<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mental counting</td>
<td>Whole class activity
T waits until most of class nod their heads before moving on
Cards shown in unison
Ps who answered correctly explain to those who did not.
T asks what kind of mistakes were made.
If problems, write details on BB
Praising, encouragement only
Who can tell us something else about the numbers in the table? e.g.
• Only the number 14 is coloured red and blue (i.e. violet).
• The numbers in each column have the same units digit and are increasing by 10.
• The numbers in the 4th row are 20 more than in the 2nd row.</td>
</tr>
<tr>
<td>Listen carefully, do the calculations in your head and show me the final answer with number cards when I say. Nod your heads when you have done each step.</td>
<td>Lesson Plan
Week 1
Y3
R: Addition and subtraction (mental and written work)
C: Revision: numbers to 100
E: Roman numerals. Puzzles
Notes
1
Extension
Who can tell us something else about the numbers in the table? e.g.
• Only the number 14 is coloured red and blue (i.e. violet).
• The numbers in each column have the same units digit and are increasing by 10.
• The numbers in the 4th row are 20 more than in the 2nd row.</td>
</tr>
<tr>
<td>1.1</td>
<td>5 min
a) T: '3 + 6' . . . ' – 2' . . . '+ 3' . . . '– 5'
Show me the answer with number cards . . . now! (5)
Similarly for:
b) 50 – 10 + 30 – 50 + 70 Show me . . . now! (90)
c) 25 – 4 + 9 + 8 – 18 Show me . . . now! (20)
d) 6 + 7 + 7 – 4 – 9 Show me . . . now! (7)
e) 28 + 8 – 12 + 19 Show me . . . now! (43)
[N.B. Parts a) to c): without crossing tens; parts d) and e): crossing tens]</td>
</tr>
<tr>
<td>2.1</td>
<td>5 min
Whole class activity
Involve several Ps
Encourage Ps to ask logical questions, keeping in mind the clues already given.
Praise clever questions
Class applauds correct answer
Individual work, monitored
Deal with one part at a time.
Table drawn on BB or use enlarged copy master or OHP
Discussion, agreement, checking, self-correcting
T deals with all mistakes
Praising
Give Ps time to think.
T gives hints if Ps cannot think of anything
Discussion, agreement, praising</td>
</tr>
</tbody>
</table>
Lesson Plan 1

Notes

Whole class activity
Already prepared on small board or use enlarged copy master or OHP

(Or Ps can show with number cards on command.)
Ps come to BB to count the elements as a check.

Drawn on BB or use enlarged copy master or OHP
Ps come out to write the numbers in the table and point to them on the class number line.

Discussion, reasoning, agreement, checking, praising

By counting the elements, or BB: 36 + 43 = 79,
70 + 79 = 70 + 30 + 40 + 9
= 149

Individual work, monitored, (helped)
Discussion, reasoning, agreement, checking, praising

BB:

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Total | 9 | 7 |

[Preparation for vertical addition]

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, checking, praising

BB: e.g. VI = V + I = 6
IV = V – I = 4
XIV = X + (V – I) = 14
LV = L + V = 55, etc.
Lesson Plan 1

Notes
- Whole class activity
- Use enlarged copy master/OHP
- Give Ps time to think and to suggest methods of solution
- If Ps reach correct solution by trial and error, praise them but also demonstrate logical solution
- Discussion, reasoning, agreement, praising

BB:
- \(50 + 30 + 20 = 100 \)
- \(50 + 30 - 20 = 60 \)
- \(50 - 30 + 20 = 40 \)
- \(50 - 30 - 20 = 0 \)

Individual work, monitored, helped
- Drawn on BB or use enlarged copy master or OHP
- Discussion, agreement, checking, self-correction
- Write additions on BB if there are problems.
- Praising, encouragement only

Y3

Activity

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PbY3a, page 4, Q.3</td>
</tr>
</tbody>
</table>

Read: *The same shape means the same number.*
Fill in the missing whole tens.

How could we solve it? Ps suggest methods of solution.

(trial and error, or comparison of rows: e.g. in the 1st equation, we add a triangle and in the 2nd we subtract a triangle. Therefore \(100 - 60 = 40 \), which equals 2 triangles, so 1 triangle = \(20 \), etc.)

Logical solution (by getting rid of two of the unknowns):
e.g.
1. Add rows 1 and 4 together: 2 rectangles = 100, so 1 rectangle = \(50 \)
2. Subtract row 2 from row 1: 2 triangles = 40, so 1 triangle = \(20 \)
3. Then in row 1: \(50 + \text{semicircle} + 20 = 100 \), so semicircle = \(30 \)

Whatever method is used, check that the solution is true in all equations.

(Or as individual work if Ps wish, followed by whole class discussion.)

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>PbY3a, page 2</td>
</tr>
</tbody>
</table>

Q.4 Read: *The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers.*

Revise meaning of adjacent. Review at BB with whole class.

Ps come out to fill in each pair of numbers, explaining reasoning.

Class agrees/disagrees.

Solution:

\[
\begin{array}{ccc}
100 & 40 & 60 \\
20 & 20 & 40 \\
10 & 10 & 10 & 30 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Sequences</td>
</tr>
</tbody>
</table>

T says first few terms in a sequence and Ps continue it.

T asks for the rule in each case.

- a) 0, 20, 40, ... (+ 20)
- b) 0, 5, 10, 15, ... (+ 5)
- c) 100, 90, 80, ... (– 10)
- d) 1, 11, 21, ... (+ 10)
- e) 99, 89, 79, ... (– 10)
- f) 4, 9, 14, 19, ... (+ 5), etc.

© CIMT, University of Exeter
Activity 1

Oral work

Let's see how many different ways we can think of to describe the number 10.

(e.g. $1 + 9$, $12 - 2$, $5 + 2 + 3$, the next whole number greater than 9, half of 20, 1 tenth of 100, etc.)

Repeat with 20, 30, 50, 100.

Notes

Whole class activity

T chooses Ps at random

At speed

Class agrees/disagrees with each description

If problems, write on BB

Extensions

- **Add up the numbers in:**
 - $74 + 29 = 74 + 20 + 6 + 3 = 103$ (or $73 + 30$)
 - $74 + 32 = 74 + 30 + 2 = 106$ (or $76 + 30$)
 - $29 + 32 = 29 + 30 + 1 + 1 = 61$ (or $30 + 31$)

- What is the total of all three numbers? e.g.

- Ps come out to point to a number on the number line and choose another P to read it out.

Notes

Individual work, monitored

Use enlarged copy master or OHP

Discussion, reasoning, agreement, self-correcting, praising

BB: a) 74 coins
 b) 29 sweets
 c) 32 marbles

Whole class activity

Ps come out to write additions on the BB

Class agrees/disagrees

BB: $(74 + 29) + 32 = 103 + 32 = 135$

At speed. Praising

Activity 2

PbY3a, page 2

Q.1 Read: *Fill in the amounts and mark the numbers on the number line.*

T explains task and elicits that there are 10 coins in each pile, 10 sweets in each packet and 10 marbles in each pyramid.

Review at BB with whole class. Ps come out to write in a number, explaining reasoning. Class agrees/disagrees.

Then they mark their number on the number line and label it.

Who had them all correct? Who made a mistake?

What kind of mistake? Who did the same? etc.

- **Add up the numbers in:**
 - $74 + 29 = 74 + 20 + 6 + 3 = 103$ (or $73 + 30$)
 - $74 + 32 = 74 + 30 + 2 = 106$ (or $76 + 30$)
 - $29 + 32 = 29 + 30 + 1 + 1 = 61$ (or $30 + 31$)

- What is the total of all three numbers? e.g.

- Ps come out to point to a number on the number line and choose another P to read it out.

Notes

Individual work, monitored

Use enlarged copy master or OHP

Discussion, reasoning, agreement, self-correcting, praising

BB: a) 74 coins
 b) 29 sweets
 c) 32 marbles

Whole class activity

Ps come out to write additions on the BB

Class agrees/disagrees

BB: $(74 + 29) + 32 = 103 + 32 = 135$

At speed. Praising

Activity 3

Number puzzle

Let's find the whole tens value of each shape, if the same shape stands for the same number. Ps suggest methods of solution.

Solution: e.g.

$\bigcirc = 50$, as $100 - 50 = 50$.

$\bigcirc = 40$, as $10 + 40 = 50$.

$\bigtriangleup = 30$, as $40 - 10 = 30$.

$\bigotimes = 60$, as $40 + 60 = 100$, and $\bigotimes = 60 - 40 = 20$

Notes

Whole class activity

Drawn on BB or use enlarged copy master/OHP

Reasoning, agreement

Check solution is true for all equations.

Praising

(Or done as individual work if Ps wish, reviewed at BB with whole class)

Activity 4

Mental addition

Class all stand. Ps sit down when they have answered correctly.

T says a number. P completes it to make 100 (50, 99).

e.g. T says '23', P_1 says '77'; T says '45', P_2 says '55'; etc.

Class points out errors. Ps left standing are given another chance to answer correctly. If problems, refer to class number line.

Notes

Whole class activity

At speed round class

Involve all Ps

T differentiates questions according to ability

Praising, encouragement only

© CIMT, University of Exeter
Lesson Plan 2

Notes
Paired work, monitored, helped
Ps have model money on desks: £1 and £2 coins, £5, £10, £20 and £50 notes
Reasoning, agreement, checking, praising
Extra praise for creativity!

[Practice in addition and subtraction and familiarisation with money]

5 Money investigation
Ps work in pairs. A has to pay £67 to B. Then B pays £67 to A in a different way. Change may be given if needed. Both Ps write the different ways as additions or subtractions in their Ex. Bks. (Heading: Lesson number and date)

Review at BB with the whole class. A, show us one way to pay £67. Who did the same as A? Who did it a different way? Deal with as many cases as possible in the time.

e.g. A gives B £10 + £10 + £10 + £10 + £10 + £5 + £1 + £1
 B gives A £20 + £20 + £2 + £2 + £2 + £1
 C gives D £50 + £50; D gives C back £20 + £10 + £2 + £1

(Or done as whole class activity with pairs of Ps at front of class choosing from model coins and notes on T’s desk and sticking to BB so that whole class can see. Class agrees/disagrees. T (or P) writes additions or subtractions on BB if needed.

22 min

6 PbY2a, page 2
Q.2 Read: Draw and write down how you could pay £76 from these notes and coins: £50, £20, £10, £5, £2, £1
 a) with the exact amount b) with change needed.

Review at BB with whole class. A, what did you write? Who did the same as A? Who did it a different way? etc. e.g.

BB: a) £50 £20 £5 £1 50 + 20 + 5 + 1 = 76
 b) £50 £20 £10 and change of £2 £1 £1
 (50 + 20 + 10) – (2 + 1 + 1) = 80 – 4 = 76

Who made a mistake? What kind of mistake?

27 min

7 PbY3a, page 2
Q.3 Read: Fill in the amounts. Compare them by drawing arrows towards the amount which is more.

Review at BB with whole class. Mistakes corrected.
How much more is one than the other? Ps come out to write the differences on the arrows. Let’s check by writing equations.

BB: e.g 29 + 16 = 45 or 45 – 29 = 45 – 20 – 5 – 4 = 16

Solution:

What do you notice about the arrows? (6 arrows in all; '52' has only incoming arrows, because it is the biggest; '29' has only outgoing arrows, because it is the smallest)

32 min

© CIMT, University of Exeter
Activity 8

Sequences

Let's continue the sequences. T has SB or OHP already prepared.

Ps come out to write next 5 terms and give the rule. (Or T writes what Ps dictate.)

- **a)** 99, 94, 89, . . . \[84, 79, 64, 59, 64, . . .\] \((-5)\)
- **b)** 24, 19, 14, . . . \[9, 4, –1, –6, –11, . . .\] \((-5)\)
- **c)** I, VI, XI, XVI, . . . \[XXI, XXVI, XXXI, XXXVI, XLI, . . .\] \((+5)\)
- **d)** C, XC, LXXX, . . . \[LXX, LX, L, XL, XXX, . . .\] \((-10)\)
- **e)** II, IV, 8, 12, . . . \[XIV, 16, XVIII, 20, XXII, . . .\] \((+2)\)

Notes

Whole class activity

- Involve several Ps
- Done at a good pace
- Reasoning
- With T's help if necessary for negative and Roman numbers
- Praising, encouragement only
- Extra praise for Ps who can continue the sequences further

Activity 9

PBY3a, page 2

Q. 4 Read: *Draw a line 8 cm long. Divide it up into quarters.*

T revises how to draw a certain length of line accurately.

Ps draw 8 cm line first. Discuss how to divide it into quarters. (4 equal parts, each part is 1 quarter)

BB: 4 quarters (1 whole): 8 cm, 1 quarter: 8 cm ÷ 4 = 2 cm

Ps mark with short, vertical lines every 2 cm starting from LHS.

© CIMT, University of Exeter
Activity 1

Different ways to add and subtract

Let's add or subtract these numbers in different ways. T writes addition on BB. A, come and show us how you would do it. Is A correct? Who can think of doing it another way? etc.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result 1</th>
<th>Result 2</th>
<th>Result 3</th>
<th>Result 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $47 + 8$</td>
<td>$45 + 2 + 5 + 3 = 50 + 5 = 55$</td>
<td>$47 + 3 + 5 = 50 + 5 = 55$</td>
<td>$(47 + 3) + (8 – 3) = 50 + 5 = 55$</td>
<td>$47 + 3 + 5 = 50 + 5 = 55$</td>
</tr>
<tr>
<td>b) $92 – 19$</td>
<td>$92 – 20 + 1 = 72 + 1 = 73$</td>
<td>$80 + 12 – 10 – 9 = 70 + 3 = 73$</td>
<td>$92 – 10 – 2 – 7 = 80 – 7 = 73$</td>
<td>$(92 + 1) – (19 + 1) = 93 – 20 = 73$</td>
</tr>
<tr>
<td>c) $80 + 81$</td>
<td>$80 + 80 + 1 = 160 + 1 = 161$</td>
<td>$80 + 20 + 61 = 100 + 61 = 161$</td>
<td>$2 \times 80 + 1 = 160 + 1 = 161$</td>
<td>$80 + 3 + 13 = 83$</td>
</tr>
</tbody>
</table>

4 min

Activity 2

Addition and subtraction

Study these diagrams carefully. What do you notice about them? (columns of 10 squares, some shaded. Each diagram has column of only 3 squares at the RHS)

Let's write an addition and subtraction about each diagram.

BB:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result 1</th>
<th>Result 2</th>
<th>Result 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $67 + 16$</td>
<td>$67 + 16 = 83$</td>
<td>$67 + 3 + 13 = 83$</td>
<td>$83 – 16 = 67$</td>
</tr>
<tr>
<td>b) $47 + 16$</td>
<td>$47 + 16 = 63$</td>
<td>$47 + 3 + 13 = 63$</td>
<td>$83 – 16 = 67$</td>
</tr>
<tr>
<td>c) $37 + 26$</td>
<td>$37 + 26 = 63$</td>
<td>$37 + 3 + 23 = 63$</td>
<td>$63 – 3 – 13 = 37$</td>
</tr>
</tbody>
</table>

8 min

Activity 3

PbY3a, page 3

Q.1 Read: Practise addition.

How many additions are there? ($3 \times 6 = 18$)

Let's see how many you can do in 4 minutes. You can use your number lines if you need to. Sit up with your arms folded when you have finished. Start . . . now! Stop!

Review orally round class. If problems write details on BB. e.g. $17 + 5 = 17 + 3 + 2 = 22$, $8 + 24 = 24 + 6 + 2 = 32$

Ps mark own (or neighbour's) work and count how many correct out of 18. Who had 18 correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.

14 min
Activity

Lesson Plan 3

<table>
<thead>
<tr>
<th>Y3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PbY3a, page 3</td>
<td></td>
</tr>
<tr>
<td>Q.2 Read: Practise subtraction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How many subtractions are there? (3 × 6 = 18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let's see if you can increase your score this time! Do as many as you can in 4 minutes. Use your number lines if you need to. Sit up with your arms folded when you have finished. Start...now!Stop!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review orally round class. If problems write details on BB. e.g. 26 – 9 = 26 – 6 – 3 = 17, 25 – 17 = 25 – 10 – 5 – 2 = 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps mark own (or neighbour's) work and count how many correct out of 18. Who had 18 correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Who scored more than before? How many more?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5		
Number puzzle		
T has BB (or SB or OHP) already prepared: BB:		
a) 13 + 12 + 12 = [37] b) 26 – 12 + 5 = [19]		
+ + + + 20 + 15 – 13 = [22] 11 + 15 – 10 = [16]		
= = = 44 – 24 + 14 = [34] 18 – 4 + 11 = [25]		
Ps come out one at a time to fill in the missing numbers, saying how they did the calculation. Class checks that they are correct.		

6		
Inequalities		
Let's fill in the missing numbers so that the inequalities are correct.		
BB: a) 27 – 19 + 2 < 12 7 + 8 – 3		
b) 28 – 9 + 3 < 1 19 + 6 – 2		
c) 24 – 15 + 1 > 6 + 5 – 4		
d) 37 – 28 + 4 > 7 + 6 – 4		
Ps come out to BB to write value above completed side, then to write value above incomplete side, then to fill in the missing number. Class checks that the inequality is correct.		
If problems, write calculations out in full on BB.		

© CIMT, University of Exeter
Lesson Plan 3

Activity 7: Addition and subtraction

Look carefully at these diagrams. What do they show? (Additions or subtractions done in one or two steps). Follow the arrows and fill in the missing numbers.

BB:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+20</td>
<td>95</td>
<td>+4</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>+24</td>
<td>99</td>
</tr>
<tr>
<td>+4</td>
<td>71</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-50</td>
<td>25</td>
<td>-6</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>-56</td>
<td>12</td>
</tr>
<tr>
<td>-6</td>
<td>72</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>+37</td>
<td>83</td>
</tr>
<tr>
<td>+2</td>
<td>53</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-30</td>
<td>15</td>
<td>-6</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>-26</td>
<td>69</td>
</tr>
<tr>
<td>-6</td>
<td>89</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Ps come out to BB to fill in the missing numbers, explaining reasoning. Class points out errors.

Notes

- Whole class activity
- Drawn on BB or SB or use enlarged copy master or OHP
- Deal with one part at a time
- At a good pace
- Reasoning, agreement, checking, praising
- Show the calculations as jumps along the class number line

PbY3a, page 3

Q.3 Read: *Do the additions in different ways. Fill in the missing numbers. Complete the diagrams.*

Elicit that this is similar to previous exercise. Make sure that your numbers match the jumps shown along the number line. Think about which jumps are missing from the diagrams.

Ps do one part at a time. Review at BB with whole class.

Ps come out to fill in their numbers, explaining reasoning and to draw the missing jumps. Class agrees/disagrees.

BB:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+20</td>
<td>83</td>
<td>+18</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>+28</td>
<td>91</td>
</tr>
<tr>
<td>+8</td>
<td>71</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20</td>
<td>73</td>
<td>-7</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>-27</td>
<td>66</td>
</tr>
<tr>
<td>-7</td>
<td>86</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Notes

- Individual work, monitored, (helped)
- Reasoning, agreement, self-correction, praising
- Involve several Ps
- Discuss which method Ps think is easier.
- Elicit that it does not matter whether units or tens are added or subtracted first – personal preference.

PbY3a, page 3

Q.4 Read: *Ann has 35 picture cards, 18 more than Lisa. How many picture cards do the two girls have altogether?*

Write a plan and do the calculation in your Pbs.

Show me the answer with number cards when I say Show me now! (52)

X, come and explain to us how you worked out the solution. Who agrees with X? Who did it a different way?

BB:

Ann: 35
Lisa: 35 – 18 = 17
Ann + Lisa: 35 + 17 = 35 + 10 + 5 + 2 = 52

Answer: They have 52 cards altogether.

Notes

- Individual work, monitored, (helped)
- (Or written on scrap paper)
- In unison
- Reasoning, agreement, checking, correcting, praising
- Demonstrate with 2 Ps at front of class and real cards if there is a problem

© CIMT, University of Exeter
Lesson Plan

Activity

<table>
<thead>
<tr>
<th>Week 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>

Oral work

R: Addition, subtraction

C: Equations, Inequalities

E: Problems in context

1

Oral work

Let’s see how many different ways we can think of to describe the number 40.

(e.g. 30 + 10, 100 – 60, 25 + 12 + 3, the next whole number greater than 39, 4 × 10, half of 80, etc.) Repeat with 70, 55.

Notes

Whole class activity

T chooses Ps at random

At speed. Praise creativity.

Class agrees/disagrees with each description

If problems, write out on BB

Lesson Plan

4

4 min

2

Number patterns

a) **T** says ‘21 – 7 =’, **P**1 says ‘14’; **T** says ‘31 – 17 =’, **P**2 says ‘14’; **T** says ‘41 – 27 =’, **P**3 says ‘14’; **P**s continue the pattern themselves.

P4 says ‘51 – 37 =’, **P**5 says ‘14’, **P**6 says ‘61 – 47 =’, **P**7 says ‘14’, etc.

What is the rule? (Number subtracted from, and number being subtracted, are both increasing by 10.) What happens to the result? (It does not change.) Consolidate with another example.

b) **T** says ‘63 + 16 =’, **P**1 says ‘79’; **T** says ‘63 + 17 =’, **P**2 says ‘80’; **T** says ‘63 + 18 =’, **P**3 says ‘81’; **P**s continue the pattern themselves.

P4 says ‘63 + 19 =’, **P**5 says ‘82’, **P**6 says ‘63 + 20 =’, **P**7 says ‘83’, etc.

What is the rule? (Number added to stays the same and number being added is increasing by 1.) What happens to the result? (It increases by 1.) Consolidate with another example.

Notes

Whole class activity

T chooses Ps at random

Involve at least half of the class. At speed

Discussion, agreement, praising. Write sequence on BB if necessary.

Lesson Plan

8 min

3

Problem

Listen carefully and try to picture the story in your head.

In a park, 24 children were playing rounders, 43 were playing football and the rest played on the swings. How many children were playing on the swings if the total number of children in the park was less than 75?

T asks several Ps what they think. Let’s do it logically and show all the possibilities in a table. What is the least number of children who could be playing on the swings? (1) Let’s start with 1.

Ps come out one at a time to fill in the bottom 2 rows (1 column per **P**). Class checks their totals.

BB:

<table>
<thead>
<tr>
<th>Rounders</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Swings</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Total

| 68 | 69 | 70 | 71 | 72 | 73 | 74 | 1 |

Discussion: 8 children and above is not possible as total would not be less than 75; zero children is possible mathematically but not in reality, or the swings would not have been mentioned.

How could we write it in a mathematical way? **B**, come and try. Who agrees? Who can write it another way?

BB:

\[24 + 43 + [] < 75 \rightarrow 67 + [] < 75 \text{ or } 1 \leq [] < 8\]

Extension

Whole class activity

T repeats slowly and **Ps** repeat in own words

Whole class activity

Drawn on BB or use enlarged copy master or OHP.

At a good pace

Discussion, reasoning, agreement, checking, praising

Extra praise if **Ps** notice this themselves

Reasoning, agreement, checking, praising

Lesson Plan

12 min

© CIMT, University of Exeter
Activity 4

PbY3a, page 4

Q1. Read: *Jane has £64. How many pounds could she spend and how many pounds would she have left? Complete the table.*

Ps complete the table first. Review at BB with whole class.

Ask Ps for other cases not shown on the table. (e.g. 4 + 60)

How could we write the general rule? C, come and try. Who agrees? Who can write it a different way? etc.

[N.B. Time limit differentiation – only the fastest Ps should be expected to complete the whole table; the rule can still be seen with only some of the table completed.]

17 min

Notes

Individual work, monitored

Table drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correction

Class agrees/disagrees.

Rule: $64 = S + H$

$S = 64 – H$

$H = 64 – S$

Praising, encouragement only

Activity 5

2-digit numbers

a) Let’s list all the 2-digit numbers which are greater than 7 and smaller than 16.

T writes on BB as dictated by Ps. BB: 10, 11, 12, 13, 14, 15

Write inequalities about it in your *Ex. Bks.* (Heading: Lesson number and date) Review at BB with whole class.

BB: $7 < \square$ and $\square < 16$ and \square is 2-digit;

or $7 < \square < 16$ and \square is 2-digit;

or $9 < \square < 16$; or $10 \leq \square \leq 15$

b) Let’s list all the 2-digit numbers which are odd, not more than 65 and more than 51.

T writes on BB as dictated by Ps. BB: 53, 55, 57, 59, 61, 63, 65

Write inequalities about it in your *Ex. Bks.* Review at BB with whole class.

BB: $65 \geq \square$ and $\square > 51$ and \square is odd;

or $51 < \square \leq 65$ and \square is odd;

c) Let’s list all the 2-digit numbers which have the tens digit not less than 7 and the units digit less than 3.

T writes on BB as dictated by Ps. BB: 70, 71, 72, 80, 81, 82, 90, 91, 92

22 min

Notes

Whole class activity

Involve several Ps

Class agrees/disagrees

Reasoning, agreement, checking, praising

Discuss the possibilities and show on class number line.

Involve several Ps

Class agrees/disagrees

Reasoning, agreement, checking, praising

Discuss the possibilities and show on class number line.

Involve several Ps

Class agrees/disagrees

Praising.

Activity 6

PbY3a, page 4

Q2. Read: *Andrew has £46 more than Brian has. How much money could they each have? Complete the table.*

Ps complete the table first. Review at BB with whole class.

Let’s compare some of the columns. e.g. $80 + 34$ and $81 + 35$; $73 + 27$ and $83 + 37$, etc.

(Elicit that if number in top row increases by a certain number, number in bottom row increases by the same amount.)

How could we write the general rule? D, come and try. Who agrees? Who can write it a different way? etc.

[N.B. Time limit differentiation as in Activity 4]

28 min

Notes

Individual work, monitored

Table drawn on BB or use enlarged copy master or OHP

Discussion, agreement, checking, self-correction

Encourage Ps to find other such columns.

Rule: $A = B + 46$

$B = A – 46$

$46 = A – B$

Praising

© CIMT, University of Exeter
Lesson Plan 4

Notes

Individual work, monitored, helped

T might need to relate to a real book case in the classroom

Discussion, reasoning, agreement, checking, self-correcting, praising

BB: a) $32 + 9 = 41$
b) $32 - 9 = 23$
c) $41 + 32 + 23 = 96$

<table>
<thead>
<tr>
<th>32</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

Activity

7

PbY3a, page 4

Q.3 Read: A book case has 3 shelves. On the middle shelf there are 32 books, 9 less than there are on the top shelf and 9 more than there are on the bottom shelf.

a) How many books are on the top shelf?
b) How many books are on the bottom shelf?
c) How many books are in the book case?

Try to picture it in your head. You can draw a diagram to help you. Think about one shelf at a time. Write each answer as an addition or subtraction in your Pbs.

Review at BB with whole class. Ps explain solution to class. Who did the same? Who did it a different way? etc.

If no P has already done so, T shows a ‘great idea’ for part c)!

BB: $32 \times 3 = 96$ Why have I written this?

$(32 + 9) + 32 + (32 - 9) = 32 + 32 + 32 = 32 \times 3)$

8

PbY3a, page 4

Q.4 Read: Fill in the missing numbers.

How many additions/subtractions are there? $(4 \times 6 = 24)$

Let's see how many you can do in 4 minutes! Use your number lines if you need to. Sit up with your arms folded when you have finished. Start . . . now! Stop!

Review orally round class. If problems write details on BB.

Ps mark own (or neighbour’s) work and count how many correct out of 24. Who had all correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.

- How do we get the unknown number in an addition if we know the other number and the sum? (Subtract the known number from the sum) T (or P) gives examples.
- How do we get the unknown number in a subtraction if we know the number being subtracted from and the difference? (Subtract the difference from the known number.) T (or P) gives examples.
- How do we get the unknown number in a subtraction if we know the number being subtracted and the difference? (Add the known number and the difference.) T (or P) gives examples.

9

Calculation practice

Let’s find the easiest way to do these calculations. What do you notice? (Can use answer in part i) to deduce the others.) Ps dictate the answers, T writes them in. (Or T has answers already written but covered up. T uncovers one answer at a time and Ps agree/disagree, giving reasoning.)

Answers:

a) i) 83, ii) 88 (83 + 5), iii) 88, iv) 93 (83 + 10), (v) 78 (83 – 5),
 vi) 78, vii) 73 (83 – 10), viii) 83, ix) 83
b) i) 41, ii) 46 (41 + 5), iii) 36 (41 – 5), iv) 41 (v) 36 (41 – 5),
 vi) 46 (41 + 5), vii) 41, viii) 51 (41 + 10), ix) 31 (41 – 10)

Whole class activity

Prepared beforehand on SB or use enlarged copy master or OHP

At a good pace round class

Reasoning, agreement, checking, praising

(Ps could have copy of sheet on desks too.)
<table>
<thead>
<tr>
<th>Y3</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculation practice, revision, activities, consolidation</td>
<td>PbY3a, page 5</td>
</tr>
</tbody>
</table>
Y3

Lesson Plan

Week 2

R: Addition, subtraction
C: Revision of multiplication. Tables for 2, 5 and 10
E: Extension of multiplication. Multiples.

Activity

1

Sequences (verbal)

a) The first term of a sequence is 20. Each following term is 5 more than the previous one. Let's continue the sequence:

Ps: 20, 25, 30, 35, 40, 45, ...

What else can you say about the numbers in this sequence?
(Divisible by 5; multiples of 5)

b) T: Here is another number sequence. 100, 90, 80, ...

What could the rule be? (Decreasing by 10)

Let's continue the sequence: . . ., 70, 60, 50, 40, 30, 20, 10, 0, (−10, −20, . . .) (or as far as Ps are able)

What else can you say about the numbers in theis sequence?
(Divisible by 10; multiples of 10)

4 min

2

Sequences (written)

Write this sequence in your Ex. Bks. and continue it for the next 8 terms.

T: 50, 55, 53, ...

Review with whole class. A, what did you write? (e.g. 58, 56, 61, 59, 64, 62, 67, 65, ...) What rule did you use? (I added 5 then took away 2, added 5 then took away 2, and so on.) Who used the same rule? Who used a different rule? Who agrees?

e.g. B: 50, 55, 53, 50, 55, 53, 50, 55, . . . (Repeat 1st 3 terms)

C: 53, 55, 50, 50, 55, 53, 53, 55, . . . (inverse order, original order)

8 min

3

Products

Let's help Mr. Mouse to match up the mouseholes to the houses. What kind of operations are in the mouseholes? (multiplications)

BB:

<table>
<thead>
<tr>
<th>60</th>
<th>18</th>
<th>40</th>
<th>20</th>
<th>35</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Ps come out one after the other to choose a multiplication and stick it in the correct house, saying the complete operation. Class agrees or disagrees. What other multiplication could go in this house?

Who remembers the name for the result of a multiplication? (product)

Let's write these products on the number line. (Ps come out to mark numbers (with a dot or cross) and label them.

BB:

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Write in your Ex. Bks.:

a) the smallest of these numbers; (12)
b) the number which has only odd digits.; (35)
c) the greatest of these numbers. (60)

Review orally with whole class. Who had them all correct? Who made a mistake? What kind of mistake? Who does not understand?

13 min

© CIMT, University of Exeter
Lesson Plan 6

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiples of 2</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Which of these numbers are multiples of 2? Let's draw a circle around each one. Ps come out one at a time to choose, explaining reasoning (e.g. '6 is a multiple of 2 because it is exactly divisible by 2' (because $2 \times 3 = 6$, because it is even). Revise even and odd numbers if necessary. Class points out errors. (6, 8, 12, 16) Let's join up the multiples of 2 in increasing order.</td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>BB: What shape have we drawn? (plane shape, quadrilateral, polygon, rectangle) T uses all these words and explains meaning if necessary.</td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td>PbY3a, page 6</td>
<td>T (or P) joins up numbers as dictated by Ps</td>
</tr>
<tr>
<td>Q.1 Read: Write an addition and a multiplication about each picture. Talk about each picture first. (e.g. pairs of cherries; groups of 5 lines as in a tally chart, piles or pyramids of 10 marbles, etc.) Review at BB with whole class. Mistakes corrected. BB:</td>
<td>Discussion, agreement</td>
</tr>
<tr>
<td>a) $2 + 2 + 2 + 2 + 2 + 2 = 7 \times 2 = \text{14}$ b) $5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 9 \times 5 = \text{45}$ c) $10 + 10 + 10 = 3 \times 10 = \text{30}$ T uses the words 'product', 'factor', 'sum', 'total'.</td>
<td>Write words on BB if Ps do not remember them</td>
</tr>
<tr>
<td></td>
<td>Praisin</td>
</tr>
<tr>
<td>PbY3a, page 6</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>Q.2 Read: The animals start at 0 and make jumps of equal length along the number line. Draw their jumps and write the numbers they land on below the number line. Talk about the animals first. (Sparrow, Frog, Rabbit). Review at BB with whole class. A, what numbers did you write for Sparrow? Who agrees? Who wrote something else? etc. BB:</td>
<td>Use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Sparrow: 0, 2, 4, 6, 8, 10, . . . , 48, 50 Frog: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 Rabbit: 0, 10, 20, 30, 40, 50</td>
<td>Reasoning, agreement, self-correction, praising</td>
</tr>
<tr>
<td>What can you say about each animal's numbers? (e.g. S: multiples of 2; even numbers; divisible by 2; twice 0, 1, 2, 3, . . . F: multiples of 5; divisible by 5; 5 times 0, 1, 2, 3, etc. R: multiples of 10; divisible by 10; whole tens; 10 times 0, 1, 2, etc.)</td>
<td>(Feedback for T)</td>
</tr>
<tr>
<td></td>
<td>Encourage Ps to use them too.</td>
</tr>
<tr>
<td>Review of 2, 5, 10 times tables</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>B, come and point to the multiples of 2 on this multiplication table (vertically and horizontally). Let's say the 2 times table together.</td>
<td>Use enlarged copy master or OHP or refer to class number line.</td>
</tr>
<tr>
<td>(2 times 0 equals 0, 2 times 1 equals 2, 2 times 2 equals 4, . . . How else could we say it? (0 times 2 = 0, 1 times 2 = 2, . . .) Repeat for the 5 (10) times tables. T points to the 2 factors when necessary.</td>
<td>Reasoning, agreement, self-correction, praising</td>
</tr>
<tr>
<td></td>
<td>Continue each set orally to 100 in unison</td>
</tr>
<tr>
<td></td>
<td>With T's help if necessary</td>
</tr>
<tr>
<td></td>
<td>(Expressing common properties in different ways)</td>
</tr>
<tr>
<td></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>Use OHT 14 with coloured cross strips</td>
</tr>
<tr>
<td></td>
<td>In unison, at speed</td>
</tr>
<tr>
<td></td>
<td>T notes Ps having difficulty</td>
</tr>
<tr>
<td></td>
<td>Praising, encouragement only</td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
Y3

Activity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Oral practice</td>
<td>T says multiplications involving 2, 5 or 10. Ps give products. (e.g. T: '3 × 5', P₁: '15'; T: '2 × 9', P₂: '18', etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PbY3a, page 6</td>
<td>Q.3 Read: Fill in the rows and columns for 2, 5 and 10. Make sure you know these multiplication facts by heart. Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected. Let's try to extend the sequences! (e.g. 11 times 2 equals 22, 12 times 2 equals 24, . . . 11 times 5 equals 55, 12 times 5 equals 60, . . . 11 times 10 equals 110, 12 times 10 equals 120, . . .)</td>
</tr>
<tr>
<td></td>
<td>35 min</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tables practice</td>
<td>T says a product, Ps say multiplications involving 2, 5 or 10, e.g. T: '30', P₁: '5 times 6', P₂: '10 times 3', P₃: '2 times 15'; T: '50', P₄: '5 times 10', P₅: '10 times 5', P₆: '2 times 25', etc. Class points out errors. Ps can say the products too. (Extend to products beyond 100 if Ps are able.)</td>
</tr>
<tr>
<td></td>
<td>45 min</td>
</tr>
</tbody>
</table>

Notes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole class activity</td>
<td>T chooses Ps at random. At speed. Praising only</td>
</tr>
<tr>
<td>Individual work, monitored</td>
<td>Use OHT 14 or enlarged copy master or OHP Agreement, self-correcting</td>
</tr>
<tr>
<td>Whole class in unison</td>
<td>With T's help</td>
</tr>
<tr>
<td>Praising</td>
<td></td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Oral work</td>
<td>Whole class activity
T chooses Ps at random. If P makes a mistake and sits down, T points to another P to say it correctly (Develops concentration, memory and calculation skills) Praising only</td>
</tr>
<tr>
<td>Let’s play Boom! Everyone stand up! We will start counting from 1 but instead of saying every third number you must say ‘boom’. If you make a mistake you have to sit down.
T: ‘1’, P1: ‘2’, P1: ‘boom’, P2: ‘4’, P2: ‘5’, P3: ‘boom’, etc.
What can you say about the ‘boom’ numbers? (multiples of 3, exactly divisible by 3) (Feedback for T)</td>
<td>Whole class activity but Ps write results individually
T has BB or SB already prepared</td>
</tr>
<tr>
<td>2 Secret Code</td>
<td>Discussion, agreement, self-correcting, praising (Feedback for T)</td>
</tr>
<tr>
<td>I have written some multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the letters and the products of the multiplications. (Heading: Lesson number and date)
BB: 6 × 5 E (30) 4 × 4 L (16) 4 × 10 R (40) 5 × 3 C (15) 9 × 2 E (18) 7 × 4 V (28)</td>
<td>In unison P comes to BB to show it. Mistakes corrected</td>
</tr>
<tr>
<td>Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB. Who had all 6 correct? Who had 5 (4, 3, 2, 1, 0)? Write the products out again in increasing order and write the letters underneath. What word have you written? Class shout, ‘CLEVER’</td>
<td></td>
</tr>
<tr>
<td>3 Additions and multiplications 1</td>
<td>Individual work, monitored Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Study the pictures and write an addition and a multiplication about each part in your Ex. Bks.
BB: a) [picture] 4 + 4 + 4 + 4 + 4 = 24
b) [picture] 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 56</td>
<td>Discussion, reasoning, agreement, self-correction Praising. (Feedback)</td>
</tr>
<tr>
<td>4 Additions and multiplications 2</td>
<td>Individual work, monitored Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Talk about the pictures first. Elicit the names of the the shapes (triangle, hexagon, square).</td>
<td>BB: a) 3 + 3 + 3 + 3 + 3 + 3 = 6 × 3 = 18
b) 6 + 6 + 6 + 6 + 6 + 6 = 4 × 6 = 24
c) 9 + 9 + 9 = 3 × 9 = 27</td>
</tr>
<tr>
<td>Write an addition and a multiplication about each part in your Ex. Bks.
Review at BB with whole class. B, what did you write for a)? Why? Who agrees? Who wrote something else? Similarly for b) and c).</td>
<td>Reasoning, agreement, self-correction, praising.</td>
</tr>
<tr>
<td>Activity</td>
<td>Lesson Plan 7</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PbY3a, page 7</td>
<td></td>
</tr>
<tr>
<td>Q.1</td>
<td>Read: Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line. Review at BB with whole class. D, what numbers did you write for part a)? Who agrees? Who wrote something else? etc. BB: a) 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, (52, . . .) b) 0, 8, 16, 24, 32, 40, 48, (54, . . .) c) 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, (51, . . .) d) 0, 6, 12, 18, 24, 30, 36, 42, 48, (54, . . .) e) 0, 9, 18, 27, 36, 45, (54, . . .) What can you say about the numbers? (e.g. a) multiples of 4; divisible by 4; 4 times 0, 1, 2, 3, . . . b) multiples of 8; divisible by 8; 8 times 0, 1, 2, 3, etc.</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Review of 4 (8, 3, 6, 9) times tables</td>
<td></td>
</tr>
<tr>
<td>C, come and point to the multiples of 4 on this multiplication table. (vertically and horizontally) Let's say the 4 times table together. (4 times 0 equals 0, 4 times 1 equals 4, 4 times 2 equals 8, . . . How else could we say it? (0 times 4 = 0, 1 times 4 = 4, . . .) Repeat for the 8, 3, 6 and 9 times tables. T points to the two factors when necessary.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PbY3a, page 7</td>
<td></td>
</tr>
<tr>
<td>Q.2</td>
<td>Read: Complete the table. Multiply the numbers in the top row by 3, 6 and 9. T explains task. (Only the more able Ps should be expected to complete the last 5 columns.) Review at BB with whole class. Mistakes corrected. Write details on BB if necessary, e.g. 9 × 15 = 9 × 10 + 9 × 5 = 90 + 45 = 90 + 10 + 35 = 135 Compare the rows. (e.g. 3rd row is 3 times 1st row, etc.)</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PbY3a, page 7</td>
<td></td>
</tr>
<tr>
<td>Q.3</td>
<td>Read: Fill in the rows and columns for 3, 4, 6, 8 and 9. Make sure you know these multiplication facts by heart. Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected. Let's try to extend the sequences! (e.g. 11 times 3 equals 33, 12 times 3 equals 36, . . . 11 times 4 equals 44, 12 times 4 equals 48, . . ., etc.</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Tables practice</td>
<td></td>
</tr>
<tr>
<td>T says a multiplication, Ps give answer. Class points out errors. Mistakes corrected at multiplication square. (Use all numbers, including 7 × 7, as several Ps might know it.)</td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>Activity</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>Oral work</td>
</tr>
<tr>
<td></td>
<td>Let’s play Boom! Everyone stand up! We will start counting from 1 but instead of saying every 7th number you must say ‘boom’. If you make a mistake you have to sit down. T: ’1’, P: ’2’, P: ’3’, P: ’4’, P: ’5’, P: ’6’, P: ’boom’, etc. What can you say about the ‘boom’ numbers? (multiples of 7, exactly divisible by 7) (Feedback for T)</td>
</tr>
<tr>
<td>2</td>
<td>Secret Code</td>
</tr>
<tr>
<td></td>
<td>I have written some multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the letters and the products of the multiplications. (Heading: Lesson number and date) BB:</td>
</tr>
<tr>
<td></td>
<td>8 × 5 L (40) 4 × 4 + 10 ÷ 5 E (18) 4 × 10 – 6 O (34) 5 × 3 + 6 × 4 D (39) 9 × 2 + 3 × 3 N (27) 9 × 9 – 6 E (75) 8 × 8 – 2 × 4 L (56) 7 × 4 + 52 W (80)</td>
</tr>
<tr>
<td></td>
<td>Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB. Who had all 8 correct? Who had 7 (6, 5, less than 5)? Write the products out again in decreasing order and write the letters underneath. What have you written? Class shouts: ‘WELL DONE’ BB:</td>
</tr>
<tr>
<td></td>
<td>80, 75, 56, 40, 39, 34, 27, 18 W E L D O N E</td>
</tr>
<tr>
<td>3</td>
<td>Cross-number puzzle</td>
</tr>
<tr>
<td></td>
<td>Robin Rabbit has a number puzzle for us! He wonders if we can solve it! Read the clues, discuss it with your partner and fill in the missing numbers. Check that the puzzle is correct vertically and horizontally! BB:</td>
</tr>
<tr>
<td></td>
<td>Across</td>
</tr>
<tr>
<td></td>
<td>a) The greatest 1-digit odd number (9)</td>
</tr>
<tr>
<td></td>
<td>b) Take away half of 20 from 6 times 10. (50)</td>
</tr>
<tr>
<td></td>
<td>c) Two less than the smallest 3-digit number. (98)</td>
</tr>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td>b) Take away 14 from 8 times 9. (58)</td>
</tr>
<tr>
<td></td>
<td>d) Add 7 times 7 to the smallest 1-digit odd number. (50)</td>
</tr>
<tr>
<td></td>
<td>Review at BB with whole class. Ps come out to fill in missing numbers, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Write details on BB if necessary.</td>
</tr>
<tr>
<td></td>
<td>14 min</td>
</tr>
</tbody>
</table>
Y3

Activity

<table>
<thead>
<tr>
<th></th>
<th>PBY3a, page 8</th>
</tr>
</thead>
</table>
| 4 | **Q.1** Read: *Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line.*

BB: 0, 7, 14, 21, 28, 35, 42, 49, 56, (63, 70, 77, 84, 91, 98, 105, . . .)

What can you say about these numbers? (e.g. multiples of 7; divisible by 7; 7 times 0, 1, 2, 3, . . .; 0, 1, 2, 3, . . . times 7)

Notes

Lesson Plan 8

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Lesson Plan 8</td>
</tr>
<tr>
<td>Individual work, monitored, (helped)</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>Use enlarged copy master/OHP</td>
<td>Use enlarged copy master/OHP</td>
</tr>
<tr>
<td>Reasoning, agreement, self-correction, praising</td>
<td>Discussion, agreement, self-correction, praising</td>
</tr>
<tr>
<td>Continue orally to (beyond) 100 in unison (with T’s help) (Expressing common properties in different ways)</td>
<td>Ps encouraged to use these words too. (Feedback for T)</td>
</tr>
</tbody>
</table>

Activity

<table>
<thead>
<tr>
<th></th>
<th>PBY3a, page 8</th>
</tr>
</thead>
</table>
| 5 | **Q.2** Read: *Write an addition and a multiplication about the picture.*

Review at BB with whole class. Mistakes corrected.

BB: 7 + 7 + 7 + 7 + 7 + 7 + 7 = 7 × 7 = 49

T uses the words ‘product’, ‘factor’, ‘sum’, ‘total’.

Elicit that there are 7 terms in the addition, and each term is 7.

Notes

Lesson Plan 8

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Lesson Plan 8</td>
</tr>
<tr>
<td>Individual work, monitored, (helped)</td>
<td>Individual work, monitored, (helped)</td>
</tr>
<tr>
<td>Use enlarged copy master/OHP</td>
<td>Use enlarged copy master/OHP</td>
</tr>
<tr>
<td>Discussion, agreement, self-correction, praising</td>
<td>Ps encouraged to use these words too. (Feedback for T)</td>
</tr>
</tbody>
</table>

Activity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Additions and multiplications</td>
</tr>
</tbody>
</table>
| | Let’s write an addition and a multiplication about each part.

BB:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1 + 1</td>
</tr>
<tr>
<td>b)</td>
<td>1 + 1 + 1 + 1</td>
</tr>
<tr>
<td>c)</td>
<td>1 + 1 + 1 + 1 + 1 + 1 + 1 + 1</td>
</tr>
</tbody>
</table>

B, what should we write for part a)? Why? Who agrees? Who thinks something else? Similarly for b) and c).

What do you notice from these results? Elicit that:

- 1 multiplied by any number is that number.
- 1 times any number is that number. (e.g. 2 × 1 = 1 × 2 = 2)

T consolidates with other examples orally. What is 47 × 1 (1 times 29, etc.)? (47, 29, etc.)

Let’s find the row and column for ‘1’ on the multiplication table.

Notes

Lesson Plan 8

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Lesson Plan 8</td>
</tr>
<tr>
<td>Whole class activity</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Drawn or stuck on BB or use enlarged copy master or OHP</td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Ps dictate what T should write BB:</td>
<td>Ps dictate what T should write BB:</td>
</tr>
<tr>
<td>a) 1 + 1 = 2 × 1 = 2</td>
<td>a) 1 + 1 = 2 × 1 = 2</td>
</tr>
<tr>
<td>b) 1 + 1 + 1 + 1</td>
<td>b) 1 + 1 + 1 + 1</td>
</tr>
<tr>
<td>= 4 × 1 = 4</td>
<td>= 4 × 1 = 4</td>
</tr>
<tr>
<td>c) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1</td>
<td>c) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1</td>
</tr>
<tr>
<td>= 8 × 1 = 8</td>
<td>= 8 × 1 = 8</td>
</tr>
</tbody>
</table>

Agreement, praising.

Use OHT 14 with coloured cross strips

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Lesson Plan 8</td>
</tr>
<tr>
<td>Individual work, monitored</td>
<td>Individual work, monitored</td>
</tr>
<tr>
<td>Use OHT 14 with coloured cross strips</td>
<td>Use OHT 14 with coloured cross strips</td>
</tr>
</tbody>
</table>

Activity

<table>
<thead>
<tr>
<th></th>
<th>PBY3a, page 8</th>
</tr>
</thead>
</table>
| 7 | **Q.3** Read: *Complete the table. Write the rule in different ways.*

Review orally with whole class. C, which numbers did you write in the 2nd row? Why? Each snake has 1 head, so numbers are the same as in top row.) Who agrees/disagrees?

D, which numbers did you write in the 3rd row? Why? (A snake has no legs, so however many snakes there are, there will still be no legs.) Who agrees/disagrees?

Let’s compare the rows in the table. Who could write the rule? Who agrees? Who could write it another way?

What do you notice from the results in the table? Elicit that:

- zero multiplied by any number is zero.
- zero times any number is zero.

T consolidates with other examples orally. (e.g. 49 × 0, 0 × 93)

Let’s find the row and column for ‘0’ on the multiplication table.

Notes

Lesson Plan 8

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Lesson Plan 8</td>
</tr>
<tr>
<td>Class recites in unison</td>
<td>Class recites in unison</td>
</tr>
<tr>
<td>Ps chosen at random. At speed</td>
<td>Ps chosen at random. At speed</td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Y3</th>
<th>Lesson Plan 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Notes</td>
</tr>
</tbody>
</table>
| 8 Tables practice | Whole class activity
At speed round class
Praise if \times table not used |
| T says a multiplication, Ps give product. Class points out errors. Mistakes corrected at multiplication square. (Use all numbers.) | |
| **Notes** | 30 min |
| 9 PbY3a, page 7 | Individual work, monitored
T notes Ps who need to refer to their \times table
Keep to the time limit
Agreement, checking, self-correcting, evaluation
Praising, encouragement only
T awards good work (e.g. stars, stickers, badges) |
| Q.4 Read: Practise multiplication.
How many multiplications are there? (3 \times 3 = 9)
Try to do them without using your multiplication table. Sit up with your arms folded when you have finished.
Start . . . now! Stop! (No more than 3 minutes!)
Review orally round class. Ps change their pencil to (red), mark own work and count how many correct out of 9.
Who had 9 correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Refer to multiplication table if problems. | |
| **Notes** | 34 min |
| 10 PbY3a, page 6 | Individual work, monitored
Use OHT 14 or enlarged copy master or OHP
Agreement, self-correcting
Whole class in unison, with T's help if needed
Praising, encouragement only |
| Q.5 Read: Complete the multiplication table for 0, 1 and 7.
Make sure you know all the multiplication facts by heart.
Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected.
Let's try to extend the sequence for 7.
(e.g. 11 times 7 equals 77, 12 times 7 equals 84, . . .) | |
| **Notes** | 39 min |
| 11 Money | Whole class activity
Agreement, checking, praising
At a good pace
Consolidate with other examples orally. |
| T has 6 purses already prepared with real or model coins.
6 Ps are each given a purse and come to BB to write a multiplication about its contents. Class has to say what coins are in the purse.
Purse A: four 5 p coins
BB: $4 \times 5 = 20$
Purse B: four 50 p coins
BB: $4 \times 50 = 200$
Purse C: three 10 p coins
BB: $3 \times 10 = 30$
Purse D: three £1 coins
BB: $3 \times 100 = 300$
Purse E: six 2 p coins
BB: $6 \times 2 = 12$
Purse F: six 20 p coins
BB: $6 \times 20 = 120$
T (or P) points out the similarity between the amounts in each pair. |
Y3

Activity

1 **Odd one out**

A, which card do you think is the odd one out? Why? Who thinks the same as A? Who thinks another one? Why? etc. Let's check them.

BB:

- $18 \times 3 = 9
- 9 + 3 \times 3 = 18
- 40 - 22 = 18
- 3 + 15 = 18

(e.g. 3×9, as it has value 27 and all the others have value 18.)

3 min

2 **Chain calculations**

Listen carefully, do each calculation in your head and write the final result in your Ex. Bks. (*Heading*: Lesson number and date.)

Nod your heads when you have done each step.

- a) T: 'Multiply 5 by 3' . . . 'add 5' . . . 'divide into 4 equal parts'. . . 'multiply by 8'. . . 'add 8'. Write down the final result. (48)

 BB: $5 \times 3 = 15, 15 + 5 = 20, 20 \div 4 = 5, 5 \times 8 = 40, 40 + 8 = 48$

- b) T: 'One tenth of 30' . . . 'multiply by 9' . . . 'add 16', . . . 'take away 35'. Write down the final result (8)

 BB: $30 \div 10 = 3, 3 \times 9 = 27, 27 + 16 = 43, 43 - 35 = 8$

- c) T: 'Write down the sum and the difference of the results in a) and b).'

 D, what did you write? Who agrees? Who thinks something else? P who answered correctly comes out to BB to explain to those who did not. Who did not understand sum and difference?

 BB: $48 + 8 = 56, 48 - 8 = 40$

- d) T: 'How many 8s are in 48?' (Class shouts out: '6') Who can write the operation on the BB? Who agrees? etc. BB: $48 \div 8 = 6$

Who had all 4 parts correct? Who made a mistake? etc.

9 min

3 **Sets**

T has BB or SB already prepared with cards stuck to side of BB. *Daffy Duck* is collecting all the cards which have value 24 and *Piggy* is collecting cards which have value 36. Let's help them.

Ps come to BB to choose a card and stick in the appropriate set, explaining reasoning. Class agrees/disagrees.

BB:

- 24
 - $3 \times 3 + 3 \times 5$
 - $51 - 3 \times 9$
 - $45 - 21$

- 36
 - $7 \times 5 + 1$
 - $4 \times 8 + 4$
 - $8 \times 6 - 12$

Who can tell me other calculations which would go in *Daffy Duck's* (Piggy's) set?

13 min

Lesson Plan

9

Notes

Whole class activity

- Drawn on BB or use copy master, enlarged, cut out and stuck to BB
- Reasoning, agreement, praising

Accept other valid reasoning

Whole class activity

- (Develops calculation skills and memory)
- T waits until majority of Ps nod their heads before moving to next step
- T repeats each step slowly while P writes on BB
- Reasoning, agreement, praising

In unison. (or show n/cards)

Agreement, praising

Evaluation. Feedback for T

- Orally, or written in Ex. Bks.
- Praise creativity
Y3

Activity 4

Missing numbers and signs

Study these diagrams. What do you think the missing numbers and signs could be? Ps come out to fill in the missing items, explaining reasoning. Class agrees/disagrees.

BB:

$$\begin{align*}
 &a) \quad 9 \times 6 = 54 + 27 = 81 \\
 &b) \quad 8 \times 7 = 56 + 8 = 64
\end{align*}$$

In each part, discuss why the two steps are equal to the single step.

17 min

Notes

- **Whole class activity**
- Drawn on BB or use enlarged copy master or OHP
- Reasoning, agreement, checking, praising
- Involve several Ps

Activity 5

PbY3a, page 9

Q.1 Read: Ollie Owl collects operations which result in 28, Dennis Deer collects those which result in 40 and Freddy Fox collects the others. Join them up.

Ps first write value beside each operation, then join up to the appropriate animal.

Review at BB with whole class. Which numbers did Freddy Fox collect? (32, 45) Who had least cards? (Dennis Deer) If problems, write details on BB. Mistakes corrected.

BB:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 \times 4</td>
<td>Ollie Owl</td>
</tr>
<tr>
<td>2 \times 5 + 6 \times 3</td>
<td>Dennis Deer</td>
</tr>
<tr>
<td>5 \times 9 = 45</td>
<td>Freddy Fox</td>
</tr>
</tbody>
</table>

Extension

T says an operation, Ps say which animal's set it belongs to.

22 min

Notes

- Individual work, monitored
- Use enlarged copy master or OHP
- Ps can use different coloured pencils, one for each animal
- Discussion, reasoning, agreement, self-correction praising
- Class points out errors. Ps chosen at random. Praising

Activity 6

Problem

Listen carefully, picture the story in your head, write a plan and do the calculation in your Ex. Bks.

Alice had saved up 48 p. She bought 3 ribbons at 15 p each. How much money does she have now?

X, tell us how you got your answer. Who agrees? Who did it a different way? Who made a mistake? What kind of mistake? etc.

BB:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 p + 3 \times 15 p = 45 p</td>
<td>Had: 48 p Spent: 3 \times 15 p = 45 p</td>
</tr>
<tr>
<td>48 p – 45 p = \frac{3}{2} p</td>
<td>Has left: 48 p – 45 p = \frac{3}{2} p</td>
</tr>
</tbody>
</table>

(or done in one step: 48 – 3 \times 15 = 48 – 45 = \frac{3}{2})

Answer: Alice has 3 p now.

26 min

Notes

- Individual work, monitored (helped)
- T repeats slowly and P repeats in own words
- Discussion at BB. T writes plan and calculation as dictated by Ps
- Agreement, self-correction, praising. Feedback for T.

Activity 7

PbY3a, page 9

Q.2 Read: Colin had £48. He was given £15 for his birthday by each of his three aunts. How much money does he have now?

Write a plan, do the calculation and write the answer in a sentence. Review at BB with whole class.

Y, tell us how you did it. Who agrees? etc. Mistakes corrected.

BB:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>£48 + 3 \times £15 = £93</td>
<td>Had: £48 Was given: 3 \times £15</td>
</tr>
</tbody>
</table>

Answer: Colin has £93 now.

30 min

© CIMT, University of Exeter
Y3

Activity
8
PbY3a, page 9
Q.3 Read: Fill in the missing numbers.
Elicit that there are $3 \times 6 = 18$ calculations (12 multiplications and 6 divisions).
Let's see how many you can do in 5 minutes! Try to do them without using your multiplication table. You can write details in your Ex. Bks if it will help you. Sit up with your arms folded when you have finished. Start . . . now! Stop!
Review orally round class. If problems write details on BB.
E.g. $15 \times 6 = 10 \times 6 + 5 \times 6 = 60 + 30 = 90$
Ps change to coloured pencil, mark own (or neighbour's) work and count how many correct out of 18.
Who had all correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.

38 min

9
PbY3a, page 9
Q.4 Read: Do the calculation in each part and colour it according to the result.
T explains task. Revise order of operations. Ps do calculations first and write the results above (or beside) the operations.
Review at BB with whole class. Mistakes corrected.
Then Ps colour the picture according to the key. (This could be done, or finished off, at home.)

Solution:

Extension

Ps could draw their own patterns or simple pictures and make up their own keys and operations for other Ps to solve.

45 min
Y3

Activity

Tables practice, revision, activities consolidation

Practice Book Y3a, page 10

Extra activities

6. Complete the magic square so that the sum of each row, column and diagonal is 81.

```
  23  25  31
  27  28
```

7. Complete the table. Write the rule in different ways.

```
a) \[
\begin{array}{cccc}
\star & 6 & 7 & 4 \\
& 18 & 21 & 27 & 30 & 3 & 6
\end{array}
\]

\[ \star = \quad \star = \]

b) \[
\begin{array}{cccc}
\bigcirc & 6 & 2 & 7 & 9 \\
& 19 & 3 & 23 & 31 & 15 & 12 & 7
\end{array}
\]

\[ \bigcirc = \quad \bigcirc = \]

Notes

Ps have copy of copy master on desks

For less able Ps

\[ \star = \star \div 3, \quad \star = \star \times 3 \]

For more able Ps

\[ \bigcirc = (\bigcirc + 5) \div 4, \quad \bigcirc = \bigcirc \times 4 - 5 \]
Y3  

**R:** Mental calculation  
**C:** Revision: division tables (2, 5, 10)  
**E:** Factors

### Activity

#### 1

**Secret numbers**

I am thinking of a number. You must find out what it is by asking me questions but I can answer only 'yes' or 'no'.

e.g. 51: it is 1-digit? (No)  Is it 2-digit? (Yes)  Is it less than 50? (No)  Is it more than 60? (No)  Is it even? (No)  Is it more than 55? (No)  Is the difference between its digits 2? (No)  It is 51. (Yes)

(Ps can think of numbers and answer questions about it too.)

---

**5 min**

#### 2

*PbY3a, page 11*

Q.1 Read: Answer the questions with divisions. Check with multiplications.

a) For how many 2 p coins can you exchange these 20 1 p coins?

b) For how many 5 p coins can you exchange these 20 1 p coins?

c) For how many 10 p coins can you exchange these 20 1 p coins?

Deal with one part at a time. Ps can have model money on desks if necessary, or can circle the coins in relevant groups.

Review at BB with whole class. A, what division did you write and how did you check it? Who agrees? Who wrote something else? etc. Similarly for parts b) and c).

**10 min**

#### Extension

**Jumps along the number line**

a) *Frog* is jumping 10 units at a time back along the number line. How many jumps will he need to reach 0 if he starts at 40?  

**B**, come and show us *Frog's* jumps while we keep count. '1, 2, 3, 4'  

**BB:**

![Number line](image)

Who can write it on the BB. Who agrees? Who thinks something else? etc. Let's check.  

BB: $40 \div 10 = 4$  

Check: $4 \times 10 = 40$

Let's think of it in another way. (subtraction)

Repeat for starts at 100 and 170.

b) *Sparrow* is jumping 5 units at a time back along the number line. How many jumps will he need to reach 0 if he starts at 35?  

**C**, come and show us *Sparrow's* jumps while we keep count.

**BB:**

![Number line](image)

Who can write it on the BB. Who agrees? Who thinks something else? etc. Let's check.  

BB: $35 \div 5 = 7$  

Check: $7 \times 5 = 35$

Let's think of it in another way. (subtraction)

Repeat for starts at 65 and 100.

---

**15 min**

### Notes

**Lesson Plan 11**

**Whole class activity**

Encourage Ps to ask logical questions and keep in mind clues already given

Develops memory and concentration

Praise creative questions

---

Individual work, monitored, helped

T could have model coins stuck to BB or 3 copies of enlarged copy master or OHP

Discussion at BB (SB, OHP)

Agreement, checking, self-correction, praising

**BB:**

a) $20 \div 2 = 10$, $10 \times 2 = 20$

b) $20 \div 5 = 4$, $4 \times 5 = 20$

c) $20 \div 10 = 2$, $2 \times 10 = 20$

**BB:**  

Individual work, monitored, helped

T could have model coins stuck to BB or 3 copies of enlarged copy master or OHP

Discussion at BB (SB, OHP)

Agreement, checking, self-correction, praising

**BB:**

a) $20 \div 2 = 10$, $10 \times 2 = 20$

b) $20 \div 5 = 4$, $4 \times 5 = 20$

c) $20 \div 10 = 2$, $2 \times 10 = 20$

**BB:**  

Whole class activity

Use enlarged copy master or OHP or show jumps on class number line.

At a good pace

Reasoning, agreement, checking, praising

**BB:** $40 - 10 - 10 - 10 - 10 = 0$

(10 is contained in 40 4 times)

In unison: '1, 2, 3, . . ., 6, 7'

Reasoning, agreement, checking, praising

**BB:**

$35 - 5 - 5 - 5 - 5 - 5 - 5 = 0$

(5 is contained in 35 7 times)
### Activity

#### PBY3a. page 11

**Q.2 Read:** Answer the questions with divisions. Check with multiplications.

*How many marbles would each child get if these marbles were shared equally among:*

- a) 2 children
- b) 5 children
- c) 10 children
- d) 20 children
- e) 1 child?

How many marbles are there? (20)

Deal with one part at a time. Ps can have counters, etc. on desks if necessary, or can circle the marbles in relevant groups.


T uses the words 'divisible by' and 'factor'. e.g. 20 is divisible by 5 (i.e. with no remainder); 5 is a factor of 20.

Also \(4 + 4 + 4 + 4 + 4 = 20\). There are 5 groups of 4 in 20. 20 divided by 5 is 4. 1 fifth of 20 is 4.

**20 min**

#### Money 1

I want to exchange 1 p coins for 10 p coins. How many 10 p coins would I get and how many would remain if I had:

- a) 20 1 p coins BB: 20 \(\div\) 10 = 2 Check: 2 \(\times\) 10 = 20
- b) 40 1 p coins BB: 40 \(\div\) 10 = 4 Check: 4 \(\times\) 10 = 40
- c) 27 1 p coins BB: 27 \(\div\) 10 = 2 remainder 7
  \[\text{Check: } \frac{2}{10} + 7 = 20 + 7 = 27\]
- d) 46 1 p coins BB: 46 \(\div\) 10 = 4 remainder 6
  \[\text{Check: } \frac{4}{10} + 6 = 40 + 6 = 46\]
- e) 100 1 p coins BB: 100 \(\div\) 10 = 10
  \[\text{Check: } \frac{10}{10} = 100\]

T revises 'factors' and 'multiples'. e.g. 10 is a factor of 40, 40 is a multiple of 10. (Similarly for all whole tens.)

**24 min**

#### Money 2

This time I want to exchange 1 p coins for 5 p coins. How many 5 p coins would I get and how many would remain if I had: BB:

- a) 10 1 p coins \((10 \div 5 = 2)\) Check: 2 \(\times\) 5 = 10
- b) 30 1 p coins \((30 \div 5 = 6)\) Check: 6 \(\times\) 5 = 30
- c) 70 1 p coins \((70 \div 5 = 14)\) Check: 14 \(\times\) 5 = 70
- d) 100 1 p coins \((100 \div 5 = 20)\) Check: 20 \(\times\) 5 = 100
- e) 25 1 p coins \((25 \div 5 = 5)\) Check: 5 \(\times\) 5 = 25
- f) 55 1 p coins \((55 \div 5 = 11)\) Check: 11 \(\times\) 5 = 55
- g) 46 1 p coins \((46 \div 5 = 9)\) remainder 1.
  \[\text{Check: } \frac{9}{5} + 1 = 45 + 1 = 46\]
- h) 74 1 p coins \((74 \div 5 = 14)\) remainder 4
  \[\text{Check: } \frac{14}{5} + 4 = 70 + 4 = 74\]

Elicit that, e.g., 5 is a factor of 30, 30 is a multiple of 5. (Similarly for all numbers greater than 0 which have 0 or 5 as the units digit.)

**29 min**
### Y3

#### Activity

**Lesson Plan 11**

<table>
<thead>
<tr>
<th>Week 3</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Notes</strong></td>
</tr>
<tr>
<td>Whole class activity</td>
</tr>
<tr>
<td><strong>Fractions</strong></td>
</tr>
<tr>
<td>Study these diagrams. What part of each shape is shaded?</td>
</tr>
</tbody>
</table>
| BB: a) 
  
  ![Diagram a](image1)
  
  1 half  
  \(16 \div 2 = 8\) |
| b) 
  
  ![Diagram b](image2)
  
  1 fifth  
  \(25 \div 5 = 5\) |
| c) 
  
  ![Diagram c](image3)
  
  1 fifth  
  \(10 \div 5 = 2\) |
| d) 
  
  ![Diagram d](image4)
  
  1 half  
  \(10 \div 2 = 5\) |
| Ps come out to count the total number of inner rectangles, then the number shaded, and write the fraction, explaining reasoning. Who agrees? Who thinks something else? etc. Who can write it as a division? |
| What part of each shape is not shaded? (1 half, 4 fifths, 4 fifths, 1 half) |
| **Dolphins** |
| In the water park show, the balls of the dolphins have been mixed up. Let’s help the dolphins to find their own balls! |
| BB:  |
| 8  
  ![Dolphin 8](image5)  
  ![Dolphin 5](image6)  
  ![Dolphin 7](image7)  
  ![Dolphin 9](image8)  
  ![Dolphin 10](image9)  
  ![Dolphin 6](image10) |
| Ps come out to choose a dolphin and put the correct ball beneath it, saying the complete division. Class points out errors. |
| What numbers would be on the balls belonging to these dolphins? T says a division (involving 2, 5 or 10). Ps say the quotient. |
| e.g. 22 \(\div\) 2 (11); 40 \(\div\) 10 (4); 25 \(\div\) 5 (5); 15 \(\div\) 5 (3), 24 \(\div\) 2 (12); etc. |
| **PBY3a, page 11** |
| Q.3 Read: Colour different fractions of the shape. |
| T elicits that parts a), b) and c) have the same shape. What can you say about it? (4 rows of 5 squares: \(4 \times 5 = 20\) squares) |
| Think how many squares would be in each fraction before you start to colour the shapes. |
| Review at BB with whole class. Deal with all mistakes. |
| Discuss the fact that the shaded squares can be in different positions, but that the number of shaded squares is the same. |
| **PBY3a, page 11** |
| Q.4 Read: Draw a line 9 cm long. Divide it into thirds. |
| T revises how to draw a certain length of line accurately. Ps draw 9 cm line first. Discuss how to divide it into thirds. (3 equal parts, each part is 1 third) |
| BB: 3 thirds (1 whole): 9 cm, 1 third: 9 cm \(\div\) 3 = 3 cm |
| Ps mark with short, vertical lines every 3 cm starting from LHS. |

---

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **1** Sequences | Whole class activity  
T: 100, P₁: 96, P₂: 92, P₃: 88, P₄: 84, etc.  
Let's continue the sequence: 48, 40, 32, 24, 16, 8, 0, (–8, ..., 4 min)  
| | Individual work, monitored  
Use enlarged copy master or OHP  
Discussion, agreement, self-correction, praising  
Feedback for T  
Ps come out to point. (Ps can use own tables too.) |
| PbY3a, page 12 |  
**Q.1** Read: Write a division about each picture.  
Check with a multiplication.  
Talk about the pictures first:  
a) 7 squares, each made up of 4 sticks, 28 sticks altogether.  
b) 7 rows of circles, 8 circles in each row, 56 circles altogether.  
Review at BB with whole class. Deal with all mistakes.  
What do you notice about the total numbers in parts a) and b)?  
(56 is twice 28; 28 is half of 56) Let's find them in our multiplication table. (In columns/rows for 4, 7, 8)  
| 8 min |  
**3** PbY3a, page 12 | Individual work, monitored, (helped)  
T could have counters stuck to BB as in diagram in Pb  
Discussion at BB (SB, OHP)  
Demonstrate with Ps at front of class only if necessary  
Agreement, checking, self-correction, praising  
Feedback for T  
T uses the words 'factor', 'multiple':  
e.g. 4 is a factor of 32  
32 is a multiple of 4  
| 13 min |Whole class activity  
At speed. Ps chosen at random  
Ps may use their multiplication tables if needed  
Praising, encouragement only |
| **4** Division practice |  
T says a division (involving 2, 5, 10, 4 or 8). Ps say the quotient and check it with a multiplication.  
e.g. T: ‘48 ÷8’ (P₁: ‘6, because 6 times 8 is 48’); T: ‘40 ÷4’, (P₂: ‘10, because 10 times 4 is 40’)  
| 16 min |  
| " |  

© CIMT, University of Exeter
Lesson Plan 12

**Y3**

### Activity 5

Sets

*Duck* is collecting numbers divisible by 4 and *Frog* is collecting numbers divisible by 5. Let’s help them!

**BB:**

Ps come out to choose a number and put in the correct set, explaining reasoning. Class agrees/disagrees.

Debate on placing 20 and 40 (as both are divisible by 4 and also by 5). What can we do to make it fair? (Could provide 2 cards for each of these numbers so that there is no argument?)

T shows how the circles for *Duck* and *Frog* can be redrawn so that they overlap or intersect. Where would 20 and 40 go now? (in the overlap or intersection)

Let’s call *Duck*’s set, set D and *Frog*’s set, set F. How many numbers (elements) are in:

a) i) set D (4) ii) set F (4)

b) sets D and F altogether (6)

c) set D and also in set F (i.e. in the intersection of set D and set F)? (2)

T introduces the symbols: \(n(D)\) [number of elements in set D], \(\cup\) [union], \(\cap\) [intersection].

Do not expect Ps to learn them yet, just to become familiar with them.

20 min

### Extension

**Operations**

I am going to show you some operations. If you think it is correct, clap once but if you think it is wrong, put your hands on your heads when I say.

T shows one operation at a time. Is it correct? Show me . . . now!

a) \(32 ÷ 4 = 8\) (clapping)

b) \(40 ÷ 10 + 24 ÷ 8 = 8\) (hands on heads) \(4 + 3 \neq 8, 4 + 3 = 7\)

c) \(20 ÷ 5 – 1 \times 3 = 1\) (clapping) \(4 – 3 = 1\)

d) \(9 \times 4 + 2 \times 3 = 42\) (clapping) \(36 + 6 = 42\)

e) \(28 – 3 \times 4 = 10\) (hands on heads) \(28 – 12 \neq 10, 28 – 12 = 16\)

25 min

### 6 Operations

Whole class activity

T has SB already prepared and uncovers one operation at a time (or has operations on flash cards and holds up one at a time)

Responses given in unison

Done in good humour

Ps explain why some responses are wrong and correct them.

### 7 PbY3a, page 12

Q.3 Read: *Complete the table.*

T first elicits how many legs a spider (chair) has. How many people, chairs and spiders are there if you can see this number of legs? (T points to top row of table.)

Review at BB with whole class. C, which numbers did you write in the 2nd row? Why? (Each person has 2 legs, so the number of people is half the number of legs, or number of legs divided by 2.)

Who agrees? etc. Similarly for 3rd and 4th rows.

Why are there only zeros in the first column? (No legs, so no people, chairs or spiders) Why are there dashes in the table? (numbers not exactly divisible by 2, 4, or 8, so there would be legs remaining – not possible in reality!)

33 min
Lesson Plan 12

**Notes**

Whole class activity

- Or use enlarged copy master or OHP

At a good pace

- Reasoning, agreement, checking, praising

Refer to class number line if there are problems.

---

**Activity**

**8 Inequalities**

Which is more? How many more? T has BB or SB already prepared:

<table>
<thead>
<tr>
<th>BB:</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>60 ÷ 10</td>
<td>≤</td>
</tr>
<tr>
<td>b)</td>
<td>18 ÷ 2</td>
<td>=</td>
</tr>
<tr>
<td>c)</td>
<td>35 ÷ 5</td>
<td>&lt;</td>
</tr>
<tr>
<td>d)</td>
<td>64 ÷ 8</td>
<td>≤</td>
</tr>
<tr>
<td>e)</td>
<td>10 ÷ 2</td>
<td>=</td>
</tr>
</tbody>
</table>

Ps come out to write result above LHS, then RHS, then fill in the missing signs (and numbers where relevant).

Class agrees/disagrees.

- **36 min**

**9 Fractions**

Ps have copies of copy master on desks. What are these shapes? (square, rectangle, triangle)

<table>
<thead>
<tr>
<th>BB:</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colour in the part I say. After each part, show me your colouring when I tell you. P who responds correctly explains to Ps who are wrong.

| a)  | 1 quarter | Show me . . . now! (4 squares coloured) | 16 ÷ 4 = 4 |
| b)  | 1 eighth | Show me . . . now! (3 squares coloured) | 24 ÷ 8 = 3 |
| c)  | 1 half | Show me . . . now! (8 triangles coloured) | 16 ÷ 2 = 8 |

- **40 min**

**10 PbY3a, page 12**

Q.4 Read: **Practise division.**

Elicit that there are $3 \times 6 = 18$ divisions and that in part b) the answer is obtained by dividing the dividend by the quotient.

Let's see how many you can do in 3 minutes! Try to do them without using your multiplication table. Sit up with your arms folded when you have finished. Start . . . now! . . . . Stop!

Review orally round class. (Check with inverse operation.)

Ps change to coloured pencil, mark own work and count how many correct out of 18.

Who had all correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.

Discuss similar divisions:

- e.g. $16 ÷ 8 = 2$, $160 ÷ 8 = 20$, $160 ÷ 80 = 2$
- if dividend is 10 times more, quotient is also 10 times more;
- if dividend and divisor are 10 times more, then quotient stays the same

Discuss zero as dividend and divisor:

- e.g. $0 ÷ 4 = 0$, because $0 \times 4 = 0$
- BUT $4 ÷ 0$ is impossible because $\Box \times 0 \neq 4$

- Consolidate with similar divisions orally if there is time (e.g. $12 ÷ 6$, $120 ÷ 6$, $120 ÷ 60$; $0 ÷ 10$)

- **45 min**
Lesson Plan

13

Notes

Whole class activity

T chooses Ps at random.

If P makes a mistake he/she sits down and T points to another P to say it correctly.

Elicit that the 'boom' numbers are multiples of 3 (6, 9)

Done in good humour!

Whole class activity but individual work in Ex. Bks.

At a good pace

Agreement, self-correction, evaluation, praising

Whole class activity

T chooses Ps at random

Class agrees/disagrees

Encourage creativity

Praising

Individual work, monitored

Use enlarged copy master or OHP

Initial class discussion

Involve several Ps

Reasoning, agreement, self-correction, praising

(Feedback for T)

Ps find in × tables (class and individual tables)

e.g. 54 is a multiple of 9

54 is divisible by 6

9 is a factor of 54
### Activity 5

**PBY3a, page 13**

Q.2 Read: *Write a division to show how 54 sweets can be shared equally among:* a) 3 children, b) 6 children, 9 children.

Deal with one part at a time. Ps can have counters, etc. on desks if necessary and put into 3 (6, 9) equal groups.

Review at BB with whole class. A, how many sweets would each of the 3 children get? (18) Is A correct? How did you work out the answer? Who did it another way? etc. (e.g. each child would get one row of sweets each.)

How can we write it as a division? Who agrees? etc. Similarly for b) and c).

**BB:**

- a) $54 \div 3 = 30 \div 3 + 24 \div 3 = 10 + 8 = 18$
  
  **Check:** $18 \times 3 = 10 \times 3 + 8 \times 3 = 30 + 24 = 54$

- b) $54 \text{ sweets} \div 6 = 9 \text{ sweets}$
  
  **Check:** $9 \times 6 = 54$

- c) $54 \text{ sweets} \div 9 = 6 \text{ sweets}$
  
  **Check:** $6 \times 9 = 54$

T (Ps) points out the dividend, divisor, quotient in each division.

---

### Notes

- **Individual work, monitored, (helped)**
- **Use enlarged copy master or OHP (or real sweets!)**
- **Discussion at BB (SB, OHP)**
- **Demonstrate with Ps at front of class only if necessary**
- **Agreement, checking, self-correction, praising**
- **Feedback for T**
  - Ps find in $\times$ tables
  - Ps start to use the words factor, multiple, divisible by:
    - 3, 6 and 9 are factors of 54,
    - 54 is a multiple of 3, 6 and 9
    - 54 is divisible by 3, 6 and 9

---

### Activity 6

**Division practice**

Let’s practise division! T says a division, Ps say quotient and check with multiplication (inverse operation). (Ps can ask the divisions too.)

- e.g. $48 \div 6$, $27 \div 3$, $18 \div 9$, $30 \div 5$, $72 \div 8$, etc.

---

### Notes

- **Whole class activity**
- **T chooses Ps at random**
- **At speed. Ps may use $\times$ table**
- **Agreement, praising**

---

### Activity 7

**Chain calculation**

Listen carefully, do the calculations and write the final result in your *Ex. Bks. (Heading: Lesson number and date.*)

Nod your heads when you have done each step.

- a) T: ‘One eighth of 32’ . . . ‘multiply by 9’ . . . ‘divide by 6’ . . . ‘add 14’. Write down the final result. (20)
  
  **BB:** $32 \div 8 = 4$, $4 \times 9 = 36$, $36 \div 6 = 6$, $6 + 14 = 20$

- b) T: ‘One ninth of 90’ . . . ‘add 17’ . . . ‘divide by 9’ . . . ‘add 15’ . . . ‘divide by 6’. Write down the final result (3)
  
  **BB:** $90 \div 9 = 10$, $10 + 17 = 27$, $27 \div 9 = 3$, $3 + 15 = 18$, $18 \div 6 = 3$

---

### Notes

- **Whole class activity**
- **(Develops calculation skills and memory)**
- **T gives Ps time to calculate**
  - (or Ps can show result with number cards/on scrap paper)
- **Reasoning, agreement, praising**
- **T (or P) repeats each step while P writes on BB**
  - As above
- **Feedback for T**
**Lesson Plan 13**

### Activity

<table>
<thead>
<tr>
<th>8</th>
<th><strong>PbY3a, page 13</strong></th>
</tr>
</thead>
</table>
| Q.3 | Read: *Complete the table.*  
   We have made some shapes with sticks (rods). What can you tell me about the shapes?  
   *(Row 2: triangle, 3 sticks; Row 3: hexagon, 6 sticks;  
   Row 4: 1 large triangle made from 3 small triangles, $3 \times 3 = 9$ sticks)*  
   Why are there only zeros in the first column? (No sticks, so no shapes can be made.) Why are there dashes in the table?  
   (numbers not exactly divisible by 3, 6, or 9, so there would be sticks remaining.)  
   Review at BB with whole class. **D**, which numbers did you write in the 2nd row? Why? (1 third of numbers in top row)  
   Who agrees? etc. Who wrote something else? etc.  
   Similarly for 3rd and 4th rows.  
   Instead of the dashes, let's write the number of shapes which could be made and the number of sticks remaining. |

<table>
<thead>
<tr>
<th>9</th>
<th><strong>PBY3a, page 13</strong></th>
</tr>
</thead>
</table>
| Q.4 | Elicit that there are $3 \times 6 = 18$ divisions; in part b) the missing number (divisor) is found by dividing the dividend by the quotient; in the last three in part c) the missing dividend is found by multiplying the divisor by the quotient.  
   Let's see how many you can do in 3 minutes! Try to do them without using your multiplication table. Sit up with your arms folded when you have finished. Start . . . now! . . . . Stop!  
   Review orally round class. (Check with inverse operation.)  
   Ps change to coloured pencils, mark own work and count how many correct out of 18.  
   Who had all correct? Who had 1 (2, 3, 4) mistakes? What were your mistakes? Who did the same? etc.  
   Discuss similar divisions:  
   e.g. $18 \div 3 = 6$, $180 \div 3 = 60$, $180 \div 30 = 6$  
   • if dividend is 10 times more, quotient is also 10 times more;  
   • if dividend and divisor are 10 times more, then quotient stays the same  
   Discuss zero as dividend and divisor:  
   e.g. $0 \div 3 = 0$, because $0 \times 3 = 0$  
   BUT $3 \div 0$ is impossible because $0 \times 3 \neq 3$ |

**Notes**

- Individual work, monitored, helped  
- Drawn on BB or use enlarged copy master or OHP  
- Initial whole class discussion  
- Time differentiation (only more able Ps expected to get beyond 30)  
- Reasoning, agreement, self-correction, praising.  
- Compare the rows and write the rules. e.g. $S = 3 \times t = 6 \times H = 9 \times T$  
  $H = 2 \times t$, $T = t \div 3$, $t = 1$ third of $S$, etc.  
  
- **Extension**  
  Individual work, monitored  
  Initial discussion with class  
  Keep to time limit  
  (Time differentiation)  
  Agreement, checking, self-correction, praising  
  Feedback for T  
  Discussion, agreement  
  Inverse operation used as a check or proof  
  Consolidate with other examples orally if necessary
**Y3**

**R:** Mental calculation  
**C:** Revision: division table for 7  
**E:** Order of operations. Equations

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **Boom!** | Whole class activity  
Let’s play Boom! Everyone stand up!  
a) Start at 10 and say ‘boom’ instead of every multiple of 7.  
Ps: 10, 11, 12, 13, boom, 15, 16, 17, 18, 19, 20, boom, . . .  
b) Start at 20 and say ‘boom’ instead of every number which is either divisible by 7 or has 7 as the units digit.  
Ps: 20, boom, 22, 23, 24, 25, 26, boom, boom, 29, 30, 31, . . .
| **5 min** |
| **Matching pairs** | Whole class activity  
Let’s put these flowers into pairs.  
How could we do it?  
(Type or value)  
Let’s pair them up according to their value.  
Ps come out to BB to choose a pair, explaining reason for choice.  
Class agrees/disagrees. Ps give inverse operation (multiplication).  
What do you notice? (63 ÷ 9 does not have a partner) Let’s think of one. T asks several Ps for a matching division. (e.g. 35 ÷ 5, 14 ÷ 2)
| **10 min** |
| **PbY3a, page 14** | Individual work, monitored, helped  
Read: Complete the table.  
Elicit that a dash means that there is not an exact number of weeks – there would be days remaining.  
Review orally round class. Mistakes corrected. Write details on BB if there are problems.  
e.g. 21 days ÷ 7 days = 3 (times),  
84 ÷ 7 = 70 ÷ 7 + 14 ÷ 7 + 10 + 2 = 12  
Let’s change the dashes to the number of whole weeks and the number of days left over. e.g.  
e.g. 25 ÷ 7 = 3, remainder 4; 25 days is 3 weeks and 4 days  
BUT 25 is not a multiple of 7, 25 is not divisible by 7 and 7 is not, a factor of 25!
| **15 min** |
| **PbY3a, page 14** | Individual work, monitored, (helped with the checking)  
Read: Divide the 35 sticks into 7 equal groups. Check your calculation in two ways.  
Review at BB with whole class. A, how many sticks are in each group? (5) What calculation did you write? How did you check it? Who agrees with A? Who did it another way? etc.  
(e.g. half each of the 3 groups of 10 sticks to make 6 groups of 5 sticks plus the remaining group of 5 gives 7 groups of 5)
| **20 min** |
### Y3

#### Activity 5

**Sets**

Study the sets of numbers. What could be written in the labels?

<table>
<thead>
<tr>
<th>BB:</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>45</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>81</td>
<td>56</td>
</tr>
</tbody>
</table>

Deal with one part at a time. Ps suggest labels and T writes on BB. Class agrees/disagrees. e.g. Ps:

a) Multiples of 7; divisible by 7

b) Multiples of 3 (9); divisible by 3 (9); the sum of their digits is 9

c) Multiples of 8 (4, 2); divisible by 8 (4, 2)

Ps give other numbers which would belong to the various sets (to match each of the suggested labels). Class agrees/disagrees.

25 min

#### Lesson Plan 14

**Notes**

Whole class activity  
Drawn on BB or use enlarged copy master or OHP

Ps give reason for choice of label  
Agreement, praising

Additional numbers: e.g.

a) 7: 42, 63, 56, 14, . . .  
b) 9: 9, 27, 54 . . .  
c) 8: 16, 32, 48, . . .

#### Activity 6

**PbY3a, page 14**

Q.3 Read: *Help Barry Bear find the matching lids for these honey pots.*

T reminds Ps about order of operations. (division before addition or subtraction)

Review at BB with whole class. Mistakes corrected.

**Solution:**

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

30 min

#### Activity 7

**PbY3a, page 14**

Q.4 Read: *Follow the arrows, do what they tell you and write the final number in the house.*

Start at 20 and write the results of each step above the animals. Show me your answer with your fingers . . . now! (20)

Ps who responded incorrectly work through calculations on BB with help of rest of class. Mistakes corrected.

| BB: | 20 ÷ 2 = 10, 10 ÷ 5 = 2, 2 × 8 = 16, 16 + 24 = 40, |
|     | 40 ÷ 8 = 5, 5 × 7 = 35, 35 – 15 = 20, 20 × 1 = 20 |

If the arrows pointed in the opposite direction, what would the operations be?

35 min

**Extension**

Individual work, monitored  
Use enlarged copy master or OHP (or cut out lids and pots and stick to BB)

Reasoning, agreement, self-correction, praising  
Feedback for T

Individual work, monitored  
In unison  
Reasoning, agreement, self-correction, praising  
Orally round class. Praising
# Lesson Plan 14

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Y3</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Activity</strong></td>
<td><strong>Lesson Plan 14</strong></td>
</tr>
<tr>
<td><strong>8</strong></td>
<td><strong>Missing numbers</strong></td>
</tr>
<tr>
<td>T has BB or SB already prepared. What numbers could the shapes represent?</td>
<td>Whole class activity</td>
</tr>
<tr>
<td><strong>BB:</strong></td>
<td>Written beforehand on SB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>a) ( 42 \div 7 = 54 \div \boxed{9} )</td>
<td>At a good pace</td>
</tr>
<tr>
<td>b) ( 18 \div 9 = 16 \div \boxed{8} )</td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>c) ( \frac{24}{8} = 21 \div \boxed{7} )</td>
<td>Whole class discussion</td>
</tr>
<tr>
<td>d) ( \frac{63}{9} = 81 \div \boxed{9} )</td>
<td>Involve several Ps</td>
</tr>
<tr>
<td>What are these shapes? (square, rectangle triangles)</td>
<td>BB: right angle</td>
</tr>
<tr>
<td>If you were putting them into pairs how would you do it and why? (rectangle and square, as both are quadrilaterals, and the two triangles as they both have 3 sides)</td>
<td>Revision of properties of shapes (also right angles, vertices, parallel lines)</td>
</tr>
<tr>
<td>Are the 2 triangles exactly the same? (No, one triangle has equal sides; one triangle has a square corner or right angle.) T marks it.</td>
<td>Praising if Ps remember them</td>
</tr>
<tr>
<td>What is the same about the square and rectangle? (both have 4 sides, right angles at all corners (vertices), opposite sides parallel). Ps come out to mark the right angles. Elicit that a square is also a rectangle.</td>
<td></td>
</tr>
<tr>
<td>What is different about the square and rectangle? (square has all 4 sides of equal length, rectangle has opposite sides of equal length)</td>
<td></td>
</tr>
<tr>
<td><strong>8 min</strong></td>
<td></td>
</tr>
<tr>
<td><strong>9</strong></td>
<td><strong>Pb3a, page 14, Q.5</strong></td>
</tr>
<tr>
<td>Read: Try to solve this difficult puzzle! Draw dominoes in the square so that each row, column and diagonal has the same number of dots.</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>T has dominoes stuck to BB. Ps also have small cut-out (or real) dominoes on desks to try out for a couple of minutes.</td>
<td>Use copy master, enlarged and cut out</td>
</tr>
<tr>
<td>If nobody has solved it, T asks Ps to think logically.</td>
<td>Individual or paired trial first, monitored</td>
</tr>
<tr>
<td>How many dots will be in the square altogether?</td>
<td>T directs Ps' thinking (or P explains to class if they have solved it)</td>
</tr>
<tr>
<td><strong>BB:</strong> ( 2 + 6 + 3 + 4 + 6 + 3 + 1 + 5 + 1 + 6 + 1 + 4 + 5 + 3 + 4 + 2 = 56 )</td>
<td></td>
</tr>
<tr>
<td>So if all 4 rows have an equal number of dots, how can we find what that number is? (Divide 56 into 4 equal groups.)</td>
<td></td>
</tr>
<tr>
<td><strong>BB:</strong> ( 56 \div 4 = 40 \div 4 + 16 \div = 10 + 4 = 14 )</td>
<td></td>
</tr>
<tr>
<td>How many dominoes fit in a row? (2) Which pairs of dominoes have 14 dots altogether? ( (7 + 7, 8 + 6, 9 + 5) )</td>
<td></td>
</tr>
<tr>
<td>Let's fit the dominoes in the square row. T arranges dominoes as directed by Ps. Let's check that we are correct. (rows, columns, diagonals) Ps complete drawing in Pbs.*</td>
<td></td>
</tr>
<tr>
<td>Who knows the name of the special square we have made? (magic square, i.e sums of the numbers in all rows, columns and diagonals are equal)</td>
<td></td>
</tr>
<tr>
<td>(*Or Ps could finish off in Lesson 15 or at home.)</td>
<td></td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th><strong>Y3</strong></th>
<th><strong>Lesson Plan 15</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Activity</strong></td>
<td>Notes</td>
</tr>
</tbody>
</table>
| Tables practice, revision, activities, consolidation  
*PbY3a, page 15*  
(Completion of magic square in *Lesson 14*) | |
R: Mental calculation (4 operations)
C: Revision: division with remainders
E: Problems in context. Order of operations. Brackets

**Lesson Plan**

**Activity 1**

**Jumps along the number line**

*Fox* starts at 52 and jumps 6 units at a time back along the number line. Which numbers does he land on?

A, come and show us *Fox's* jumps while we say the numbers.

Ps: '52, 46, 40, 34, 28, 22, 16, 10, 4'

**BB:**

What is common to all these numbers? (e.g. even, multiples of 2, divisible by 2, not divisible by 60 (50, 100), when divided by 6 there is a remainder of 4)

How many jumps of 6 units did A take to get from 52 to 4? (8)
How many units remained? (4) Who can write it as a division on the BB? Who agrees? Who thinks something else? etc.

**BB:** $52 \div 6 = 8$, remainder 4. How can we check it if there is a remainder? B, come and show us. Is B correct? etc.

**Check:** $8 \times 6 + 4 = 48 + 4 = 52$

Repeat for the other numbers landed on, e.g.

**BB:** $46 \div 6 = 7$, remainder 4; $40 \div 6 = 6$, remainder 4; etc.

**4 min**

**Activity 2**

**PbY3a, page 16**

Q.1 Read: *Grandpa gave 23 marbles to his 3 grandchildren. They want to share out the marbles equally.*

How many marbles will each grandchild get and how many marbles will remain?

Ps can have counters, etc. on desks if necessary (or circle or colour marbles in *Pbs*).

Review at BB with whole class. B, how many marbles would each of the 3 children get and how many would remain? (7) Is B correct? How did you work out the answer? Who did it another way? etc. (e.g. each child would get one row of 6 marbles + 1 marble each from 4th row, leaving 2 marbles)

(Note that marbles are too hard to cut into thirds, so the two remaining marbles cannot be shared out equally.)

How can we write it as a division? Who agrees? etc.

**BB:** *Data:* 23 marbles, 3 grandchildren

*Plan:* $23 \div 3$ (or $m \div g$)

*Calculation:* $23 \div 3 = \underline{7}$, remainder 2

*Check:* $7 \times 3 + 2 = 21 + 2 = 23$

*Answer:* Each child gets 7 marbles and 2 marbles remain.

**9 min**

**Notes**

Whole class activity

Use enlarged copy master or OHP or show jumps on class number line.

At a good pace

Ask several Ps what they think. If nobody suggests last property, T gives hint

Reasoning, agreement, praising

**BB:** $52 – 6 – 6 – 6 – 6 – 6 – 6 – 6 – 6 = 4$

(6 is contained in 52 8 times and 4 units remain)

T uses the words 'dividend', 'divisor', 'quotient', 'remainder'

Individual work, monitored

Use enlarged copy master or OHP (or real marbles)

Discussion at BB (SB, OHP)

Agreement, checking, self-correction, praising

Discussion, agreement

Ps who made a mistake should write it out again correctly in their *Ex. Bks.*
## Y3

### Activity

#### 3 Money

Let's exchange 37 £1 coins for £5 notes. How many £5 notes would we get and how many £1 coins would remain?

C, come and write an operation about it. Who agrees? Who thinks something else? etc. Let's check.

BB: \( \frac{37}{5} = 7 \) (times), remainder 2; \( 37 \div 5 = 7, \text{ remainder } 2 \)

Check: \( 7 \times 5 + 2 = 35 + 2 = 37 \)

Repeat for £2 coins and £10 notes, with Ps writing divisions in Ex. Bks as above. Review at BB with whole class. Mistakes corrected.

BB: \( \frac{37}{2} = 18 \) (times), remainder 1; \( 37 \div 2 = 18, \text{ remainder } 1 \)

Check: \( 18 \times 2 + 1 = 36 + 1 = 37 \)

BB: \( \frac{37}{10} = 3 \) (times), remainder 7; \( 37 \div 10 = 3, \text{ remainder } 7 \)

Check: \( 3 \times 10 + 7 = 30 + 7 = 37 \)

---

#### 4 PbY3a, page 16

Q.2 Read: What are the secret numbers? Do the calculations and then check your answer.

a) Ps read problem and write the calculation without help in Pbs. Write your answer on a scrap of paper (or show with number cards) and show me . . . now! (57)

D, tell us how you got your answer. Who agrees? Who did it a different way? Who made a mistake? What kind of mistake? etc.

BB: \( 57 \div 9 = 6, \text{ remainder } 3 \) or \( 6 \times 9 + 3 = 57 \)

b) Ps read problem and write the calculation without help in Pbs.

E, tell us how you got your answer. Who agrees? Who wrote something else? (First subtract 2 from 47, then find two numbers which multiply to give a product of 45.)

BB: \( 47 \div 5 = 9 \), remainder 2; \( 9 \times 5 + 2 = 47 \)

BB: \( 47 \div 9 = 5 \), remainder 2; \( 5 \times 9 + 2 = 47 \)

or \( 47 \div 3 = 15 \), remainder 2; \( 15 \times 3 + 2 = 47 \)

or \( 47 \div 15 = 3 \), remainder 2; \( 15 \times 3 + 2 = 47 \)

---

#### 5 Competition

T divides class into similar ability groups. I will give you half a minute to continue this sequence in your Ex. Bks for as many terms as you can. Start and stop when I say.

The first term is 83. Each of the following terms is 6 less than the previous term.

Start . . . now! . . . . . Stop!

Review at BB with whole class. Ps dictate terms and T writes on BB. Ps change pencils and mark own (or neighbour's) work. Mistakes discussed and corrected.

P with most correct terms is the winner of each group. Class applauds winners.
### Activity

#### 6

**True or false?**

T has BB or SB already prepared. Are these statements true or false?

If you think it is true clap your hands once and if you think it is false, put your hands on your heads when I say.

Deal with one part at a time. T reads statement and says, 'True or false?' Show me . . . now!' Ps who responded correctly explain to Ps who did not. (One P for each side of inequality.)

<table>
<thead>
<tr>
<th>BB:</th>
<th>25</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>(3 \times 9 - 2 &lt; 3 \times (9 - 2)) (F)</td>
<td>(3 \times 9 - 2 &gt; 3 \times (9 - 2)) (F)</td>
</tr>
<tr>
<td>b)</td>
<td>(4 \times 5 + 12 &gt; 4 \times (5 + 12)) (F)</td>
<td>(4 \times 5 + 12 &lt; 4 \times (5 + 12)) (F)</td>
</tr>
<tr>
<td>c)</td>
<td>(32 \div 8 + 8 &gt; 32 \div (8 + 8)) (T)</td>
<td>(32 \div 8 + 8 &lt; 32 \div (8 + 8)) (T)</td>
</tr>
<tr>
<td>d)</td>
<td>(5 + 5 \times 5 &lt; (5 + 5) \times 5) (T)</td>
<td>(5 + 5 \times 5 &gt; (5 + 5) \times 5) (T)</td>
</tr>
<tr>
<td>e)</td>
<td>(7 + 4 \times 3 &lt; (7 + 4) \times 3) (T)</td>
<td>(7 + 4 \times 3 &gt; (7 + 4) \times 3) (T)</td>
</tr>
</tbody>
</table>

#### 7

**PbY3a, page 16**

Q.3 Read:

a) Circle in blue the numbers which give a remainder of 1 when divided by 2.

b) Circle in green the numbers which give a remainder of 2 when divided by 3.

c) Circle in red the numbers which give a remainder of 3 when divided by 4.

Review at BB with whole class. Elicit that the numbers circled in part a) are odd numbers.

#### 8

**PbY3a, page 16**

Q.4 Read: Tom has 78 stamps in his collection. He has already filled 2 stamp albums. How many stamps will go into a third album if each album can hold 30 stamps?

Review at BB with whole class. X, come and explain to us how you worked out the answer. Who agrees with X? Who did it a different way? etc.

**Plan:** Stamps altogether: 78  
Stamps in 1 full album: 30  
Stamps in 2 full albums: 2 × 30  
Stamps in 3rd album: 78 – 2 × 30  

**Calculation:**  
\[78 - 2 \times 30 = 78 - 60 = 18\]  
\[78 = 2 \times 30 + 18\]

**Check:**  
\[2 \times 30 + 18 = 60 + 18 = 78, \text{ and } 18 < 30\]

**Answer:** 18 stamps will go into a third album.

#### 9

**PbY3a, page 16**

Q.4 Read: One quarter of a line is 2 and a half cm. Draw the whole line.

How many quarters are in a whole? (4) Elicit that length of whole line will be \(4 \times 2\) and a half cm = \(8 \text{ cm} + 2 \text{ cm} = 10 \text{ cm}\)

---

**Notes**

- Whole class activity
- Written on BB (SB) or use enlarged copy master or OHP
- In unison
- Reasoning, agreement, praising
- False statements modified to make a true one, either by using \(<\) or \(>) or by changing the signs.

---

**Lesson Plan 16**

© CIMT, University of Exeter
**Y3**

**Lesson Plan**

**Week 4**

**R:** Addition, subtraction, multiplication and division

**C:** Division with remainder

**E:** Order of operations. Problems in context

---

### Activity 1

**Missing numbers**

Which number will go in the engine?

**BB:**

Ps come out to do the calculations and fill in the missing numbers, explaining reasoning. Class agrees, disagrees

**BB:**

\[
3 \times 5 = 15, \quad 15 + 49 = 64, \quad 64 - 19 = 45, \quad 45 \times 2 = 90, \quad 90 - 36 = 54, \quad 54 \div 9 = 6
\]

**4 min**

### Activity 2

**Making multiplications and divisions**

Study this butterfly carefully. Let’s make as many multiplications and divisions from its numbers as we can.

**BB:**

T (or Ps from groups) write what Ps dictate. Class points out errors.

Which multiplication facts are not shown on the butterfly?

**Extension**

**Whole class activity**

Use enlarged copy master or OHP

(Can be done as a competition, e.g. between boys and girls – group with most correct in a given time are the winners)

At a good pace

Agreement, praising

\[
9 \times 9 = 81, \quad 10 \times 10 = 100, \text{ etc.}
\]

**9 min**

### Activity 3

**Meadow or Woods?**

*Robin Rabbit* has two favourite walks – the path to the woods and the path to the meadow.

Each gate can be opened only if the operation is correct. Where does *Robin Rabbit* end up today?

**BB:**

Ps come to BB to check each operation in turn and to colour it if it is correct.

**Solution:**

*Robin Rabbit* ends up at the meadow today because the route to the woods is closed at the 3rd gate: \(9 \times 7 \neq 56\) (\(9 \times 7 = 63\))

**14 min**

---

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4</strong></td>
<td><strong>Lesson Plan 17</strong></td>
</tr>
<tr>
<td><strong>PbY3a, page 17</strong></td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>Q.1 Read: Practise division. What is the remainder? Check it with a multiplication.</td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Ps try do do it without using their multiplication tables.</td>
<td>Reasoning, checking, agreement, self-correction, praising</td>
</tr>
<tr>
<td>Review at BB with whole class. What did you notice? (24 ÷ 6 and 54 ÷ 6 have no remainder, as 24 and 54 are multiples of 6. Who had all correct? Who made a mistake? What kind of mistake? etc.</td>
<td>Feedback for T</td>
</tr>
<tr>
<td>20 min</td>
<td><strong>5</strong></td>
</tr>
<tr>
<td><strong>Missing numbers</strong></td>
<td>Whole class activity</td>
</tr>
<tr>
<td>What could the missing numbers be?</td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>BB:</td>
<td>At a good pace</td>
</tr>
<tr>
<td>20 min</td>
<td><strong>Extension</strong></td>
</tr>
<tr>
<td>Ps come out one at a time to fill in a missing number and explain reasoning. Class agrees/disagrees.</td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td>Who can tell me something mathematical about the diagram? (e.g. circle divided into 4 equal parts (quarters); sum of numbers in circle is 253; 4 pairs of ellipses (ovals); 50 is half of 100, etc.)</td>
<td>Ps could suggest another calculation for each quarter.</td>
</tr>
<tr>
<td><strong>6</strong></td>
<td>Individual work in <em>Ex. Bks</em></td>
</tr>
<tr>
<td><strong>Problem</strong></td>
<td>T repeats slowly, P repeats in own words</td>
</tr>
<tr>
<td>Listen carefully and picture the story in your head. Write a plan, do the calculation and write the answer in your <em>Ex. Bks</em>.</td>
<td>With number cards or written on scrap paper. In unison.</td>
</tr>
<tr>
<td><em>Alice put 2 p in her piggy bank each day for 5 weeks. How much money did she save?</em></td>
<td>Reasoning, agreement, checking, praising</td>
</tr>
<tr>
<td>Show me the number of pence she saved . . . now! (70)</td>
<td><em>Check:</em> 70 ÷ 2 = 35</td>
</tr>
<tr>
<td>A, come and show us how you worked it out. Who agrees? Who did it a different way? etc.</td>
<td>35 ÷ 7 = 5</td>
</tr>
<tr>
<td>BB:</td>
<td>Ps who got wrong answer write it out again correctly in <em>Ex. Bks</em>.</td>
</tr>
<tr>
<td><em>Plan:</em> 5 weeks = 5 × 7 days = 35 days</td>
<td></td>
</tr>
<tr>
<td>Each day: 2 p</td>
<td></td>
</tr>
<tr>
<td>35 days: 2 p × 35</td>
<td></td>
</tr>
<tr>
<td><em>Calculation:</em> 2 × 35 = 2 × 30 + 2 × 5 = 60 + 10 = <strong>70</strong></td>
<td></td>
</tr>
<tr>
<td>or 2 × 5 × 7 = 10 × 7 = <strong>70</strong></td>
<td></td>
</tr>
<tr>
<td><em>Answer:</em> Alice saved 70 p .</td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 17

Notes

Individual work, monitored, helped

Reasoning, agreement, checking, self-correction, praising

Check: \[60 - 7 \times 8 = 60 - 56 = 4\]

Demonstrate with model (real) money and P as Billy only if there are problems.

---

### Activity

**Y3**

**7 PbY3a, page 17**

**Q.2** Read: *During one week, Billy took 8 p out of his piggy bank every day. How much money was in Billy's piggy bank at the beginning of the week if 4 p remained at the end?*

Picture the story in your head. Is the amount getting bigger or smaller? Write a plan in your Ex. Bks if it will help you.

Review at BB with whole class. B, come and explain your answer to us. Who agrees? Who did it a different way? etc.

**BB:**

- **Plan:** 1 week = 7 days  Had left: 4 p
- **Each day:** 8 p  7 days: 7 \times 8 p

**Calculation:**

- \[7 \times 8 = 56; \quad 56 + 4 = 60\]
- \[7 \times 8 + 4 = 56 + 4 = 60\]
- \[60 - 7 \times 8 = 4\]

**Answer:** Billy had 60 p at the beginning of the week.

---

**8 PbY3a, page 17**

**Q.3** Read: *Change £1 coins into £5 notes. Complete the table.*

T (or P) explains task using completed column of table. Ps fill in remaining columns in Pbs. (Only more able Ps are expected to complete the whole table.)

Review at BB with whole class. Ps come out to fill in columns, explaining reasoning. Class agrees/disagrees. Mistakes corrected.

**Solution:**

<table>
<thead>
<tr>
<th>£1</th>
<th>10</th>
<th>16</th>
<th>24</th>
<th>43</th>
<th>35</th>
<th>61</th>
<th>77</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>£5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>£1 remaining</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Write details on BB if necessary, e.g.

**BB:**

- 10 \times 5 + 2 = 50 + 2 = 52
- 77 \div 5 = 50 \div 5 + 27 \div 5 = 10 + 5, r 2 = 15, r 2

---

**9 PbY3a, page 17**

**Q.5** Read: *Which number does each letter represent? Fill in the missing numbers.*

Do first few equations on BB if necessary. Review orally round class. Mistakes corrected. If problems, write details on BB.

T uses names of the components: 'multiplicand', 'multiplier', 'product', 'dividend', 'divisor', 'quotient', 'remainder'.

**Solution:**

- \(a = 2; \quad b = 4; \quad c = 8; \quad d = 6; \quad e = 4; \quad f = 63;\)
- \(g = 56; \quad h = 7; \quad i = 4; \quad j = 8; \quad k = 84; \quad l = 64\)

Ps make up own equations, with a letter instead of a number, for neighbour (or class) to solve.

---

**Extension**

Individual work, monitored, helped

Demonstration on BB if necessary

Reasoning, agreement, self-correction

If problems, write details on BB

e.g. \(l = 9 \times 7 + 1 = 63 + 1 = 64\)

Praising, encouragement only

---

© CIMT, University of Exeter
Y3

**Activity 1**

**Sequences**

a) The first term of a sequence is 10. Each following term is 7 more than the previous one. Let’s continue the sequence:

Ps: 10, 17, 24, 31, 38, 45, . . . .

What else can you say about the numbers in this sequence?

(When divided by 7 there is a remainder of 3.)

b) T: Here is another number sequence. 100, 92, 84, . . .

What could the rule be? (e.g. decreasing by 8, but accept others)

Let’s continue the sequence: . . ., 76, 68, 60, 52, 44, 36, 28, 20, (12, 4, –4, . . .) (or as far as Ps are able)

What else can you say about the numbers in this sequence?

(When divided by 8 there is a remainder of 4.)

**Lesson Plan 18**

**Notes**

Whole class activity

T chooses Ps at random

Class points out errors.

(Develops calculation skills)

Agreement, praising

Ask several Ps what they think.

In chorus

Agreement, praising

T notes Ps having difficulty

**Activity 2**

**Mental practice**

Revise order of operations. (If only + or –, or × or ÷, then work from left to right; if + or – and × or ÷, do × or ÷ first.)

T says divisions and multiplications. Ps write only answers in Ex. Bks.

(Heading: Lesson number and date)

a) 74 – 28
  b) 32 + 19
  c) 21 – 19

Review orally with whole class, with Ps explaining how they did each calculation. (e.g. 74 – 28 = 74 – 20 – 8 = 54 – 8 = 46)

Ps change to coloured pencils and mark/correct own work.

Who had 6 (5, 4, less than 4) correct? What mistakes did you make? Who did the same? etc.

Let’s say the results in increasing order: '0, 2, 10, 41, 46, 51'”

**Activity 3**

**Dividing by 3**

Let’s help Mick the Monkey to sort the bananas into groups of 3.

**BB:**

6 Ps come out to BB to circle the bananas and to write a division about it. Class agrees/disagrees.

What do you notice about the divisions? (divisor is 3 in each case; dividend increases by 1; remainders are 1, 2, 0, 1, 2, 0.

Who can think of a division by 3 which has a remainder of 3? (Impossible, as there would be enough for another group of 3.)

© CIMT, University of Exeter
Activity

4 Sharing 13

Sam Snail is having trouble arranging 13 flowers in the vases so that there is the same number in each vase. Let’s help him! (4, 5, 7 vases)

BB:

a) 4 vases

\[
13 \div 4 = 3, \text{ r } 1
\]

b) 5 vases

\[
13 \div 5 = 2, \text{ r } 3
\]

c) 7 vases

\[
13 \div 7 = 1, \text{ r } 6
\]

Ps come out to BB to stick flowers in the vases and write a division for each part, explaining reasoning. Class agrees/disagrees.

22 min

5 PbY3a, page 18

Q.1 Read: If the 1st of January was a Saturday, which dates in January were: a) Saturdays, b) Tuesdays, c) Fridays?

How many days are there in January? (31)

Ps write initial letters of days above, and relevant numbers below, the number line in Pbs to help them.

Then they write the dates beside each named day.

Review with whole class. Refer to calendar if necessary.

What do you notice about the dates? (increasing by 7) Why? (because there are 7 days in a week)

If the first day in November is a Wednesday, which dates will be Sundays? (5th, 12th, 19th, 26th)

27 min

6 Inequalities

T has BB or SB already prepared. What numbers could the shapes be?

BB:

a) \(3 \times 4 < \square < 2 \times 9\)

\[\square\] . . . . . . . . .

b) \(24 \div 4 < \bigcirc < 24 \div 3\)

\[\bigcirc\] . . . . . . . . .

Ps read out inequalities (from left to right: '3 times 4 is less than the square and the square is less than 2 times 9'; from the square: 'the square is more than 3 times 4 and less than 2 times 9'; from RHS: '9 times 2 is more than the square and the square is more than 3 times 4').

Ps come to BB to calculate the results for LHS and RHS and fill in the possible numbers for each shape. Class agrees/disagrees.

30 min

7 PbY3a, page 18

Q.2 Read: List the whole numbers which make the inequalities true.

Ps first write results above each side of inequality, then list possible numbers. Review at BB with whole class.

Solution: 

a: 49, 50, 51, 52, 53, 54, 55

b: 6, 7

c: 8, 7, 6, 5, 4, 3, 2, 1, 0, (−1, −2, . . . )

d: 7, 8, 9, 10, . . .

Extension

Whole class activity

Written on BB (SB or OHP)

Reasoning, agreement, checking, praising

a) \[\square\] : 13, 14, 15, 16, 17

b) \[\bigcirc\] = 7

Show on class number line if there are problems.

35 min


**Y3**

**Activity**

8  **PbY3a, page 18, Q3**

Read: **Write the operations without brackets if possible so that the result is the same. Do the calculations as a check.**

Remind Ps that calculations inside brackets are done first.

a)  X, come and show us how we could write it without brackets. Is X correct? Who thinks something else? Let's check that the result is the same for both. Ps calculate results for both.

Repeat with other Ps for parts b) to f). Ps can write results in *Pbs* too.

**BB:**

a) \((2 + 8) \times 7 = 2 \times 7 + 8 \times 7 = 70\)

b) \((11 - 3) \times 9 = 99 - 27 = 72\)

c) \((21 + 14) \div 7 = 21 \div 7 + 14 \div 7 = 5\)

d) \((24 - 8) \div 4 = 24 \div 4 - 8 \div 4 = 4\)

*e) \(80 \div (12 - 4) = 80 \div 8 = 10\)

*f) \(72 \div (3 + 6) = 72 \div 9 = 8\)

- 40 min

9  **PbY3a, page 18**

Q.4 Read: **Do the calculations with and without brackets.**

Ps read problems, then write the calculations in two ways, checking that the results are the same.

Review at BB with whole class. Y, come and explain to us how you worked out the answer. Who agrees with Y? Who did it a different way? etc.

a)  Grandma has 3 grandsons and 3 granddaughters. On her birthday, each grandchild gave her 7 flowers. How many flowers was she given altogether?

**Plan**: No. of grandchildren: 3 + 5  Each gave: 7 flowers

**Calculations**:  
\((3 + 5) \times 7 = 8 \times 7 = 56\)  
or  \(3 \times 7 + 5 \times 7 = 21 + 35 = 56\)

**Answer**: She was given 56 flowers.

b)  The 3 children in a family were given 90 p by Dad and 60 p by Mum. They shared the money equally. How much did they each get?

**Plan**: Given: 90 p + 60 p  No. of children: 3

**Calculations**:  
\((90 + 60) \div 3 = 150 \div 3 = 50\)  
or  \(90 \div 3 + 60 \div 3 = 30 + 20 = 50\)

**Answer**: Each child got 50 p.

- 45 min

**Notes**

Whole class activity

T has SB or BB already prepared (or use enlarged copy master or OHP)

Reasoning, agreement, checking, praising

Elicit that it is impossible to write parts e) and f) without brackets and obtain the same result:

*e) 80 is not divisible by 12  
(80 ÷ 12 = 6 and 2 thirds ≠ 8)  

f) 72 ÷ 3 + 72 ÷ 6 = 24 + 12 = 36 ≠ 8

Feedback for T

Individual trial, monitored, helped

Discussion, reasoning, agreement, checking, praising

Ps who were wrong write out again correctly in *Ex. Bks*

(Or answers could be shown in unison on command)

Differentiation – time limit

Only the more able Ps should be expected to do both parts.

Feedback for T
Lesson Plan 19

**Y3**

**Activity**

1. **Boom!**
   - Let's play Boom! Everyone stand up!
   - Let's start at 10 and say 'boom' instead of every number which is either divisible by 4 or has 4 as a digit.
   - Ps: 10, 11, boom, 13, boom, 15, boom, 17, 18, 19, boom, 21, 22, 23, . . .
   - Continue until only one P is left standing.
   - **4 min**

2. **Addition**
   - Study the picture carefully.
   - What has Bennie Bunny done with the numbers whispered in his ears?
   - Elicit that Bennie Bunny adds the numbers whispered in his right ear, then adds the numbers whispered in his left ear, then adds the two sums together.
   - Let's complete the table.
   - BB: Who can explain to us what each row means?
   - Ps come out to choose a column and fill in the total, explaining reasoning. Class agrees/disagrees.
   - **10 min**

3. **Competition**
   - What numbers and signs could go in the rectangles to make the statements true?
   - BB: T divides class into 3 teams (one for each animal)
   - Ps come out to BB to write a calculation below their animal.
   - Rest of team makes sure they are correct.
   - T says 'Stop!' after 4 minutes. Class agrees/disagrees with calculations. The team with most correct statements is the winner!
   - **16 min**

4. **Days of the week**
   - If today is Thursday, what day will it be in
   - a) 7 days (Thursday) BB: $7 \div 7 = 1$
   - b) 10 days (Sunday) $10 \div 7 = 1, r3$
   - c) 14 days (Thursday) $14 \div 7 = 2$
   - d) 17 days (Sunday) $17 \div 7 = 2, r3$
   - e) 35 days (Thursday) $35 \div 7 = 5$
   - f) 40 days? (Tuesday) $40 \div 7 = 5, r5$
   - **20 min**

**Notes**

- Whole class activity
- If Ps make a mistake they sit down and next P answers correctly.
- At speed round class
- In good humour!
- Class applauds the winner.

Whole class activity
- Use enlarged copy master or OHP
- Ask several Ps what they think
- BB: Right ear Left ear
  - $50 + 40 = 90, 7 + 2 = 9$
  - Total: $90 + 9 = 99$
- Table drawn on BB or use enlarged copy master or OHP
- At a good pace
- Reasoning, agreement, praising

Whole class activity
- Drawn on BB or use enlarged copy master or OHP, or animals stuck to BB and statements written below.
- Encourage creativity
- At speed
- Agreement, checking, praising
- Class applauds winning team
- T awards stars, stickers, etc. to most creative statements.

Whole class activity
- T asks several Ps what they think
- T writes divisions as dictated by Ps
- Check on calendar if necessary
- Reasoning, agreement
- Praising

© CIMT, University of Exeter
### Activity 5

**PbY3a, page 19**

**Q.1** Read: *Do the calculations in the correct order.*

Which operations should be done first? (multiplication/division)

Review at BB with whole class. Mistakes corrected.

**BB:**

- a) \(54 + 5 \times 4 + 6 \div 2 = 54 + 20 + 3 = 77\)
- b) \(40 + 3 \times 8 + 18 \div 9 = 40 + 24 + 2 = 66\)
- c) \(76 - 7 \times 8 - 8 \div 4 = 76 - 56 - 2 = 18\)
- d) \(92 - 4 \times 3 - 72 \div 8 = 92 - 12 - 9 = 71\)

Who had them all correct? Who made a mistake? What kind of mistake? etc.

---

### Activity 6

**PbY3a, page 19. Q.3**

Read: Do the calculations in the correct order.

Talk about order of operations. (First the brackets, then multiplication and division from left to right, then addition and subtraction from left to right. Within the brackets the same rules apply.)

Ps come out to do the calculations on the BB, explaining reasoning.

Class agrees/disagrees. Ps write calculations in Pbs too.

**BB:**

- a) \(60 \div 6 + 4 \times 2 - 2 = 10 + 8 - 2 = 16\)
- b) \(60 \div 6 + 4 \times (2 - 2) = 60 \div 6 + 4 \times 0 = 10 + 0 = 10\)
- c) \(60 \div (6 + 4) \times 2 - 2 = 60 \div 10 \times 2 - 2 = 12 \div 2 = 12 - 2 = 10\)
- d) \((60 \div 6 + 4) \times 2 - 2 = (10 + 4) \times 2 - 2 = 14 \times 2 - 2 = 28 - 2 = 26\)
- e) \(60 \div (6 + 4 \times 2 - 2) = 60 \div (6 + 8 - 2) = 60 \div 12 = 5\)
- f) \(60 \div (6 + 4) \times (2 - 2) = 60 \div 10 \times 0 = 6 \times 0 = 0\)

---

### Problem

Listen carefully, picture the story in your head, write a plan and do the calculation in your Ex. Bks. Show me the answer when I say.

*A florist had 36 red and 54 yellow roses. She decided to tie them in bunches of 3. How many bunches could she make?*

Show me with number cards (or on scrap paper) . . . now! (30)

**BB:**

**Plan:**

- No. of roses: 36 + 54
- No. in each bunch: 3

**Calculation:**

\[
\frac{36 + 54}{3} = \frac{90}{3} = 30
\]

**Check:**

\[30 \times 3 = 90\]

**Answer:** She could make 30 bunches of roses.
### Activity 8

**PbY3a, page 19**

**Q.4** Read: *Four children were given £90. They spent £30 and then shared the remaining money equally. How much money did they each get?*

Review at BB with whole class. B, come and explain to us how you worked out the answer. Who agrees with B? Who did it a different way? etc.

**Plan:**
- No. of children: 4
- Given: £90
- Spent: £30
- Had left: £90 – £30

**Calculation:**
- \((90 - 30) \div 4 = 60 \div 4 = \text{£15}\)
- \((\text{or } 90 \div 4 - 30 \div 4 = £22.50 \text{ p} - £7.50 \text{ p} = £15)\)

**Check:**
- \(15 \times 4 + 30 = 10 \times 4 + 5 \times 4 + 30 = 40 + 20 + 30 = 90\)

**Answer:** They each got £15.

**Notes**

- Individual work, monitored
- Discussion at BB
- Reasoning, agreement, checking, praising
- Self-correction (in Ex. Bks if no room in Pbs)

(Demonstrate with model money and Ps at front of class only if necessary)

**Feedback for T**

---

### Activity 9

**PbY3a, page 19, Q.4**

Read: *Fill in the missing numbers so that the equations are true, both horizontally and vertically.*

T revises what 'horizontal' and 'vertical' means. Hold your arms vertically, horizontally; be vertical, horizontal (Ps stand up, lie down).

Elicit that horizontal equations are in the rows and vertical equations are in the columns.

What do you think we should do first? (Think of all possible formations of 3 factors which multiply to give the products.)

- **1st column:**
  - \(27 = 1 \times 1 \times 27 = 1 \times 3 \times 9 = 3 \times 3 \times 3\)

- **3rd row:**
  - \(18 = 1 \times 1 \times 18 = 1 \times 2 \times 9 = 1 \times 6 \times 3\)
  - \(= 2 \times 3 \times 3\)

so number common to both must be 1, 3 or 9.

Ps work in 3 groups, each group trying one of these possible numbers in the common square (1st column, 3rd row).

Rest can be done by 'trial and error', but choices confined to relevant factors or multiples. [Algebra would be too difficult at this stage.]

**Solution:**

- \(3 \times 8 \div 6 = 4\)
- \(3 \times 8 \div 6 = 4\)

Can be finished off in Lesson 20 or at home if Ps wish.

**Notes**

- Whole class activity to start, then group work.
- Drawn on BB or use enlarged copy master or OHP
- Ps have extra copies of puzzle on desks for trying out
- Let Ps suggest what to do but if nobody knows, T gives hint.
- Class agrees/disagrees
- Praising
- Group work, monitored

**Note**

This can be made easier by not allowing ‘1’ as a factor.

Thus only possible solution to 1st column would be

\(3 \times 3 \times 3\)

and 3rd row would be

\(3 \times 2 \times 3\) or \(3 \times 3 \times 2\)

Extra praise if Ps solve it by themselves!
<table>
<thead>
<tr>
<th>Y3</th>
<th>Lesson Plan 20</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Activity</strong></td>
<td></td>
</tr>
<tr>
<td>Tables practice, revision, activities, consolidation</td>
<td></td>
</tr>
<tr>
<td><em>PbY3a, page 20</em></td>
<td></td>
</tr>
<tr>
<td>(Complete Activity 9 in <em>Lesson Plan 19.</em> )</td>
<td></td>
</tr>
</tbody>
</table>
### Activity

#### 1 What am I?
Listen to the clues and think what I could be!
- People buying material and ribbon make use of me.
- I am used to name some events in athletics.
- I have a big brother whose name is on maps of the country.
- My big brother is one thousand times as long as I am.

What am I? T asks several Ps what they think. (metre)
What is my big brother? (kilometre) (BB: 1000 m = 1 km)
What other standard unit is used to measure length? (cm, mm, mile, inch)

Everyone stand up! Hold your hands 1 cm (1 m) apart. (T walks round and adjusts where necessary. What do you think is about 1 km from the school? (T should have ascertained this beforehand.)

---

#### 2 Sequences
Let’s continue these sequences.

a) 85, 90, 95, . . .
    \[ (100, 105, 110, 115, 120, \ldots) \]

b) 100, 200, 300, . . .
    \[ (400, 500, 600, 700, 800, \ldots) \]

c) 1000, 800, 600, . . .
    \[ (400, 200, 0, – 200, \ldots) \]

d) 100, 300, 500, . . .
    \[ (700, 900, 1100, \ldots) \]

---

#### 3 Standard Units
Who can remember how many mm are in 1 cm? (BB: 1 cm = 10 mm)
P s confirm by finding on their rulers.

Which units would you use to measure these objects? T has flash cards stuck at random on BB with standard units at the side of BB:

- Motorway
  - km
- Book
  - cm
- Your height
  - m and cm
- Rubber
  - cm and mm
- Pin head
  - mm
- Length of the classroom
  - m

Ps come out to BB to choose an object and put the appropriate unit of length below it. Discuss the use of two units for, e.g., height.

What other things would we measure in mm (cm, m, km)?

---

#### 4 Ordering units of length

a) Let’s put these units of length in decreasing order.

BB: \[ 1 \text{ m} \; 1 \text{ cm} \; 1 \text{ km} \; 1 \text{ mm} \]

Ps come to BB to write out again, crossing off each unit as it is used (or to rearrange cards).

What sign could we put between them? (>)

BB: \[ 1 \text{ km} > 1 \text{ m} > 1 \text{ cm} > 1 \text{ mm} \]

---

### Notes

**Whole class activity**

Ps stand up when they think they know

**Agreement**

Discussion on other units and when they are used. T could show a metre stick, ruler, tape measure, etc.

Practice in estimation

---

**Whole class activity**

In unison. At speed

T takes note of what Ps already know.

Praising, encouragement only

---

**Whole class activity**

Use copy master, enlarged, cut out and cards stuck to BB (or use pictures cut from magazines)

Agreement, praising

(e.g. height can be measured in m and cm)

Ps make suggestions (with T’s help)

---

**Whole class activity**

Written on BB or use flash cards

Agreement, praising

Ps copy into Ex. Bks too.

(Lesson number and date)
**Y3**

**Activity**

b) What could the arrows mean?

Ps come out to write numbers in the rectangles, saying complete equation (in correct direction.)

- e.g. ‘1 mm times ten equals 1 cm’
- ‘1 cm divided by 10 equals 1 mm’

Class agrees/disagrees.

c) Let’s complete the equations. Ps come out to fill in missing numbers.

BB:  
- \[1 \text{ km} = \boxed{1000} \text{ m}\]
- \[1 \text{ m} = \boxed{100} \text{ cm}\]
- \[10 \text{ mm} = \boxed{1} \text{ cm}\]
- \[1 \text{ cm} = \boxed{10} \text{ mm}\]
- \[100 \text{ cm} = \boxed{1} \text{ m}\]

**Lesson Plan 21**

- Individual work, monitored, helped
- Use enlarged copy master or OHP

Q.1 Read: Imagine the size of these things in real life. Estimate their real lengths.

Which letter could be written in which box?

Think about if you were holding the object, or standing beside it. Which would be the biggest (smallest)?

Review at BB with whole class. Have a metre rule or measuring tape at hand to confirm if there is disagreement.

**Solution:**

- \[1 \text{ m} < e < 2 \text{ m}; \quad 8 \text{ cm} < b < 10 \text{ cm}; \quad 20 \text{ cm} < a < 30 \text{ cm}; \quad 4 \text{ m} < d < 5 \text{ m}; \quad 10 \text{ m} < c < 20 \text{ m}\]

**Lesson Plan 21**

- Individual work, monitored, helped
- Use enlarged copy master or OHP

Q.2 Read: Estimate, then measure exactly, the total length of the lines.

Think of how long a cm is and estimate how many cm you think the lines in each part will be. Write the number of cm in the box at the top of each shape. Review orally with whole class.

Now use your rulers to measure the lines accurately and write the total accurate length in the box at the bottom of each diagram.

What do you notice? (Each grid square has side 5 mm or half a cm, so every 2 sides are 1 cm long)

Review at BB with whole class. (Wildly inaccurate measures should be done again but allow small discrepancies.)

**Solution:**

- \[a = 3 \text{ cm} + 5 \text{ cm} + 3 \text{ cm} = 11 \text{ cm}, \quad b = 5 \times 2 \text{ cm} = 10 \text{ cm}, \quad c = 2 \times (2 \text{ cm} + 4 \text{ cm}) = 2 \times 6 \text{ cm} = 12 \text{ cm}, \quad d = 2 \times 4 \text{ cm} + 2 \text{ cm} = 10 \text{ cm}, \quad e = 1 \text{ cm} + \text{ half a cm} + 1 \text{ cm} + \text{ half a cm} + 2 \text{ cm} = 5 \text{ cm}\]

**Lesson Plan 21**

- Individual work, monitored, helped
- Use enlarged copy master for demonstration only!
### Activity 7

**Ordering lengths**

Let's put these lengths in increasing order.

a) BB: 127 cm, 150 cm, 105 cm, 90 cm, 1 m 20 cm

Ps come to BB to write out again, crossing off each length as it is used (or to rearrange cards). Elicit that 1 m 20 cm = 120 cm.

What sign could we put between them? (<)

BB: 90 cm < 105 cm < 1 m 20 cm < 127 cm < 150 cm

b) BB: 6 m, 250 cm, 5 m 20 cm; 10 m 50 cm

Ps come to BB to write out again, crossing off each length as it is used (or to rearrange cards). Elicit that 250 cm = 2 m 50 cm

BB: 250 cm < 5 m 20 cm < 6 m < 10 m 50 cm

c) BB: 4 m 90 cm, 3 m, 200 cm, 9 m, 3 and a half metres

Ps come to BB to write out again, crossing off each length as it is used (or to rearrange cards). Elicit that 200 cm = 2 metres

BB: 200 cm < 3 m < 3 and a half metres < 4 m 90 cm < 9 m

---

### Lesson Plan 21

**Notes**

Whole class activity

Written on BB or SB or OHP or on flash cards stuck to BB

Reasoning, agreement, praising

T gives Ps (or elicits from Ps) an idea of what the lengths are:

e.g. a child is about 1 m 20 cm; a house is about 6 m high, etc.

or by using a measuring tape or metre rule, or comparing with height of Ps, etc.

---

### Q.3 Read: Fill in the missing numbers.

Review orally with whole class. Ps change to coloured pencils and mark own work, correcting mistakes.

- a) 1 m 30 cm = 130 cm
- b) 1 m 50 cm = 150 cm
- c) 1 m 100 cm = 2 m = 200 cm
- d) 1 m 26 cm = 126 cm
- e) 1 m 80 cm = 180 cm
- f) 1 m 7 cm = 107 cm

Who had 6 (5, 4, less than 4) correct? What were your mistakes? Who did the same? Who does not understand where they went wrong?

---

### Q.4 Read: Mr. Silly estimated some quantities. If you agree with him, write a tick. If you disagree, write a cross and correct his mistake.

Review orally with whole class. Check 'silly' lengths with the real thing where possible.

- a) My friend Bob is about 135 m tall. × (135 cm)
- b) A matchbox is about 5 mm wide. × (5 cm or 50 mm)
- c) A pupil's desk is about 70 mm high. × (70 cm)
- d) My pencil is about 15 cm long. ✓ (possible)
- e) My pet rabbit has ears about 120 mm long. ✓ (possible, but ear lengths vary a lot, depending on age, type, etc.)

---

© CIMT, University of Exeter
Y3

R: Calculation
C: Measurement: capacity. Numbers up to 200 (or over)
E: Hundreds and 50s to 1 thousand (or over)

Week 5

Lesson Plan

22

Notes

Activity

1 What am I?
Listen to the clues and think what I could be!

- People measuring liquids make use of me.
- My name is on bottles of water and cartons of milk and orange juice.
- I have a brother who is one hundred times smaller than me. He is used to measure doses of medicines when you are ill.
- You will see my name on petrol pumps at service stations.

What am I? T asks several Ps what they think. (litre)
What is my little brother? (centilitre) (BB: 100 cl = 1 litre)
What other standard unit is used to measure how much liquid something can hold (capacity)? (pint, gallon)

T demonstrates that 1 litre of water fills a cube 10 cm by 10 cm by 10 cm, i.e. 1000 centimetre cubes (cc)

5 min

2 Measuring capacity
T has a measuring jug with, e.g., a 10 cl scale, a bucket of water and various containers on the table at the front of the class.
Ps come out to choose a container, fill it with water and pour into the measuring jug. They then read its capacity out to the class.
After one or two times, class could try to estimate the capacity first.
T writes capacity of each container on the BB. e.g. glass: 50 cl

10 min

3 Units of capacity
T has various utensils and containers at front of class, e.g. spoon, glass, jug, cup, bucket, ice-cream tub.
T holds up one item at a time and asks Ps to say which unit of capacity they would use to measure how much liquid each could hold.
(e.g. spoon: cl or ml; glass: cl; cup: cl; jug: litre; bucket: litre)

15 min

4 PbY3a, page 22
Q.1 Read: Which capacity would be measured by which unit?
Join up the containers to a suitable standard unit.

Talk about the containers first and what each would be used for.
Which container (unit) is biggest (smallest)?
Review at BB with whole class. Discuss the fact that the measuring jug could be a litre jug, so could be measured in litres.

Solution:

Let's put these units in decreasing order and write the correct sign between them.
Complete these equations in your Ex. Bks.

BB: 1 litre = \[\frac{100}{1}\] cl; 1 cl = \[\frac{10}{1}\] ml; 1 litre = \[\frac{1000}{1}\] ml

20 min

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Ps come to BB to join up.
Discussion, reasoning, agreement, praising

T on BB and Ps in Ex. Bks:
1 litre > 1 cl > 1 ml
Compare British units of pint and gallon with the litre.

Whole class activity
Ps stand up when they think they know
Agreement, praising
Discussion on other units and when they are used. T could show measuring jugs, milk bottle, medicine spoons, etc.
BB: 1 litre of water = 1000 cc
1 cl of water = 10 cc

Whole class activity
e.g. wine glass, bottle, mug, jam jar, flower vase, tumbler
Choose 3 Ps at a time: 1st to hold measuring jug, 2nd to pour the water and 3rd to read out the quantity.

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Ps come to BB to join up.
Discussion, reasoning, agreement, praising

T on BB and Ps in Ex. Bks:
1 litre > 1 cl > 1 ml
Compare British units of pint and gallon with the litre.

© CIMT, University of Exeter
**Lesson Plan 22**

**Activity**

5. **PbY3a, page 22. Q.2**

Read: *What could the rule be? Fill in the missing numbers and complete the diagram.*

What have the equations on the LHS to do with the diagram? Elicit that they are the calculations needed for each segment of the circle.

What is the rule for the diagram? (The sum of the two quantities in each segment is 10 cl.) How many millilitres is 10 cl? (10 cl = 100 ml)

Ps come out to BB to fill in a set of equations, find the matching segment and write in the missing quantity, explaining reasoning.

Class agrees/disagrees.

**Solution**

<table>
<thead>
<tr>
<th>Segment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cl</td>
<td>5 cl + 5 cl = 10 cl</td>
</tr>
<tr>
<td>6 cl</td>
<td>60 ml + 40 ml = 100 ml</td>
</tr>
<tr>
<td>4 cl</td>
<td>4 cl = 40 ml</td>
</tr>
<tr>
<td>18 ml</td>
<td>18 ml + 82 ml = 100 ml</td>
</tr>
</tbody>
</table>

**Notes**

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement

Ps complete in *Pbs* at the same time

Reasoning, agreement, praising

Let’s not forget what ‘cl’ and ‘ml’ are short for .

BB: ml millilitre
cl centilitre

1 ml = 1 thousandth of a litre
1 cl = 1 hundredth of a litre

---

6. **Equal quantities**

Let’s help *Maurice Mouse* to join up the equal quantities.

BB:

Ps come to BB to fill in the matching segment and write in the missing quantity, explaining reasoning.

Class agrees/disagrees.

Let’s write them as equations. (T on BB and Ps in *Ex. Bks*)

BB: 10 cl = 100 ml, 1 litre = 100 cl = 1000 ml, 1 cl = 10 ml

---

7. **Missing quantities**

T has BB or SB already prepared and containers which would hold approximately these quantities.

BB: a) 1 litre = 100 cl
d) 1 litre 50 cl = 150 cl
b) 2 litres = 200 cl
e) half a litre = 50 cl
c) 5 litres = 500 cl
f) 3 litres 10 cl = 310 cl

Ps come out one at a time to fill in the missing quantity and to choose the container which they think would hold it. Who agrees? Who thinks another one? Let's check!

Which is the biggest (smallest) quantity? (5 litres, half a litre)

---

Whole class activity

Written on BB, SB or OHP

(Containers could have capacity written on bottom beforehand, or T could pour water from a measuring jug into chosen container.)

Agreement, checking, praising

Class shouts in unison
**Activity**

8  **Exercises**

T reads statement, Ps write in *Ex. Bks* and then complete the missing numbers and/or units.

- BB:  
  a) 1 litre = 100 cl  
  b) 3 litres = cl  
  c) 7 litres = cl

- d) 2 litres 50 cl = 250 ml  
  e) 1 and a half litres = cl  
  f) 50 cl = ml

Review orally round class. Ps change to coloured pencils and mark own work, correcting mistakes.

Who had 6 (5, 4, less than 4) correct? What were your mistakes?  
Who did the same?  
Who does not understand?

--- **40 min** ---

9  **PbY3a, page 22**

Q.3 Read: *For a picnic, we made some lemonade and poured it into 50 cl, 80 c, and 1 litre bottles.*  

*The graph shows the number of each size of bottle that we filled.*  

*Do the calculations and answer the questions in your Exercise Books.*

T explains task. Elicit that each shaded grid square represents 1 bottle and that the height of the columns shows how many of each size of bottle was filled.

Deal with one part at a time. Do first part (50 cl) of a) and b) on BB with whole class, then 80 cl and 1 litre as individual work, reviewed.

Part c) as individual work, reviewed at BB. Mistakes corrected.

**Solution:**

a)  
50 cl: 8 bottles;  
80 cl: 4 bottles;  
1 litre: 13 bottles

b)  
50 cl: $8 \times 50 \text{ cl} = 400 \text{ cl} = 4 \text{ litres}$, or  
$8 \times 50 \text{ cl} = 4 \times (2 \times 50 \text{ cl}) = 4 \times 100 \text{ cl} = \text{4 litres}$  
80 cl: $4 \times 80 \text{ cl} = 320 \text{ cl} = 3 \text{ litres 20 cl}$  
1 litre: $13 \times 1 \text{ litre} = 13 \text{ litres}$

c)  
4 litres + 3 litres 20 cl + 13 litres = 20 litres 20 cl

--- **45 min** ---

© CIMT, University of Exeter
**Lesson Plan**

**Week 5**

**Y3**

**Activity**

1. **Weight and mass**
   - T has a 1 litre measuring jug, an open-topped transparent cube (glass or plastic) measuring 10 cm by 10 cm by 10 cm and a balance with a 1 kg weight on table at front of class.
   - T pours 1 litre of water into jug, and then fills the cube.
   - Who can write an equation about it?
   - T pours the water from the glass cube into one side of the scales and puts a 1 kg weight on the other.
   - What do you notice? (They balance, so they must weigh the same.) Who can write an equation about it? (BB)
   - When we say that the weight of water is 1 kg, we should remember that we really mean 'mass' (how much water there is).
   - Here are two examples to show the difference between weight and mass:
     - Suppose we ate a loaf of bread here on Earth, then went to the Moon on a spaceship and ate the same size of loaf there. The amount of bread (mass) we ate would be the same but the bread would weigh about six times lighter on the moon than on the earth.
     - An astronaut is able to jump about 6 times further on the Moon than on the Earth but his mass is the same.
   - Anything weighs less on the Moon than it does on th Earth but its mass stays the same.

2. **Units of mass (weight)**
   - The weight on the balance is 1 kg and is quite heavy. What unit would we use if we wanted to weigh very small things? (g)
   - Who knows how many grams are in 1 kilogram? (1000)
   - T writes on BB and Ps in Ex. Bks: BB: 1 kg = 1000 g
   - T has various items (small and large) and sets of scales to show kg and g. Ps come out to choose an item and read its weight from the appropriate scale (with T's help if necessary).
   - There is a unit of mass which is 1 thousand times larger than 1 kg. Who knows what it is called? (tonne)
   - Who can write an equation about it? BB: 1 tonne = 1000 kg
   - Who knows other standard units for measuring mass (weight)? (British)

3. **PbY3a, page 23**
   - Q.1 Read: *How much do you think they weigh in real life? Join up each picture to the suitable quantity.*
   - Talk about the pictures first and compare their weights.
   - Which do you think would be heaviest (lightest) in real life?
   - Which of the measures is biggest (smallest)?
   - Review at BB with whole class. T could have a real pot of jam (packet of crisps, carton of milk, herself) to weigh to problems.
   - Let's put the units in decreasing order and write the correct sign between them. (T on BB and Ps in Ex. Bks.)
   - BB: 1 tonne > 60 kg > 16 kg > 1 kg > 700 g > 25 g

**Notes**

**Week 5**

**Lesson Plan**

**1 Weight and mass**

- T has a 1 litre measuring jug, an open-topped transparent cube (glass or plastic) measuring 10 cm by 10 cm by 10 cm and a balance with a 1 kg weight on table at front of class.
- T pours 1 litre of water into jug, and then fills the cube.
- Who can write an equation about it?
- T pours the water from the glass cube into one side of the scales and puts a 1 kg weight on the other.
- What do you notice? (They balance, so they must weigh the same.) Who can write an equation about it? (BB)
- When we say that the weight of water is 1 kg, we should remember that we really mean 'mass' (how much water there is).
- Here are two examples to show the difference between weight and mass:
  - Suppose we ate a loaf of bread here on Earth, then went to the Moon on a spaceship and ate the same size of loaf there. The amount of bread (mass) we ate would be the same but the bread would weigh about six times lighter on the moon than on the earth.
  - An astronaut is able to jump about 6 times further on the Moon than on the Earth but his mass is the same.
- Anything weighs less on the Moon than it does on th Earth but its mass stays the same.

**2 Units of mass (weight)**

- The weight on the balance is 1 kg and is quite heavy. What unit would we use if we wanted to weigh very small things? (g)
- Who knows how many grams are in 1 kilogram? (1000)
- T writes on BB and Ps in Ex. Bks: BB: 1 kg = 1000 g
- T has various items (small and large) and sets of scales to show kg and g. Ps come out to choose an item and read its weight from the appropriate scale (with T's help if necessary).
- There is a unit of mass which is 1 thousand times larger than 1 kg. Who knows what it is called? (tonne)
- Who can write an equation about it? BB: 1 tonne = 1000 kg
- Who knows other standard units for measuring mass (weight)? (British)

**3 PbY3a, page 23**

- Q.1 Read: *How much do you think they weigh in real life? Join up each picture to the suitable quantity.*
- Talk about the pictures first and compare their weights.
- Which do you think would be heaviest (lightest) in real life?
- Which of the measures is biggest (smallest)?
- Review at BB with whole class. T could have a real pot of jam (packet of crisps, carton of milk, herself) to weigh to problems.
- Let's put the units in decreasing order and write the correct sign between them. (T on BB and Ps in Ex. Bks.)
- BB: 1 tonne > 60 kg > 16 kg > 1 kg > 700 g > 25 g

**Notes**

**Whole class activity**

T explains and demonstrates

BB: 1 litre water = 1000 cc (centimetre cubes)

BB: 1 litre water = 1 kg

BB: **Weight** **Mass**

**For T's information:**

A 1 kg loaf of bread would weigh about 10 Newtons on Earth and just less than 2 Newtons on the Moon.

Agreement that Ps can use either word and T will know what they mean.

**Whole class activity**

(from previous activity)

Ask several Ps what they think

e.g. pencil, straw, £1 coin, book, pupil, teacher, etc.

Ps suggest what things might be weighed in tonnes: e.g. elephant, tanker, crane, rhino

e.g. ounces, pounds, stones

**Whole class introduction**

Use enlarged copy master or OHP

Discussion, agreement

BB: dog: 16 g; jam: 700 g; crisps: 25 g; woman: 60 kg; lorry: 1 tonne; milk: 1 kg

Ps fill in missing numbers:

1 tonne = 1000 kg
1 kg = 1000 g
4

**Equal mass**

Let's join up the equal measures.

Ps come to BB to join up the fish, explaining reasoning.

Let's write them as equations. (T on BB and Ps in Ex. Bks)

BB:

- 1 kg = 1000 g
- 1 tonne = 1000 kg
- half a kg = 500 g
- 1 quarter of a kg = 250 g

20 min

5

**PhY3a, page 23**

Q.2 Read: Fill in the missing numbers and units.

Review orally with whole class. Ps change to coloured pencils and mark own work, correcting mistakes.

a) 1 kg = 1000 g
d) 1 quarter of a kg = 250 g
b) half a kg = 500 g
e) 1 tonne = 1000 kg
c) 1 and a half kg = 1500 g
f) half a tonne = 500 kg

Who had 6 (5, 4, less than 4) correct? What were your mistakes? Who did the same? Who does not understand where they went wrong?

25 min

6

**Weight table and bar chart**

The pupils in a class were all weighed and the data displayed in this table. Then they drew a chart to show the data more clearly.

BB:

<table>
<thead>
<tr>
<th>Weight groups</th>
<th>Girls</th>
<th>Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 kg &lt; c ≤ 30 kg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30 kg ≤ c &lt; 35 kg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35 kg &lt; c ≤ 40 kg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40 kg &lt; c ≤ 45 kg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45 kg &lt; c ≤ 50 kg</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

T explains the table and bar chart (with the help of Ps). Revise inequality signs and tally marks if necessary. Let's read the inequalities together: e.g. 'twenty-five kilograms is less than or equal to a and a is less than thirty kilograms', etc. Ps can show numbers on class number line.

Study the chart carefully and tell me the answer to these questions.

- a) How many girls (boys) are in each weight group?
- b) How many girls (boys) are in the class? (11, 12)
- c) How many Ps are in each weight group?
- d) How many Ps are in the class? (23)
- e) Which is the most (least) common weight group? (b, d and e)

How heavy are you? Which group would you be in? (T has scales at hand if Ps do not know their weights.) Come and draw where you would be on the chart. (Ask a few Ps if there is time.)

33 min
<table>
<thead>
<tr>
<th>Y3</th>
<th>Lesson Plan 23</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Activity</strong></td>
<td><strong>Notes</strong></td>
</tr>
<tr>
<td>7</td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>In unison at speed</td>
</tr>
<tr>
<td></td>
<td>Praising, encouragement only</td>
</tr>
<tr>
<td></td>
<td>(Practice of numbers over 100)</td>
</tr>
<tr>
<td><strong>Sequences</strong></td>
<td></td>
</tr>
<tr>
<td>T says first few terms. Ps continue the sequence and give the rule.</td>
<td></td>
</tr>
<tr>
<td>a) T: 30 g, 60 g, 90 g, ... Ps: 120 g, 150 g, ... (+ 30 g)</td>
<td></td>
</tr>
<tr>
<td>b) T: 200 kg, 400 kg, 600 kg, ... Ps: 800 kg, ... (+ 200 kg)</td>
<td></td>
</tr>
<tr>
<td>c) T: 900 g, 800 g, 700 g, ... Ps: 600 g, 500 g, ... (– 100 g)</td>
<td></td>
</tr>
<tr>
<td><strong>Whole class activity to start</strong></td>
<td></td>
</tr>
<tr>
<td>Use enlarged copy master or OHP</td>
<td></td>
</tr>
<tr>
<td>Ps have enlarged copies of bar chart on desks</td>
<td></td>
</tr>
<tr>
<td>Initial discussion, involving several Ps</td>
<td></td>
</tr>
<tr>
<td>Agreement, praising</td>
<td></td>
</tr>
<tr>
<td><strong>BB:</strong> a) 34 kg b) 30 kg c) 36 kg d) 34 kg</td>
<td></td>
</tr>
<tr>
<td>BB: 11 + 1 + 11 = 23</td>
<td></td>
</tr>
<tr>
<td>T repeats vague or inaccurate questions correctly, or give hints for questions if needed</td>
<td></td>
</tr>
<tr>
<td>Agreement, praising</td>
<td></td>
</tr>
<tr>
<td><strong>Extension</strong></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Whole class activity to start</td>
</tr>
<tr>
<td><em>Ph3a, page 23</em></td>
<td>Use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Q.3 Read: All the 23 pupils in a class were weighed. The results are arranged in increasing order. Boys are shown by black bars and girls by white bars.</td>
<td>Ps have enlarged copies of bar chart on desks</td>
</tr>
<tr>
<td>Talk about the bar chart first. Elicit that each bar represents one pupil and that they are arranged in increasing order of weight. Elicit that there is a horizontal grid line for each 'tick' on the weight line (y axis) to show every kg. How can we find the weight of, e.g. Pupil 22?</td>
<td>Initial discussion, involving several Ps</td>
</tr>
<tr>
<td>P comes out to BB to point to top of bar and to run finger along grid line to mark on y axis. (40 kg)</td>
<td>Agreement, praising</td>
</tr>
<tr>
<td>T shows how a ruler placed horizontally at top of bar can be used to find weights which are not exactly on a grid line.</td>
<td></td>
</tr>
<tr>
<td>Read: a) Which weight is the most common? b) What is the weight of the 6th pupil from the left? c) What is the weight of the 6th pupil from the right? d) What is the weight of the pupil in the middle?</td>
<td>Demonstration.</td>
</tr>
<tr>
<td>Review at BB with whole class. All mistakes dealt with and corrected.</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td>In part a), T starts to use the word 'frequent' instead of 'common'. In part d), elicit that middle pupil is Pupil 12 (11 pupils to the left of him and 11 to the right of him)</td>
<td>Agreement, self-correction, praising</td>
</tr>
<tr>
<td>Who can think of other questions to ask about the chart? e.g. How many more girls are in the class than boys? (1 more) Is the pupil who weighs most (least) a boy or a girl? etc.</td>
<td></td>
</tr>
<tr>
<td><strong>45 min</strong></td>
<td>BB: a) 34 kg b) 30 kg c) 36 kg d) 34 kg</td>
</tr>
<tr>
<td><strong>Lesson Plan 23</strong></td>
<td>BB: 11 + 1 + 11 = 23</td>
</tr>
<tr>
<td><strong>Lesson Plan 23</strong></td>
<td>T repeats vague or inaccurate questions correctly, or give hints for questions if needed</td>
</tr>
<tr>
<td><strong>Lesson Plan 23</strong></td>
<td>Agreement, praising</td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
### Activity

#### 1. Standard units of measurement

Let’s help Daffy Duck sort out this mess! How do you think we could do it? T asks several Ps what they think.

<table>
<thead>
<tr>
<th>Units</th>
<th>Symbol</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>km, m, cm, mm</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>litre, cl, ml</td>
<td></td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>tonne, kg, g</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>year, month, week, day, minute</td>
<td></td>
</tr>
</tbody>
</table>

Can you think of other standard units for each set? e.g. foot, inch, mile; gallon, pint; stone, pound, ounce; hour, second, millennium

- Whole class activity
- Written on BB or use copy master, enlarged, cut out and cards stuck to BB

#### 2. Missing numbers

T has BB (SB) already prepared:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year = months 1 day = hours</td>
<td></td>
</tr>
<tr>
<td>1 month = weeks 1 hour = minutes</td>
<td></td>
</tr>
<tr>
<td>1 week = days 1 minute = seconds</td>
<td></td>
</tr>
</tbody>
</table>

Ps come to BB to write in missing numbers, saying whole equation.

- Discussion, agreement
- Give Ps the chance to suggest them but if Ps cannot, T starts equations on BB and Ps complete them.

#### 3. Year 2000 calendar

Let’s look at the calendar for this year.

a) Let’s say the days of the week. (Monday, Tuesday, . . . Sunday)
b) Let’s say the months of the year. (January, February, . . . December)
c) Let’s find:
   i) the 25th of August. What day was it? (Friday)
   ii) the 30th of February What day was it? (No such day)
   iii) the 31st of April What day was it? (No such day)
d) What is the date today? Let’s write it in our Ex. Bks. (Heading: Lesson number and date) T shows how to write it in different ways and Ps copy into Ex. Bks: e.g.

e) Find your birthday. Write it in your Ex. Bks.

- Whole class activity
- Use real calendar with interesting pictures or enlarged copy master from Y1 LP 91/3
- Ps have copy of calendar on desks too

- Discussion, agreement, praising
Activity

f) Let's say the poem about how many days there are in each month:

'30 days hath September, April, June and November.
All the rest have 31, except for February alone,
which has but 28 days clear and 29 in each leap year.'

How many weeks and how many days remaining are there in the different lengths of month?
BB: 31 = 4 \times 7 + 3, \ 30 = 4 \times 7 + 2, \ 28 = 4 \times 7 (29 = 4 \times 7 + 1)
e.g. January has 4 weeks and 3 days, June has 4 weeks and 2 days

4 Clock

a) Look at this clock (or at your watch).

Let's say the numbers on it. (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
What do these numbers mean? (whole hours when the little hand points to them and groups of 5 minutes when the big hand points to them.) Let's say how many minutes the numbers mean.
T points to 1, 2, 3, etc. and Ps say '5, 10, 15, . . ., 50, 55, 60 minutes'.
T reminds Ps that the minutes shown on right half of clock are said to be past the hour (e.g. five past one) and the minutes shown on left half of clock are read as the number of minutes before the next hour, i.e. are said to be 'to' the hour, e.g. 12.55 is read as 'five to one'.
T sets the clock to various times and T chooses Ps to read the time to the class. Class agrees/disagrees.
T shows different ways of writing the times and what they mean, e.g.
3 o'clock or 3:00 = 3 whole hours
half past 3 or 3:30 = 3 and a half hours or 3 hours and 30 minutes
ten past two or 2:10 = 2 hours and 10 minutes
ten to four or 3:50 = 3 hours and 50 minutes
= 10 minutes before 4 o'clock

b) Watch the minute hand on the class clock. Knock on your desk once when a whole minute has passed and knock twice when 2 minutes have passed (i.e. a minute later) Start . . . now!
This time I will clap once and you must clap 1 minute later.
How do we measure the length of time in 1 minute? (using seconds) Let's watch the second hand carefully and count in time.
Class: '1, 2, 3, . . ., 58, 59, 60'

T notes Ps having difficulty

Whole class activity

If Ps do not know it, T says one line at a time and Ps repeat it, then T says 2 lines and Ps repeat them, then T says whole poem and Ps repeat it.
Discussion, agreement, praising

c) Let's play a game! Close your eyes. Open them and stand up when you think a minute has passed from . . . now!

T starts class at beginning of a minute (when second hand is at 12)
Praising

BB: 1 minute = 60 seconds

T asks Ps who are accurate to explain to others how they did it

Ps write continuously for 1 minute
Discussion on why Ps think their estimates were bigger (smaller) than the actual time.
Lesson Plan 24

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y3</td>
<td></td>
</tr>
<tr>
<td><strong>Activity</strong></td>
<td><strong>Notes</strong></td>
</tr>
<tr>
<td>5</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td><strong>PbY3a, page 24</strong></td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Q.1 Read: a) Colour in the same colour the clocks where the hands are mirror images. b) Write below each clock the number of whole hours it shows.</td>
<td>Discussion, demonstration</td>
</tr>
<tr>
<td>Who can tell us what a 'mirror image' is? Who agrees? Who thinks something else? (T explains if no P can remember.) REVIEW at BB with whole class. Demonstrate with a real mirror if there are problems. <strong>Solution:</strong> 10 hours – 2 hours; 7 hours – 5 hours; 3 hours – 9 hours</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td><strong>PbY3a, page 24</strong></td>
<td>Drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Q.2 Read: Write below each clock how many hours and minutes the hands show. T explains that Ps should write the whole hours and the number of minutes after that whole hour (not the minutes to the next hour). Do first clock with whole class if necessary. REVIEW at BB with whole class. Mistakes corrected. <strong>Solution:</strong> 6 hours, 15 minutes; 9 hours, 35 minutes; 2 hours, 50 minutes; 12 hours 0 minutes In what other way could we express these times? (e.g. a quarter past six, 6:15; 9:35, twenty-five to ten; etc.)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Whole class activity</td>
</tr>
<tr>
<td><strong>PbY3a, page 24, Q.3</strong></td>
<td>Use model clock and enlarged copy master or OHP</td>
</tr>
<tr>
<td>Read: There are 24 hours in a day. The clock started at midnight. Draw where the hour and minute hands would be after these times. Let's set the clock at 12 midnight. B, come and show where the hands would be after 9 hours and 45 minutes have passed. Who agrees with B? Who thinks something else? What time does the clock show? (a quarter to ten) How can we show whether a time is in the morning or at night? (Use am and pm – T explains) So we could write this time as 9.45 am or we could write it as 09:45 using the 24 hour clock. (T has a digital clock to demonstrate.) Repeat in a similar way for the other times. <strong>BB:</strong> 22 hours and 15 minutes: 10.15 pm or 22:15; 15 hours and 30 minutes: 3.30 pm or 15:30; 7 hours and 45 minutes: 7.45 am or 07:45; etc.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Individual work, monitored, helped</td>
</tr>
<tr>
<td><strong>PbY3a, page 24</strong></td>
<td>Quick revision of number of days/week, hours/day, minutes/hour, seconds/minute</td>
</tr>
<tr>
<td>Q.4 and Q.5 Let's see if you can do these without any help! Review at BB with whole class. Mistakes corrected. <strong>Solutions:</strong> a) 8 weeks 6 days = 8 × 7 + 6 = 56 + 6 = 62 days b) 3 days 8 hours = 3 × 24 + 8 = 72 + 8 = 80 hours c) 2 hours 45 min. = 2 × 60 + 45 = 120 + 45 = 165 minutes d) 3 min. 10 sec. = 3 × 60 + 10 = 180 + 10 = 190 seconds <strong>Q.5:</strong> 8.20 to 9.00: 40 min; 9.00 to 10.00: 1 hour; 10.00 to 10.10: 10 min 45 min</td>
<td></td>
</tr>
<tr>
<td><strong>Y3</strong></td>
<td><strong>Lesson Plan</strong></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td><strong>Activity</strong></td>
<td><strong>Notes</strong></td>
</tr>
</tbody>
</table>
| Tables practice, revision, activities, consolidation  
_PbY3a, page 25_ | Ps in pairs, one setting a time and the other reading and writing it in different ways. |
**Lesson Plan**

### Activity 1

**Boom!**

Let's play Boom! Everyone stand up!

Let's start at 12 and say 'boom' instead of every number which is either divisible by 7 or has 7 as a digit.

Ps: 12, 13, boom, 15, 16, boom, 18, 19, 20, boom, 22, 23, 24, 25, 26 . . .

Continue until only one P is left standing.

---

#### Marks scored

<table>
<thead>
<tr>
<th>Number of pupils</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
</table>

Ps come out to fill in bottom row of table. Class agrees/disagrees.

How many pupils were in the class? (15) So 15 pupils collected 240 marks altogether. Who is clever enough to tell me how we could work out the average score for the class? (Divide 240 by 15.)

BB: Total marks: 240 Number of pupils: 15 Average score: 240 ÷ 15

Who can think of an easy way of dividing 240 by 15?

e.g. 240 ÷ 15 = \(240 \div 15 = 10 + 6 = 16\)

or 240 ÷ 15 = \(240 \div 15 = 480 \div 30 = 48 + 3 = 51 + 6 = 16\)

If all 15 pupils had scored 16 marks each, the total marks scored would be the same as before, 240 marks.

**Check:** 16 × 15 = 10 × 15 + 6 × 15

\[= 10 \times 10 + 10 \times 5 + 6 \times 10 + 6 \times 5\]

\[= 100 + 50 + 60 + 30\]

\[= 150 + 90 = 240\]

---

### Activity 2

**Finding the average**

In a class test, the most that pupils could score was 20 marks. These were the pupils' scores:

BB: 20, 5, 19, 11, 14, 18, 20, 18, 17, 17, 12, 15, 17, 17, 18, 19, 20, 20, 20

First let's put the scores in increasing order. T writes scores as dictated by Ps, crossing each off the original list as it is dealt with:

BB: 5, 11, 12, 14, 15, 17, 17, 17, 17, 18, 18, 19, 20, 20, 20

Let's fill in this table to show how many pupils had these scores.

<table>
<thead>
<tr>
<th>Marks scored</th>
<th>5</th>
<th>11</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pupils</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Ps suggest how to do it.

T leads Ps through the calculations, showing easy methods where possible, e.g. 4 × 17 = \(4 \times 10 + 4 \times 7\)

\[= 40 + 28 = 68\]

57 + 68 = 60 + 65 = 125

36 + 19 = 35 + 20 = 55

Discussion, reasoning, agreement, praising

Ps suggest how to do it.

T helps Ps explain, or gives hints, or explains if nobody knows what to do

For less able classes, T (or Ps) could use a calculator.

Or use calculator as a check after doing calculation on BB

T checks on BB with help of Ps

Praising, encouragement throughout
**Activity**

3  **PbY3a, page 26. Q.1**

a) Read: *Toss a coin 20 times with a partner so that you have 10 tosses each. Keep a tally of your results in this table.*

Make sure that Ps know which side of the coin is 'head' and which is 'tail'. T demonstrates by tossing a coin and noting which side is face up. Ps have a practice toss first.

T reminds Ps of how to keep a tally. Why do we use a tally? (Easier to count in 5s than in 1s)

T puts Ps into pairs and Ps decide who goes first.

T: ‘1st toss: Toss your coin . . . now!’ (P1 tosses and P2 draws tally mark in relevant row of table in both Pbs, then vice versa for next toss, etc.) Repeat in similar way for 20 tosses.

Ps count number of tally marks in each row of table and write totals on RHS. e.g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total number of throws: 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Tail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

How many tally marks should you have in total? (20, one for each toss)

b) Read: *Write the results for the whole class in this table.*

T asks each pair in turn how many heads and tails they had and data is written in *Class data* table. e.g.

How many heads (tails) did we toss altogether? What was the total number of tosses? Ps calculate and write totals for class in 3rd table. A, what did you write? Who agrees? Who thinks something else? Let's check. (BB)

c) Read: *Which result happened most often?*

If you think heads, put your hands on your head. If you think tails, sit on your hands. Show me . . . now!

Discuss the chance (probability) of a coin landing head up or tail up. Agree that there would be an equal chance, i.e. it is just as likely to land head up as tail up.

If we tossed a coin lots of times, we would expect half the number of times to be heads and half the number of times to be tails. We say that the chance (probability) of a coin landing head up (tail up) is 1 chance out of 2 or 1 half. Compare with results of experiment, e.g. class data:

BB: Number of tosses: 240 Possible outcomes: 2 (H or T)

Probability of a head (tail): \( \frac{240}{2} = 200 = 40 = 100 + 20 = 120 \) (i.e. 120 heads and 120 tails, or half the number of times a head and half the number of times a tail.)

Elicit that class data from experiment are closer to this than paired data.

25 min

**Extension**

**Class data on mass (weight)**

Let’s make a tally of how much you each weigh in this table. Choose the nearest kg to your weight. Ps come out 6 at a time to draw a tally mark in the appropriate box. e.g.

---

**Notes**

Paired work but class kept together

Discussion, demonstration

Real (or model) coins on desks

In unison

At a good pace. T monitors entering of data

Agreement, praising

Tables drawn on BB or use enlarged copy master or OHP

Ps in Pbs, T on BB

Individual work, monitored

Agreement, checking, self-correcting (or on BB with whole class)

In unison. (If results are the same, Ps put one hand on head and sit on other hand!)

Discussion. Comparison of experimental and expected data

Or using pair data:

Number of tosses: 20

Possible outcomes: 2 (H or T)

Probability of a head (tail): \( \frac{20}{2} = 10 \)

(i.e. half the number of times a head, half the number of times a tail)

Why? (more data)

Whole class activity

T has scales at hand for Ps who do not know how much they weigh and helps them to choose the nearest kg

---
Y3

Activity

BB:

<table>
<thead>
<tr>
<th></th>
<th>24 kg</th>
<th>25 kg</th>
<th>26 kg</th>
<th>27 kg</th>
<th>28 kg</th>
<th>29 kg</th>
<th>30 kg</th>
<th>31 kg</th>
<th>32 kg</th>
<th>33 kg</th>
<th>34 kg</th>
<th>35 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s write the tally marks as digits. T writes what Ps dictate.
How can we check that everyone has made a tally mark? (Add up the numbers and the total should equal the number of pupils in the class.)
Ps think of questions to ask about the data or point out interesting things.

Lesson Plan 26

Notes

Table drawn on BB or use enlarged copy master or OHP
Ps can copy table into Ex. Bks and check the total themselves
Agreement, praising e.g. Which mass is most (least) common? No P weighs 32 kg.

5 PbY3a, page 26. Q.2

a) Read: Throw a dice 20 times with a partner so that you have 10 throws each.
Keep a tally of the results in this table.
What possible numbers could be shown facing up? (1, 2, 3, 4, 5, or 6) T demonstrates by throwing a large dice and noting which number is face up. Ps have a practice throw first.
T puts Ps into pairs and Ps decide who goes first.
T: ‘1st throw: Throw your dice . . .now!’ P1 throws and P2 draws tally mark in relevant row of table in both Pbs, then vice versa for next throw, etc. Repeat in similar way for 20 throws.
Ps count number of tally marks in each row of table and write totals on RHS. How many tally marks should you have in total? (20, 1 for each throw)

b) Read: Write the results for the whole class in this table.
T asks each pair in turn how many 1s, 2s, 3s, etc. they had and data is written in Class data table. e.g.

<table>
<thead>
<tr>
<th>Number thrown</th>
<th>Class data</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 3 2 4 3 4 3 4 3 3 3 2 4 2 2 3 48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 3 4 2 3 3 4 4 4 3 2 4 3 4 3 50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 4 3 4 3 4 4 3 3 3 3 3 3 3 4 52</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5 3 2 4 3 3 3 3 3 3 3 3 3 3 3 49</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 4 4 3 4 3 3 3 3 3 3 3 3 3 3 50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4 3 5 3 4 2 3 3 3 3 3 3 3 3 3 4 3 51</td>
<td></td>
</tr>
</tbody>
</table>

Ps write only totals in table in Pbs.

How many 1s (2s, 3s, 4s, 5s, 6s) did we throw altogether? T does calculations on BB with Ps’ help and Ps write totals in Pbs.
Then Ps calculate the total number of throws. T points out easy way to do the calculation, e.g.

\[(48 + 52) + (50 + 50) + (49 + 51) = 100 + 100 + 100 = 300\]

C) Read: Which number was thrown most (least) often?
Show me with your fingers . . . now! (e.g. 3, 4)

Discuss the chance (probability) of throwing a 1 (2, 3, 4, 5, 6).
Agree that all the 6 numbers would have an equal chance.
The probability (chance) of a dice landing with a certain number facing up is 1 chance out of 6 or 1 sixth.
If we threw the dice lots of times, we would expect 1 sixth of the throws to be a 1, 1 sixth to be a 2, 1 sixth to be a 3, etc. Compare with results of experiment. e.g. 300 ÷ 6 = 50, which is close to experimental data.

Lesson Plan 26

Notes

Table drawn on BB or use enlarged copy master or OHP
Ps can copy table into Ex. Bks and check the total themselves
Agreement, praising e.g. Which mass is most (least) common? No P weighs 32 kg.

<table>
<thead>
<tr>
<th>Pupil data</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ps write only totals in table in Pbs.

At a good pace
Class checks that each column adds up to 20
(Or calculations done as individual work in Ex. Bks.)
Agreement, checking, self-correcting

In unison. Agreement

Discussion, agreement
Ps have real or model dice on desks

Ps write only totals in table in Pbs.

At a good pace
Class checks that each column adds up to 20
(Or calculations done as individual work in Ex. Bks.)
Agreement, checking, self-correcting

In unison. Agreement

Discussion, agreement
Ps have real or model dice on desks

Ps write only totals in table in Pbs.

At a good pace
Class checks that each column adds up to 20
(Or calculations done as individual work in Ex. Bks.)
Agreement, checking, self-correcting

In unison. Agreement

Discussion, agreement
Ps have real or model dice on desks

Ps write only totals in table in Pbs.

At a good pace
Class checks that each column adds up to 20
(Or calculations done as individual work in Ex. Bks.)
Agreement, checking, self-correcting

In unison. Agreement

Discussion, agreement
Ps have real or model dice on desks

Ps write only totals in table in Pbs.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Secret number</strong>&lt;br&gt;I am thinking of a number. You must find out what it is by asking me questions but I can answer only 'yes' or 'no'.&lt;br&gt;e.g. 32: it is 2-digit? (Yes) Is it even? (Yes) Is it less than 50? (Yes) Is it between 10 and 30? (No) Is it more than 40? (No) Is it less than 35? (Yes) Is its tens digit less than its unit digit? (No) It is 32. (Yes)&lt;br&gt;(Ps can think of numbers and answer questions about them too.)</td>
<td>Whole class activity&lt;br&gt;Encourage Ps to ask logical questions and keep in mind clues already given&lt;br&gt;Ps question T in order or T chooses Ps at random&lt;br&gt;Praise creative questions</td>
</tr>
<tr>
<td><strong>Sequence competition</strong>&lt;br&gt;I will describe a sequence and then give you half a minute to write as many terms as you can in your Ex Bks. (Heading: Lesson number/date)&lt;br&gt;The first term is 100 and it decreases by 6. Start . . . now! . . . Stop!&lt;br&gt;Everyone stand up. Ps list the terms in order round class.&lt;br&gt;Ps who made a mistake, or did not have time to write that term, sit down.&lt;br&gt;Let's give the winner(s) a big round of applause!</td>
<td>Individual work&lt;br&gt;Keep to time limit&lt;br&gt;Checking sequence: 100, 94, 88, 82, 76, 70, 64, . . . Agreement, self-correcting, praising. Stars, etc. awarded.</td>
</tr>
<tr>
<td><strong>Probability 1: tossing a coin</strong>&lt;br&gt;Let's look at the table we made about tossing coins from yesterday's lesson, e.g&lt;br&gt;BB:&lt;br&gt;</td>
<td>How many:&lt;br&gt;- tosses altogether? (e.g. 240)&lt;br&gt;- pupils did the tossing? (e.g. 24)&lt;br&gt;- heads (tails) did we throw? (e.g. 121, 119)&lt;br&gt;I will say something and you must think about whether it is certain, possible or impossible.&lt;br&gt;I tossed a coin 400 times:&lt;br&gt;a) and got 190 heads (possible)&lt;br&gt;b) and got 399 tails (possible, though very unlikely)&lt;br&gt;c) and got 180 heads and 210 tails (impossible, because 180 + 210 &lt; 400)&lt;br&gt;d) the numbers of heads and the number of tails added up to 400 altogether. (certain)&lt;br&gt;How many heads would you expect to get if you tossed a coin 50 (100, 200, 400) times? (Ps: 25, 50, 100, 200) Why do you think that?&lt;br&gt;(half the number of tosses as only 2 possible outcomes, head or tail, and both have an equal chance.)&lt;br&gt;[N.B. If a P says, e.g. '4 heads', T asks class, 'Is it possible?' (Yes) 'Is it likely to happen?' (No)]</td>
</tr>
</tbody>
</table>
Lesson Plan 27

**Activity**

4

**Probability 2: throwing a dice**

Let's look at the table we made about throwing a dice from yesterday's lesson, e.g.

<table>
<thead>
<tr>
<th>Class data</th>
<th>Total number of throws</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

How many:
- throws altogether? (e.g. 300)
- pupils did the throwing? (e.g. 30)
- 2s (4s, 1s, 3s, 6s, 5s) did we throw? (e.g. 50, 49, 48, 52, 51, 50)

I will say something and you must think about whether it is certain, possible or impossible.

I threw a dice 120 times:
- a) and got 60 '2's. (possible, but not expected)
- b) and got 22 '6's (possible and likely)
- c) and got 20 '1's, 40 '2's, 30 '3's, 40 '4's, 5 '5's and 6 '6's (impossible, because 20 + 40 + 30 + 40 + 5 + 6 > 120)

How many 1s (2s, etc.) would you expect to get if you threw a dice 120 times? (Ps: 20) Why do you think that?
(6 possible outcomes: 1, 2, 3, 4, 5 or 6, and each has an equal chance of being thrown, so we would expect each number to be thrown 1 sixth of the number of times: 120 ÷ 6 = 20, so 20 times)

[N.B. If a P says, e.g. '100 1s', T asks class, 'Is it possible?' (Yes) 'Would you expect it to happen?' (No)]

20 min

5

**Probability 3: mass (weight)**

Let's look at the table we made about how heavy you all are from yesterday's lesson, e.g.

<table>
<thead>
<tr>
<th>BB:</th>
<th>24 kg</th>
<th>25 kg</th>
<th>26 kg</th>
<th>27 kg</th>
<th>28 kg</th>
<th>29 kg</th>
<th>30 kg</th>
<th>31 kg</th>
<th>32 kg</th>
<th>33 kg</th>
<th>34 kg</th>
<th>35 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
<td>II</td>
<td>III</td>
<td>II</td>
<td>III</td>
<td>II</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

How many pupils were in the lesson yesterday? (e.g. 27)
What standard unit did we use? (kg)

I will ask some questions about the table and you can write the answers in your *Ex. Bks*. Remember to write the standard unit too where needed.

a) Which mass (weight) was most common (frequent)? (e.g. 31 kg)
b) Which mass (weight) was least common (frequent)? (e.g. 32 kg)
c) How many pupils weighed more than 28 kg? (e.g. 19 pupils)
d) How many pupils weighed less than 24 kg? (e.g. 0 pupils)
e) How many pupils weighed not more than 30 kg? (e.g. 15 pupils)

Review with whole class. Ps who answered correctly explain to Ps who did not. All mistakes dealt with.

How could we find the average mass (weight) for the class? (Find the total mass (weight) and divide by the number of Ps.) e.g.

BB: Total mass (weight):

\[
2 \times 24 + 25 + 26 + 3 \times 27 + 28 + 2 \times 29 + 5 \times 30 + 6 \times 31 + 2 \times 33 + 34 + 3 \times 35 = 48 + 51 + 81 + 28 + 58 + 150 + 186 + 66 + 34 + 105 = 807 \text{ (kg)}
\]

28 min

**Notes**

Whole class activity
Table drawn on BB or use copy master from *LP 26/3c*
Agreement, praising
T repeats each statement slowly
Ps either write answers in *Ex. Bks.* or show flash cards on command (*Y2 LP 154/2*)
Discussion, reasoning, agreement
Praising only
Discussion. T asks several Ps what they think.
T repeats any vague or inaccurate responses correctly

Individual work in *Ex. Bks.*
Deal with one part at a time
Reasoning, agreement, self-correction, praising
Whole class activity
Ps suggest only how to do it! T uses a calculator and shows result to class.
No. of Ps: 27 Average mass: 807 kg ÷ 27 ≈ 30 kg

whole class activity at start and end
Table drawn on BB or use copy master from *LP 26/4*
Agreement, praising

Individual work in *Ex. Bks.*
Deal with one part at a time
Reasoning, agreement, self-correction, praising
Whole class activity
Ps suggest only how to do it! T uses a calculator and shows result to class.
No. of Ps: 27 Average mass: 807 kg ÷ 27 ≈ 30 kg

© CIMT, University of Exeter
Lesson Plan 27

Y3

Activity

6

PbY3a, page 27

Q.1 Read: The graph shows how many km a bird flew each month during a year.

In a graph, the horizontal line along the bottom is called the \( x \) axis. A, come and point to the line and find \( x \). (below arrow)

What does the \( x \) axis show? (the months in a year)

Let's say them together. 'January, February, . . ., December'

Why do you think the names of the months have been shortened? (Not enough room)

In a graph, the vertical line at the LHS is called the \( y \) axis.

B, come and point to the line and find \( y \). (beside arrow)

What does the \( y \)-axis show? (the distance flown in km)

What does each grid line show? (every 5 km)

Let's start from zero and count up the \( y \)-axis in 5s: 'zero km, 5 km, 10 km, . . ., 60 km' T points to grid lines at same time.

Let's see if you can answer the questions by yourselves.

Ps fill in missing numbers or write names of months in \( Pbs \).

Review at BB with whole class, with Ps pointing to relevant bar or grid line on graph. Mistakes corrected.

Solution: a) 60 km b) 30 km c) January d) August e) June and September f) January and May

In what other way could we show the data? (in a table)

Let's complete this table. Ps come to BB one at a time to fill in a column, explaining reasoning and referring to graph.

BB:

<table>
<thead>
<tr>
<th>Months (km)</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>60</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td>55</td>
<td>20</td>
<td>35</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td>35</td>
</tr>
</tbody>
</table>

Which method of display do you think is best? Why?

Ps could suggest additional questions about the data.

38 min

Extension

PbY3a, page 27

Q.2 Read: The pictogram shows how many times the pupils in a class went swimming during the month of July.

T explains that sometimes pictures are used to show data.

Elicit that each face in the diagram represents 1 pupil.

How many pupils are in the class? (26)

Do part a) on BB with whole class. Ps come out to count the faces and write numbers in bottom row.

Let's see if you can answer the rest of the questions by yourselves.

Review with whole class, referring to pictogram or table.

Solution: b) 22 c) 15 d) 2 times and 5 times e) 3 times

We have shown data using tables, bar charts, graphs and pictograms. Here is another way. You might remember it.

Let's draw a Venn diagram to show how many pupils went swimming and how many did not. T draws with Ps' help.

45 min

Notes

Whole class activity to start

Use enlarged copy master or OHP

BB: \( x \) axis

In unison

BB: \( y \) axis

In unison

Individual work, monitored, helped

Reasoning, agreement, self-correcting, praising

Feedback for T

T gives hint if nobody knows

Drawn on BB or use enlarged copy master or OHP

At a good pace

Reasoning, agreement, praising

Ask several Ps what they think.

e.g. total distance flown in year

average distance per month

45 min

Extension

Whole class activity to start

Drawn on BB or use enlarged copy master or OHP

BB: \( 4 + 2 + 5 + 7 + 3 + 5 = 26 \)

Number of swims | 0 | 1 | 2 | 3 | 4 | 5
Number of pupils | 4 | 2 | 5 | 7 | 3 | 5

Individual work, monitored, helped

Agreement, self-correction, praising

BB: Venn diagram

Class

Went swimming

22

© CIMT, University of Exeter
**Y3**

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong> Sequences</td>
<td></td>
</tr>
<tr>
<td>a) The first term of this sequence is 160. Each following term is 7 more than the previous term. Continue the sequence.</td>
<td>Whole class activity at speed round class</td>
</tr>
<tr>
<td>Ps: ’16, 23, 30, 37, 44, 51, 58, 65, 72, 79, . . .’</td>
<td>If P makes a mistake the next P corrects it</td>
</tr>
<tr>
<td>b) What could the rule be for this sequence? T: ’100, 97, 94, 91, . . .’ A, what do you think? Who agrees? Who thinks something else? (decreasing by 3)</td>
<td>Ask several Ps</td>
</tr>
<tr>
<td>Let’s continue the sequence: ’88, 85, 82, 79, 76, 73, 70, 67, 64, . . .’</td>
<td>Agreement, praising</td>
</tr>
<tr>
<td><strong>5 min</strong></td>
<td>Whole class in unison</td>
</tr>
<tr>
<td><strong>2</strong> Secret Code</td>
<td></td>
</tr>
<tr>
<td>I have written some additions and multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the answers and the letters. (Heading: Lesson number and date)</td>
<td>Whole class activity but Ps write results individually</td>
</tr>
<tr>
<td>BB: 34 + 17 P (51) 4 × 8 – 12 G (20)</td>
<td>T has BB or SB already prepared</td>
</tr>
<tr>
<td>20 + 19 R (39) 6 × 9 H (54)</td>
<td>Discussion, agreement, self-correcting, praising</td>
</tr>
<tr>
<td>3 × 9 + 14 A (41)</td>
<td>(Feedback for T)</td>
</tr>
<tr>
<td>Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB.</td>
<td>In unison</td>
</tr>
<tr>
<td>Who had all 5 correct? Who made a mistake? What kind of mistake?</td>
<td>P comes to BB to show it.</td>
</tr>
<tr>
<td>Write the answers out again in increasing order and write the letters underneath. What word have you written? Class shout, ’GRAPH’</td>
<td>Mistakes corrected</td>
</tr>
<tr>
<td>BB: 20, 39, 41, 51, 54</td>
<td></td>
</tr>
<tr>
<td>G R A P H</td>
<td></td>
</tr>
<tr>
<td><strong>10 min</strong></td>
<td></td>
</tr>
<tr>
<td><strong>3</strong> Head size</td>
<td></td>
</tr>
<tr>
<td>Let’s make a tally of how big your heads are in this table.</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>T demonstrates with a P at front of class how to measure all the way round the outside (circumference) of a Ps’ head at forehead level.</td>
<td>Use a measuring tape if possible (or a plastic neck measure, or a piece of string which can then be laid out straight along a ruler)</td>
</tr>
<tr>
<td>Ps measure each other in pairs (to nearest cm) then come out to draw their tally mark in the appropriate box in the table. e.g.</td>
<td>Table and graph drawn on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>BB</td>
<td>Discuss what the x and y axes show</td>
</tr>
<tr>
<td>Size of head (cm)</td>
<td>Number of pupils</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>Let’s show the data in a graph.</td>
<td>Review with whole class if answers written in Ex. Bks.</td>
</tr>
<tr>
<td>T draws graph on squared grid with help of Ps. e.g.</td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td>T asks questions about the data.</td>
<td><strong>Extension</strong></td>
</tr>
<tr>
<td>Ps show answers with number cards or scrap paper or write in Ex. Bks.</td>
<td>Talk about shape of graph (‘normal’ spread: most in middle, becoming fewer at each end)</td>
</tr>
<tr>
<td>a) How many pupils are in the class?</td>
<td></td>
</tr>
<tr>
<td>b) Which size is most frequent?</td>
<td>(e.g. 23)</td>
</tr>
<tr>
<td>c) What is the size of the smallest head in the class?</td>
<td>(e.g. 50 cm)</td>
</tr>
<tr>
<td>d) What is the size of the biggest head in the class?</td>
<td>(e.g. 47 cm)</td>
</tr>
<tr>
<td>e) How many pupils have heads with circumference 48 cm?</td>
<td>(e.g. 53 cm)</td>
</tr>
<tr>
<td>f) How many pupils have heads with circumference not more than 50 cm?</td>
<td>(e.g. 4)</td>
</tr>
<tr>
<td>(e.g. 16)</td>
<td></td>
</tr>
<tr>
<td><strong>20 min</strong></td>
<td></td>
</tr>
</tbody>
</table>
Activity 4

Arm length

Let’s measure the length of your left arm (from shoulder to tip of finger).

T demonstrates with P at front of class.

Repeat the procedure as in Activity 3.

T discusses with Ps how to collect the data, display and interpret them (measuring in pairs, tally chart, changing to numerical values, drawing a graph on a square grid, making observations and asking questions about the data).

Ps can suggest other data which could be collected in a similar way.

Lesson Plan 28

Notes

Whole class acivity
Ps could make a table in their Ex. Bks from tally chart on BB
Ps could attempt to draw graph on squared paper
Discussion, agreement, praising

30 min

PbY3a, page 28

Q.1 Read: Kanga the kangaroo is teaching little Tangy to jump further. They practise jumping only on weekdays and have a rest at the weekend.

The graph shows the longest jumps they each made every weekday for 2 weeks.

Who has seen a kangaroo? Where? Which country do they come from? Why is one kangaroo bigger than the other? etc.

B, come and show us Kanga’s jumps on the graph. C, come and show us Tangy’s jumps. Colour Tangy’s jumps in a bright colour in your Pbs so that they stand out more clearly.

D, come and show us where the x axis is. Is D correct?

What does the x axis show? (days in 1st and 2nd week)

Let’s say them together. ‘Monday, Tuesday, . . ., Friday, Monday, . . . Friday’)

Why are Saturday and Sunday not shown? (Kangaroos jumped only on weekdays)

E, come and show us where the y axis is. Is E correct?

What does the y axis show? (lengths of the jumps in metres)

What does each grid line show? (every metre)

Let’s start from zero and count up the y axis in 2s: ‘zero metres, 2 metres, . . ., 12 metres’ T points to grid lines at same time.

Let’s see if you can answer the questions by yourselves.

For part a) T explains that the range means from the smallest to the largest. Ps write answers in Pbs.

Review at BB with whole class, with Ps pointing to relevant bar or grid line on graph. Mistakes corrected.

Solution:

a) from 6 m to 12 m

b) Thursday in 2nd week

c) Friday of 1st week

d) 2nd week

How else could we show the data? (in a table)

Let’s complete this table. Ps come to BB one at a time to fill in a column, explaining reasoning and referring to graph.

BB:

<table>
<thead>
<tr>
<th>Day</th>
<th>1st week</th>
<th>2nd week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanga’s</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>jumps (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tangy’s</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>jumps (m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38 min

© CIMT, University of Exeter
Q.2 Read: One day, Piggy decided to climb the huge pine tree in Fairy-tale Forest.

The table shows Piggy’s progress.

Use the table to complete the graph.

T explains task, eliciting from Ps the relationship between the table and the graph. (1st dot is at the start, so no time has passed and Piggy is still on the ground; 2nd dot shows that after 1 minute Piggy has climbed 20 metres.)

Do next dot and column on BB with whole class. Ps come out to point to the column in the table, then to draw the dot and join it by a vertical line to the x-axis.

Let’s see if you can draw the rest of the dots and lines by yourselves in your Pbs. Use a ruler to draw the vertical lines.

Review at BB with whole class. Mistakes corrected.

Solution:

• After how many minutes did Piggy reach 35 metres? (3 min.)
• How far had Piggy climbed after 5 minutes? (55 m)

What other questions could we ask about the graph? e.g.

• How tall is the pine tree? (80 m)
• When did Piggy find the climb easy (difficult)?
• How far does Piggy still have to climb? (10 m)
• Why did Piggy not climb right to the top? (branches too thin)

What is wrong with this problem? (Pigs can’t climb trees – only in fairy-tales!) Which animals can climb trees?

T asks several Ps what they think and why.

Ps suggest questions.
T gives hints if necessary
Extra praise for creative questions

In good humour!

45 min
## Lesson Plan

### Y3

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>R:</strong> Calculation</td>
<td>Whole class activity</td>
</tr>
<tr>
<td><strong>C:</strong> Frequency tables. Pictograms, bar charts, Venn diagrams</td>
<td>T chooses Ps at random</td>
</tr>
<tr>
<td><strong>E:</strong> Numbers up to 200 (and over)</td>
<td>At speed</td>
</tr>
</tbody>
</table>

### Activity 1

#### Oral work

Let's see how many different ways we can think of to describe the number 53.
(e.g. \(5 \times 10 + 3, 4 \times 8 + 21, 7 \times 9 - 10, 31 + 22, 100 - 47\), ...)
Repeat with 77. T (or Ps) writes responses on BB.

<table>
<thead>
<tr>
<th>Week 6</th>
<th>Lesson Plan 29</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Notes</strong></td>
<td>Whole class activity</td>
</tr>
<tr>
<td></td>
<td>T chooses Ps at random</td>
</tr>
<tr>
<td></td>
<td>At speed</td>
</tr>
<tr>
<td></td>
<td>Class agrees/disagrees with each description</td>
</tr>
</tbody>
</table>

### Activity 2

#### Sequences

T says first 3 terms of a sequence. Ps continue it and give the rule.

- a) T: 33, 42, 51, ... Ps: 60, 69, 78, 87, 96, 105, ... (+ 9)
- b) T: 120, 112, 104, ... Ps: 96, 88, 80, 72, 64, 56, ... (– 8)

### Activity 3

#### Height

Let's measure how tall you are. T makes 2 marks on LHS and RHS of BB, each 1 metre from the floor (using a metre rule).
Pps come to BB in groups of 4 (2 pairs). P stands with back to BB and P measures to nearest cm how much taller than 1 metre P is. (2nd pair of Pps do the same at other mark on BB.) Elicit that this length should be added to 1 metre (100 cm) to give their actual height.

Let's record the heights in this table. Ps make a tally mark in relevant boxes in table, than another 4 Ps come to BB to measure their heights.

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>120 cm</th>
<th>121 cm</th>
<th>122 cm</th>
<th>123 cm</th>
<th>124 cm</th>
<th>125 cm</th>
<th>126 cm</th>
<th>127 cm</th>
<th>128 cm</th>
<th>129 cm</th>
<th>130 cm</th>
<th>131 cm</th>
<th>132 cm</th>
<th>133 cm</th>
<th>134 cm</th>
<th>135 cm</th>
<th>136 cm</th>
<th>137 cm</th>
<th>138 cm</th>
<th>139 cm</th>
<th>140 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tally</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

What questions could we ask about the data? e.g.
- How many pupils are 131 cm tall? (e.g. 2)
- How many Pps are not smaller than 134 cm (e.g. 1 + 2 + 1 = 4)
- How many Pps are in the class? (e.g. 30)
- Which height is the most frequent? (e.g. 133 cm)

### Activity 4

#### PbY3a, page 29

Q.1 Read: *Donald Dog was practising weighing. He numbered all his bones and weighed each one. Then he made this graph.*

How many bones does Donald have? (8)

- **A**, what does the x axis show? (*Donald’s bones, 1 bar per bone*)
  - Pps colour the white bars in bright colours so that they stand out.
- **B**, what does the y axis show? (Mass/weight of bones in grams)
  - What does each grid line show? (every 100 grams)
  - Let's start from zero and count up the y axis in100s: ‘zero grams, 100 grams, ..., 800 grams’ T points to grid lines.
  - What is missing from the y axis? (y) Write it beside the arrow.

---

© CIMT, University of Exeter
Activity

Let's see if you can answer the questions by yourselves. For part a) T explains that the range means from the smallest to the largest. Ps write answers in Phs.

Review at BB with whole class, with Ps pointing to relevant bar or grid line on graph. Mistakes corrected.

**Solution:**

a) i) Bone 3   ii) Bone 4   b) Bones 1 and 5

c)

<table>
<thead>
<tr>
<th>Bone number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>300</td>
<td>500</td>
<td>800</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>700</td>
</tr>
</tbody>
</table>

What other questions could we ask about the data? e.g.

- Which two bones weighed the same as Bone 3? (e.g. 4 and 7)
- What did Donald’s bones weigh in total?

\[
(300 + 500 + 800 + 200 + 300 + 400 + 600 + 700 = 3800) \text{ g}
\]

[Note that: 800 + 200 = 1000, 400 + 600 = 1000 and 300 + 700 = 1000; 3000 + (300 + 500) = 3800]

- What was the average weight of Donald’s bones?)

\[
(3800 \text{ g} \div 8 = 475 \text{ g})
\]

Extension

<table>
<thead>
<tr>
<th>Bone number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>300</td>
<td>500</td>
<td>800</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>700</td>
</tr>
</tbody>
</table>

5 Pictogram

This table show how many times the pupils in a class went to the cinema during half term.

BB:

<table>
<thead>
<tr>
<th>Number of times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pupils</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s show the data by drawing a pictogram in your Ex. Bks. Who remembers what a pictogram is? (using pictures to represent data)

T shows how to draw a ‘stick man’ to represent each pupil.

Elicit that number of visits to cinema should be written vertically and appropriate number of ‘stick men’ drawn opposite each one

Review at BB with whole class. Mistakes corrected.

BB:

<table>
<thead>
<tr>
<th>Number of pupils</th>
<th>T asks questions about the data. e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Then Ps think of their own questions to ask the class.

Notes

Agreement, praising

Class agrees/disagrees

Reasoning, agreement, self-correcting, praising

Drawn on BB or use enlarged copy master or OHP

Involve several Ps

(Ps do not necessarily need to calculate the answers, only to know how to do it)

T shows easy method of addition

T can use a calculator and show result to class

Individual drawing, monitored helped

Table drawn on BB or use enlarged copy master or OHP

Agreement, praising

BB: \(\bigcirc\) = 1 pupil

T could show first set of values in table on BB if necessary.

Reasoning, agreement, self-correction, praising

Ps can show answers with fingers on command.

Feedback for T

Praise clever questions
**Q.2 Read:** The graph shows the number of inhabitants of Domble Land.

T talks about a special land in fairy tales where the creatures who live there are always happy and fun-loving. Every year the dombles like to count how many of them are living there and they made this graph.

**Activity**

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>200</td>
</tr>
<tr>
<td>1994</td>
<td>300</td>
</tr>
<tr>
<td>1995</td>
<td>250</td>
</tr>
<tr>
<td>1996</td>
<td>350</td>
</tr>
<tr>
<td>1997</td>
<td>500</td>
</tr>
<tr>
<td>1998</td>
<td>500</td>
</tr>
<tr>
<td>1999</td>
<td>600</td>
</tr>
<tr>
<td>2000</td>
<td>550</td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
</tbody>
</table>

C, come and show us where the x axis is. Is C correct?

What does the x axis show? (the years from 1993 to 2001)

Let's say them together. ‘1993, 1994, . . ., 2001’

D, come and show us where the y axis is. Is D correct?

What does the y axis show? (number of dombles: Population)

What does each grid line show? (every 100 dombles)

Let's start from zero and count up the y axis in100s: ‘zero dombles, 100 dombles, . . ., 700 dombles’ T points to grid lines at same time.

Elicit that each dot vertically above a year shows how many dombles were living in Domble Land that year. Ps come to BB to point to a year on x axis, move their finger up the vertical grid line to the dot, then across to the y axis and read out the number of dombles in that year.

Why do you think the dots are joined up? (to show the change in population more clearly)

Let's see if you can answer the questions about the graph by yourselves. Deal with one question at a time.

a) Read: When was the population:
   i) highest  (in 1999: 600 dombles)
   ii) lowest?  (in 1993: 200 dombles)

b) Read: When was there no change?
   (1997 to 1998: 500 dombles)

c) Read: When was there a decrease?
   (1994 to 1995: 300 to 250; 1999 to 2000: 600 to 550)

d) Read: Complete the table.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>200</td>
<td>300</td>
<td>250</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>600</td>
<td>550</td>
<td>0</td>
</tr>
</tbody>
</table>

- Why is there no dot for the year 2001? (They haven't counted the population yet.)
- Why do you think the population went up and down?

---

45 min
<table>
<thead>
<tr>
<th>Y3</th>
<th>Lesson Plan 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Notes</td>
</tr>
</tbody>
</table>

*PbY3a, page 30*

Ps collect data on birthdays, display first in tables, then in any other way they wish.

Ps could collect data from other classes to compare.

(Or carry out a similar activity on topics suggested by Ps)