 0.047\)

b) \(0.205 \quad \square \quad \frac{25}{1000}\)

c) \(3 \frac{3}{5} \quad \square \quad 3.69\)

d) \(\frac{3}{5} \quad \square \quad 0.065\)

e) \(0.35 \quad \square \quad \frac{35}{100}\)

f) \(0.87 \quad \square \quad \frac{78}{100}\)

6.
Alan mixed 2.4 litres of white paint with 7 litres of red paint to make pink paint. He used all the pink paint to paint 4 identical rooms.

How many litres of paint did he use for each room?

---------- litres
1 Practise mental division.

a) i) $36 \div 9 =$ ii) $3.6 \div 9 =$ iii) $0.36 \div 9 =$

b) i) $56 \div 7 =$ ii) $5.6 \div 7 =$ iii) $0.56 \div 7 =$

c) i) $48 \div 6 =$ ii) $4.8 \div 6 =$ iii) $0.48 \div 6 =$

d) i) $96 \div 8 =$ ii) $9.6 \div 8 =$ iii) $0.96 \div 8 =$

2 Estimate the result, do the division in two ways and check with a multiplication.

$129.5 \div 7 =$

E: ________________________________

Short division:

Check:

3 Estimate the result, do the division in two ways and check with a multiplication.

$129.6 \div 7 =$

E: ________________________________

Short division:

Check:

4 Do the divisions in your exercise book. Continue each division until the result is 0.

a) i) $4 \div 1896$ ii) $4 \div 189.6$ iii) $4 \div 18.96$ iv) $4 \div 1.896$

b) i) $600 \div 8$ ii) $60 \div 8$ iii) $6 \div 8$ iv) $0.6 \div 8$

5 Write a plan, estimate, calculate, check and write the answer in a sentence.

A 2.88 m length of ribbon is cut into 3 equal parts. How long is each part?

Answer: ________________________________
A group of 6 children weighed themselves and these were the results.
32.5 kg, 31.0 kg, 32.0 kg, 31.0 kg, 30.5 kg, 33 kg
What do they each weigh on average? Calculate the mean value to the nearest 10 g.
Mean mass:

A group of 5 pupils were asked their ages and these were the results in months.
110 months, 121 months, 113 months, 116 months, 117 months
What is the mean value of their ages?
Mean age:

Calculate the mean age of each family and then compare them.

The Cabbage family:
1 year, 2 years, 11 years, 33 years, 35 years, 59 years, 65 years
Mean age:

The Sprout family:
10 years, 11 years, 16 years, 19 years, 21 years, 42 years, 44 years
Mean age:

Which family has more people able to work in their garden?

a) Find a rule and complete the table. Write the rule in different ways.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>12</th>
<th>2.4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3.6</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>13</td>
</tr>
</tbody>
</table>

c =

b) In your exercise book, calculate the mean values for a, b and c.
Calculate:

a)
 i) \(\frac{1}{2} \) of 36 =
 ii) \(\frac{2}{2} \) of 36 =
 iii) \(\frac{3}{2} \) of 36 =

b)
 i) \(\frac{1}{2} \) of 25 =
 ii) \(\frac{2}{5} \) of 25 =
 iii) \(\frac{7}{5} \) of 25 =
 iv) \(\frac{7}{10} \) of 25 =

a) Write the decimals as fractions.

i) 0.1 =
 ii) 0.5 =
 iii) 1.2 =
 iv) 0.01 =
 v) 0.35 =
 vi) 3.05 =
 vii) 0.001 =

b) Express the quotient of 5 divided by 8 as a fraction and as a decimal.

5 ÷ 8 =

c) Express the quotient of 15 divided by 9 as a fraction and as a decimal.

15 ÷ 9 =

3

Write the fractions as decimals. Do the divisions in the grids.

a) \(\frac{1}{2} \) =
 b) \(\frac{7}{2} \) =
 c) \(\frac{3}{5} \) =
 d) \(\frac{11}{5} \) =

 ![Grid for \(\frac{1}{2} \)]
 ![Grid for \(\frac{7}{2} \)]
 ![Grid for \(\frac{3}{5} \)]
 ![Grid for \(\frac{11}{5} \)]

 ![Grid for \(\frac{1}{4} \)]
 ![Grid for \(\frac{3}{4} \)]
 ![Grid for \(\frac{7}{4} \)]

4

Write the fractions as decimals. Do the divisions in the grids.

a) \(\frac{1}{3} \) =
 b) \(\frac{2}{3} \) =
 c) \(\frac{5}{6} \) =

 ![Grid for \(\frac{1}{3} \)]
 ![Grid for \(\frac{2}{3} \)]
 ![Grid for \(\frac{5}{6} \)]

 d) Decimals in which the last digit is repeated endlessly are called

 decimals.
1
Write the fractions as decimals. Do necessary calculations in your exercise book.

<table>
<thead>
<tr>
<th>a) (\frac{3}{2} =)</th>
<th>b) (\frac{13}{5} =)</th>
<th>c) (\frac{6}{15} =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) (\frac{13}{20} =)</td>
<td>e) (\frac{9}{8} =)</td>
<td>f) (\frac{11}{50} =)</td>
</tr>
</tbody>
</table>

2
Write the fractions as decimals. Do necessary calculations in your exercise book.

<table>
<thead>
<tr>
<th>a) (\frac{2}{3} =)</th>
<th>b) (\frac{5}{13} =)</th>
<th>c) (\frac{15}{6} =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) (\frac{7}{15} =)</td>
<td>e) (\frac{7}{11} =)</td>
<td>f) (\frac{8}{9} =)</td>
</tr>
</tbody>
</table>

3
Without doing divisions, circle the fractions which have a finite decimal form.

<table>
<thead>
<tr>
<th>a) (\frac{7}{2})</th>
<th>b) (\frac{4}{3})</th>
<th>c) (\frac{20}{18})</th>
<th>d) (\frac{18}{20})</th>
<th>e) (\frac{12}{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>f) (\frac{21}{16})</td>
<td>g) (\frac{15}{12})</td>
<td>h) (\frac{17}{25})</td>
<td>i) (\frac{80}{125})</td>
<td>j) (\frac{10}{225})</td>
</tr>
</tbody>
</table>

4
Fill in the missing numerators, denominators or numbers.

| a) 3 minutes = \(\frac{3}{\square} \) hour = \(\frac{\square}{\square} \) hour = \(\frac{\square}{100} \) hour = 0.\(\square \) hour |
|---|---|---|---|
| b) 15 minutes = \(\frac{15}{\square} \) hour = \(\frac{\square}{\square} \) hour = \(\frac{\square}{100} \) hour = 0.\(\square \) hour |
| c) 63 minutes = \(\frac{63}{\square} \) hour = \(\frac{\square}{\square} \) hour = \(\frac{\square}{100} \) hour = \(\square \) hours |
| d) 6 hours = \(\frac{\square}{24} \) day = \(\frac{1}{\square} \) day = 0.\(\square \) day |
| e) 3 hours = \(\frac{\square}{\square} \) day = \(\frac{1}{\square} \) day = 0.\(\square \) day |
| f) 15 hours = \(\frac{\square}{24} \) day = \(\frac{\square}{8} \) day = 0.\(\square \) day |
Practise mental division.

a) i) \(72 \div 8 = \) ii) \(7.2 \div 8 = \) iii) \(0.72 \div 8 = \)
b) i) \(49 \div 7 = \) ii) \(4.9 \div 7 = \) iii) \(0.49 \div 7 = \)
c) i) \(55 \div 5 = \) ii) \(5.5 \div 5 = \) iii) \(0.55 \div 5 = \)
d) i) \(63 \div 9 = \) ii) \(6.3 \div 9 = \) iii) \(0.063 \div 9 = \)

Join up the fractions and decimals which have the same value.

\[
\begin{array}{cccc}
\frac{1}{8} & \frac{1}{2} & \frac{4}{5} & \frac{23}{100} \\
\frac{23}{100} & \frac{1}{5} & \frac{3}{4} & \frac{5}{8} \\
0.125 & 0.2 & 0.625 & 0.5 \\
0.023 & 0.23 & 0.375 & 0.8 \\
0.75 & & & \\
\end{array}
\]

List the numbers in decimal form in decreasing order.

Join up any equal fractions.

One side of a rectangle is 2.35 m in length.
The \textbf{adjacent} side is twice as long.

What is the length of:

a) the adjacent side

b) the perimeter? ..

Solve these problems in your exercise book.

a) At 16:30 hours, Ben's temperature was 36.9°C. It rose by 0.4 °C every hour. What was Ben's temperature at 20:00 hours?

b) Suzy bought 10 apples and 8 pears. The apples cost £0.35 each and a pear cost twice as much as an apple. How much did Suzy pay altogether?

c) A 2.5 m length was cut from a ball of string of total length 13 m. The remaining string was cut into 6 equal pieces. How long was each piece?

Circle the fractions which have \textbf{finite} decimal form.

Join up any equal fractions.

\[
\begin{array}{cccc}
\frac{2}{5} & \frac{4}{3} & \frac{16}{20} & \frac{4}{9} \\
\frac{4}{5} & \frac{6}{15} & \frac{20}{45} & \frac{24}{30} \\
\end{array}
\]
In a group of children, there are 8 boys and 12 girls. Write the parts and ratios required.

a) What is the ratio of boys to girls?
.................................
b) What part of the group is boys?
.................................
c) What is the ratio of girls to boys?
.................................
d) What part of the group is girls?
.................................

Answer the questions by writing a ratio or a fraction, as required.

In a group of students at a youth camp, 3 are Americans, 4 are British and 1 is Greek.

a) What part of the group is:

American British Greek British or Greek?

b) What is the ratio in the group of:

i) American students to British students
.................................
ii) American students to Greek students
.................................
iii) British students to American students
.................................
iv) British students to Greek students
.................................
v) Greek students to American students
.................................
vi) Greek students to British students?
.................................

c) The group is going on a trip in a minibus. They get on the bus in a random order. How certain are you of these events occurring?

If you think that it is certain to happen, write C, if you think that it is possible but not certain, write P and if you think that it is impossible, write I.

i) The first 4 students to get on the bus are American.
.................................
ii) The last student to get on the bus is American or British or Greek.
.................................
iii) The first student to get on the bus is Greek.
.................................
iv) The first 4 students to get on the bus are an American, a Greek, an American and a British student in that order.
.................................
v) Two Americans, a British and the Greek student are the first four to get on the bus.
.................................

d) i) Which nationality is the most likely to get on the bus first?
.................................
ii) Is the first student to get on the bus more likely to be American or British?
.................................
1. Write the ratios between the shaded and white parts and the whole square.

 a) to
 b) to
 c) to the whole
 d) to the whole

2. How certain are you of these outcomes occurring? Write C for certain, P for possible but not certain or I for impossible.

 a) The next Olympic Games will be in the year 2004.
 b) The next time I throw a dice I will get a 5.
 c) The next time I throw a dice I will get a 0.
 d) Next year, the number of boys born will be twice the number of girls.
 e) Next year, fewer boys than girls will be born.

3. A group of children is visiting a museum. In the group, there are 12 girls and the ratio of girls to boys is 3 to 2.

 a) How many boys are in the group?
 b) How many children are in the group?
 c) If the children enter the museum in a random order, underline the outcome which you think is more likely to occur.
 i) A boy enters first.
 ii) A girl enters first.
 d) What do you think is the probability of each of the outcomes in c) occurring?
 i) A boy enters first.
 ii) A girl enters first.

4. In a bag there are 50 marbles altogether. The marbles are either black or white.
 The ratio of black marbles to white marbles is 1 : 4.

 a) How many marbles are there of each colour?
 black
 white
 b) If you take a marble out of the bag with your eyes shut, what is the probability that it will be white?
Predict the result for each outcome first, then do the experiment.
Toss a coin 20 times and note how it lands in this table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prediction</th>
<th>Tosses</th>
<th>Totals</th>
<th>Ratio (relative frequency)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What fraction of your tosses resulted in:

a) a *Head*
b) a *Tail*

Collect the totals for the class and fill in this table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of tosses</th>
<th>Totals (frequency)</th>
<th>Ratio (relative frequency)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What do you think is the probability of tossing:

a) a *Head*
b) a *Tail*

Predict the results for each outcome first, then do the experiment.
Throw a dice 20 times and note how it lands in this table.

<table>
<thead>
<tr>
<th>Prediction Outcome</th>
<th>Tally of 20 throws</th>
<th>Totals (frequency)</th>
<th>Ratio (relative frequency)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collect the class data and fill in this table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of throws</th>
<th>Totals (frequency)</th>
<th>Ratio (relative frequency)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What do you think is the probability of throwing a:

1
3
5

Divide 100% by 6.
What does it have to do with the experiment?
Four children tossed a coin several times and wrote their results in this table. Write the answer to each question in the appropriate part of the table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Alan</th>
<th>Becky</th>
<th>Carol</th>
<th>David</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>24</td>
<td>30</td>
<td>27</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Tail</td>
<td>25</td>
<td>28</td>
<td>31</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total tosses

a) How many tosses were there altogether?

b) How many: i) Heads ii) Tails were tossed altogether?

c) What is the ratio of each outcome to the total number of tosses:
 i) as a fraction ii) as a decimal iii) as a percentage?

Predict the result for each outcome first, then do the experiment.
Toss a 10 p coin and a £1 coin at the same time. Repeat the experiment 24 times and keep a tally of how they land in this table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Totals</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prediction Total throws

Collect the data for the class and complete the right-hand side of the table.

Repeat the experiment using 3 coins.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Totals</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H H H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H H T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H T H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H T T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T H H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T H T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prediction Total throws
1

There are 6 black-faced and 10 white-faced sheep in a field. Write the parts and ratios required.

\[\begin{array}{cccccccccc}
\text{black-faced sheep} & & & & & & & & & \text{white-faced sheep} \\
\text{black-faced sheep} & & & & & & & & & \text{white-faced sheep} \\
\text{black-faced sheep} & & & & & & & & & \text{white-faced sheep} \\
\text{black-faced sheep} & & & & & & & & & \text{white-faced sheep} \\
\end{array} \]

a) What is the ratio of black-faced to white-faced sheep?

b) What is the ratio of white-faced to black-faced sheep?

c) What fraction of the sheep have:
 i) white faces
 ii) black faces?

2

How certain are you of these outcomes occurring? Write C for certain, P for possible but not certain or I for impossible.

a) The final of the next Football World Cup will be in 2005.

b) The next time I toss a coin I will get a Head or a Tail.

c) The next time I throw two dice the total will be more than 6.

d) The next time I throw two dice the total will be more than 12.

e) It will rain next week in my home town.

3

In a bag there are 40 marbles altogether. The marbles are either red or blue. The ratio of red marbles to blue marbles is 1 : 3.

a) How many marbles are there of each colour? red blue

b) If you take a marble out of the bag with your eyes shut, what is the probability that it will be:
 i) blue
 ii) not blue?

4

Imagine this net folded to make a cube and used as a dice.

If the dice is rolled, what is the probability that the square facing up is:

a) red

b) blue

c) yellow

d) not red?
Predict the result of each outcome first, then do the experiment.
Throw a white and a red dice at the same time and note how they land in this table. Repeat the experiment 72 times. Collect the class data and complete the table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Tally of 72 throws</th>
<th>Prediction</th>
<th>Total throws</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals

| Frequency | |
| Total throws | |

Ratio

| Relative frequency | |
| Fraction | Decimal | % |

Page 136
A dice was thrown 60 times. The number of times (frequency) each of the numbers 1 to 6 (outcome) was thrown is shown in the chart below.

Complete the table and answer the questions.

a) Which outcome occurred:
 i) most frequently
 ii) least frequently?

b) Which frequency exactly fits the expected frequency for each outcome?

c) What was the frequency of the outcome 'less than 6'?

d) What was the frequency of the outcome 'odd'?

Two coins were tossed 60 times. The frequency of each outcome is shown in the table.

a) Complete the chart.

b) Calculate the ratio for each outcome and complete the table.

 c) What is the frequency of tossing a Head and a Tail?

A fortune teller spins her lucky colour wheel 100 times. Complete the table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>pink</th>
<th>blue</th>
<th>white</th>
<th>green</th>
<th>pink or blue</th>
<th>p or w or g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>26</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio relative frequency</td>
<td>fraction</td>
<td>decimal</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. When we throw an *unbiased* dice, there are 6 possible outcomes, each equally likely:
 1, 2, 3, 4, 5 or 6

Show the probability of each of these outcomes by joining it to the correct point on the probability scale.

- a) Throwing a 2
- b) Throwing a number less than 3
- c) Throwing a number not less than 3
- d) Throwing a 7
- e) Throwing a number less than 1
- f) Throwing a number greater than 0
- g) Throwing a number greater than 5

2. Seven children draw lots in the hope of winning a prize. If each child has an equal chance of winning, what is the probability of each of these outcomes happening?

Join the outcomes to the matching points on the probability scale.

- a) C wins.
- b) A or D wins.
- c) G or E or C or A wins.
- d) B and F win.
- e) G does not win.
- f) Neither D nor E wins.

3. Let’s suppose that when the fortune teller spins her lucky number wheel, any of the numbers has an equal chance of coming to rest in front of the arrow.

Also, the wheel has been fixed so that it cannot stop with the arrow pointing to a line between two numbers.

What is the probability of these outcomes happening?

The number is:

- a) 17
- b) less than 17
- c) not greater than 17
- d) not less than 17
- e) even
- f) divisible by 4
- g) not divisible by 4
- h) either even or odd
- i) neither even nor odd
In a lottery game, 2 numbers are drawn from the numbers 1, 2, 3 and 4. Let's suppose that each number has an equal chance of being drawn.

a) List the possible outcomes if the order of the two numbers does not matter.

b) What is the probability of these outcomes?
 i) The numbers are 1 and 3.
 ii) One of the numbers is 2.
 iii) One of the numbers is either 1 or 3.

c) List the possible outcomes if the order of the two numbers does matter.

This time the numbers 1, 2, 3 and 4 are written on cards and put into a bag. A pupil takes out one card with his eyes shut, notes the number and puts it back into the bag again. Then the pupil takes out a 2nd card in the same way and notes the number.

a) List the possible outcomes if the order of the two numbers does not matter.

b) List the possible outcomes if the order of the two numbers does matter.

Eight children have written their names on a wheel of fortune. The fortune teller spins the wheel to see who is to be chosen to have their fortunes told. Let's suppose that each letter has an equal chance of coming to rest in front of the arrow and that the wheel cannot stop on the lines between the letters.

What is the probability of each of these outcomes?

a) A wins.

b) D wins.

c) B and G win.

d) F does not win.

e) C or H wins.

f) Neither C nor H wins.

g) The winning name's initial letter comes after C in the alphabet.

h) The winning name's initial letter comes before C in the alphabet.

i) E either wins or doesn't win.
When we throw an **unbiased** dice, there are 6 equally likely outcomes:

1, 2, 3, 4, 5 or 6

Show the probability of each of these outcomes by joining it to the correct point on the probability scale.

- a) Throwing a 6
- b) Throwing a number less than 6
- c) Throwing a number not less than 6
- d) Throwing a number greater than 2
- e) Throwing a number less than 1
- f) Throwing an odd number
- g) Throwing a natural number

The diagram shows a spinner used in a board game.

When the spinner is spun, what is the probability that it lands on:

- a) 1
- b) 8
- c) an even number
- d) a number less than 8
- e) a number greater than 8
- f) a number greater than 0?

In a lottery, 2 numbers are drawn from the numbers 1, 2, 3, 4 and 5. Each number has an equal chance of being drawn.

- a) List all the possible outcomes if the order of the two numbers does not matter.

- b) What is the probability of each of these outcomes happening?
 - i) The numbers are 1 and 2.
 - ii) One number is 1.
 - iii) One of the numbers is either 1 or 2.

In a box of 30 coloured pencils, there are **red**, **green** and **blue** pencils. The ratio of red to green to blue is 4 : 5 : 6. How many pencils of each colour are in the box?

- red
- green
- blue