R: Concept of a fraction. Calculations with whole numbers.
C: Addition and subtraction of fractions
E: Fractions of quantities

Lesson Plan

Y4

Activity

1

Addition of fractions

T says the addition and also writes it on the BB. Ps calculate mentally or in Ex. Bks and come to BB (or show the result on slates or scrap paper on command).

Elicit the abbreviations and then discuss the results. Agree that items of different kinds cannot be added together unless they are changed into a common category, e.g. ‘boys’ + ‘girls’ are also ‘children’.

- **a)** BB: 3 apples + 18 apples + 132 apples = 153 apples

 \[3a + 18a + 132a = 153a\]

- **b)** BB: 8 boys + 3 girls + 4 boys + 6 girls + 11 boys + 20 girls = 23 boys + 29 girls (= 52 children)

 \[8b + 3g + 4b + 6g + 11b + 20g = 23b + 29g (= 52c)\]

- **c)** BB: 1 quarter + 1 quarter + 1 quarter = 3 quarters

 \[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 3q\]

 How could we write it using only numbers? Who agrees? Who can think of another way? T helps if necessary

 BB: \[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}\] or \[\frac{1}{4} \times 3 = \frac{3}{4}\]

 Let’s draw a diagram to show it. e.g. BB: or

- **d)** BB: 1 fifth + 2 fifths + 3 fifths = 6 fifths (= 1 + 1 fifth)

 \[\frac{1}{5} + \frac{2}{5} + \frac{3}{5} = \frac{6}{5} \quad \text{How could we write it with numbers?}\]

 \[\frac{1}{5} + \frac{2}{5} + \frac{3}{5} = \frac{6}{5} = \frac{1 + 1}{5} = \frac{1}{5}\]

 Let’s show it in a diagram. Ps come to BB or tell T what to draw.

 \[6\text{ min}\]

2

Subtracting fractions

Deal with subtractions in the same way as above. e.g.

- **a)** BB: 15 peaches – 7 peaches = 8 peaches

 \[15p - 7p = 8p\]

- **b)** BB: 5 sixths – 2 sixths = 3 sixths

 \[5s - 2s = 3s\]

 How could we write it with numbers?

 BB: \[\frac{5}{6} - \frac{2}{6} = \frac{3}{6} = \frac{1}{2}\]

 Let’s show it in a diagram.

- **c)** BB: 13 tenths – 9 tenths = 4 tenths

 \[13t - 9t = 4t\]

 How could we write it with numbers?

 BB: \[\frac{13}{10} - \frac{9}{10} = \frac{4}{10} = \frac{2}{5}\]

 Let’s show it in a diagram. e.g. BB:

 \[11\text{ min}\]

Notes

Whole class activity

Discussion, reasoning, agreement, praising

[Preparation for algebraic expressions]

Ps discuss what to do about adding boys and girls.

Only deal with multiplication if Ps think of it themselves.

(A fraction as a multiple of a ‘unit fraction’).

Discussion on changing 6 fifths to ‘1 and 1 fifth’

BB: e.g.

Praising

Whole class activity

Ps come to BB or show differences on slates or scrap paper in unison on command.

Ps come to BB or dictate what T should write.

Class agrees/disagrees.

Ps draw diagrams on BB or suggest what T should draw.

Extra praise if Ps notice the equivalent (equal) fractions by themselves

Revise meaning of numerator and denominator.
Y4

Activity

3

Fractions of 1 unit

Study the table. How many unit cubes have been used to make each solid? T points to each in turn and class shouts out the number.

Deal with one row at a time. If this is 1 unit (T points to relevant solid) what part of it are the solids in the other columns? Ps come to BB to write fractions and explain reasoning. Elicit equivalent fractions where relevant.

BB:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>$1 = \frac{8}{8}$</td>
<td>$\frac{4}{8} = \frac{1}{2}$</td>
<td>$\frac{2}{8} = \frac{1}{4}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{12}{8} = \frac{1}{2} = \frac{3}{3}$</td>
</tr>
<tr>
<td>b)</td>
<td>$\frac{8}{4} = 2$</td>
<td>$1 = \frac{4}{4}$</td>
<td>$\frac{2}{4} = \frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{12}{4} = 3$</td>
</tr>
<tr>
<td>c)</td>
<td>$\frac{8}{2} = 4$</td>
<td>$\frac{4}{2} = 2$</td>
<td>$1 = \frac{2}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{12}{2} = 6$</td>
</tr>
<tr>
<td>d)</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>e)</td>
<td>$\frac{8}{3} = \frac{2}{3}$</td>
<td>$\frac{4}{3} = \frac{1}{3}$</td>
<td>$\frac{2}{3} = \frac{1}{6}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{12}{3} = 4$</td>
</tr>
<tr>
<td>f)</td>
<td>$\frac{8}{3} = \frac{2}{3}$</td>
<td>$\frac{4}{3} = \frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{12}{3} = 4$</td>
</tr>
</tbody>
</table>

20 min

4

PbY4b, page 81

Q.1 Read: How many apples are in these fractions of the 36 apples?

Ps do calculations in Ex. Bks. and write only the result in their Pbs. If class is not very able, deal with one part at a time.

Set a time limit.

Review at BB with whole class. Ps come to BB to write missing numbers, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. If problems, Ps write the calculation in detail on BB.

Solution:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>b)</td>
<td>$\frac{2}{2}$</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{5}{6}$</td>
<td>$\frac{5}{9}$</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

27 min

Lesson Plan 81

Notes

Whole class activity

Drawn on BB or use enlarged copy master or OHP

(Ideally, T has large models of solids and Ps have smaller versions on desks.)

At a good pace

Reasoning, e.g. a):

‘1 unit is 8 small cubes.

This solid is 4 small cubes.

4 out of 8 is 4 eighths or 1 half.’

Agreement, praising

Accept and praise any correct fraction, but extra praise if Ps notice simpler equivalent fractions without help from T.

Individual work monitored, helped

Written on BB or use enlarged copy master or OHP

Reasoning, agreement, self-correction, praising

e.g. BB:

$\frac{1}{9}$ of 36a = $36a \div 9 = 4a$,

$\frac{5}{9}$ of 36a = $4a \times 5 = 20a$

or: $\frac{5}{9}$ of 36a = $36a \div 9 \times 5$

= $4a \times 5$

= $20a$
Lesson Plan 81

Notes

Individual work, monitored, helped

Written on BB or use enlarged copy master or OHP

Reasoning, agreement, self-correction, praising

Discuss equivalent fractions.
BB: e.g.

Extra praise if Ps suggest them without T's help

Elicit that if the numerator and denominator of a fraction are divided or multiplied by the same amount, the value of the fraction does not change.

Individual work, monitored, helped

(or whole class activity if Ps are unsure)

Written on BB or use enlarged copy master or OHP

Discussion, reasoning, agreement, self-correction, praising

Discuss other forms, e.g.

or as shown in solution.

Feedback for T
Activity 7

Problem

Listen carefully, picture the story in your head and note down the important data. Think about how you would solve it.

Grandma made 15 pancakes for her two grandchildren. Peter ate 1 third of the pancakes and Rose ate 1 fifth of them.

a) Who ate more and how many more?

A, come and show us how you would solve it. Who agrees? Who would do it another way? etc.

BB: e.g.

P: 1 third of 15 = 15 ÷ 3 = 5
R: 1 fifth of 15 = 15 ÷ 5 = 3
Answer: Peter ate 2 more pancakes than Rose.

b) How many pancakes were left and what fraction of the total number of pancakes was it?

B, come and explain how you would solve it. Who agrees? etc.

BB: e.g.

Pancakes eaten: 5 + 3 = 8
Pancakes left: 15 – 8 = 7

7 pancakes out of 15 pancakes = 7/15 of the pancakes

Answer: There were 7 pancakes left. This was 7 fifteenths of the total number of pancakes.

Notes

Whole class activity

(Or individual trial in Ex. Bks if Ps wish)

T repeats slowly and a P repeats in own words.

Discussion, reasoning, agreement, praising

Diagram drawn on BB: e.g.

If T and Ps wish, they could discuss this way to solve the problem, thinking of the 15 pancakes as the whole amount:

BB: 1 – \(\frac{1}{3}\) – \(\frac{1}{5}\) = \(\frac{15}{15}\) – \(\frac{5}{15}\) – \(\frac{3}{15}\) = \(\frac{7}{15}\)

and 7 fifteenths of 15 pancakes = \(\frac{7}{15}\) pancakes.
Lesson Plan

Y4

R: Concept of a fraction. Calculations

C: Fractions. Addition and subtraction (equal denominators)

E: Fractions of quantities and numbers

Activity

1

Making fractions

What is a fraction? (part of a whole) Who can come and write a fraction on the BB? What is the bottom number called? (denominator) What does it mean? (Number of equal parts that the whole has been divided into) What is the top number called? (numerator) What does it mean? (How many of these parts are taken)

Look at these diagrams. Let’s think of fractions we could write about them. Ps come to BB to write fractions (using words or numbers) and explain reasoning (with T’s help if necessary). Class agrees/disagrees or suggests equivalent fractions.

BB:

a) Shaded: 3 ninths = 1 third, \(\frac{3}{9} = \frac{1}{3} \)

White: 6 ninths = 2 thirds, \(\frac{6}{9} = \frac{2}{3} \)

b) Shaded: 8 twenty-fourths = 4 twelfths = 2 sixths = 1 third

\(\frac{8}{24} = \frac{4}{12} = \frac{2}{6} = \frac{1}{3} \)

White: 16 twenty-fourths = 8 twelfths = 4 sixths = 2 thirds

\(\frac{16}{24} = \frac{8}{12} = \frac{4}{6} = \frac{2}{3} \)

c) Shaded: 5 sixteenths = 10 thirty-seconds, \(\frac{5}{16} = \frac{10}{32} \)

White: 11 sixteenths = 22 thirty-seconds, \(\frac{11}{16} = \frac{22}{32} \)

6 min

2

Addition and subtraction

Let’s do these additions and subtractions. T says the addition and also writes it on the BB. Ps come to BB to write the sum or dictate what T should write, explaining reasoning. Class agrees/disagrees. How can we write it in a shorter way? (Using initial letters and/or numbers.)

BB:

a) 82 tables + 53 tables + 200 tables = \(\frac{335}{335} \) tables

or \(82t + 53t + 200t = 335t \)

b) 31 pens + 54 balls + 24 pens – 32 balls = 55 pens + 22 balls

or \(31p + 54b + 24p – 32b = 55p + 22b \)

c) 1 eighth + 1 eighth + 1 eighth + 1 eighth + 1 eighth = 1 eighth × 5

or \(1e + 1e + 1e + 1e + 1e = 1e \times 5 = \frac{5}{8} \) = 5 eighths

or \(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{8} \times 5 = \frac{5}{8} \)

d) 5 ninths + 3 ninths – 4 ninths + 7 ninths = \(\frac{11}{9} \) ninths = 1 and 2 ninths

or \(\frac{5}{9} + \frac{3}{9} – \frac{4}{9} + \frac{7}{9} = \frac{11}{9} = \frac{1}{9} \)

e) 2 fifths + 3 tenths + 1 fifth – 2 tenths + 3 tenths = \(\frac{3}{5} \) fifths + 4 tenths

or \(\frac{2}{5} + \frac{3}{10} + \frac{1}{5} – \frac{2}{10} + \frac{3}{10} = \frac{3}{5} + \frac{4}{10} = \frac{6}{10} + \frac{4}{10} = \frac{1}{5} \)

16 min

Notes

Whole class activity

BB: e.g.

\(\frac{3}{5} \) ← numerator

\(\frac{2}{5} \) ← denominator

Drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, praising

Reasoning: e.g.

a) ‘The large triangle has been divided into 9 equal parts, so each part is \(\frac{1}{9} \) of the whole.

3 of the parts are shaded, so the fraction shaded is \(\frac{3}{9} \).

BB: Equivalent fractions

e.g. \(\frac{3}{9} = \frac{1}{3} \)

T or P could highlight the thirds, etc. on the diagram.

In c), only mention ‘thirty-seconds’ if a P suggests it.

Whole class activity

Ps can do calculations in Ex. Bks. or on slates if necessary.

Discussion, reasoning, agreement, praising

If problems, Ps draw diagrams on BB to show the fractions.

BB: e.g.

d) 5n + 3n – 4n + 7n = \(\frac{11}{3} \)n

\(\frac{1}{5} \) \(\frac{3}{10} \) \(\frac{1}{5} \) \(\frac{2}{10} \) \(\frac{3}{10} \) \(\frac{3}{5} \) \(\frac{4}{10} \) \(\frac{1}{5} \)

or \(\frac{4}{10} = \frac{2}{5} \), so \(\frac{3}{5} + \frac{2}{5} = \frac{1}{5} \)

© CIMT, University of Exeter
Activity

3 Fractions on the number line

Let's show jumps along the number line by fractions of a unit.

Ps come to BB to follow instructions from the T. e.g.

a) Elicit that there is a tick at every 1 tenth of a unit.

```
0 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10
```

Start at 0. Move 3 tenths to the right (3 tenths), than another 5 tenths to the right (8 tenths), then 2 tenths to the left (6 tenths), then 9 tenths to the right (15 tenths), then 4 tenths to the right.

Where have you ended up? (1 and 9 tenths or 19 tenths)

Let's write the moves as a calculation with fractions. Ps dictate to T or come to BB. T reminds Ps of the steps if necessary.

```
BB: 0 + \(\frac{3}{10}\) + \(\frac{5}{10}\) - \(\frac{2}{10}\) + \(\frac{9}{10}\) + \(\frac{4}{10}\) = \(\frac{19}{10}\) = 1 \(\frac{9}{10}\)
```

b) Elicit that this number line has a tick at every 1 seventh of a unit.

Ps give instructions to another P who shows the moves along the number line, while another P (or T) writes the operations on the BB.

Let's write the moves as a calculation with fractions. Ps dictate to T or come to BB. T reminds Ps of the steps if necessary.

```
BB: \(\frac{7}{7}\) + \(\frac{5}{7}\) - \(\frac{1}{7}\) + \(\frac{6}{7}\) = \(\frac{12}{7}\) = 1 \(\frac{5}{7}\)
```

Ps label any missing relevant fraction.

b) 25 min

Lesson Plan 82

Notes

Whole class activity

Number lines drawn on BB or use enlarged copy master or OHP

(Ps could have copies on desks too and follow the instructions on their own number lines.)

T gives instructions. P shows moves with finger or pointer and says the number reached after each step.

Class points out errors.

Ps read the operation in unison.

Discussion, agreement, praising

BB: e.g.

```
\(\frac{2}{7}\) + \(\frac{5}{7}\) - \(\frac{1}{7}\) + \(\frac{6}{7}\) = \(\frac{12}{7}\) = 1 \(\frac{5}{7}\)
```

Ps label any missing relevant fraction.

b) Individual work, monitored, helped

(or continue as a whole class activity if Ps are unsure)

Drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, self-correction, praising

Discuss equivalent fractions

E.g. \(\frac{14}{20} = \frac{7}{10}\)

or \(\frac{7}{20} = \frac{14}{40}\)

(if each grid square is divided into 2 equal triangles)

30 min
Y4

Lesson Plan 82

Activity 5

PbY4b, page 82

Q.2 Read: Write the additions and subtractions with fractions in *your* exercise book and calculate the result.

Set a time limit. Ps can draw diagrams in *Ex. Bks* to help them if they wish.

Review at BB with whole class. Ps come to BB or dictate results to T, explaining reasoning. Class agrees/disagrees or points out simpler equivalent fractions where relevant. Ask Ps to model the operations on the BB.

Solution:

- a) \(\frac{1}{3} + \frac{1}{3} = \frac{2}{3}\)
- b) \(\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1\)
- c) \(\frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}\)
- d) \(\frac{2}{5} + \frac{2}{5} = \frac{4}{5}\)
- e) \(\frac{5}{6} - \frac{4}{6} = \frac{1}{6}\)
- f) \(\frac{1}{7} + \frac{3}{7} - \frac{4}{7} = \frac{0}{7} = 0\)
- g) \(\frac{3}{8} + \frac{10}{8} = \frac{8}{8} = 1\)
- h) \(\frac{8}{9} - \frac{3}{9} = \frac{5}{9}\)
- i) \(\frac{10}{10} - \frac{7}{10} + \frac{2}{10} = \frac{5}{10} = \frac{1}{2}\)

Notes

Individual work, monitored, helped

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

T helps with drawing the diagrams.

BB: e.g.

- a) ![Diagram](image1)
- b) ![Diagram](image2)
- c) ![Diagram](image3)
- d) ![Diagram](image4)
- e) ![Diagram](image5)
- f) ![Diagram](image6)

Extra praise if Ps draw diagrams and explain reasoning without help.

Activity 6

PbY4b, page 82

Q.3 Read: Calculate the sums and differences.

Set a time limit. Ps can draw diagrams on slates or in *Ex Bks* if necessary.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Draw diagrams on BB if there is disagreement.

Solution:

- a) \(\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1\)
- b) \(\frac{3}{5} + \frac{1}{5} = \frac{4}{5}\)
- c) \(\frac{2}{3} - \frac{1}{3} = \frac{1}{3}\)
- d) \(\frac{3}{4} - \frac{2}{4} = \frac{1}{4}\)
- e) \(\frac{4}{5} - \frac{4}{5} = \frac{0}{5} = 0\)
- f) \(\frac{6}{6} + \frac{1}{6} = \frac{7}{6} = 1 + \frac{1}{6} = 1\frac{1}{6}\)
- g) \(\frac{7}{10} - \frac{4}{10} = \frac{3}{10}\)
- h) \(\frac{3}{20} + \frac{0}{20} = \frac{3}{20}\)

Notes

Individual work, monitored, helped

(or whole class activity if T thinks Ps are still unsure)

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

Feedback for T.

h) Elicit that \(\frac{0}{20} = 0\)
Lesson Plan 82

Notes

Whole class activity
(or individual work if Ps wish)
Diagram drawn on BB or use enlarged copy master or OHP
BB:

Discussion, reasoning, agreement, praising
Or Ps might suggest finding 2 fifths of the distance first.
BB: 1 fifth of 400 m
 = 400 m ÷ 5 = 80 m
2 fifths of 400 m = 80 m × 2
 = 160 m
S had gone:
160 m + 160 m = 320 m
S still had to go:
400 m – 320 m = 80 m

© CIMT, University of Exeter
R: Fractions. Fractions of quantities
C: Addition and subtraction of fractions
E: Problems

Lesson Plan 83

Y4

Week 17

Activity

1 Fractions of quantities.

Listen carefully, do the calculation in your head or in you Ex. Bks and show me the answer when I say. Remember to write the unit of measure too!

Ps responding correctly explain at BB to those who did not. Who did the same? Who did it a different way? What mistakes did you make? etc. If problems, ask Ps to show calculations in detail and to draw diagrams on the BB.

a) What is:
 i) 1 third of 96 m \((96 \ m \div 3 = 32 \ m) \)
 ii) 1 fifth of 2400 kg \((2400 \ kg \div 5 = 480 \ kg) \)
 iii) 3 fifths of 820 litres \((820 \ litres \div 5 \times 3 = 164 \ litres \times 3 = 492 \ litres) \)
 iv) 8 tenths of 9200 km \((9200 \ km \div 10 \times 8 = 920 \ km \times 8 = 7360 \ km) \)
 v) 7 quarters of £6000? \((£6000 \div 4 \times 7 = £1500 \times 7 = £10 500) \)

b) What is the whole quantity if:
 i) 40 m is half of it \((1 \ half \rightarrow 40 \ m, \ 2 \ halves \rightarrow 40 \ m \times 2 = 80 \ m) \)
 ii) 80 kg is 2 thirds of it? \((2 \ thirds \rightarrow 80 \ kg, \ 3 \ thirds \rightarrow 80 \ kg \div 2 \times 3 = 40 \ kg \times 3 = 120 \ kg) \)

(or 2 thirds \(\rightarrow 80 \ kg, \ 1 \ third \rightarrow 80 \ kg \div 2 = 40 \ kg \) [Direct proportion] 3 thirds \(\rightarrow 40 \ kg \times 3 = 120 \ kg) \)

2 Fractions of a shape

Let’s draw the whole shape if the shaded parts are the fractions shown. Ps come to BB to count the grid squares in the shaded part, calculate how many grid squares would be in the whole shape, then draw it. Class agrees/disagrees.

BB: e.g.

a) \(\frac{1}{2} \)

\(12 \times 2 = 24 \) (squares)

\(12 \div 3 \times 4 = 16 \) (squares)

\(12 \div 6 \times 5 = 10 \) (squares)

b) \(\frac{3}{4} \)

\(12 \div 3 \times 4 = 16 \) (squares)

\(12 \div 4 \times 5 = 15 \) (squares)

c) \(\frac{4}{5} \)

\(\frac{3}{1} \) (= 3 units)

\(12 \div 3 = 4 \) (squares)

Whole class activity
Answers written on scrap paper or slates and shown in unison on command.
Reasoning, agreement, praising
BB: e.g.

a) i) ii) iii) iv) v)

b) ii) \(\frac{3}{3} \) = 1 whole

Accept any correct method and diagram.

Feedback for T
Activity 3

Addition and subtraction of fractions

Let's draw diagrams to help us work out the answers.

T could do part a) first (but allowing Ps to dictate what to draw or write) as a model for Ps to follow. Can we add halves and quarters? (No, as they have different denominators.) What should we do? (Change the half to 2 quarters) etc.

Ps come to BB, draw a diagram, decide on the number of parts to divide it up into (i.e. the smallest multiple common to both denominators) with T's help if necessary, convert the fractions and do the additions or subtractions, explaining reasoning. Class agrees/disagrees.

Ask Ps to show each operation on the relevant segment of the number line. (drawn on BB or OHT or use copy master).

BB:

a) \(\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \) e.g.

![Diagram](image1)

b) \(\frac{3}{4} - \frac{2}{3} = \left(\frac{9}{12} - \frac{8}{12} = \frac{1}{12} \right) \) e.g.

![Diagram](image2)

c) \(\frac{5}{8} - \frac{1}{4} = \left(\frac{5}{8} - \frac{2}{8} = \frac{3}{8} \right) \) e.g.

![Diagram](image3)

25 min

Extension

PbY4b, page 83

Q.1 Read: *Join up the equal numbers.*

Discuss equivalent fractions. Elicit that if the numerator and denominator are multiplied or divided by the same number, the fractions have the same value, i.e. they are *equal* or *equivalent* fractions.

Ps can draw diagrams on scrap paper or slates or in *Ex.Bks* if necessary. Set a time limit.

Review at BB with whole class. Ps come to BB to draw joining lines, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Draw diagrams on BB if there are problems or disagreements.

Solution:

![Diagram](image4)

Who can think of numbers to join to \(\frac{5}{2} \)? (e.g. \(\frac{10}{4}, \frac{2}{2}, \frac{1}{2} \))

Compare the fractions to 1, 2 or 3. Ps write inequalities about them.

\(\frac{2}{5} < \frac{5}{10} < 1, \ \frac{2}{5} < \frac{5}{2} < 3 \), etc.

30 min

Notes

Whole class activity
Written/drawn on BB or use enlarged copy master for the number line segments.

At a good pace

Discussion, reasoning, agreement, praising

Feedback for T

BB: e.g.

![Diagram](image5)

Individual work, monitored helped
(or whole class activity if Ps are still unsure)

Written on BB or use enlarged copy master or OHP

BB: *Equivalent fractions*

\(\frac{1}{3} = \frac{2}{6} \)

Reasoning, agreement, self-correction, praising

Diagrams: e.g.

![Diagram](image6)

Feedback for T
Lesson Plan 83

Notes

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, self-correction, praising

Reasoning: e.g.
\[
\frac{4}{8} \text{ of } 24 = 24 \div 8 \times 4 = 3 \times 4 = 12
\]

Equivalent fractions:

a) \(\frac{1}{2} = \frac{2}{4} = \frac{4}{8}\)
b) All 4 are equivalent

Agree that multiplying or dividing the numerator and denominator by the same amount does not change the value of a fraction.

Activity 5

PbY4b, page 83

Q.2 Read: *Each rectangle is 1 unit. Colour the parts given.*

Deal with one row at a time. Set a time limit.
Review at BB with whole class. Ps come to BB to colour diagrams or T has a solution already prepared and uncovers each rectangle as it is dealt with. In either case, Ps explain their reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Agree on the number of squares which should be shaded but also that they can be in any position.

Which fractions are equivalent (equal)?

Solution: e.g.

- **a)**
 \[
 \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8}
 \]

- **b)**
 \[
 \frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{12}{18}
 \]

Activity 6

PbY4b, page 83

Q.3 Read: *Complete the diagrams to match the problems.*

Deal with one part at a time. Ps read the question themselves and write the missing numbers on the dotted lines. Make sure that Ps realise that they should write a fraction on the lines labelled ‘part’. Remind Ps to check that the two parts and the two distances add up to the whole distance. Set a time limit.
Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

- **a)** *The distance between two cities is 369 km.*

 A family drove 1 third of the distance before lunch and completed the journey after lunch.

 How far did they drive: i) before lunch ii) after lunch?

 Morning: 1 third of 369 km = 369 km ÷ 3 = 123 km

 Afternoon: 2 thirds of 369 km = 123 km × 2 = 246 km

- **b)** *Some men are laying a pavement.*

 They have already paved 120 m, which is 2 thirds of the pavement.

 i) How much do they still have to do?

 Done: 2 thirds \(\rightarrow\) 120 m

 Still to do: 1 third \(\rightarrow\) 120 m ÷ 2 = 60 m

 ii) How long will the finished pavement be?

 Finished pavement: 3 thirds \(\rightarrow\) 60 m × 3 = 180 m

© CIMT, University of Exeter
PbY4b, page 83

Q.4 Let’s see how many of these you can do in 3 minutes! You can draw diagrams or calculate in your Ex. Bk if necessary.

Start . . . now! . . . Stop!

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. If problems, Ps draw diagrams on BB.

Mistakes discussed and corrected Elicit equivalent fractions.

Solution:

a) \[\frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{3}{5} \left(= \frac{1}{5} \times 3\right)\]
b) \[\frac{3}{8} + \frac{2}{8} = \frac{5}{8}\]

c) \[\frac{7}{12} - \frac{2}{12} = \frac{5}{12}\]

d) \[\frac{11}{20} - \frac{9}{20} = \frac{2}{20} \left(= \frac{1}{10}\right)\]

e) \[\frac{7}{10} + \frac{3}{5} = \frac{7}{10} + \frac{6}{10} = \frac{13}{10} = 1 + \frac{3}{10} = \frac{3}{10}\]

f) \[\frac{3}{4} - \frac{3}{8} = \frac{6}{8} - \frac{3}{8} = \frac{3}{8}\]

Lesson Plan 83

Notes

Individual work, monitored, helped

(or parts e) and f) done with the whole class)

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

BB: Diagrams: e.g.

d) \[\begin{array}{c}
\hline
\times \\ \hline
\end{array} = \frac{2}{20} = \frac{1}{10}\]

e) \[\begin{array}{c}
\hline
\odot \\ \hline
\end{array} + \begin{array}{c}
\hline
\odot \\ \hline
\end{array} = \begin{array}{c}
\hline
\odot \\ \hline
\end{array}\]

f) \[\begin{array}{c}
\hline
\odot \\ \hline
\odot \\ \hline
\odot \\ \hline
\end{array} + \begin{array}{c}
\hline
\odot \\ \hline
\end{array} = \begin{array}{c}
\hline
\odot \\ \hline
\end{array}\]

45 min
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lesson Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Notes</td>
</tr>
</tbody>
</table>
| **Addition and subtraction of fractions** | Whole class activity
Study the diagram. What can you tell me about it? BB:
(It is a circle; it has been divided into 8 equal parts; each part is 1 eighth)
a) Let's write additions and subtractions about it. Ps come to BB to write operations, explaining reasoning. Class agrees/disagrees or suggests simpler equivalent fractions.
BB: e.g.
\[
\frac{1}{8} + \frac{2}{8} + \frac{3}{8} = \frac{6}{8} = \frac{3}{4} = \left(\frac{1}{8} + \frac{1}{4} + \frac{3}{8} \right)
\]
\[
\frac{8}{8} - \frac{3}{8} - \frac{2}{8} - \frac{1}{8} = \frac{2}{8} = \frac{1}{4}, \quad \frac{1}{8} - \frac{3}{8} = \frac{5}{8}, \quad \text{etc.}
\]
To save time writing all the '8's as the denominators, we can write just one '8' as the common denominator, eighths, and write how many eighths we are dealing with above the fraction line.
e.g.
\[
\frac{8}{8} - \left(\frac{3}{8} + \frac{2}{8} + \frac{1}{8} \right) = \frac{8 - (3 + 2 + 1)}{8} = \frac{8 - 6}{8} = \frac{2}{8} = \frac{1}{4}
\]
b) Let's compare the fractions. Who can write an inequality about the diagram? Ps come to BB or dictate to T. Class agrees/disagrees.
e.g. \(\frac{3}{8} > \frac{1}{4}, \quad \frac{1}{4} < \frac{3}{8}, \quad \frac{3}{4} + \frac{1}{8} < 1, \quad \text{etc.}
\]
c) Ps suggest word problems for one or two of the operations on the BB. Class decides whether they are valid.

5 min

<table>
<thead>
<tr>
<th>2</th>
<th>Comparing fractions</th>
</tr>
</thead>
</table>
| Which is more and how much more? Ps come to BB to write missing signs and differences, explaining reasoning. Class agrees/disagrees. Ask Ps to draw diagrams too. T might need to help with b) iv).
a) Let's compare these fractions to 1.
BB: e.g.
\[
i) \quad \frac{3}{5} \quad \frac{\downarrow}{\downarrow} \quad 1
\]
\[
\frac{2}{5} \quad \frac{\downarrow}{\downarrow} \quad 1
\]
\[
\frac{3}{5} \quad \frac{\downarrow}{\downarrow} \quad 1
\]
\[
\frac{11}{10} \quad \frac{\downarrow}{\downarrow} \quad 1
\]
\[
\frac{10}{11} \quad \frac{\downarrow}{\downarrow} \quad 1
\]

b) Let's compare these fractions to a half.
\[
i) \quad \frac{5}{8} \quad \frac{\downarrow}{\downarrow} \quad \frac{1}{2}
\]
\[
\frac{1}{5} \quad \frac{\downarrow}{\downarrow} \quad \frac{1}{2}
\]
\[
\frac{4}{10} \quad \frac{\downarrow}{\downarrow} \quad \frac{1}{2}
\]
\[
\frac{7}{14} \quad \frac{\downarrow}{\downarrow} \quad \frac{1}{2}
\]
\[
\frac{5}{11} \quad \frac{\downarrow}{\downarrow} \quad \frac{1}{2}
\]

13 min

© CIMT, University of Exeter
Activity

Mental practice

Ps stand up. T throws a ball to a P, saying a fraction, e.g. T: 'half of 4'; P throws ball back to T saying the number, e.g. P: '2'.

Class points out errors. Ps who are correct sit down. Ps who are incorrect stay standing and later are asked a simpler question. e.g. half of 10 (5); 1 third of 21 (7); 3 quarters of 8 (6); 2 fifths of 20 (8); 3 halves of 50 m (75 m); 7 sevenths of £213 (£213); 0 fifths of 100 (0); 3 elevenths of 22 acorns (6 acorns); 12 sixths of 1 hour (2 hours), etc. If problems, Ps show details of calculations on BB.

- 3 quarters of 8 = 8 ÷ 4 × 3 = 2 × 3 = 6

Sequences

- a) T writes first 2 terms of a sequence on the BB and gives the rule. Ps come to BB to continue the terms (or dictate terms to T), explaining reasoning. Class points out errors. Ps point out those fractions which could be written in another way.
 - i) This sequence is increasing by 1 sixth.

 BB: 0, \(\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{6}{6}, \frac{7}{6}, \ldots \)

 or \(\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{5}{6}, \ldots \)

 - ii) This sequence is decreasing by 3 tenths.

 BB: \(\frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, \ldots \)

 or \(\frac{4}{10}, \frac{3}{10}, \frac{2}{10}, \frac{1}{10}, \ldots \)

- b) T writes the first 4 terms of a sequence on the BB. Ps think of a rule, then continue the sequence. Again Ps point out fractions which could be written in another way.

 BB: \(\frac{3}{7}, \frac{7}{7}, \frac{11}{7}, \frac{15}{7}, \ldots \)

 or \(\frac{3}{7}, \frac{23}{7}, \frac{27}{7}, \frac{31}{7}, \frac{35}{7}, \frac{39}{7}, \frac{43}{7}, \ldots \)

 Rule: \(+ \frac{4}{7} \)

PbY4b, page 84

Q.1 Read: **Solve the problem. Do the calculations in your Ex. Bk.** Ps read the problem themselves, solve it in their Ex. Bks and write the answers in their Pbbs. Set a time limit

Review with the whole class. T could read each part and Ps show answers on scrap paper or slates on command. P who responds correctly explains to those who do not. Mistakes discussed and corrected.

Solution:

- a) **What kind of tree does he have most of?** (Equal numbers)
- b) i) **How many plum trees does Sam have?** (20)

 ii) **What fraction of all Sam’s trees are they?** (1 quarter)

© CIMT, University of Exeter
Lesson Plan 84

Activity

6 PbY4b, page 84

Q.2 Read: Use the number lines to help you do the additions and subtractions.

Deal with one part at a time. Set a time limit. Ps may draw other models if necessary in their Ex. Bks.

Review at BB with whole class. Ps come to BB to complete the operations and explain their reasoning, showing the jumps along the number line. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

a) \[\frac{1}{2} + \frac{3}{4} + \frac{1}{2} = 1 + \frac{3}{4} = 1\frac{3}{4} \]

or \[\frac{2}{4} + \frac{3}{4} + \frac{2}{4} = \frac{7}{4} = 1\frac{3}{4} \]

b) \[\frac{4}{5} - \frac{1}{5} = \frac{3}{5} \]

c) \[\frac{5}{6} + \frac{2}{6} - \frac{4}{6} = \frac{7}{6} - \frac{4}{6} = \frac{3}{6} = \frac{1}{2} \]

Notes

Individual work, monitored, helped

Written/drawn on BB or use enlarged copy master or OHP

Discussion, reasoning, agreement, self-correction, praising

Discuss equivalent fractions where relevant.

BB:

a) \[\frac{1}{2} \]

b) \[\frac{1}{3} \]

c) \[\frac{1}{1} \]

Lesson Plan 84

7 PbY4b, page 84

Q.3 Read: Solve the problems in your exercise book. Remember to convert the units.

Set a time limit. Ps can draw diagrams to help them visualise the problem.

Review at BB with whole class. Ps could show answers on scrap paper or slates on command. Ps responding correctly explain at BB to those who did not. Class agrees/disagrees. Mistakes discussed and corrected.

Solution: e.g.

a) Mum bought a loaf which weighed 3 quarters of a kg. Rob ate 1 fifth of it. How much bread did Rob eat?

Whole loaf: \(\frac{3}{4} \) of 1 kg = \(\frac{3}{4} \) of 1000 g

\[\frac{3}{4} \text{ of } 1000 \text{ g} = 1000 \text{ g} \div 4 \times 3 = 250 \text{ g} \times 3 = 750 \text{ g} \]

Amount eaten: \(\frac{1}{5} \) of 750 g = 750 g \(\div 5 = 150 \text{ g} \)

Answer: Rob ate 150 g of bread

b) Diane spent £616, which was 2 fifths of her money. How much money did Diane have before?

Spent: \(\frac{2}{5} \rightarrow £616 \), (so \(\frac{1}{5} \rightarrow £616 \div 2 = £308 \))

Had before: \(\frac{5}{5} \rightarrow £616 \div 2 \times 5 = £308 \times 5 = £1540 \)

Answer: Diane had £1540 before.

Feedback for T
Activity 8

PbY4b, page 84, Q.4

Read: Work out the rule and complete the table. Write the rule in different ways.

Ask several Ps what they think the rule is. Class decides on one version of the rule in words. (e.g. bottom row – top row = 4 tenths) and check that it works in the columns already given.

Ps come to BB to choose a column and write missing fraction, explaining reasoning. Class agrees/disagrees or suggests simpler equivalent fractions, or whole numbers and fractions, where relevant. (See solution below.)

Who can write the rule in a mathematical way? Who agrees? Who can think of another way to write it? Class checks with values in the table.

Solution:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3/10</td>
<td>1/10</td>
<td>8/10</td>
<td>5/10</td>
<td>0</td>
<td>6/10</td>
<td>2 1/10</td>
</tr>
<tr>
<td>(b)</td>
<td>7/10</td>
<td>5/10</td>
<td>12/10</td>
<td>9/10</td>
<td>4/10</td>
<td>1</td>
<td>2 5/10</td>
</tr>
<tr>
<td></td>
<td>2/2</td>
<td>1 1/5</td>
<td>2/5</td>
<td>2 1/2</td>
<td>3/5</td>
<td>3 1/10</td>
<td>8/10</td>
</tr>
</tbody>
</table>

Rule: \(a = b - \frac{4}{10}\), \(b = a + \frac{4}{10}\), \(b - a = \frac{4}{10} = \frac{2}{5}\)

45 min

Notes

Whole class activity (or individual work if Ps wish)

Drawn on BB or use enlarged copy master or OHP

Discussion/agreement on one form of the rule.

At a good pace

Reasoning, agreement, praising

Feedback for T

Bold numbers were missing.

Extension

Ps think of a problem in context for the table and rule.
Calculation and tables practice. Revision and consolidation.

PbY4b, page 85

Solutions:

Q.1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1 = (\frac{15}{16})</td>
<td>(\frac{8}{16} = \frac{1}{2})</td>
<td>(\frac{4}{16} = \frac{1}{4})</td>
</tr>
<tr>
<td>b)</td>
<td>(\frac{16}{8} = 2)</td>
<td>(1 = \frac{8}{8})</td>
<td>(\frac{4}{8} = \frac{1}{2})</td>
</tr>
<tr>
<td>c)</td>
<td>(\frac{16}{4} = 4)</td>
<td>(\frac{8}{4} = 2)</td>
<td>(\frac{4}{4} = 1)</td>
</tr>
<tr>
<td>d)</td>
<td>(\frac{16}{8} = 2)</td>
<td>(\frac{8}{8} = 4)</td>
<td>(\frac{4}{8} = \frac{1}{2})</td>
</tr>
<tr>
<td>e)</td>
<td>(\frac{16}{6} = \frac{24}{6} = 2\frac{2}{3})</td>
<td>(\frac{8}{6} = \frac{1}{3})</td>
<td>(\frac{4}{6} = \frac{2}{3})</td>
</tr>
</tbody>
</table>

2. a) 63 chairs + 58 chairs + 120 chairs = 241 chairs
b) 3 quarters + 2 quarters + 1 quarter = 6 quarters
 = 1 and 2 quarters
 = 1 and a half
c) 4q + 7q + 11q = 22q
d) \(\frac{3}{7} + \frac{2}{7} + \frac{4}{7} - \frac{5}{7} = \frac{4}{7}\)
e) 312 chicks + 243 dogs – 250 chicks + 21 dogs
 = (312 – 250) chicks + (243 + 21) dogs
 = 62 chicks + 264 dogs (= 326 animals)
f) 4a + 6a + 8b – 5b = 10a + 3b
g) \(\frac{1}{2} + \frac{1}{4} + \frac{3}{4} + \frac{1}{2} = \frac{2}{2} + \frac{4}{4} = 1 + 1 = 2\)

3. a) \(\frac{1}{6} + \frac{5}{6} = 1\) \(\frac{1}{4} + \frac{3}{4} = 1\) \(\frac{4}{3} - \frac{1}{3} = 1\) \(1 - \frac{2}{5} = \frac{3}{5}\)
b) \(\frac{3}{7} + \frac{4}{7} = 1\) \(\frac{3}{8} + \frac{5}{8} = 1\) \(\frac{7}{6} - \frac{1}{6} = 1\) \(1 - \frac{4}{9} = \frac{5}{9}\)

4. a) Ate: \(\frac{2}{5}\) of 500 g = 500 g ÷ 5 × 2 = 100 g × 2 = 200 g
 Answer: David ate 200 g of chocolate.
b) Spent: £318 = \(\frac{2}{3}\);
 Had at first: \(\frac{3}{3} \rightarrow £318 ÷ 2 × 3 = £159 × 3 = £477\)
 Answer: Marion had £477 at first.
Lesson Plan

86

Notes

Whole class activity

(Or individual work in Ex. Bks. T dictates the first few terms. Ps copy into Ex. Bks., then continue the sequence under a time limit. Review at BB with whole class.)

Written on BB or SB or OHT

At a good pace

T decides when to stop

Checking, agreement, praising

Extra praise for Ps who can cope with whole numbers and fractions or negative fractions.

Show the fractions on the number line if problems.

Revise meanings of numerator and denominator.

e) Rule: \(- \frac{5}{10} \left(= \frac{1}{2} \right)\)

Feedback for T

Individual trial, monitored, helped

Written on BB or use enlarged copy master or OHP

(or c) and d) done with the whole class)

Discussion, reasoning, agreement, self-correction, praising

c) Sequence of differences:

- 1000, – 900, – 800, (– 700,
- 600, – 500), [– 400, – 300,
- 200, – 100, – 0, +100, . . .]

d) Rule: \(+ \frac{1}{9}\)

Ps might give other forms of some of the fractions (as shown)
Activity

Explaining fractions

T writes a fraction on the BB. Who can explain what it means? Who can draw a diagram to show it? Who can show it another way? etc. Who can think of a problem about it? Class decides if it is suitable.

a) \(\frac{3}{5} \)
- We divide the unit into 5 equal parts and take 3 of them.
 - (Ps draw a shape, divide it into fifths, then colour 3 of them.)
 - BB: e.g. [Diagram of a shape divided into fifths, with 3 parts shaded.]

b) \(\frac{2}{3} \)
- We divide the unit into 3 equal parts and take 2 of them.
 - (Ps draw a shape, divide it into thirds, then colour 2 of them.)
 - BB: e.g. [Diagram of a shape divided into thirds, with 2 parts shaded.]

c) \(\frac{1}{3} + \frac{2}{4} \)
- We take 1 whole unit, then divide another unit into 4 equal parts and take 3 of them. Or
 - We take 2 whole units, divide each of them into 4 equal parts, making 8 parts altogether, and take 7 of them.
 - (Ps draw 2 congruent shapes and divide and colour appropriately.)
 - BB: e.g. [Diagram of a shape showing 2 parts shaded, divided into 8 parts.]

Extension

Ps think of their own fraction, explain its meaning and draw a diagram about it (on BB or in Ex. Bks.). Who can think of a problem about it?

Notes

Lesson Plan 86

Whole class activity

(If class is not very able, T could have shapes already drawn on BB or OHT for Ps to divide up and colour.)

T helps with explanations and repeats suggested problems in a clearer way if necessary.

Ask Ps to point to the numerator and denominator of each fraction while explaining meaning.

Reasoning, agreement, praising

Extra praise for creative shapes.

Class checks that the parts which have been formed are equal.

Feedback for T

Whole class activity or individual work in Ex. Bks.

PbY4b, page 86

Q.2 Read: *Show the fractions in different ways.*

Set a time limit. If class is not very able, deal with one part at a time. Ps decide without help how to colour, draw or label. Ps finished first show their solutions on BB or OHT.

Review with whole class. Ps at BB explain their models. Who did the same? Who did something different? Is this correct too? etc. Deal with all cases. Class point out errors. (Only praising and encouragement for part c) as it is difficult.)

Solution: e.g.

a) \(\frac{1}{3} \)

b) 4 sevenths

c) \(\frac{2}{3} \)

Elicit that

\[
\frac{2}{3} = 1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3 + 2}{3} = \frac{5}{3}
\]

© CIMT, University of Exeter
Lesson Plan 86

Activity

PbY4b, page 86

Q.3 Let's have a calculation competition!

When I tell you to start, do the calculation in your *Ex. Bk*, check the result and write it in your *Pb*. You can draw a diagram if it will help you. Stand up when you have done it.

Start . . . now! T waits until majority of class are standing before choosing one of the quickest Ps to come to BB to explain reasoning to class. Class agrees/disagrees.

Who made a mistake? What was your mistake? Who did the same? etc. Ps correct their mistakes or complete the calculation.

Repeat for the other calculations.

Stand up if you had all 10 calculations correct (or 1, 2 mistakes if nobody has them correct). Let's give them a round of applause!

Solution:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4100 + 810 + 70 + 2400 = 4980 + 2400</td>
<td>= 7380</td>
</tr>
<tr>
<td>b) 5210 – 2300 = 2910</td>
<td></td>
</tr>
<tr>
<td>c) 3050 – 2500 + 800 = 550 + 800</td>
<td>or = 1350</td>
</tr>
<tr>
<td>d) 635 + 0287</td>
<td>e) 5204 – 0351</td>
</tr>
<tr>
<td>g) 2 sixths + 3 sixths = 5 sixths</td>
<td>or (\frac{2}{6} + \frac{3}{6} = \frac{5}{6})</td>
</tr>
<tr>
<td>h) 7 eighths – 3 eighths = 4 eighths</td>
<td>or (\frac{7}{8} - \frac{3}{8} = \frac{4}{8} = \frac{1}{2})</td>
</tr>
</tbody>
</table>

Notes

Individual work, monitored (helped)

Written on BB or OHT

Deal with one part at a time unless class is very able.

(Some Ps might not need to use their *Ex. Bks.*)

In good humour!

Reasoning, agreement, self-correcting, praising

Ps explain calculations in detail or draw models on BB to show the fractions if there are problems.

Use different Ps to explain each time.

Stars, stickers, etc. awarded
Lesson Plan 86

Notes
- Individual work, monitored, helped
- Written on BB or SB or OHT
- Differentiation by time limit and optional questions.
- Reasoning, agreement, self-correction, praising

Other methods: e.g.

f) \(1037 \times 13\)

\[= 1037 \times 10 + 1037 \times 3\]

\[= 10370 + 3111\]

\[= 13481\]

g) subtracting known multiples:

<table>
<thead>
<tr>
<th>7</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| 45 min |
Y4

Lesson Plan

Activity 1

Calculation practice

Listen carefully, do the calculations in your head if you can and show me the answer when I say.

a) **Start with 352, add 450 (802), subtract 142 (660), divide by 3 (220), multiply by 5 (1100), multiply by 10 (11000), and divide by 1000.**

Which number do you end up with? Show me... now! (11)

Ps who were wrong go through the calculations with help of class.

b) **I am thinking of a number. If I add 840 to it and take away 320, I get 1520. What is the number I am thinking of?**

Show me... now! (1000)

A, come and tell us how you got your answer. Who agrees? Who did it another way? etc.

\[+ 840 - 320 = 1520 \]
\[+ 520 = 1520, \text{ so } \]
\[= 1520 - 520 = 1000 \]

c) **I am thinking of a number. If I multiply 1 third of it by 6, I get 1200. What is the number I am thinking of?**

Show me... now! (600)

B, come and tell us how you got your answer. Who agrees? Who did it another way? etc.

\[\div 3 \times 6 = 1200 \]
\[\div 2 = 1200 \]
\[= 200 \times 3 = 600 \]

Activity 2

Inequalities

a) Which numbers can be written in the box? Ps come to BB to list them or dictate to T. Class agrees/disagrees.

BB: 3740 < < 3752

: 3741, 3742, 3743, 3744, 3745, 3746, 3747, 3748, 3749, 3750, 3751 (if only whole numbers)

Let's mark them on the number line. Ps draw dots at each tick.

Could any other numbers be included? If Ps do not think of fractions, T gives a hint, e.g., 'What about 3748 and a half?' P comes to number line to mark its position.

We call numbers made up of a whole number and a fraction **mixed numbers**. (BB) Who can think of other mixed numbers which could be included in our list? (e.g. e.g. 3750 and 9 tenths.)

We don't have room to mark all the possible numbers with dots. Who remembers how we can show them? P comes to BB.

BB: Mixed numbers

e.g. \(3\frac{1}{4}, 27\frac{3}{8}, 3750\frac{11}{20} \)

'We draw a circle above the numbers at each side of the inequality, then join them up with a straight line.'

(T gives hints or shows it if no P remembers.)
Lesson Plan 87

Notes

Discussion, reasoning, agreement, praising

BB: e.g. \(\frac{6}{28} \leq \frac{17}{28} \leq \frac{18}{28} \)

Ps suggest other possible fractions and show their rough position on the number line.

Discuss equivalent fractions (some given in the diagram).

Individual work, monitored, helped

(Or as a whole class activity. P reads a question aloud, Ps solve it in Ex. Bks and show the result on T's command.)

Ps check by doing reverse operations.

Discussion, reasoning, self-correction, praising

Show details of calculations on BB if problems. e.g.

1. a) \[3 + 5 = 8 \]

2. b) \[7 - 5 = 2 \]

3. c) \[9 \times 2 = 18 \]

4. d) \[0 \div 2 = 0 \]

Y4

Activity

2 (Continued)

b) Deal with this inequality in a similar way, eliciting that:

- other fractions can be included in the list too;
- 3 fourteenths should be included in the list, so the circle above it is coloured black.

BB: \[\frac{3}{14}, \frac{4}{14}, \frac{5}{14}, \frac{6}{14}, \frac{7}{14}, \frac{8}{14}, \frac{9}{14}, \frac{10}{14}, \frac{11}{14}, \frac{12}{14}, \frac{13}{14}, \frac{14}{14} \]

(If only fourteenths are used)

3

PbY4b, page 87

Q.1 Read: Write an equation and calculate the missing number in your exercise book.

Set a time limit. Ps read questions themselves and solve and check them in Ex. Bks.

Review at BB with whole class. (Ps could show each result on scrap paper or slates in unison on command. P responding correctly explains to those who did not.) Mistakes discussed and corrected.

Solution: (e.g. using a square for the unknown number)

a) We thought of a number. If we added 420 we would get 3150. Which number were we thinking of?

\[\boxed{+ 420} = 3150, \quad \boxed{= 3150 – 420} = 2730 \]

b) We thought of a number. If we subtracted 200 from it we would get 5002. Which number were we thinking of?

\[\boxed{– 200} = 5002, \quad \boxed{= 5002 + 200} = 5202 \]

c) We thought of a number. If we multiplied it by 7 we would get 203. Which number were we thinking of?

\[\boxed{\times 7} = 203 \quad \boxed{= 203 \div 7} = 29 \]

d) We thought of a number. If we divided it by 7 we would get 203. Which number were we thinking of?

\[\boxed{\div 7} = 203 \quad \boxed{= 203 \times 7} = 1421 \]

22 min

28 min

4

PbY4b, page 87

Q.2 Read: Fill in the missing numbers.

Set a time limit. Ps can do calculations in Ex. Bks.

Review at BB with whole class. (Ps could show each result on scrap paper or slates in unison on command. P responding correctly explains to those who did not.) Mistakes discussed and corrected.

Solution:

a) \[438 + 562 = 1000 \]

b) \[7400 – 4500 = 2900 \]

c) \[8200 – 5400 = 2800 \]

d) \[\frac{3}{8} + \frac{4}{8} = \frac{7}{8} \]

e) \[\frac{13}{15} – \frac{2}{15} = \frac{11}{15} \]

f) \[1 – \frac{3}{7} = \frac{4}{7} \]

28 min
Activity

5 **PbY4b, page 87**

Q.3 Read *Fill in the missing numbers.*

Set a time limit. Ps do calculations in *Ex. Bks* and write only the results in *Pbs*.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations on BB if problems.

Solution:

a) \(9 \times \frac{43}{3} = 387\) (as \(387 \div 9 = 43\))

b) \(\frac{3483}{9} = 387\) (as \(387 \times 9 = 3483\))

c) \(378 \div \frac{54}{3} = 7\) (as \(378 \div 7 = 54\))

d) \(\frac{1}{3} \times 3 = \frac{3}{3} = 1\) (as \(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{3}{3} = 1\))

e) \(\frac{4}{5} \times 2 = \frac{2}{5}\) (as \(\frac{2}{5} \times 2 = \frac{4}{5}\))

f) \(\frac{5}{8} \div \frac{5}{8} = \frac{1}{8}\) (as \(\frac{1}{8} \div \frac{1}{8} = \frac{8}{8} = 1\))

34 min

6 **PbY4b, page 87, Q.4**

a) **Read:** *Complete the table if this is the rule. \(B = \frac{2}{5}\) of \(A\).* *Write the rule in a different way.*

Ps come to BB to choose a column and write the missing number, explaining reasoning. T might need to help with the columns which have fractions. Draw a diagram to help Ps understand the relationship between \(A\) and \(B\).

Who can write the rule in a different way? Who agrees? Who can think of another way? etc. Check with values from the table.

Solution:

<table>
<thead>
<tr>
<th>(A)</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>39</th>
<th>42</th>
<th>45</th>
<th>48</th>
<th>51</th>
<th>54</th>
<th>57</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
</tr>
</tbody>
</table>

Rule: \(B = \frac{2}{5}\) of \(A\) or \(B = A \div \frac{2}{5}\),

\(A = 3\) halves of \(B\) or \(A = B \div \frac{2}{5}\) or \(A = B + (B \div 2)\)

b) **Read:** *Find a rule and complete the table. Write the rule in different ways.*

Ask several Ps what they think the rule could be. Decide on one form in words. Ps come to BB to choose a column and write the missing number, explaining reasoning. Class agrees/disagrees. Ps think of their own values for the last 3 columns.

Who can write the rule in a mathematical way? Who agrees? Who can write it another way? Check with values from the table.

Solution:

<table>
<thead>
<tr>
<th>(X)</th>
<th>1</th>
<th>2</th>
<th>(\frac{2}{5})</th>
<th>(\frac{4}{5})</th>
<th>(\frac{6}{5})</th>
<th>(\frac{12}{5})</th>
<th>(\frac{13}{5})</th>
<th>(\frac{9}{5})</th>
<th>(\frac{6}{5})</th>
<th>(20)</th>
<th>(\frac{40}{5})</th>
<th>(\frac{40}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>(\frac{2}{5})</td>
<td>(\frac{2}{5})</td>
<td>(0)</td>
<td>(\frac{1}{5})</td>
<td>(\frac{3}{5})</td>
<td>(\frac{4}{5})</td>
<td>(\frac{10}{5})</td>
<td>(\frac{6}{5})</td>
<td>(\frac{5}{2})</td>
<td>(\frac{19}{5})</td>
<td>(\frac{40}{2})</td>
<td></td>
</tr>
</tbody>
</table>

Rule: \(Y = X - \frac{3}{5}\), \(X = Y + \frac{3}{5}\), \(X - Y = \frac{3}{5}\)

45 min

Notes

Individual work, monitored, helped

Written on BB or SB or OHT
(Or deal with one row at a time and do d), e) and f) without T’s help.

Extra praise if Ps do d), e) and f) without T’s help.

Details: e.g.

<table>
<thead>
<tr>
<th>(9)</th>
<th>(3)</th>
<th>(8)</th>
<th>(7)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(3)</th>
<th>(4)</th>
<th>(8)</th>
<th>(3)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(7)</th>
<th>(3)</th>
<th>(1)</th>
<th>(5)</th>
</tr>
</thead>
</table>

Extra praise if Ps notice that some fractions can be written as mixed numbers.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rounding to nearest metre</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Who can tell me the units of length? (km, m, cm, mm) What is their relationship to each other? (BB)</td>
<td>Written on BB or SB or OHT</td>
</tr>
<tr>
<td>Let's round these lengths to the nearest whole metre. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees.</td>
<td>BB: $1 \text{ km} = 1000 \text{ m}$</td>
</tr>
<tr>
<td>BB: a) 670 cm \approx (7 m)</td>
<td>$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm}$</td>
</tr>
<tr>
<td>b) 1515 cm \approx (15 m)</td>
<td>$1 \text{ cm} = 10 \text{ mm}$</td>
</tr>
<tr>
<td>c) 850 cm \approx (9 m)</td>
<td>At a good pace</td>
</tr>
<tr>
<td>d) 6040 cm \approx (60 m)</td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td>e) 449 cm \approx (4 m)</td>
<td>Elicit that:</td>
</tr>
<tr>
<td>f) 7100 cm \approx (71 m)</td>
<td>values $< 50 \text{ cm}$ round down</td>
</tr>
<tr>
<td>g) 5492 mm \approx (5 m)</td>
<td>values $\geq 50 \text{ cm}$ round up</td>
</tr>
<tr>
<td>h) 8920 mm \approx (9 m)</td>
<td>Feedback for T</td>
</tr>
<tr>
<td>i) 26 cm \approx (0 m)</td>
<td></td>
</tr>
<tr>
<td>j) $\frac{1}{2} \text{ m} = (2 \text{ m})$</td>
<td></td>
</tr>
<tr>
<td>2 Capacity</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>What is capacity? (How much liquid a container can hold) Who can tell me the units of capacity? (litre, cl, ml) What is their relationship to one another? (BB)</td>
<td>BB: $1 \text{ litre} = 100 \text{ cl} = 1000 \text{ ml}$</td>
</tr>
<tr>
<td>Which unit of capacity is missing from these sentences? Ps come to BB to write the missing units and to read the whole sentence aloud. Who agrees? Who thinks it should be another unit? Why? etc.</td>
<td>$1 \text{ cl} = 10 \text{ ml}$</td>
</tr>
<tr>
<td>BB: a) A large bucket can hold 12 of water when it is full.</td>
<td>Written on BB or SB or OHT</td>
</tr>
<tr>
<td>b) 12 (cl) of water will fill a small glass.</td>
<td>Agreement, praising</td>
</tr>
<tr>
<td>c) A tablespoon can hold 12 of water.</td>
<td>(T could have such items to show to class.)</td>
</tr>
<tr>
<td>3 Rounding to nearest litre</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>T says a capacity and writes it on the BB. Ps round it to the nearest whole litre and show on scrap paper or slates on command. Ps who answered correctly explain to those who did not.</td>
<td>In unison</td>
</tr>
<tr>
<td>BB: a) 432 cl \approx (4 litres)</td>
<td>Reasoning, agreement, praising</td>
</tr>
<tr>
<td>b) 350 cl \approx (4 litres)</td>
<td>Elicit that:</td>
</tr>
<tr>
<td>c) 996 cl \approx (10 litres)</td>
<td>values $< 50 \text{ cl}$ (or 500 ml) round down</td>
</tr>
<tr>
<td>d) 2546 ml \approx (3 litres)</td>
<td>values $\geq 50 \text{ cl}$ (or 500 ml) round up</td>
</tr>
<tr>
<td>e) 1200 ml \approx (1 litre)</td>
<td>Feedback for T</td>
</tr>
<tr>
<td>f) 2500 ml \approx (3 litres)</td>
<td></td>
</tr>
<tr>
<td>g) 25 cl \approx (0 litres)</td>
<td></td>
</tr>
<tr>
<td>h) 96 ml \approx (0 litres)</td>
<td></td>
</tr>
<tr>
<td>i) 760 ml \approx (1 litre)</td>
<td></td>
</tr>
<tr>
<td>j) $\frac{3}{4}$ litres \approx (2 litres)</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 88

Notes

Whole class activity
BB: 1 tonne = 1000 kg
1 kg = 1000 g
Written on BB or SB or OHT
Agreement, praising
(T could have items for a) and d) to show to class. Amend the sentences to match the items.)
Feedback for T

Y4

Activity

4

Mass

What is mass? (How heavy something is) Who can tell me the units of mass? (tonne, kg, g). What is their relationship to one another? (BB)

Which unit of mass is missing from these sentences? Ps come to BB to write the missing units and to read the whole sentence aloud. Who agrees? Who thinks it should be another unit? Why? etc.

BB: e.g.

a) The mass of a small packet of cream cheese is 100

b) The mass of a lorry carrying a load of sand is 10

c) The mass of a bucket full of water is 10 . (kg) . .

d) The mass of a sweet is 10 . (grams).

5

Rounding mass

a) Let’s round these quantities to the nearest kg.

BB: i) 1625 g = (2 kg) ii) 3200 g = (3 kg)

iii) 7500 g = (8 kg) iv) 900 g = (1 kg)

b) Let’s round these quantities to the nearest tonne.

BB: i) 1200 kg = (1 tonne) ii) 1500 kg = (2 tonnes)

iii) 1498 kg = (1 tonne) iv) 498 kg = (0 tonnes)

6

PbY4b, page 88

Q.1 Read: Solve this problem in your exercise book. Write the answer here.

Ps read question themselves, calculate and check in Ex. Bks and write the answers in Pbs. Set a time limit.

Review with whole class. Ps come to BB to explain solution. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

A roll of film is 675 m long.

a) How long are 9 rolls of film?

BB: 1 roll → 675 m

9 rolls → 675 m × 9 = 6075 m (= 6 km 75 m)

b) How long is 3 fifths of a roll of film?

BB: 1 fifth of a roll → 675 m ÷ 5 = 135 m

3 fifths of a roll → 135 m × 3 = 405 m

or 3 fifths of a roll → 675 m ÷ 5 × 3 = 405 m

© CIMT, University of Exeter
Y4

Activity

7 PbY4b, page 88

Q.2 Read: Complete the table.

Study the table. Who can explain what we have to do? If
nobody understands, do one or two rows with the whole class
first as a model for Ps to follow. Set a time limit.
Review at BB with whole class. Ps come to BB or dictate to T,
explaining reasoning. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Capacity</th>
<th>100 litres</th>
<th>800 litres</th>
<th>1 litre</th>
<th>8 litres</th>
<th>10 cl</th>
<th>8 cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 half</td>
<td>50</td>
<td>400</td>
<td>50</td>
<td>400</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>1 quarter</td>
<td>25</td>
<td>200</td>
<td>25</td>
<td>200</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>1 tenth</td>
<td>10</td>
<td>80</td>
<td>10</td>
<td>80</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1 fifth</td>
<td>20</td>
<td>160</td>
<td>20</td>
<td>160</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>2 fifths</td>
<td>40</td>
<td>320</td>
<td>40</td>
<td>320</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>3 tenths</td>
<td>30</td>
<td>240</td>
<td>30</td>
<td>240</td>
<td>30</td>
<td>24</td>
</tr>
</tbody>
</table>

35 min

8 PbY4b, page 88

Q.3 Read: Complete the table.

Elicit that this table is similar to Q.2 but that the measures are
for mass and the fractions are written with numbers.
Set a time limit. Review at BB with whole class. Ps come to
BB or dictate to T, explaining reasoning. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Mass</th>
<th>1 kg</th>
<th>12 kg</th>
<th>24 kg</th>
<th>200 g</th>
<th>400 g</th>
<th>6 tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>50 g</td>
<td>6000 g</td>
<td>12000 g</td>
<td>100 g</td>
<td>200 g</td>
<td>3000 kg</td>
</tr>
<tr>
<td>1/4</td>
<td>250 g</td>
<td>3000 g</td>
<td>6000 g</td>
<td>50 g</td>
<td>100 g</td>
<td>1500 kg</td>
</tr>
<tr>
<td>1/2</td>
<td>100 g</td>
<td>1200 g</td>
<td>2400 g</td>
<td>20 g</td>
<td>40 g</td>
<td>600 kg</td>
</tr>
<tr>
<td>1</td>
<td>200 g</td>
<td>2400 g</td>
<td>4800 g</td>
<td>40 g</td>
<td>80 g</td>
<td>1200 kg</td>
</tr>
<tr>
<td>1 1/2</td>
<td>400 g</td>
<td>4800 g</td>
<td>9600 g</td>
<td>80 g</td>
<td>160 g</td>
<td>2400 kg</td>
</tr>
</tbody>
</table>

40 min

9 PbY4b, page 88, Q.4

Read: Complete the tables to show the capacity and mass of clear
water at 4 °C.

Remind Ps of the relationship between capacity and mass by measuring
out 1 litre of water and weighing it or balancing it against a 1 kg weight.
Ps come to BB to choose a column and fill in the missing quantity,
explaining reasoning. Class agrees/disagrees. Ps fill in tables in Pbs too.

Solution:

a) Capacity | 1 litre | 7 litres | 4 litres | 1/2 litre | 1/4 litre | 100 litres | 50 litres |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>1 kg</td>
<td>7 kg</td>
<td>4 kg</td>
<td>500 g</td>
<td>250 g</td>
<td>100 kg</td>
<td>50 kg</td>
</tr>
</tbody>
</table>

b) Capacity | 1 ml | 8 ml | 13 ml | 1 cl | 10 ml | 200 ml | 50 ml |
| Mass | 1 g | 8 g | 13 g | 10 g | 200 g | 50 g | 1 1/2 g |

45 min

Lesson Plan 88

Notes

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, self-correction, praising
Draw diagrams on BB if there are problems. e.g.

What is the largest (smallest) mass anywhere in the table?
(Largest: 6 tonnes = 6000 kg
Smallest: 20 g)

Whole class activity
Drawn on BB or use enlarged copy master or OHP
(Demonstrate 1 or 2 different weights and capacities if time.)
BB: 1 litre → 1 kg = 1000 g
1 cl → 10 g
1 ml → 1 g
Discussion, reasoning, agreement, praising
Elicit other ways to write some quantities, e.g.
1 quarter of a litre = 25 cl
50 ml = 5 cl, etc.
Activity

Factors

Let’s factorise these numbers and write them as a product of their prime factors. We can then use the prime factors to help us list all the factors of each number.

Ps come to BB to draw the factor trees and write a multiplication. Class points out errors. Then the class dictates the factor pairs, using the prime factors to help them (see example in c) below).

If Ps do not dictate the factors in order, T makes sure that they are written in order on the BB, either horizontally or vertically.

BB: e.g.

- **a)**

 Prime factors

 \[400 = 2 \times 2 \times 2 \times 5 \times 5 \]

 Factors

 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400

- **b)**

 Prime factors

 \[385 = 5 \times 7 \times 11 \]

 Factors

 1, 5, 7, 11, 35, 55, 77, 385

- **c)**

 Prime factors

 \[480 = 2 \times 2 \times 2 \times 3 \times 5 \]

 Factors

 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 160, 240, 300, 480

Problem 1

Listen carefully, picture the story in your head and solve the problem in your Ex. Bks. Drawing a diagram might help you.

Show me the answer when I say.

I had a piece of ribbon which measured 3 halves of a metre.

I cut 3 tenths of a metre from one end. What length of ribbon do I have left? Show me . . . now! (On scrap paper or slates) (120 cm)

P who responded correctly comes to BB to show solution, explaining reasoning. Who did the same? Who did it a different way? etc.

Mistakes discussed and corrected.

BB: e.g.

\[
\begin{align*}
\text{Had:} & \quad 3 \times 2 \times 2 \times 5 = 100 \text{ cm} \\
\text{Cut off:} & \quad 3 \times 3 = 9 \text{ cm} \\
\text{Had left:} & \quad 100 - 9 = 101 \text{ cm} \\
\text{or} & \quad \frac{3}{2} \times \frac{3}{10} = \frac{9}{20} \text{ m} = 0.45 \text{ m} \\
\end{align*}
\]

Individual work, monitored, helped (or whole class activity)

T repeats problem slowly and writes fractions on BB.

Had: \(\frac{3}{2} \) m Cut off: \(\frac{3}{10} \) m

Reasoning, agreement, self-correction, praising

BB: e.g.

\[
\begin{align*}
\text{Had:} & \quad 1 \text{ m} = 100 \text{ cm} \\
\text{Cut off:} & \quad 30 \text{ cm} \\
\text{Had left:} & \quad 100 - 30 = 70 \text{ cm} \\
\end{align*}
\]

Answer: I had 120 cm left.
Problem 2
Listen carefully, write the data, make a plan and do the calculation in your Ex. Bks. Show me the answer when I say.
Donna took one and a half hours to do her homework. She spent 2 fifths of that time reading. For how long was she reading?
Show me . . . now! (36 min.)
P who answered correctly comes to BB to explain his/her solution. Class agrees/disagrees. Mistakes discussed and corrected.
BB: e.g.
Time on homework: $1\frac{1}{2}$ hours = 60 min + 30 min = 90 minutes
Time reading: $\frac{2}{5}$ of 90 minutes = 90 min. ÷ 5 × 2 = 18 min × 2 = 36 min.
Answer: She read for 36 minutes.

Problem 3
Listen carefully and think how you would solve this problem.
A lorry was loaded with 4590 kg of wheat, which was $\frac{2}{9}$ of the total crop. How much wheat was in the total crop?
Ps decide what to do first and how to continue. Ps come to BB to write a plan and do the calculations, explaining reasoning. Class points out errors. Who can think of another way to do it? etc.
BB: e.g.
$\frac{2}{9}$ of the crop → 4590 kg
$\frac{1}{9}$ of the crop → 4590 kg ÷ 2 = 2295 kg
$\frac{9}{9}$ of the crop → 2295 kg × 9 = 20 655 kg
Or in one line:
Whole crop = $\frac{9}{9}$ → 4590 kg ÷ 2 × 9 = 2295 kg × 9 = 20 655 kg
Answer: There were 20 655 kg of wheat in the whole crop.

PhY4b, page 89
Q.1 Read: *Fill in the missing numbers.*
Set a time limit. Ps may do calculations in Ex. Bks if needed but encourage mental calculation.
Review at BB with whole class. T reads each calculation and Ps show their final result on scrap paper or slates on command. Ps who responded correctly explain at BB to those who did not. Mistakes discussed and corrected
What do you notice? [e.g. a) and b) are really the same calculation but done in a different order – the results are the same. Similarly for d) and e).]
Activity 5 (Continued)

Solution:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lesson Plan 89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

5 PbY4b, page 89

Q.2 Read: Write a plan, estimate, calculate, check and write the answer as a sentence in your exercise book.

Deal with one at a time. Ps read problem themselves and solve it. Set a time limit.

Review with the whole class. Ps could show results on scrap paper or slates. Ps answering correctly come to BB to explain to the others. Who agrees? Who did it a different way? Who made a mistake? What was your mistake? etc.

Solutions:

- **a)** A farmer collected the cherries from his orchard and packed them in boxes. Each box held 18 kg of cherries. He filled 79 boxes and loaded them on a lorry to take to the supermarket.

 If an empty box weighed 2 kg, what was the total load on the lorry?

 e.g. 1 box + cherries: 2 kg + 18 kg = 20 kg

 79 boxes + cherries: 20 kg \(\times\) 79 = 20 kg \(\times\) 80 – 20 kg

 = 1600 kg – 20 kg

 = 1580 kg

 or 79 boxes + cherries = 79 \(\times\) 2 kg + 79 \(\times\) 18 kg

 = 158 kg + 1422 kg

 = 1580 kg

 Answer: The total load on the lorry was 1580 kg.

- **b)** The total mass of 8 containers of building material is 5600 kg. If the containers weighed 1600 kg in total when they were empty, how much building material is in each container?

 e.g. Material in 8 containers: 5600 kg – 1600 kg = 4000 kg

 Material in 1 container: 4000 kg \(\div\) 8 = 500 kg

 or 1 full container: 5600 kg \(\div\) 8 = 700 kg

 1 empty container: 1600 kg \(\div\) 8 = 200 kg

 Material in 1 container: 700 kg – 200 kg = 500 kg

 Answer: Each container holds 500 kg of building material.

Notes 89

Liken the operations to a bank account which has £5600 in it at the start, so that, e.g. in

- **d)** money is taken out in small amounts:

 - 400 – 500 – 300 – 200

 = – (400 + 500 + 300 + 200)

 = – 1400 (altogether)

 5600 – 1400 = 4200

 Similarly for e).

Individual work, monitored, helped

Ps can collaborate with their neighbours if they wish.

Discussion, reasoning, agreement, self-correction, praising

- or \((2 + 18) \times 79 = 20 \times 79\)

 = 1580 (kg)

 or \((5600 – 1600) \div 8\)

 = 4000 \(\div\) 8

 = 500 (kg)

 or \(5600 \div 8 – 1600 \div 8\)

 = 700 – 200

 = 500 (kg)

Deal with all the methods used by Ps.
Lesson Plan 89

Activity

PbYb, page 89

<table>
<thead>
<tr>
<th>Quest.</th>
<th>Description</th>
</tr>
</thead>
</table>
| Q.3 a) | Read: *How many small squares are needed to cover this rectangle?*
Stand up when you know it! First P to stand gives the total and explains how he got it so quickly *(e.g. $4 \times 9 = 36)* |
| Q.3 b) | Read: *Draw a rectangle which needs*
i) half ii) 2 thirds iii) 3 quarters iv) 5 ninths
of this number of small squares to cover it. |

Ps calculate first (in Ex. Bks or on slates if necessary), then draw the rectangle and write the number of squares inside it.
Review at BB with whole class. Ps dicatate the number of squares and come to BB to draw a rectangle (or T has a solution already prepared and uncovers each rectangle as it is dealt with). Elicit that the number of squares is its **area**.
Solution:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension

<table>
<thead>
<tr>
<th>Quest.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>What fraction of the 36 small squares could make a larger square?</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Individual work, monitored, helped
Grids drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, self-correction, praising
Elicit other possible rectangles e.g.
i) 6×3, 18×1
ii) 8×3, 2×12, 24×1
iii) 27×1
iv) 2×10, 20×1
but some cannot fit on the given grids.
1 quarter, 1 ninth, 4 ninths
$(3 \times 3) \quad (2 \times 2) \quad (4 \times 4)$

8 PbYb, page 89. Q.4

Read: *Complete the table to show different parts of the total number of walnuts.*
T could have some real walnuts to show to class. How are they grown? Where do they come from? etc. Who has never tasted a walnut? (T cracks one open and lets such Ps taste the kernel.)
How many walnuts are in the picture altogether? $(3 \times 4 = 12)$
Let’s complete the table. Ps come to BB to choose a column and fill in the missing number, explaining reasoning. Class agrees/disagrees.
Ps complete the table in their **Pbs** too.
Solution:

<table>
<thead>
<tr>
<th>Part of total</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{3}$</th>
<th>$\frac{1}{6}$</th>
<th>$\frac{3}{2}$</th>
<th>$\frac{3}{3}$</th>
<th>$\frac{3}{6}$</th>
<th>$\frac{2}{3}$</th>
<th>$\frac{4}{6}$</th>
<th>$\frac{6}{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

Extension

<table>
<thead>
<tr>
<th>Quest.</th>
<th>Description</th>
</tr>
</thead>
</table>
| If these 12 walnuts were not the whole amount but were the fractions shown in the table, what would the whole amount be?
T points to each fraction in turn and class shouts out the whole amount.
BB: |

<table>
<thead>
<tr>
<th>Part of total</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{3}$</th>
<th>$\frac{1}{6}$</th>
<th>$\frac{3}{2}$</th>
<th>$\frac{3}{3}$</th>
<th>$\frac{3}{6}$</th>
<th>$\frac{2}{3}$</th>
<th>$\frac{4}{6}$</th>
<th>$\frac{6}{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of</td>
<td>24</td>
<td>36</td>
<td>72</td>
<td>8</td>
<td>12</td>
<td>24</td>
<td>18</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>

Note:

Whole class activity
(or individual work if Ps wish)
Drawn on BB or use enlarged copy master or OHP
[e.g. Walnuts grow on trees in America, SE Europe and Asia; the wood from the trunk is used to make furniture]
At a good pace
Reasoning, agreement, praising
Whole class activity
Or Ps come to BB to fill in table, explaining reasoning.
At speed
Agreement, praising
Ps point out equivalent fractions where relevant.
Practice, revision, activities, consolidation

PhY4b, page 90

Solutions:

Q.1

a) \(\frac{1}{4} \)

b) three fifths

c) \(\frac{1}{2} \)

Q.2

a) \(30 \times 4 = 120 \)

\(360 \div 9 = 40 \)

\(40 \times 40 = 1600 \)

\(240 \div 20 = 12 \)

b) \(\frac{14}{7} \times \frac{7}{2} = \frac{14 \times 7}{7 \times 2} = \frac{98}{14} = \frac{7}{1} \)

Q.3

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>100</th>
<th>250</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>40</td>
<td>100</td>
<td>(\frac{4}{5})</td>
</tr>
</tbody>
</table>

Rule: \(A = 2 \times \frac{1}{2} \times B \)

Q.4

a) \(1525 < \star \times \star < 1530 \)

\(\star \times \star : 1526, 1527, 1528, 1529 \) (or, e.g. \(1527 \times \frac{1}{4} \))

b) \(\frac{6}{11} \leq \star \times \star < 1 \)

\(\star \times \star : \frac{6}{11}, \frac{7}{11}, \frac{8}{11}, \frac{9}{11}, \frac{10}{11} \) (or, e.g. \(\frac{13}{22} \))

c) \(\frac{1}{8} \leq \star \times \star < \frac{1}{2} \)

\(\star \times \star : \frac{1}{8}, \frac{2}{8}, \frac{3}{8} \) (or, e.g. \(\frac{1}{4}, \frac{5}{16} \))

Q.5

a) \(234 \text{ cl} = 2 \text{ litres}, 375 \text{ cl} = 4 \text{ litres}, 4390 \text{ cl} = 44 \text{ litres} \)

b) \(4.6 \text{ km} = 5 \text{ km}, 3 \text{ km} 45 \text{ cm} = 3 \text{ km}, 6390 \text{ m} = 6 \text{ km} \)

c) \(1 \frac{3}{8} \text{ kg} = 1 \text{ kg}, 1456 \text{ g} = 1 \text{ kg}, 5.5 \text{ kg} = 6 \text{ kg} \)
Activity

1 Place values
What do the columns in the place-value table mean? T writes the actual values above the letters, as dictated by Ps. (Tth: 10 000, etc.)
Let’s write these numbers in the place value table. T does part a), with help of class if possible, as a model for Ps to follow. Ps come to BB to do the rest, explaining reasoning. Class points out errors.
BB:

<table>
<thead>
<tr>
<th></th>
<th>TTh</th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 8076</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>b) 3405</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>c) 10 007</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>d) 2220</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

T points to, e.g. the ‘7’ in 8076. What is its digit value? (7) What is its place value? (7T) What is its real value? (70) Ps choose other digits and give the 3 values. Class agrees/disagrees.

5 min

2 Units of length
Elicit the relationship between cm and mm (m and cm). (BB)
Let’s write these lengths in the tables. Ps come to BB to write the lengths in the correct columns in the table and then to write them in a different form. Class points out errors.
BB:

<table>
<thead>
<tr>
<th>cm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 65 cm 2 mm</td>
<td>65</td>
</tr>
<tr>
<td>4 cm 9 mm</td>
<td>4</td>
</tr>
<tr>
<td>503 mm 50 mm</td>
<td>50</td>
</tr>
</tbody>
</table>

1 m = 100 cm

<table>
<thead>
<tr>
<th>m</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) 2 m 34 cm</td>
<td>2</td>
</tr>
<tr>
<td>8 m 5 cm</td>
<td>8</td>
</tr>
<tr>
<td>412 cm</td>
<td>4</td>
</tr>
<tr>
<td>508 cm</td>
<td>5</td>
</tr>
</tbody>
</table>

10 min

3 Missing items
Let’s fill in the missing items. Ps come to BB or dictate to T, explaining reasoning. Class points out errors.
BB:

<table>
<thead>
<tr>
<th>cm</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) i) 1 mm = 1/10 cm</td>
<td>ii) 3 mm = 3/10 cm</td>
</tr>
<tr>
<td>iii) 12 mm = 1 cm 2 mm = 12/10 cm = 1 2/10 cm</td>
<td></td>
</tr>
<tr>
<td>b) i) 1 cm = 1/100 m</td>
<td>ii) 5 cm = 5/100 m</td>
</tr>
<tr>
<td>iii) 62 cm = 62/100 m</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Plan 91

Activity

(Continued)

3

- **c)** i) 1 p = £ \(\frac{1}{100} \)
 ii) 8 p = £ \(\frac{8}{100} \)
 iii) 36 p = £ \(\frac{36}{100} \)
 iv) 145 p = £ \(\frac{145}{100} = \frac{1}{100} \times 145 = \frac{145}{100} \)

- **d)** How can we write £8 50 p in another way? (£8.50)

 Who can explain what it means? (e.g. There are 8 whole pounds, then the dot separates the pounds from the 50 p.)

 - How could we write £687 29 p using only £s? (BB)

 - Let’s think about what each digit really means! T starts each equation and Ps complete it, following the pattern.

 - BB: £687 29 p = 6 \times £100 + 8 \times £10 + (7 \times £1 + 9 \times £1)

 - Or we could write it like this:

 - BB: (£) 6 \times 100 + 8 \times 10 + (7 \times 1 + 9 \times \frac{1}{100})

4 Place value tables for quantities

Let’s write these amounts in the correct columns in the place-value tables. Ps come to BB to fill in the columns, explaining reasoning. Class agrees/disagrees.

Let’s round these amounts to the nearest whole unit. T points and class shouts out in unison (or T chooses Ps at random). T writes on BB.

- **a)** 1 cm is 1 unit

<table>
<thead>
<tr>
<th>T</th>
<th>U</th>
<th>(\frac{1}{100}) cm</th>
<th>(\frac{1}{10}) cm</th>
<th>(\frac{1}{1}) cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm 3 mm</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>(\approx) 15 cm</td>
</tr>
<tr>
<td>305 mm</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>(\approx) 31 cm</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **b)** 1 m is 1 unit

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>U</th>
<th>(\frac{1}{100}) m</th>
<th>(\frac{1}{10}) m</th>
<th>(\frac{1}{1}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 m 85 cm</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>(\approx) 3 m</td>
</tr>
<tr>
<td>106 m 4 cm</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>(\approx) 106 m</td>
</tr>
<tr>
<td>238 cm</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>(\approx) 2 m</td>
<td></td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **c)** £1 is 1 unit

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>U</th>
<th>(\frac{1}{100}) £</th>
<th>(\frac{1}{10}) £</th>
<th>(\frac{1}{1}) £</th>
</tr>
</thead>
<tbody>
<tr>
<td>£216 48 p</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>(\approx) £216</td>
</tr>
<tr>
<td>£30 28 p</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>(\approx) £30</td>
</tr>
<tr>
<td>£407 6 p</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>(\approx) £407</td>
</tr>
<tr>
<td>5816 p</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>(\approx) £58</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension

Ps demonstrate some of the rounded lengths and amounts of money.

16 min

Notes

Elicit that:

- £1 = 100 p

Discussion, agreement

- BB: £8 50 p = £8.50

- BB: £687 29 p = £687.29

Using £s and pence

Whole class activity

- Drawn on BB or use enlarged copy master or OHT

- Ps could have own copies on desks too.

- (Ps fill in own tables too if they have them.)

 - Ps suggest 1 or 2 other amounts to add to each table.

- T points to some digits in table and asks Ps to express them in another way, e.g.

 - a) 3 tenths of a cm = 3 mm

 - b) 5 hundredths of a m = 5 cm

 - c) 4 tenths of a £ = 40 p

- T has measuring tools and model money for Ps to use.

© CIMT, University of Exeter
Lesson Plan 91

Notes

Whole class activity
Table drawn on BB or use enlarged copy master or OHP
Discussion about the table.
Elicit that the thick vertical line separates the whole units from the parts of a unit.
(Or if Ps wish, they could do remaining numbers in each question as individual work, reviewed with whole class)
Reasoning, agreement, (self-correcting), praising

Whole class discussion
BB: Mixed Decimal number number
\[
\frac{35}{10} = 3.5 \uparrow\ \text{decimal point}
\]

BB: 1.63 = 1 + \frac{6}{10} + \frac{3}{100}
\[
= 1 \frac{63}{100}
\]
T helps where necessary, e.g.
'twenty-eight point four zero' 'forty-one point zero five'

Individual work, monitored, helped
Table drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, self-correction, praising

Whole class activity
At a good pace
Praising, encouragement only

Y4

Activity

PbY4b, page 91, Q.1
Read: Change the quantities to the units required and write them in the table.

For each part, first elicit what the Units column means, then what the other columns mean. [e.g. in a), the Units column shows single cm, the Tens column shows groups of 10 cm, etc.]

T could do the first row in each part as a model for Ps to follow.
Ps come to BB to fill in the other rows, explaining reasoning. Class agrees/disagrees.
Ps complete the table in Pbxs too.

Solution: (Done later – see below)
\[
\begin{array}{c|c|c|c|c}
& H & T & U & t \\
\hline
da) & 3 & 5 & 6 & 6 \ (cm) \\
1 m 20 cm 4 mm & 1 & 2 & 0 & 4 \\
3208 mm = 3 m 20 cm 8 mm & 3 & 2 & 0 & 8 \\
b) & 1 & 6 & 3 & 3 \ (m) \\
28 m 40 cm & 2 & 8 & 4 & 0 \\
605 cm = 6 m 5 cm & 6 & 0 & 5 \\
c) & 8 & 7 & 0 & 0 \ (£) \\
£8 70 p = 870 p & 8 & 7 & 0 \\
£41 5 p = 4105 p & 4 & 1 & 0 & 5 \\
£120 15 p = 12 015 p & 1 & 2 & 0 & 1 & 5 \\
3648 p = £36 48 p & 3 & 6 & 4 & 8 \\
\end{array}
\]

Let's think about what the numbers in the table really mean! T points to 1st row. What does this number mean? (35 whole cm and 6 tenths of a cm) Who can write it as a mixed number? P comes to BB.

We could also write it as a decimal number. Who knows how to do it?
If no P knows, T writes it on BB. (35.6)

We have replaced this thick line in the table (T points) with a dot. We call this dot the decimal point. It separates the whole units from the parts of a unit.

Who knows how to read this decimal number? T reads it if no P knows. (Thirty-five point six) Let's all read it together. (In unison)

T helps where necessary, e.g. 'twenty-eight point four zero' 'forty-one point zero five'
6 (Continued)
Solution:

<table>
<thead>
<tr>
<th></th>
<th>H 100</th>
<th>T 10</th>
<th>U 1</th>
<th>t 100</th>
<th>h 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>5 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>3 4 7 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>6 8 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>0 9 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>6 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PbY4b, page 91
Q.3 Read: Write the quantities in different forms in your exercise book.
Deal with one row at a time. Do part i) on BB with the whole class first (with help of Ps) as a model for Ps to follow. Rest done as individual work.
Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected.
Solution: e.g. (Accept any correct form.)

a) i) £4.99 = 499 p = £4 + £ = \(\frac{99}{100}\) = £4.99
 ii) £41.5 = £41 + £ = \(\frac{5}{100}\) = £41.5 (\(=\) £41 \(\frac{1}{20}\))
 iii) £204.50 = £204 + £ = \(\frac{50}{100}\) = £204.50 →

b) i) 4.3 cm = 43 mm = 4 cm 3 mm = \(\frac{3}{10}\) cm
 ii) 63.5 cm = 635 mm = 63 cm 5 mm = \(\frac{5}{10}\) cm →
 iii) 8.24 m = 824 cm = 8 m 24 cm = \(\frac{24}{100}\) m →
 iv) 57.06 m = 5706 cm = 57 m 6 cm = \(\frac{6}{100}\) m

40 min

Q.4 a) Read: Draw these lines with a ruler in your exercise book and label them.
Remind Ps how to draw and measure lengths accurately.
Set a time limit. When Ps have drawn the lines, ask them to give the lengths in different forms. T writes on BB.

b) Read: Measure the length of these line segments and write it in different forms.
Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees.

45 min

Notes
T helps where necessary. e.g.
c) 6.84 is read as 'six point eight four'
d) 92 hundredths = 0.92
If there are no whole units in a decimal number, we put a zero in the units column and read the decimal as 'zero point nine two'
e) 60.3 is 60 whole units and 3 tenths of a unit and is read as 'sixty point 3'
Lesson Plan

R: Whole numbers. Calculations
C: Fractions and decimals
E: Measures. Number line

Activity

1. Number line

Start with a number line which has only 0 and 1 labelled. What does each 'tick' show? (tenths, because the unit is divided into 10 equal parts)

T labels the first 4 ticks with decimals above the line and fractions below it. Who can label the next tick? Ps comes to BB in pairs, one to say and write the next fraction and the other the next decimal. Class agrees/disagrees. Ps at BB choose the next pair of Ps.

Discuss simpler equivalent fractions and mixed numbers as appropriate.

BB:

\[
\begin{array}{ccc
Activity 4

Fractions and decimals

Let's write these fractions as a decimal. Ps come to BB to write the decimals, explaining reasoning. Class agrees/disagrees.

Elicit simpler equivalent fractions and mixed numbers where relevant.

BB:

\[
\begin{align*}
\frac{1}{10} & = 0.1, \\
\frac{1}{5} & = 0.2, \\
\frac{3}{10} & = 0.3, \\
\frac{2}{5} & = 0.4.
\end{align*}
\]

\[
\begin{align*}
\frac{5}{10} & = 0.5, \\
\frac{6}{10} & = 0.6, \\
\frac{7}{10} & = 0.7.
\end{align*}
\]

\[
\begin{align*}
\frac{8}{10} & = 0.8, \\
\frac{9}{10} & = 0.9, \\
\frac{10}{10} & = 1.
\end{align*}
\]

\[
\begin{align*}
\frac{11}{10} & = 1.1, \\
\frac{14}{10} & = 1.4, \\
\frac{9}{10} & = 3.9.
\end{align*}
\]

\[
\begin{align*}
\frac{15}{5} & = 15.2, etc.
\end{align*}
\]

Notes

Whole class activity
Written on BB or SB or OHT
Reasoning, agreement, praising
Extra praise if Ps notice bracketed forms without hints or help.
Feedback for T

Ps suggest 1 or 2 other fractions or mixed numbers if there is time.

Lesson Plan 92

25 min

5 PbY4b, page 92

Q.1 Read: Join up the decimal numbers to the matching points on the number line. Continue the pattern.

Make sure that Ps understand the task. Elicit the rule for the sequence of decimals. (Rule: + 0.3) Set a time limit.

Review with whole class. Ps come to BB to write the decimals and draw joining lines (or T has solution already prepared and uncovers each decimal as it is dealt with). Mistakes discussed and corrected.

Read: Write the decimal numbers as fractions below the line.

T points to each decimal in turn and Ps dictate the fractions. Class points out simpler equivalent fractions or mixed numbers where appropriate.

Solution:

\[
\begin{align*}
0.2 & = \frac{1}{5}, \\
0.3 & = \frac{3}{10}, \\
0.5 & = \frac{5}{10}, \\
0.8 & = \frac{4}{5}.
\end{align*}
\]

30 min

Ps suggest 1 or 2 other fractions or mixed numbers if there is time.

6 PbY4b, page 92, Q.2

Read: Find equivalent fractions in the diagram. Write them as decimals too.

Ps dictate equivalent fractions or come to BB to show them on the diagram. Class agrees/disagrees. T writes them in a systematic way on the BB.

BB:

\[
\begin{align*}
\frac{2}{10} & = \frac{1}{5} = 0.2, \\
\frac{4}{10} & = \frac{2}{5} = 0.4, \\
\frac{5}{10} & = \frac{1}{2} = 0.5, \\
\frac{6}{10} & = \frac{3}{5} = 0.6, \\
\frac{8}{10} & = \frac{4}{5} = 0.8, \\
\frac{10}{10} & = \frac{5}{5} = \frac{2}{2} = 1 = 1.0.
\end{align*}
\]

35 min

Whole class activity (or individual work if Ps wish)
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, praising
Extra praise if Ps point out other forms without help
Feedback for T

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, self-correction, praising

Whole class activity (or individual work if Ps wish)
Accept any correct form of fraction.
Agreement, praising
Extra praise if Ps point out other forms without help
Feedback for T
Activity

7. Pby4b, page 92

Q.2 Read: *Complete the table and the equations. Follow the pattern.*

If some Ps are unsure, ask a P who understands to explain the task using the row already completed.

Set a time limit. Ps finished quickly can be given an extra number to deal with. (e.g. 98.30)

Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected.

Solution: (Items inside boxes were missing.)

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\[
2 \times 10 + 5 \times 1 + 1 \times \frac{1}{10} + 8 \times \frac{1}{100} = 25 + \frac{18}{100} = 25.18
\]

\[
1 \times 100 + 0 \times 10 + 4 \times 1 + 3 \times \frac{1}{10} = 104 + \frac{3}{10} = 104.3
\]

\[
6 \times 1 + 5 \times \frac{1}{10} + 7 \times \frac{1}{100} = 6 + \frac{47}{100} = 6.47
\]

\[
8 \times 100 + 0 \times 10 + 3 \times 1 + 4 \times \frac{1}{10} = 803 + \frac{4}{10} = 803.4
\]

\[
2 \times 10 + 6 \times 1 + 7 \times \frac{1}{10} = 26 + \frac{7}{10} = 26.7
\]

\[
1 \times 10 + 0 \times 1 + 0 \times \frac{1}{10} + 5 \times \frac{1}{100} = 10 + \frac{5}{100} = 10.05
\]

\[
9 \times 10 + 8 \times 1 + 3 \times \frac{1}{10} + 0 \times \frac{1}{100} = 98 + \frac{30}{100} = 98.30
\]

or \(= 98 \frac{3}{10} = 98.3\)

- **Extensions**
 1. Round the quantities to the nearest whole cm or m as appropriate.
 2. T says an amount of money in £s and pence. Ps convert the amount to £s, giving a mixed number or a decimal.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 5 cm 8 mm = (= \frac{8}{10}) cm = 5.8 cm (≈ 58 mm)</td>
<td>(= \frac{8}{10}) cm = 5.8 cm</td>
</tr>
<tr>
<td>36 cm 5 mm = ((36 \frac{5}{10}) cm = 36.5 cm) (≈ 365 mm)</td>
<td>((36 \frac{5}{10}) cm = 36.5 cm)</td>
</tr>
<tr>
<td>b) 8 m 63 cm = 863 cm = (= \frac{63}{100}) m = 8.63 m</td>
<td>(= \frac{63}{100}) m = 8.63 m</td>
</tr>
<tr>
<td>1 m 24 cm = ((124 cm = 1 \frac{24}{100}) m = 1.24 m)</td>
<td>((124 cm = 1 \frac{24}{100}) m = 1.24 m)</td>
</tr>
<tr>
<td>25 m 70 cm = ((2570 cm = 25 \frac{70}{100}) m = 25.70 m = 25.7 m)</td>
<td>((2570 cm = 25 \frac{70}{100}) m = 25.70 m = 25.7 m)</td>
</tr>
</tbody>
</table>

Notes

- Individual work, monitored, helped
- Drawn on BB or use enlarged copy master or OHP
- Differentiation by time limit
- Reasoning by time limit
- Discussion, reasoning, agreement, self-correction, praising
- Agree that 98.30 = 98.3

Whole class activity, done orally round class

- e.g. 5.8 cm = 6 cm
- 1.24 m = 1 m

\(= \frac{101}{2}\)
Activity

Ordering numbers

Let’s put these numbers in increasing order. Ps come to BB to write the numbers again, crossing out each one from the original list as it is dealt with (or to rearrange the cards). Class points out errors.

BB:

a) 2, 4301, 529, 0, 38, 3946, 79

 Ps: 0 < 2 < 38 < 79 < 529 < 3946 < 4301

b) \(\frac{5}{20}, \frac{17}{20}, \frac{30}{20}, \frac{1}{20}, \frac{9}{20}, \frac{0}{20}, \frac{21}{20}\)

 Ps: \(\frac{0}{20} < \frac{1}{20} < \frac{5}{20} < \frac{9}{20} < \frac{17}{20} < \frac{21}{20} < \frac{30}{20}\)

 \(0 = \frac{1}{2} = \frac{3}{2} = \frac{1}{2}\)

\[0.75 \cdot 0.25\]

Ps: 0.01 < 0.1 < 0.25 < 0.7 < 2 < 2.1 < 3 < 5 = 0.5

2 Equal numbers

Let’s join the equal numbers in a chain. Ps come to BB to draw joining lines, explaining reasoning. Agree that if the numerator and denominator of a fraction are divided (multiplied) by the same number, the value of the fraction remains the same.

BB:

\[\begin{align*}
\frac{1}{4} & \quad \frac{1}{2} \\
\frac{2}{5} & \quad \frac{3}{5} \\
\frac{4}{5} & \quad \frac{5}{5} \\
\end{align*}\]

Ps: \(0 \leq \frac{1}{4} \leq \frac{1}{2} \leq \frac{2}{5} \leq \frac{3}{5} \leq \frac{4}{5} \leq \frac{5}{5}\)

3 Comparison

Which is more? How much more? How can we show it? How can we write it? Ps suggest different ways (might include drawing a diagram).

a) \(\frac{3}{10}\) and 0.4

 e.g. \(\frac{3}{10} < \frac{4}{10}\) or \(0.3 < 0.4\) so \(\frac{3}{10} < 0.4\)

b) \(\frac{27}{100}\) and 0.31

 e.g. \(\frac{27}{100} < \frac{31}{100}\) or \(0.27 < 0.31\) so \(\frac{27}{100} < 0.31\)

\[\frac{1}{2} \quad \frac{2}{5}\]

e.g. \(\frac{5}{10} > \frac{4}{10}\) so \(\frac{1}{2} > \frac{2}{5}\) etc.

Notes

Lesson Plan

93

Whole class activity

Numbers written on BB or on number cards stuck to BB.

At a good pace

Agreement, praising

If problems, show on the relevant segment of the number line drawn on BB.

In b) Ps give equivalent fractions where relevant and point out which fractions are less than (more than) 1.

In c), elicit that, e.g. 2 = 2.0, 0.01 = 1 hundredth, etc.

Whole class activity

Written on BB (or on number cards stuck to BB) or use enlarged copy master or OHP

Use a different colour for each chain. At a good pace

Reasoning, agreement, praising

Show the equal numbers on a prepared number line (as opposite) or use other models.

Ps think of true statements about the numbers, e.g.

\(0.20 < 0.25 < 0.30\),

\(0.2 < 0.25 < 0.3\)

\(\frac{1}{4}\) is half of \(\frac{1}{2}\)

0.25 is half of 0.50, etc.)

Whole class activity

Written on BB or SB or OHT

T gives hints if Ps are stuck.

Discussion, reasoning, agreement, praising

BB:

\[\begin{align*}
\frac{27}{100} & \\
\frac{3\overline{1}}{100} & \\
\end{align*}\]

1 unit
Activity 4

Problem

Listen carefully, write the data in your Ex. Bks. and think how you would solve it.

Bob Bunny ate 2 fifths of 2 kg of carrots and Sue Bunny ate 0.8 of 1 kg of carrots. Who ate more carrots? How much more?

A, how would you solve it. Who agrees? Who would do it another way? etc. Draw a diagram if Ps do not suggest it.

BB: e.g.

Bob: \[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{2000}{5} \times 2 = 800 \text{ g} \]

Sue: \[0.8 \text{ of } 1 \text{ kg} = \frac{8}{10} \text{ of } 1000 \text{ g} = 100 \times 8 = 800 \text{ g} \]

Answer: They both ate 800 g of carrots.

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Setting, agreement, praising

BB: e.g.

\[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{4}{10} \text{ of } 2 \text{ kg} \]

\[\frac{1}{10} \text{ of } 1 \text{ kg} \]

0.8 of 1 kg = \[\frac{8}{10} \text{ of } 1 \text{ kg} \]

Lesson Plan 93

Y4

Lesson Plan 93

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Reasoning, agreement, praising

BB: e.g.

\[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{4}{10} \text{ of } 2 \text{ kg} \]

\[\frac{1}{10} \text{ of } 1 \text{ kg} \]

0.8 of 1 kg = \[\frac{8}{10} \text{ of } 1 \text{ kg} \]

Lesson Plan 93

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Reasoning, agreement, praising

BB: e.g.

\[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{4}{10} \text{ of } 2 \text{ kg} \]

\[\frac{1}{10} \text{ of } 1 \text{ kg} \]

0.8 of 1 kg = \[\frac{8}{10} \text{ of } 1 \text{ kg} \]

Lesson Plan 93

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Reasoning, agreement, praising

BB: e.g.

\[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{4}{10} \text{ of } 2 \text{ kg} \]

\[\frac{1}{10} \text{ of } 1 \text{ kg} \]

0.8 of 1 kg = \[\frac{8}{10} \text{ of } 1 \text{ kg} \]

Lesson Plan 93

Notes

Whole class activity

T repeats slowly to give Ps time to think.

Reasoning, agreement, praising

BB: e.g.

\[\frac{2}{5} \text{ of } 2 \text{ kg} = \frac{4}{10} \text{ of } 2 \text{ kg} \]

\[\frac{1}{10} \text{ of } 1 \text{ kg} \]

0.8 of 1 kg = \[\frac{8}{10} \text{ of } 1 \text{ kg} \]
Q.3 Read: Compare the pairs of numbers and fill in the missing signs. Use the diagrams to help you.

What have the diagrams to do with the fractions? Elicit that:
• the strip shows 1 unit divided into tenths,
• the 10×10 square shows 1 unit divided into hundredths.

Set a time limit. Review at BB with whole class. Ps come to BB or dictate inequality to T. Class agrees/disagrees. Mistakes discussed and corrected. Convert fractions to decimals or vice versa as a check. Show on relevant diagrams if problems.

Solution:

a) $\frac{2}{10} < \frac{7}{10}$, $\frac{8}{10} < 0.9$, $0.6 > 0.3$

b) $\frac{15}{100} < \frac{72}{100}$, $\frac{43}{100} < 0.70$, $0.52 > 0.49$

c) $0.04 < 0.1$, $\frac{2}{10} > \frac{18}{100}$, $0.27 < 0.3$

d) $\frac{1}{5} = 0.2$, $\frac{2}{5} > 0.3$, $\frac{3}{10} < 0.6$

e) $\frac{1}{5} > \frac{17}{100}$, $\frac{3}{10} < 0.51$, $\frac{78}{100} > 0.53$

Q.4 Read: Calculate the quantities and compare each pair. Write $<$, $>$ or $=$ in the boxes.

Ps come to BB to work out LHS and RHS of inequality, explaining reasoning. Class agrees/disagrees or suggests an easier way of calculating.

e.g. in c): $0.5 = \frac{5}{10} = \frac{1}{2}$; in d): $0.25 = \frac{25}{100} = \frac{5}{20} = \frac{1}{4}$

Which is more? How much more? Ps come to BB to write missing signs and differences. T helps where necessary.

Solution: e.g.

a) $\frac{1}{5}$ of 450 m = $\frac{450}{5} \div 5 = 90$ m

b) 0.6 of 150 litres = $150 \times 0.6 = 90$ litres

c) $\frac{1}{4}$ of 28 kg = $28 \div 4 = 7$ kg

d) 0.25 of £220 = $\frac{220}{4} = \££55$

Whole class activity
(or a) and b) individually if Ps wish)

Written on BB or use enlarged copy master or OHP

Discussion, reasoning, agreement, checking, self-correction, praising

Extra praise if Ps think of easier ways to calculate, as shown in solution and below.

e.g.

d) $220 \times 25 = 110 \times 50 = 5500$ (p)

Feedback for T
R: Calculations
C: Fractions and decimals
E: Quantities. Word problems

Week 19

Lesson Plan
94

Activity
1

Fractions and decimals

Let’s convert (change) the fractions to decimals and the decimals to fractions. Ps come to BB or dictate what T should write. Class agrees/disagrees. Use a model if necessary (e.g. diagram on BB or coloured multilink cubes)

BB:

a) \(\frac{1}{2} = (0.5) \), \(\frac{2}{2} = (1) \), \(\frac{3}{2} = (1.5) \), \(\frac{4}{2} = (2) \), \(\frac{5}{2} = (2.5) \), etc.

b) \(\frac{1}{4} = (0.25) \), \(\frac{2}{4} = (0.5) \), \(\frac{3}{4} = (0.75) \), \(\frac{4}{4} = (1) \),

\(\frac{5}{4} = (1.25) \), \(\frac{6}{4} = (1.5) \), \(\frac{7}{4} = (1.75) \), \(\frac{8}{4} = (2) \), etc.

c) \(\frac{1}{5} = (0.2) \), \(\frac{2}{5} = (0.4) \), \(\frac{3}{5} = (0.6) \), \(\frac{4}{5} = (0.8) \), \(\frac{5}{5} = (1) \),

\(\frac{6}{5} = (1.2) \), \(\frac{7}{5} = (1.4) \), \(\frac{8}{5} = (1.6) \), \(\frac{9}{5} = (1.8) \), \(\frac{10}{5} = (2) \), etc.

d) \(0.3 = \frac{3}{10} \), \(0.4 = \frac{4}{10} = \frac{2}{5} \), \(0.5 = \frac{5}{10} = \frac{1}{2} \),

\(0.6 = \frac{6}{10} = \frac{3}{5} \), \(1.1 = \frac{11}{10} = 1 + \frac{1}{10} \), \(4.5 = \frac{45}{10} = \frac{4}{2} + \frac{1}{2} \).

e) \(0.10 = \frac{1}{10} \), \(0.60 = \frac{60}{100} = \frac{6}{10} = \frac{3}{5} \), \(0.31 = \frac{31}{100} \),

\(2.40 = \frac{240}{100} = \frac{20}{10} = \frac{2}{2} \)

2 Quantities

Let’s convert these quantities to other units of measure. Ps come to BB or dictate to T. Class agrees/disagrees.

BB: e.g.

a) \(\frac{1}{2} \) of a km = 500 m

\(\frac{1}{3} \) of an hour = 20 minutes

\(\frac{1}{5} \) of a litre = 20 cl

\(\frac{1}{10} \) of a kg = 100 g

b) 0.5 of a metre = 50 cm (= 500 mm)

0.25 of a kg = 250 g

0.2 of a litre = 20 cl (= 200 ml)

c) \(\frac{3}{4} \) of a m = 75 cm (= 750 mm)

\(\frac{1}{5} \) of an hour = 12 minutes

\(\frac{1}{10} \) of an hour = 6 minutes

1 \(\frac{1}{4} \) hours = (60 + 15) minutes

= 75 minutes

d) 0.2 of an hour = 12 minutes

1.37 m = 137 cm (= 1370 mm)

4.7 kg = 4700 g

3.5 hours = (180 + 30) minutes

= 210 minutes

Note the connections, e.g.

\(\frac{5}{2} = 2.5 \)

\(\frac{1}{4} = 100 \) hundredths \(\div 4 \)

= 25 hundredths = 0.25

\(\frac{3}{4} = \frac{1}{4} \times 3 = 0.25 \times 3 = 0.75 \)

Feedback for T

Whole class activity
Written on BB or SB or OHT
At a good pace
Reasoning, agreement, praising
Reasoning: e.g.

\(\frac{1}{3} \) of an hour = \(\frac{1}{3} \) of 60 min

= 60 min \(\div 3 \) = 20 min.

\(\frac{3}{4} \) of a m = \(\frac{3}{4} \) of 100 cm

= 100 cm \(\div 4 \times 3 \)

= 25 cm \(\times 3 \) = 75 cm

etc.

16 min

© CIMT, University of Exeter
Activity 3

Problems

Listen carefully, note down the data and think how you would solve it.

T reads the problem 2 or 3 times to give Ps time to think. Ps come to BB to show solution, explaining reasoning. Class agrees/disagrees or suggests another way to solve it. Class says answer as a sentence.

a) One fifth of a garden was planted with carrots and 0.5 of the garden was planted with cabbages. The rest of the garden was used for growing flowers.

What part of the garden was used for growing flowers?

BB: e.g.

Part used for vegetables:

\[
\frac{1}{5} + 0.5 = \frac{2}{10} + \frac{5}{10} = \frac{7}{10}
\]

Part used for flowers:

\[
\frac{10}{10} - \frac{7}{10} = \frac{3}{10} \text{ (=} 0.3)
\]

Answer: Three tenths (or 0.3) of the garden was used for flowers.

b) John took 2 hours to do his homework. He spent 1 quarter of the time on English. How long did he spend on English and how long did he spend on other subjects?

BB: e.g.

Homework: 2 hours = 2 × 60 min = 120 minutes

English: \(\frac{1}{4}\) of 120 minutes = 120 min ÷ 4 = 30 min

Other subjects: 120 min – 30 min = 90 min = 1 hr 30 min

Answer: John spent half an hour on English and one and a half hours on other subjects.

c) Graham used 35 cm of wire to make a model plane. This was 0.7 of the length of wire he had to start with.

How much wire did he have before he made the model?

BB: e.g.

\[0.7 \left(= \frac{7}{10}\right) \rightarrow 35 \text{ cm}\]

\[0.1 \left(= \frac{1}{10}\right) \rightarrow 35 \text{ cm ÷ 7} = 5 \text{ cm}\]

\[1 \left(= \frac{10}{10}\right) \rightarrow 35 \text{ cm ÷ 7 × 10} = 50 \text{ cm}\]

Answer: Graham had 50 cm of wire before he made the model.

Notes

Whole class activity

(Or individual trial first if Ps wish)

Ps decide how to begin and what to do next. T helps or gives hints only if necessary.

Discussion, reasoning, agreement, (self-correction), praising

Or \(1 - \left(\frac{2}{10} + \frac{5}{10}\right) = \frac{3}{10}\)

bb:

Extension

How much wire was left?

0.3 → 5 cm × 3 = 15 cm

or 50 cm – 35 cm = 15 cm
Y4

Activity

PbY4b, page 94

Q.1 Read: *Convert the fractions to decimals and the decimals to fractions.*

Deal with one row at a time. Set a time limit.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

\[
\begin{align*}
\text{a) } & \frac{1}{2} = 0.5 & \frac{3}{2} = 1.5 & \frac{5}{2} = 2.5 & \frac{6}{2} = 3.5 \\
\text{b) } & 0.1 = \frac{1}{10} & 0.2 = \frac{2}{10} = \frac{1}{5} & 0.5 = \frac{5}{10} = \frac{1}{2} & 0.9 = \frac{9}{10} \\
\text{c) } & \frac{1}{4} = 0.25 & 3 \text{ of } \frac{3}{4} = 0.75 & \frac{1}{2} = 2.25 & 19.2 \div 4 = 4.75 \\
\text{d) } & 0.17 = \frac{17}{100} & 0.30 = \frac{30}{100} = \frac{3}{10} & 2.1 = \frac{21}{10} & 6.5 = 6 \frac{1}{2} \\
\text{e) } & 1.2 = \frac{12}{10} = 1 \frac{1}{5} & 3.80 = \frac{380}{100} = 3 \frac{8}{10} = 3 \frac{4}{5} \\
\end{align*}
\]

[Note: Simplified forms are also discussed and corrected.]

Lesson Plan 94

Notes

Individual work, monitored, helped
(or more difficult items done with the whole class)

Written on BB or use enlarged copy master or OHT

Discussion, reasoning, agreement, self-correction, praising.

Details: e.g. \(\frac{19}{4} = 4 \frac{3}{4} = 4.75 \)

Refer to the 10-strip or 100-square if disagreement.

Accept any correct form of fraction but elicit the simplest form where relevant.

Errata

In Pb:
In a) ii) : there should be an ‘=’ sign after ‘cm’

In b): ‘v’ should be ‘iv’

PbY4b, page 94

Q.2 Read: *Fill in the missing numbers.*

Quickly revise the relationship between the units of measure. Calculations can be done in Ex. Bks if necessary. Set a time limit.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

\[
\begin{align*}
\text{a) } & 1 \text{ litre } = 500 \text{ ml} & 1 \text{ m } = 25 \text{ cm } = 250 \text{ mm} \\
& \frac{1}{4} \text{ m } = 25 \text{ cm} & \frac{1}{10} \text{ km } = 100 \text{ m} \\
\text{b) } & \frac{3}{4} \text{ m } = 75 \text{ cm } = 750 \text{ mm} & \frac{2}{5} \text{ litre } = 400 \text{ ml} \\
& \frac{3}{10} \text{ km } = 2500 \text{ m} & \frac{3}{10} \text{ hour } = 18 \text{ minutes} \\
\text{c) } & 0.1 \text{ km } = 100 \text{ m} & 0.2 \text{ litre } = 200 \text{ ml} \\
& 0.3 \text{ m } = 30 \text{ cm } = 300 \text{ mm} & 0.7 \text{ kg } = 700 \text{ g} \\
\text{d) } & 1.3 \text{ kg } = 1300 \text{ g} & 2.5 \text{ km } = 2500 \text{ m} \\
& 5.6 \text{ m } = 560 \text{ cm } = 5600 \text{ mm} & 6.25 \text{ litres } = 6250 \text{ ml} \\
\end{align*}
\]

Lesson Plan 94

Notes

Individual work, monitored, helped
(or more difficult items done with the whole class)

Written on BB or use enlarged copy master or OHT

Discussion, reasoning, agreement, self-correction, praising.

Details: e.g. \(\frac{3}{10} \text{ hour } = \frac{3}{10} \text{ of 60 min.} \)

= 60 min. ÷ 10 × 3

= 6 min. × 3 = 18 min.

etc.

Feedback for T

© CIMT, University of Exeter
Lesson Plan 94

Notes

Individual work, monitored, helped

Discussion, reasoning, agreement, self-correcting, praising

Accept any correct method of solution but ask Ps to show any other methods used.

BB: e.g.

Or other subjects: $0.6 = \frac{6}{10}$

\[
\frac{6}{10} \text{ of 90 min} = 9 \text{ min} \times 6 = 54 \text{ min}
\]

Had left: 0.4

\[
0.4 \rightarrow \text{£12} \times 4 = \text{£48}
\]

or Had left: \text{£120} – \text{£72} = \text{£48}
Y4

Activity

Tables and calculation practice, revision, activities, consolidation
PbY4b, page 95

Notes

Lesson Plan 95

<table>
<thead>
<tr>
<th>Week 19</th>
</tr>
</thead>
</table>

Solutions:

Q.1

<table>
<thead>
<tr>
<th></th>
<th>H 100</th>
<th>T 10</th>
<th>l 1</th>
<th>h 1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>4 0</td>
<td>5</td>
<td>3</td>
<td>405.3</td>
</tr>
<tr>
<td>b)</td>
<td>7 1</td>
<td>0</td>
<td>4</td>
<td>71.04</td>
</tr>
<tr>
<td>c)</td>
<td>1 0</td>
<td>0</td>
<td>3 9</td>
<td>100.39</td>
</tr>
<tr>
<td>d)</td>
<td>0 9</td>
<td>2</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>e)</td>
<td>7 0</td>
<td>5</td>
<td></td>
<td>7.05</td>
</tr>
</tbody>
</table>

Q.2

- 0.3
- 0.7
- 1.2
- 1.5
- 1.8
- 1.95

Q.3

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, Rule: + 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>1/8, 3/8, 5/8, 7/8, 1 1/8, 1 3/8, 1 5/8, Rule: + 2/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>8, 4, 2, 1, 1/2, 1/4, 1/8, Rule: ÷ 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>2.1, 1.9, 1.7, 1.5, 1.3, 1.1, 0.9, Rule: – 0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q.4

a) 1/2 of 35 m = 17.5 m = 17 m 50 cm = 1750 cm

b) 0.2 of 2 kg = 0.4 kg = 400 g

c) 3/4 of 10 litres = 7.5 litres = 7 litres 50 cl = 750 cl

d) 0.25 of £22 = £5.50 = £5 50 p = 550 p

Q.4

2 1/2 hours = (120 + 30) min. = 150 min

Sport: 0.6 (= 6/10) of 150 min = 150 min ÷ 10 × 6

= 15 min × 6 = 90 min

(= 1 1/2 hours)

Answer: Tim watched sport for 1 and a half hours.
Activity 1

Modelling decimals

a) This rectangle is 1 unit. Who can show us 1 tenth of its area? P comes to BB to show it. Class agrees/disagrees. How could we write it as a decimal?

BB: \(\frac{1}{10} = 0.1 \)

b) Who can show us 1 tenth of 1 tenth of the area? P comes to BB to show it (with T’s help). What fraction of 1 unit is it? (1 hundredth) Who could write a statement about it using fractions (decimals)?

c) Who can show us 5 hundredths of the area? P comes to BB to colour it. How could we write it as a decimal?

BB: \(\frac{1}{10} \) \(\frac{1}{100} \) \(\frac{5}{100} \)

2

Missing numbers

a) Let’s fill in the missing numbers. Ps come to BB to write as decimals or fractions, explaining reasoning. Class agrees or disagrees. Also elicit from the class the form not given.

BB:

<table>
<thead>
<tr>
<th>1 mm = (\frac{0.1}{10}) cm</th>
<th>1 cm = (\frac{0.01}{100}) m</th>
<th>1 mm = (\frac{0.001}{1000}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m = (\frac{0.001}{1000}) km</td>
<td>1 cl = (\frac{0.01}{100}) litre</td>
<td>1 g = (\frac{0.001}{1000}) kg</td>
</tr>
</tbody>
</table>

b) We measured the length of a line segment as 76 mm, using 1 mm as 1 unit. Who could write its length using these units?

i) 1 cm as 1 unit: BB: 76 mm = \(\frac{76}{10} \) cm = 7.6 cm

ii) 1 m as 1 unit: BB: 76 mm = \(\frac{0.076}{1000} \) m = \(\frac{76}{1000} \) cm

Problem 1

Listen carefully, note down the important data and think how you would solve the problem.

Nick decided to dig a trench at the bottom of his garden in preparation for planting a hedge.

On the first day, he dug 2 m 70 cm, on the second day he dug 3.8 metres, on the third day he dug 4 metres and on the fourth day he dug 3 and 6 tenths metres. How long was the trench altogether?

Ps suggest methods of solution. T helps with layout and reasoning and shows the methods Ps did not think of.
Different methods of solution:

a) Use metres and cm in a table.

<table>
<thead>
<tr>
<th>Day</th>
<th>Measurement</th>
<th>Table</th>
<th>Sum</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st day</td>
<td>2 m 70 cm</td>
<td>2 7 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd day</td>
<td>3.8 m = 3 m 80 cm</td>
<td>3 8 0</td>
<td>1</td>
<td>14 m</td>
</tr>
<tr>
<td>3rd day</td>
<td>4 m</td>
<td>4 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th day</td>
<td>$\frac{6}{10}$ m = 3 m 60 cm</td>
<td>3 6 0</td>
<td>1</td>
<td>14 m</td>
</tr>
</tbody>
</table>

Answer: The trench was 14 m 10 cm long.

b) Use 1 cm as 1 unit and write in a place-value table.

<table>
<thead>
<tr>
<th>Place</th>
<th>Measurement</th>
<th>Table</th>
<th>Sum</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2 m 70 cm</td>
<td>2 7 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.8 m = 3 m 80 cm</td>
<td>3 8 0</td>
<td>1</td>
<td>1410 cm</td>
</tr>
<tr>
<td>T</td>
<td>4 m</td>
<td>4 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>$\frac{6}{10}$ m = 3 m 60 cm</td>
<td>3 6 0 0 0</td>
<td>1</td>
<td>1410 cm</td>
</tr>
</tbody>
</table>

Answer: The trench was 1410 cm long.

c) Use 1 m as 1 unit and write in a place-value table.

<table>
<thead>
<tr>
<th>Place</th>
<th>Measurement</th>
<th>Table</th>
<th>Sum</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2 m 70 cm</td>
<td>2 7 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>3.8 m</td>
<td>3 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>4 m</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>$\frac{6}{10}$ m = 3.6 m</td>
<td>3 6 0</td>
<td>1</td>
<td>14.1 m</td>
</tr>
</tbody>
</table>

Answer: The trench was 14.10 m long.

d) Write an addition using 1 m as 1 unit without a place-value table.

BB: $2 \text{ m 70 cm} = \left(2 + \frac{7}{10}\right) \text{ m} \rightarrow 2.7 \text{ m}$

$3.8 \text{ m} = \left(3 + \frac{8}{10}\right) \text{ m} \rightarrow 3.8 \text{ m}$

$4 \text{ m} = \left(4 + \frac{0}{10}\right) \text{ m} \rightarrow 4.0 \text{ m}$

$3 \text{ m} \frac{6}{10} = \left(3 + \frac{6}{10}\right) \rightarrow + 3.6 \text{ m}$

$\left(12 + \frac{21}{10}\right) \text{ m} = \left(14 + \frac{1}{10}\right) = 14.1 \text{ m}$

Answer: The trench was 14.1 m long.
Activity 4

Problem 2

Listen carefully and think how you would solve the problem.

We had 50.8 m of ribbon and used 14.1 m. **What length is left?**

T suggests ways of solving but Ps come to BB to carry it out. Class points out errors.

BB: Methods of solution e.g.

a) Using m and cm in a table:

<table>
<thead>
<tr>
<th>10 m</th>
<th>1 m</th>
<th>10 cm</th>
<th>1 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
50.8 \text{ m} = 50 \text{ m} 80 \text{ cm} \\
14.1 \text{ m} = 14 \text{ m} 10 \text{ cm}
\]

Answer: 36 m 70 cm is left.

b) Using cm as the unit:

\[
50.8 \text{ m} = 5080 \text{ cm} \\
14.1 \text{ m} = 1410 \text{ cm}
\]

\[
3670 \text{ (cm)} = 36.7 \text{ (m)}
\]

Answer: There are 36.7 metres of ribbon left.

5

PbY4b, page 96

Q.1 Read: **Add the quantities in the different units. Write the addition in the table.**

Deal with one part at a time. Set a time limit.

Review at BB with whole class. Ps come to BB to write additions and fill in the table, explaining reasoning. Class points out errors. Mistakes discussed and corrected.

Solution:

a) 1.1 m + 230 cm + 8600 mm

<table>
<thead>
<tr>
<th>In mm</th>
<th>In cm</th>
<th>In m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1</td>
</tr>
<tr>
<td>2 3 0</td>
<td>2 3 0</td>
<td>2 3</td>
</tr>
<tr>
<td>+ 8 6 0</td>
<td>+ 8 6 0</td>
<td>+ 8 6</td>
</tr>
<tr>
<td>1 2 0</td>
<td>1 2 0</td>
<td>1 2</td>
</tr>
</tbody>
</table>

\[
1 1 \text{ m} + 23 \text{ m} + 86 \text{ m} = 112 \text{ m}
\]

b) 13.4 litres + 1580 cl + 2500 ml

<table>
<thead>
<tr>
<th>In ml</th>
<th>In cl</th>
<th>In litres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 0</td>
<td>1 3 4 0</td>
<td>1 3 4</td>
</tr>
<tr>
<td>1 5 8</td>
<td>1 5 8</td>
<td>1 5 8</td>
</tr>
<tr>
<td>+ 2 5 0</td>
<td>+ 2 5 0</td>
<td>+ 2 5</td>
</tr>
<tr>
<td>3 1 7</td>
<td>3 1 7</td>
<td>3 1 7</td>
</tr>
</tbody>
</table>

\[
13.4 \text{ l} + 1580 \text{ cl} + 2500 \text{ ml} = 1348 \text{ l}
\]

Notes

Whole class activity

Or Ps suggest methods of solution and T chooses which to use.

Reasoning, agreement, praising

Table drawn on BB. Ps dictate the column headings.

(Without a table)

Changing decimals to fractions, doing the calculation, then converting back to a decimal.

[T points out that the answer could be given in different forms but that if only one form is used in the question (decimals in this case), then usually the answer is given in the same form.]

Individual trial, monitored, helped

(Or part a) with whole class first, b) as individual work)

Written on BB or use enlarged copy master or OHP

Discussion, reasoning, self-correcting, praising

T points to each answer in turn and class reads it in unison, saying the appropriate unit too.

In good humour!

Reassure Ps who are finding the concept difficult – there will be lots of practice later on!
Lesson Plan 96

Activity 6

PbY4b, page 96

Q.2 Read: Subtract the quantities in the different units. Write the subtractions in the table.

Deal with one part at a time. Set a time limit.

Review at BB with whole class. Ps come to BB to BB to write additions and fill in the table, explaining reasoning. Class points out errors. Mistakes discussed and corrected.

Solution:

a) $4.73\text{ m} - 210\text{ cm}$

<table>
<thead>
<tr>
<th>In mm</th>
<th>In cm</th>
<th>In m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4730</td>
<td>473</td>
<td>4.73</td>
</tr>
<tr>
<td>2100</td>
<td>210</td>
<td>2.10</td>
</tr>
<tr>
<td>2630</td>
<td>263</td>
<td>2.63</td>
</tr>
</tbody>
</table>

Solution:

b) $18.6\text{ litres} - 7900\text{ ml}$

<table>
<thead>
<tr>
<th>In ml</th>
<th>In cl</th>
<th>In litres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1860</td>
<td>186</td>
<td>1.86</td>
</tr>
<tr>
<td>7900</td>
<td>79</td>
<td>7.90</td>
</tr>
<tr>
<td>1070</td>
<td>107</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Notes

Individual trial, monitored, helped
(Or part a) with whole class first, b) as individual work)
Written on BB or use enlarged copy master or OHP
Discussion, reasoning, self-correcting, praising
T points to each answer in turn and chooses Ps to read it aloud, saying the appropriate unit too.
In good humour!

Activity 7

PbY4b, page 96. Q.3

Read: Calculate with fractions and decimals. Follow the example.

a) Ps come to BB to complete the next two rows, explaining reasoning (with T's help if necessary). Class agrees/disagrees.

Now let's do the additions. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Ps work in Pbs too.

Solution:

\[
\begin{align*}
4.9 &= 4 + \frac{9}{10} = 4 + \frac{90}{100} = 4.90 \\
10.23 &= 10 + \frac{2}{10} + \frac{3}{100} = 10 + \frac{23}{100} = 10.23 \\
+ 7.04 &= 7 + \frac{0}{10} + \frac{4}{100} = 7 + \frac{4}{100} = 7.04 \\
22.17 &= 21 + \frac{11}{10} + \frac{7}{100} = 21 + \frac{117}{100} = 22.17 \\
&= 22 + \frac{1}{10} + \frac{7}{100} = 22 + \frac{17}{100}
\end{align*}
\]

b) Let's see if you can do this subtraction in the same way in your Ex. Bks! Set a time limit. (If Ps are having difficulty, stop them and continue as a whole class activity.)

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

\[
\begin{align*}
6.81 &= 6 + \frac{8}{10} + \frac{1}{100} = 6 + \frac{81}{100} = 6.81 \\
- 2.7 &= 2 + \frac{7}{10} = 2 + \frac{70}{100} = 2.70 \\
4.11 &= 4 + \frac{1}{10} + \frac{1}{100} = 4 + \frac{11}{100} = 4.11
\end{align*}
\]

Whole class activity
(or individual work if Ps wish)
Written on BB or use enlarged copy master or OHP
At a good pace
Discussion, reasoning, (self-correcting), praising
Agree that $4.9 = 4.90$
Stress the importance of keeping the same place values lined up vertically.

Individual trial, monitored, helped
(or whole class activity if Ps are still unsure)
Reasoning, agreement, self-correcting, praising
Agree that $2.7 = 2.70$
Extra praise for Ps who did part b) correctly without help.
Feedback for T
Activity 1

Fractions and decimals

T has diagrams on BB showing parts of a unit. Let’s write the parts as fractions and as decimals.

Ps come to BB, say the number of parts the unit has been divided into and how many of the parts have been coloured.

Then other Ps write it as a fraction and as a decimal. T helps with enlarging the fractions to whole 10s (100s, 1000s) before converting to decimal form. (Agree that multiplying the numerator and denominator of a fraction by the same amount does not change the value of the fraction.) Class agrees/disagrees.

BB: e.g.

- a) \(\frac{3}{10} = 0.3\)
- b) \(\frac{4}{20} = \frac{1}{5} = \frac{2}{10} = 0.2\)
- c) \(\frac{3}{8} = \frac{3 \times 125}{8 \times 125} = \frac{375}{1000} = 0.375\)
- d) \(\frac{2}{3} = \frac{6}{9} = \frac{66}{99} > \frac{66}{100} = 0.66\)

Let’s show it on the number line. T demonstrates (with help of Ps).

BB: 1 third < 2 thirds < 1

<table>
<thead>
<tr>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td><</td>
<td>(\frac{2}{3})</td>
<td><</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{0.66}{0.6})</td>
<td><</td>
<td>(\frac{2}{3})</td>
<td><</td>
<td>(\frac{0.67}{0.7})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let’s see if you can calculate these fractions of a quantity. What is:

- a) \(\frac{3}{10}\) of 1 m: 100 cm ÷ 10 × 3 = 10 cm × 3 = 30 cm = \(0.3\) m

- b) \(\frac{1}{10}\) of 3 m: 300 cm ÷ 10 = 30 cm = \(0.3\) m

- c) \(\frac{4}{20}\) of 1 ℓ: 100 cl ÷ 20 × 4 = 5 cl × 4 = 20 cl = \(0.2\) litre

- d) \(\frac{3}{8}\) of 1 kg: 1000 g ÷ 8 × 3 = 125 g × 3 = 375 g = \(0.375\) kg

- d) \(\frac{2}{3}\) of 1 m: 100 cm ÷ 3 × 2 = \(\left(\frac{33}{3} + \frac{1}{3}\right)\) cm × 2 = \(\left(\frac{66}{3} + \frac{2}{3}\right)\) cm

\[= \frac{0.66}{0.6} \text{ m} + 2 \text{ thirds of a cm}\]

Extension

Whole class activity

Diagrams drawn on BB or use enlarged copy master/OHP

Reasoning, agreement, praising

At difficult items, first allow Ps time to think about it and suggest what to do; otherwise T gives hints or demonstrates how to do it, explaining reasoning in detail.

Hint: 1000 = \(8 \times 125\)

\(3 \times 125 = 300 + 60 + 15 = 375\)

Difficult problem! How can we convert 2 thirds into a decimal?

If Ps have no idea, T reminds them about comparing with smaller and greater numbers by writing inequalities.

Number lines drawn on BB or use enlarged copy master/OHP

Elicit that:

- \(\frac{2}{3} = 0.7\) (to 1 d.p.)
- \(\frac{2}{3} = 0.67\) (to 2 d.p.)

But stress that Ps do not have to learn it!

Ps come to BB or dictate to T. Class agrees/disagrees.

Elicit that:

- \(\frac{3}{10}\) of 1 = \(\frac{1}{10}\) of 3
- \(\frac{1}{20}\) of 4 litres? (0.2 litres)
- \(\frac{1}{8}\) of 3 kg? (0.375 kg)

BB: 100 ÷ 3 = \(\left(99 + \frac{1}{3}\right)\) ÷ 3 = 33 + 1 third

\(\frac{1}{3}\) of 2 m? (0.66 m + \(\frac{2}{3}\) cm)

© CIMT, University of Exeter
Y4

Activity

2 Sequences

T says the first few terms of a sequence. Ps say the following terms. Class points out errors. What is the rule? Who agrees? etc.

a) 4.3, 5.0, 5.7, (6.4, 7.1, 7.8, 8.5, 9.2, 9.9, 10.6, 11.3, 12, . . .)

Rule: Increasing by 0.7 (+ 0.7)

b) 8.7, 7.6, 6.5, (5.4, 4.3, 3.2, 2.1, 1, (– 0.1, – 1.2, – 2.3, . . .)

Rule: Decreasing by 1.1 (– 1.1)

c) 0.2, 0.3, 0.5, 0.8, (1.2, 1.7, 2.3, 3, 3.8, 4.7, 5.7, 6.8, 8, . . .)

Rule: The difference between terms is increasing by 0.1.

16 min

3 Equal numbers

Let’s join up the equal numbers. Ps come to BB to draw joining lines. Class agrees/disagrees.

BB:

\[
\begin{array}{ccc}
3.2 & 3.08 & 3.80 \\
\frac{2}{5} & \frac{2}{10} & \frac{8}{100}
\end{array}
\]

Ps think of decimals equal to the two numbers which are not joined up.

20 min

4 Adding and subtracting decimals

Let’s read the addition (subtraction) first. Who can give me an estimate of the result? Who agrees? etc.

Ps come to BB to fill in the place-value table, explaining reasoning. Class points out errors. Who can do the calculation without the table? Ps come to BB to write the addition (subtraction), explaining what they are doing. Class agrees/disagrees.

BB:

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>(≈ 7 + 7 = 14)</td>
<td>+</td>
<td>6</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b)</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>(≈ 23 – 13 = 10)</td>
<td>–</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Extension

If these values were in metres (cm), what would they be in cm (mm)?

a) 7.3 m + 6.81 m = 730 cm + 681 cm = 1411 cm
7.3 cm + 6.81 cm = 73 mm + 68.1 mm = 141.1 mm

b) 22.8 m – 13 m = 2280 cm – 1300 cm = 980 cm
22.8 cm – 13 cm = 228 mm – 130 mm = 98 mm

25 min

Lesson Plan 97

Notes

Whole class activity
T chooses Ps at random (or in order round class)
At a good pace
T decides when to stop.
Discussion, checking, agreement on the rule.

Write this sequence on BB and show the difference sequence:

0.1, 0.2, 0.3, 0.4, 0.5, . . .

Whole class activity

Written on BB or SB or OHT
Reasoning, agreement, praising

(3.4, 3.40; 3.8, 3.80)

Whole class activity

Written on BB or use enlarged copy master or OHP
At a good pace
Reasoning, agreement, checking against estimate, praising

or BB:

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>U</th>
<th>t</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≈ 7 + 7 = 14</td>
<td>+</td>
<td>6</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b)</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>≈ 23 – 13 = 10</td>
<td>–</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
Activity

PbY4b, page 97

Q.1 Read: *Continue each sequence for the next 5 terms. Write down the rule you used.*

Set a time limit. Review at BB with whole class. Ps come to BB or dictate terms to T, saying the rule too. Who did the same? Who used another rule? etc. Deal with all cases. Mistakes discussed and corrected.

Solution:

- a) 0.2, 0.4, 0.6, 0.8, (1, 1.2, 1.4, 1.6, 1.8,) [+ 0.2]
- c) 12.1, 11.8, 11.5, 11.2, (10.9, 10.6, 10.3, 10, 9.7,) [– 0.3]
- d) 1, 1.1, 1.3, 1.6, 2, 2.5, (3.1, 3.8, 4.6, 5.5, 6.5,)
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 Rule: Difference between terms is increasing by 0.1.

PbY4b, page 97

Q.2 Read: *Calculate these quantities. Write the operation, then give the result in cm and m. Follow the example.*

T (or a P) explains part a) to whole class first if necessary. Set a time limit. Ps can do calculations in *Ex. Bks*.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. What do you notice?

Solution:

- a) \(\frac{1}{4} \) of 3 m = 300 cm ÷ 4 = 75 cm = 0.75 m
- b) \(\frac{3}{4} \) of 1 m = 100 cm ÷ 4 × 3 = 75 cm = 0.75 m
- c) \(\frac{1}{5} \) of 2 m = 200 cm ÷ 5 = 40 cm = 0.40 m = 0.4 m
- d) \(\frac{2}{5} \) of 1 m = 100 cm ÷ 5 × 2 = 40 cm = 0.40 m = 0.4 m
- e) 75 cm + 40 cm = 115 cm = 1.15 m

 or \(\frac{3}{4} + \frac{2}{5} = \frac{75 + 40}{100} = \frac{115}{100} = 1 \frac{15}{100} \) (m)

Activity

Lesson Plan 97

Notes

Individual work, monitored, helped

Written on BB or use enlarged copy master or OHP

Elicit that the thick line in the table means the same as the decimal point (i.e. it separates the whole units from the parts)

Differentiation by time limit

Reasoning, agreement, self-correction, praising

Let’s give them a clap!

BB:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1.1 + 42.6 + 0.8</td>
<td>b) 62 + 6.2 + 0.62</td>
<td>c) 22.5 – 13.7</td>
</tr>
<tr>
<td>≈ 11</td>
<td>≈ 69</td>
<td>≈ 9</td>
</tr>
<tr>
<td>1 + 43 + 1 = 45</td>
<td>62 + 6 + 1 = 69</td>
<td>23 – 14 = 9</td>
</tr>
<tr>
<td>+ 0.8</td>
<td>+ 0.62</td>
<td>32 – 14 = 18</td>
</tr>
<tr>
<td>44.5</td>
<td>68.82</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d) 32.8 – 13</td>
<td>e) 32 – 13.7</td>
<td></td>
</tr>
<tr>
<td>32 – 13 = 20</td>
<td>32 – 14 = 18</td>
<td></td>
</tr>
<tr>
<td>19.8</td>
<td>18.3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1.1</td>
<td>b) 62.00</td>
<td></td>
</tr>
<tr>
<td>42.6</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td>+ 0.8</td>
<td>+ 0.62</td>
<td></td>
</tr>
<tr>
<td>44.5</td>
<td>68.82</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>U</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>22.5</td>
<td>32.8</td>
<td>32.0</td>
</tr>
<tr>
<td>13.7</td>
<td>13.0</td>
<td>13.7</td>
</tr>
<tr>
<td>8</td>
<td>19.8</td>
<td>18.3</td>
</tr>
</tbody>
</table>

45 min
Lesson Plan

Week 20

Y4

R: Calculations
C: Addition and subtraction of decimals
E: Problems

Activity

1. **Fractions and decimals**
 I will say a number. Show me it as a fraction, then as a decimal, when I say. e.g.

 T's Number:

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Three tenths</td>
<td>$\frac{3}{10}$</td>
</tr>
<tr>
<td>b) One half</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>c) Twenty-seven hundredths</td>
<td>$\frac{27}{100}$</td>
</tr>
<tr>
<td>d) Two point six four</td>
<td>$\frac{264}{100}$</td>
</tr>
<tr>
<td>e) Seven point zero four</td>
<td>$\frac{74}{100}$</td>
</tr>
<tr>
<td>f) Ninety-eight and twenty-five hundredths</td>
<td>$\frac{9825}{100}$</td>
</tr>
</tbody>
</table>

 etc.

- **6 min**

2. **Completing to 1**
 T says a number. Ps say an addition or subtraction to result in 1. Other Ps are at BB to write it. Class points out errors.

 e.g. T: 0.7, P 1: '0.7 + 0.3 = 1'; T: 5 twelfths, P 2: '5 twelfths + 7 twelfths = 1'; T: 0.97, P 3: '0.97 + 0.03 = 1'; T: 10 hundredths, P 4: '10 hundredths + 90 hundredths = 1'; T: 13 tenths, P 5: '13 tenths minus 3 tenths = 1', etc.

- **11 min**

3. **Rounding**
 Let's round these decimals. Ps come to BB or dictate what T should write. Class agrees/disagrees.

 BB:

 a) Round to the nearest whole number:

Decimal	Approximation
0.3	0
0.5	1
0.49	0
0.51	1
0.7	1
1.3	1
4.1	4
5.6	6
5.49	5
5.51	6

 b) Round to the nearest tenth:

Decimal	Approximation
0.71	0.7
0.75	0.8
0.06	0.1
0.18	0.2
3.14	3.1
15.06	15.1
4.38	4.4
7.25	7.3

 etc.

- **17 min**

4. **Mental practice**
 T throws a ball to a P saying an addition or subtraction involving decimals. P throws ball back to T saying result. e.g.

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 + 0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>0.9 - 0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>1.3 + 2.4</td>
<td>3.7</td>
</tr>
<tr>
<td>4.1 - 0.7</td>
<td>3.4</td>
</tr>
<tr>
<td>1 - 0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>1 + 2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- **22 min**

Notes

- Individual work but class kept together
- Responses shown on scrap paper or slates in unison on command
- Agreement, praising
- Ps who were correct explain to those who were wrong.
- Show on a diagram or number line if problems.
- Feedback for T

Ps can ask the numbers too!

Whole class activity
At speed
Agreement, praising
Show on number line or other model if problems.
Feedback for T

Whole class activity
Written on BB or SB or OHT
At a good pace
Show on relevant segment of the number line drawn on BB if problems.
Agree that 0.5 rounds up to next whole unit. 1.0
Agree that 0.05 rounds up to next whole tenth. 0.1
or 15.06 ≈ 15.10,
7.25 ≈ 7.30

Whole class activity
At speed
Class points out errors.
Praising, encouragement only
Y4

Activity

5
PbY4b, page 98

Q.1 Read: Calculate the sums and differences in different ways.
Use at least 2 different ways. If you need more room, do the calculations in your Ex. Bks.
Review at BB with whole class. T chooses Ps to show their methods on the BB. Who did it another way? etc. Deal with all cases. Mistakes discussed and corrected.

Solution: e.g.

a) $6.8 + 4.7 = 11.5$ or $6\frac{8}{10} + 4 \frac{7}{10} = 10 + \frac{15}{10} = 10 + \frac{5}{10} = 11 \frac{5}{10} (= 11\frac{1}{2})$

b) $\frac{2}{10} + 3 \frac{4}{10} = 5 + \frac{5}{10} = 5 \frac{5}{10} (= \frac{11}{2})$; $2.1 + 3.4 = 5.5$

c) $5.2 - 1.6 = 3.6$; $5\frac{2}{10} - 1 \frac{6}{10} = 4 - \frac{4}{10} = 3 \frac{6}{10}$

d) $6.8 - 1.7 = 5.1$

e) $4 \frac{3}{10} + 11.8 = 4.3 + 11.8 = 15 + 1.1 = 16.1$;

f) $7.2 - 3 \frac{6}{10} = 7.2 - 3.6 = 3.6$; $7 \frac{2}{10} - 3 \frac{6}{10} = 6 \frac{12}{10} - 3 \frac{6}{10} = 3 \frac{6}{10}$

28 min

6
PbY4b, page 98

Q.2 Let's see how many of these you can do in 4 minutes!
Remember to check your results! Start . . . now! . . . Stop!
Review at BB with the whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected.
Who had all 6 correct? Let's give them a round of applause!

Solution:

a) $6.8 + 4.7 = 11.5$

b) $\frac{2}{10} + 3 \frac{4}{10} = 5 + \frac{5}{10} = 5 \frac{5}{10} (= \frac{11}{2})$

c) $5.2 - 1.6 = 3.6$

d) $6.8 - 1.7 = 5.1$

e) $4 \frac{3}{10} + 11.8 = 4.3 + 11.8 = 15 + 1.1 = 16.1$

f) $7.2 - 3 \frac{6}{10} = 7.2 - 3.6 = 3.6$

34 min

Notes

Individual work, monitored, helped
Written on BB or SB or OHT
Allow Ps to think of own ways of calculating. T notes interesting methods while monitoring.
Accept any correct method
Reasoning given in detail (with T’s help)
Agreement, self-correction, praising or, e.g. using place value tables or vertical addition or subtraction, e.g.

Extra praise if Ps point out:

Individual work, monitored, helped
Written on BB or use enlarged copy master or OHP
Differentiation by time limit
Reasoning, agreement, self-correction, praising
Checking by adding in opposite direction (or could also be done with a calculator)

T points to a result and chooses a P to read it aloud.
Y4

Activity

7

PbY4b, page 98

Q.3 Let’s see how many of these you can do in 4 minutes! Remember to check your results! Start . . . now! . . . Stop! Review at BB with the whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Who had all 6 correct? Let’s give them 3 cheers!

Solution:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PbY4b, page 98, Q.4

Read: Charlie went on a shopping spree. He spent £29.80 on food, £37.60 on tools, £30.50 on things for his house and £38.50 on clothes.

a) How much did Charlie spend altogether?
b) How much money did he have left if he had £200 to start with?

Ps do calculations in Ex. Bks, then show the results on scrap paper or slates on command. Ps answering correctly explain at BB to those who did not. Mistakes discussed and corrected.

Solution: Spent: £29.80 Had left: £200.00

\[
\begin{align*}
\text{£29.80} & \quad \text{£37.60} \\
\text{£30.50} & \quad \text{£38.50} \\
\hline
\text{£136.40} & \quad \text{£63.60} \\
\end{align*}
\]

Or show in money and place-value tables first. T draws tables on BB and Ps dictate the headings. Ps come to BB to write the amounts in the correct columns. Class points out errors.

BB:

Using £s and pence

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ + +

1 | 3 | 6 | 4 | 0 |

Using £s

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ + +

1 | 3 | 6 | 4 | 0 |

Answer: Charlie spent £136.40 altogether and had £63.60 left.

40 min

Lesson Plan 98

Notes

Individual work, monitored, helped
Written on BB or use enlarged copy master or OHP
Differentiation by time limit
Reasoning, agreement, self-correcting, praising
Checking with an addition, subtraction or a calculator.
T chooses Ps to say the results in decreasing order.

45 min

Whole class activity but individual calculation

In unison
Reasoning, agreement, self-correcting, praising

Whole class activity
Drawn on BB or SB or OHT
At a good pace
Agreement, checking, praising
Check:

£136.40 + £63.60 = £200 ✔
Lesson Plan

Week 20

Y4

Activity	Notes
1	**Models of fractions and decimals**

Study each diagram. What part of it is shaded? What part is not shaded?

Ps come to BB to write the parts as fractions and decimals, simplifying the fractions where possible. Class agrees/disagrees.

BB:

- **Shaded:**
 - (a) \(\frac{1}{4} \) = 0.25
 - (b) \(\frac{7}{10} = 0.7 \)
 - (c) \(\frac{3}{4} = 0.75 \)

- **Unshaded:**
 - (d) \(\frac{3}{8} = 0.75 \)
 - (e) \(\frac{3}{10} = 0.3 \)
 - (f) \(\frac{1}{4} = 0.25 \)

Shaded:

- (a) \(\frac{1}{2} = 0.5 \)
- (b) \(\frac{2}{5} = 0.4 \)
- (c) \(\frac{2}{4} = \frac{1}{2} = 0.5 \)

Unshaded:

- (a) \(\frac{1}{2} = 0.5 \)
- (b) \(\frac{3}{5} = 0.6 \)
- (c) \(\frac{2}{4} = \frac{1}{2} = 0.5 \)

- **5 min**

| **2** | **Inequalities**

Which decimal is more? How much more? Ps come to BB to write the missing signs and calculate the differences. Class agrees/disagrees.

Show on number line if problems, especially the negative decimal.

BB:

- (a) 0.21 \(< \) 0.8 (0.80)
- (b) 4.2 \(> \) 2.9 (1.30)
- (c) 1.03 \(< \) 1.3 (0.27)
- (d) 0.2 \(> \) 0 (0.2)
- (e) 1.5 \(\leq \) 2 (0.5)
- (f) 0.2 \(> \) -0.5 (0.7)

- **10 min**

| **3** | **Comparing decimals**

Let's draw arrows pointing towards a number which is 2.3 more.

Ps come to BB to draw arrows. Class agrees/disagrees.

BB:

- 8.8
- 6.7
- 11.8
- 2.6
- 4.9
- 3.6
- 4.4
- 1.1
- 9.5
- 13.9

What operation could we write above the arrows? (+ 2.3) If the arrows pointed in the opposite direction, what would they mean? (– 2.3)

- **13 min**

© CIMT, University of Exeter
Activity 4

Mental practice

I will ask you some questions. Do the calculation in your head and show me the result on scrap paper or slates when I say.

a) *What should we add to 1.2 to get 1.7?* Show me . . . now! (0.5)

BB: $1.2 + 0.5 = 1.7$ or $1.7 - 1.2 = 0.5$

b) *What should we add to 2.6 to get 2.60?* Show me . . . now! (0)

BB: $2.6 = 2.60$, because $\frac{6}{10} = \frac{60}{100}$

c) *What should we subtract from 4.5 to get 1.9?* Show me . . . now! (2.6)

BB: $4.5 - 2.6 = 1.9$ or $4.5 - 1.9 = 2.6$

etc.

Notes

Whole class activity

(Less able Ps can do the calculations in *Ex. Bks* or on slates.)

Responses shown in unison.

Ps responding correctly come to BB to explain reasoning.

Agreement, praising

Activity 5

PbY4b, page 99

Q.1 Read: *How much of each shape has been shaded? Join up the fractions to the matching diagrams.*

Set a time limit. Review with whole class. Ps come to BB to draw joining lines, explaining reasoning. Class agrees/disagrees.

Mistakes discussed and corrected.

Solution:

What part of each shape is not shaded? T points to each diagram in turn and class says the unshaded part.

Notes

Individual work, monitored, helped.

Drawn on BB or use enlarged copy master or OHP.

Reasoning, agreement, self-correcting, praising.

Agree that there are no diagrams which have 0.6, 0.7 or 3 quarters shaded.

At a good pace

Class points out errors.

Praising

Activity 6

PbY4b, page 99

Q.2 Read: *Which number is more? How much more? Write the missing signs and differences.*

Ps can do calculations in *Ex. Bks* if necessary. Set a time limit.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

T asks Ps to say the inequalities using tenths or hundreds. (e.g. a): 70 hundredths is 38 hundredths more than 32 hundredths

Solution:

a) $0.37 > 0.32$

b) $5.8 < 7.1$

c) $2.5 > 2.05$

0.38

1.3

0.45

d) $0.50 = 0.5$

e) $3.2 < 4$

f) $0.6 < 0.66$

0

0.8

0.06

Notes

Individual work, monitored, helped.

Written on BB or SB or OHT.

Reasoning, agreement, self-correcting, praising.

T chooses Ps at random.

Class points out errors.

Praising, encouragement only
Lesson Plan 99

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y4</td>
<td></td>
</tr>
<tr>
<td>PbY4b, page 99</td>
<td>Individual work, monitored helped</td>
</tr>
<tr>
<td>Q.3 Read: Solve the problem in your exercise book.</td>
<td>T might review the steps for solution before Ps start (or if class is not very able, draw the diagram on BB first)</td>
</tr>
<tr>
<td>Ps read problem themselves, draw a diagram, write a plan, do the calculation, check it and write the answer as a sentence.</td>
<td>Discussion, reasoning, agreement, self-correction, praising</td>
</tr>
<tr>
<td>Set a time limit. Ps discuss it with their neighbours if they wish. Review with whole class. Ps could show result on scrap paper or slates on command. P answering correctly explains at BB to those who were wrong. Who did the same? Who did it another way? etc. Mistakes discussed and corrected.</td>
<td></td>
</tr>
<tr>
<td>Solution: e.g.</td>
<td></td>
</tr>
<tr>
<td>The sides of a rectangular play area are 54.8 m wide and 23.6 m long. How much fencing is needed to surround the play area if the gate is 1.8 m wide?</td>
<td></td>
</tr>
<tr>
<td>BB:</td>
<td></td>
</tr>
<tr>
<td>Perimeter: (2 \times (54.8 \text{ m} + 23.6 \text{ m}) = 2 \times 78.4 \text{ m} = 156.8 \text{ m})</td>
<td></td>
</tr>
<tr>
<td>Gate: 1.8 m</td>
<td></td>
</tr>
<tr>
<td>Fencing: (156.8 \text{ m} – 1.8 \text{ m} = 155 \text{ m})</td>
<td></td>
</tr>
<tr>
<td>Answer: The length of fencing needed is 155 metres.</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Individual work, monitored helped</td>
<td></td>
</tr>
<tr>
<td>Written on BB or use enlarged copy master or OHP</td>
<td></td>
</tr>
<tr>
<td>At a good pace</td>
<td></td>
</tr>
<tr>
<td>Discussion, reasoning, agreement, checking, self-correction, praising</td>
<td></td>
</tr>
<tr>
<td>Show on diagrams or on number line drawn on BB if problems.</td>
<td></td>
</tr>
<tr>
<td>h) Accept trial and error but show on number line.</td>
<td></td>
</tr>
<tr>
<td>i) (\frac{2}{5} + i = 1.3) k) (\frac{3}{4} - k = 0.07)</td>
<td></td>
</tr>
<tr>
<td>i = 1.3 – 0.4 j) (j - 0.8 = \frac{5}{10}) k) (0.75 – k = 0.07)</td>
<td></td>
</tr>
<tr>
<td>j = 1.5 + 0.8</td>
<td></td>
</tr>
<tr>
<td>(0.75 - k = 0.07)</td>
<td></td>
</tr>
<tr>
<td>(k = \frac{0.68}{0.9})</td>
<td></td>
</tr>
</tbody>
</table>
Activity

Calculation and tables practice, revision, activities, consolidation.
PbY4b, page 100

Solutions:

Q.1
- a) $0.3 < \frac{1}{2} (0.5)$
- b) $(0.75) \frac{3}{4} = 0.75$
- c) $(0.6) \frac{3}{5} > 0.2$

Q.2
- a) i) $3 \text{ mm} = \frac{3}{10} \text{ cm} = 0.3 \text{ cm}$
- ii) $6 \text{ mm} = \frac{6}{10} \text{ cm} = 0.6 \text{ cm}$
- b) i) $5 \text{ cm} = \frac{5}{100} \text{ m} = 0.05 \text{ m}$
- ii) $9 \text{ cm} = \frac{9}{100} \text{ m} = 0.09 \text{ m}$
- c) i) $76 \text{ cm} = \frac{76}{100} \text{ m} = 0.76 \text{ m}$
- ii) $12 \text{ m} = \frac{12}{1000} \text{ km} = 0.012 \text{ km}$

Q.3
- a) $a + 2.3 = 3.7$
- b) $b - 4.6 = 8$
- c) $6.1 - c = 4$

 $a = 1.4$
 $b = 12.6$
 $c = 2.1$

- d) $\frac{3}{5} + d = 1 \frac{1}{5} (\frac{6}{5})$
- e) $e - \frac{1}{4} = 2.6$

 $d = \frac{3}{5}$
 $e = 2.6 + 0.25 = 2.85$

- f) $4.3 - f = 3 \frac{1}{2} (3.5)$

 $f = 4.3 - 3.5 = 0.8$

Q.4
- a) Paul spent $\mathbf{\£5.27 + \£3.59 + \£4.47 + \£3.12 + \£2.27 = \£18.82}$
- b) Paul had left: $\mathbf{\£20 - \£18.82 = \£1.18}$

Q.5

![Diagram showing fractions and decimals](image)
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 | **Tables practice**
T says a multiplication (up to 10×10) or a division. Ps say result.
Ps can say the multiplications or divisions too!
If a P makes a mistake the next P must correct it.
- **In order round class or Ps chosen at random**
- **At speed. In good humour!**

R: Mental and written calculation
C: Fractions and decimals in context (length, capacity, mass, etc.)
E: Problems |

| 2 | **Equations and inequalities**
Which whole numbers could be written instead of the shapes?
Ps come to BB to do calculations and list the possible numbers. Class checks that they are correct.
BB:
a) $\begin{array}{c} 51 + [] \
\downarrow 193 - 40 \end{array}$
$\begin{array}{c} 51 + [] \ < 193 - 40 = 153 \
\downarrow 153 - 51 = 102 \end{array}$
$\begin{array}{c} \square : 101, 100, 99, \ldots \end{array}$
$\begin{array}{c} \downarrow = 350 \end{array}$
b) $\begin{array}{c} 4200 \div 6 \ = 350 + [] \end{array}$
$\begin{array}{c} 700 = 350 + [] \end{array}$
$c) 5200 - [] = (620 + 300) \times 2 = 920 \times 2 = 1840$
$\begin{array}{c} \heartsuit = 5200 - 1840 = 3360 \end{array}$
d) $(7000 - 2500) \div 9 < \bigcirc \bigcirc - 300$
$\begin{array}{c} 4500 \div 9 < \bigcirc \bigcirc - 300 \end{array}$
$\begin{array}{c} 500 < \bigcirc \bigcirc - 300 \end{array}$
$\begin{array}{c} 500 + 300 < \bigcirc \bigcirc \end{array}$
$\begin{array}{c} 800 < \bigcirc \bigcirc \end{array}$
$\bigcirc \bigcirc : 801, 802, 803, \ldots$
- **5 min**

| 3 | **Missing signs**
Which is more? How much more? Ps come to BB to convert one side to the same unit of measure as the other, fill in the missing signs and calculate the differences, explaining reasoning. Class agrees/disagrees.
BB:
a) $\begin{array}{c} \frac{2}{5} \text{ m} \ > \ 38 \text{ cm} \end{array}$
$\begin{array}{c} (2 \text{ cm}) \end{array}$
b) $\begin{array}{c} 0.7 \text{ kg} \ > \ 70 \text{ g} \end{array}$
$\begin{array}{c} (630 \text{ g}) \end{array}$
c) $\begin{array}{c} £200 50 \ p \ = \ £200 \frac{1}{2} \end{array}$
$\begin{array}{c} (45 \text{ min}) \end{array}$
d) $\begin{array}{c} \frac{3}{4} \text{ hour} \ < \ 75 \text{ minutes} \end{array}$
$\begin{array}{c} (30 \text{ min}) \end{array}$
e) $\begin{array}{c} 48.7 \text{ m} \ > \ 48 \text{ m 7 cm} \end{array}$
$\begin{array}{c} (63 \text{ cm}) \end{array}$
f) $\begin{array}{c} 2 \frac{2}{7} \text{ weeks} \ < \ 2 \text{ weeks 3 days} \end{array}$
$\begin{array}{c} (1 \text{ day}) \end{array}$
- **13 min**
- **20 min**

© CIMT, University of Exeter
Y4

Activity

Lesson Plan 101

Notes

Whole class activity
Drawn on BB or use enlarged copy master or OHP
At a good pace
Bold numbers are missing
Reasoning, agreement, praising
Feedback for T

Individual work, monitored, helped
Allow time for majority of Ps to complete it.
(Or T chooses P to explain at BB. Who agrees/disagrees? etc.)
Reasoning, agreement, checking, self-correction, praising
Check by adding in opposite direction or with a calculator.

Y4

Activity

4

Missing quantities
Ps come to BB to choose a column and calculate the missing number, explaining reasoning. (Calculations written at side of BB.) Class agrees/disagrees or suggests alternative ways of writing the amount.

BB:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A + B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9</td>
<td>4/10</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>2508</td>
<td>8502</td>
<td>11010</td>
</tr>
<tr>
<td></td>
<td>5 litres 420 ml</td>
<td>2.510 litres</td>
<td>7.930 litres</td>
</tr>
<tr>
<td></td>
<td>457.3</td>
<td>191.8</td>
<td>649.1</td>
</tr>
<tr>
<td></td>
<td>1/5</td>
<td>4/5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1 1/6</td>
<td>3 5/6</td>
<td>6 hours</td>
</tr>
<tr>
<td></td>
<td>2 h 43 min</td>
<td>3 h 17 min</td>
<td></td>
</tr>
</tbody>
</table>

or

12/10

7 litres 930 ml

or

5/3

7930 ml

25 min

5

PbY4b, page 101

Q.1 Read: Write a plan, estimate, calculate and check in your exercise book. Write the answer here.

Deal with one at a time. Set a time limit. Ps read question themselves and solve it in Ex. Bks; then write the answer in Pbs.

Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Mistakes discussed and corrected.

Solution:

a) Helen spent £8.40, Jane spent £3.90 and Lisa spent £5.20. How much did they spend altogether?

Plan:

\[
\begin{align*}
8.40 + 3.90 + 5.20 & = (£) \\
C: & = 8 \quad 4 \quad 0 \\
E: & = 3 \quad 9 \quad 0 \\
& + 5 \quad 2 \quad 0 \\
& = 1 \quad 7 \quad 5 \quad 0
\end{align*}
\]

Answer: They spent £17.50 altogether.

b) Frank and Barry each dug up 2 fifths of the vegetable plot.

i) What part of the vegetable plot did they dig up altogether?

Plan:

\[
\begin{align*}
F + B: & = \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \\
Answer: & = \frac{4}{5}
\end{align*}
\]

ii) What part did they still have to dig?

Plan:

\[
\begin{align*}
Still to dig: & = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \\
Answer: & = \frac{1}{5}
\end{align*}
\]

c) Polly bought 1.5 kg of apples and 5 tenths of a kg less of bananas.

i) How many kg of bananas did she buy?

Plan:

\[
\begin{align*}
B: & = 1.5 \ kg - \frac{5}{10} \ of \ 1 \ kg = 1.5 \ kg - 0.5 \ kg = 1 \ kg \\
Answer: & = 1 \ kg
\end{align*}
\]

ii) How much fruit did she buy altogether?

Plan:

\[
\begin{align*}
A + B: & = 1.5 \ kg + 1 \ kg = 2.5 \ kg \\
Answer: & = 2.5 \ kg
\end{align*}
\]

36 min
Activity

PbY4b, page 101

Q.2 Read: *Draw a diagram to help you solve the problem.*

Kate wants to cut a 2.4 m length of ribbon into two pieces, so that one piece is twice as long as the other piece.

What will be the length of each piece?

Set a time limit. Ps draw a diagram and solve it in *Pbs*.

Review with whole class. Ps could write both lengths on scrap paper or slates on command. Ps with correct responses explain to Ps who were wrong. Mistakes discussed and corrected.

Solution:

If one piece is twice as long as the other piece, we need to mark the ribbon into 3 equal parts. Each part is 1 third.

BB: e.g.

Shorter piece: \(\frac{1}{3} \) of 2.4 m = \(\frac{240}{3} = 80 \text{ cm} = 0.8 \text{ m} \)

Longer piece: \(\frac{2}{3} \) of 2.4 m = \(80 \text{ cm} \times 2 = 160 \text{ cm} = 1.6 \text{ m} \)

Answer: One piece will be 0.8 m and the other will be 1.6 m.

Notes

Lesson Plan 101

- Individual work, monitored, helped
 - (Or whole class activity, with Ps suggesting what to do and how to continue. T intervenes only if necessary.)
 - In unison
 - Reasoning, agreement, self-correction, praising

BB:

\[
\begin{array}{c}
\frac{1}{3} \\
\frac{2}{3}
\end{array}
\]

2.4 m

Check:

\(0.8 \text{ m} + 1.6 \text{ m} = 2.4 \text{ m} \)

Q.3 Read: *Divide up the shapes into 4 congruent parts so that the sum of the numbers in each part is 2.*

What does congruent mean? (exactly the same size and shape)

T gives Ps a few minutes to think about the problem, discuss it with their neighbours if they wish, and try out shapes.

Elicit that there are 24 squares in each diagram, so each part will contain 6 squares and will have total value 20 tenths.

Ps come to BB to show their shapes. Class checks the number of squares and tenths.

Solution:

Extension

What can you say about the shape of each part? (e.g. plane shape, hexagon, right angles at vertices, opposite sides parallel, concave, which shapes are reflexions, which are transformations, etc.)

Individual or paired work, monitored

- (or whole class activity if time is short)
- Drawn on BB or use enlarged copy master or OHP
- Ps could have spare copies on desks for trials.

BB:

\[
24 \div 4 = 6, \quad 2 = \frac{20}{10}
\]

Discussion, reasoning, agreement, checking, self-correcting, praising

When Ps have checked their shapes, they colour them in their *Pbs* in different colours.

Whole class activity

Praise all positive contributions.
R: Mental calculation with natural numbers
C: Fractions and decimals in context. Measures
E: Problems

Activity

1 Mental practice

a) T says an addition or subtraction of whole hundreds or tens. Ps say the sum or difference. (Items could be written on BB too.)

- e.g. 2400 + 5300 (= 7700);
- 6700 – 5100 (= 1700 – 100 = 1600);
- 480 + 270 (= 680 + 70 = 750);
- 3500 – 1900 (= 1500 + 100 = 1600); etc.

b) T says a multiplication or division (up to 10 \times 10). Ps say result.

c) Extended multiplication and division: e.g. 50 \times 3 (= 150);

- 7 \times 800 (= 5600);
- 40 \times 60 (= 2400);
- 13 \times 9 (= 90 + 27 = 117);
- 8600 \div 2 (= 4300);
- 4400 \div 400 (= 11);
- 480 \div 4 (= 120); etc.

12 min

2 Missing numbers

What do you think the rule for these puzzles could be? (The sum of any two adjacent numbers is the number directly above them.)

Ps come to BB to fill in the missing numbers, explaining reasoning. Class agrees/disagrees.

BB:

- a) \[
\begin{array}{c}
\frac{2}{5} \\
\frac{7}{5} \\
\frac{6}{5} \\
\frac{1}{5} \\
\end{array}
\]

- b) \[
\begin{array}{c}
10 \\
4.3 \\
5.7 \\
1.4 \\
2.9 \\
2.8 \\
0.5 \\
0.9 \\
2 \\
0.8 \\
\end{array}
\]

12 min

3 Fractions of an amount

Study the diagram. Think of a question involving a fraction which you could ask the class. Ps put up their hands when they have thought of one.

T chooses A to ask his/her question. Other Ps write answer on scrap paper or slates and show to A on A’s command. A chooses a P who responded correctly to come to BB to explain, referring to diagram. A agrees/disagrees. Repeat for other Ps who have thought of questions.

BB:

- a) How many rectangles are in:
 - i) 2 fifths of the diagram?
 - ii) 3 quarters of the diagram?

- b) How many stars are in:
 - i) 1 third of the diagram?
 - ii) 5 sevenths of the diagram?

Or, e.g. What part of the diagram are 11 stars? \(\frac{11}{21}\), etc.

25 min

Notes

Whole class activity

At speed in order round class

Ps calculate loudly in steps.

Class points out mistakes.

Agreement, correcting, praising

Feedback for T

(or 130 – 13 = 117)

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Ps decide where to start and how to continue.

Agreement, praising

Bold numbers are given.
Lesson Plan 102

Notes

Individual work, monitored, helped
Allow time for majority of Ps to complete it.
(Or T chooses P to explain at BB. Who agrees/disagrees? etc.)

Reasoning, agreement, checking, self-correction, praising
Check against estimate and with mental addition.

Activity 4

PbY4b, page 102

Q.1 Read: Write a plan, estimate, calculate and check the result in your exercise book. Write the answer in a sentence here.

Set a time limit. Ps read questions themselves and solve in Ex. Bks, then write the answers in Pbs.

Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Mistakes discussed and corrected.

Solution:

a) If I were to give you £6.40, you would have £25.80.

How much do you have?

Plan: £25.80 – £6.40
C: 25.80 – 6.40 = £19.40
E: £26 – £6 = £20

Answer: I have £19.40.

b) After gathering another 1 and 2 fifths kg of mushrooms, I have 2 and 1 fifth kg of mushrooms altogether.

How many kg of mushrooms did I have at first?

Plan: 2 1/5 kg – 1 2/5 kg
E: 2 kg – 1 kg = 1 kg

C: 2 1/5 – 1 2/5 = 1 1/5 kg – 1 2/5 kg = 1/5 kg

Answer: I had 4 fifths of a kg of mushrooms at first.

c) What length is the perimeter of this rectangle?

Plan: P: (1 1/4 + 2.5) × 2 (cm)
E: (1 + 3) × 2 = 8 (cm)

Convert the decimal to a fraction: e.g.

P: (1 1/4 × 2) + (2 1/2 × 2) = 2 1/2 + 4 1/2 = 2 1/2 + 5 = 7 1/2 (cm)

Or convert the fraction to a decimal: e.g.

P: (1 1/4 + 2.5) × 2 = (1.25 + 2.5) × 2 = 3.75 × 2 = 7.50 (cm)

Answer: The perimeter is 7.5 cm.

35 min
Let’s try to solve the problems together.

a) Read: Divide 20.3 kg into three parts so that the lightest part is half the weight of the middle-sized part and the middle-sized part is half the weight of the heaviest part.

T gives Ps a minute to think about it and discuss with neighbours if they wish. Into how many equal parts do we need to divide the 20.3 kg? T asks several Ps what they think. (7) We can explain it like this.

Let \(x \) be the lightest part. Then:

\[
\begin{align*}
\text{BB: } \quad & x + (x + x) + (x + x + x + x) = 7 \times x = 20.3 \text{ kg} \\
\text{So what part of the 20.3 kg is } x? \quad & (1 \text{ seventh})
\end{align*}
\]

Now let’s divide it into the 3 parts asked for. Ps dictate what T should write or come to BB, explaining reasoning. Class agrees/disagrees.

Lightest part:

\[
x = 20.3 \text{ kg} \div 7 = 2900 \text{ g} = 2.9 \text{ kg}
\]

Middle-sized part:

\[
x + x = 2.9 \text{ kg} + 2.9 \text{ kg} = 5.8 \text{ kg}
\]

Heaviest part:

\[
(x + x) \times 2 = 5.8 \text{ kg} + 5.8 \text{ kg} = 11.6 \text{ kg}
\]

How can we check that we are correct? (The sum of the 3 parts should be 20.3 kg).

b) Read: Which is more and how much more: 2 thirds of 1200 litres or 4 fifths of 1000 litres? Write it as an inequality.

Let’s write the parts of the inequality we know first. Ps dictate to T. (BB)

What should we do now? (Work out the value of each side.) Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees.

BB:

LHS:

\[
\frac{2}{3} \text{ of 1200 litres} = \frac{1200 \text{ litres}}{3} \times 2 = 800 \text{ litres}
\]

BB:

RHS:

\[
\frac{4}{5} \text{ of 1000 litres} = \frac{1000 \text{ litres}}{5} \times 4 = 800 \text{ litres}
\]

What sign should we write in the box? (=)

BB:

\[
\frac{2}{3} \text{ of 1200 litres} \quad \frac{4}{5} \text{ of 1000 litres}
\]

Whole class activity (or individual work in Ex. Bks, monitored, with missing sign shown on scrap paper or ‘slates’ on command)

Discussion, reasoning, agreement, (self-correcting), praising

(Gradually built up as more information is acquired)
Activity

1 Mental addition and subtraction
T says an addition or subtraction. Ps give result. (Ps can answer in steps or just give the final answer.)
e.g. 67 + 25 (= 87 + 5 = 92), 420 – 180 (= 320 – 80 = 240),
5200 + 4100 (= 9200 + 100 = 9300); 399 + 401 (= 799 + 1 = 800)
etc. Ps can think of operations too!

5 min

2 Mental multiplication and division
T says a multiplication or division. Ps give result (in steps if necessary).
e.g. 3 × 4 (= 12), 40 ÷ 5 (= 8), 70 × 9 (= 630), 600 ÷ 30 (= 20),
350 × 8 (= 2800), 12 × 8 (= 96),
40 × 99 (= 3960), 1000 ÷ 4 (= 250), etc.
(T writes some of the operations on BB.) Ps can think of operations too!

10 min

3 Sequences
T says first few terms of a sequence and also writes them on the BB.
Ps continue the sequence, coming o BB or dictating to T. Class points
out errors. What is the rule we are using?
a) 0.1, 0.2, 0.4, (0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2, 102.4, . . .)
 Rule: e.g. Each following term is twice the previous term. \[× 2\]
b) 0.1, 0.3, 0.7, 1.5, (3.1, 6.3, 12.7, 25.5, 51.1, 102.3, . . .)
 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 . . .
 Rule: Difference between terms is increasing by 2 times.
 Ps might notice the relationship with the sequence in a).
 e.g.
 • Difference sequence is the same as sequence a) but starting at 0.2;
 • The terms in sequence b) are 0.1 less than in sequence a).
 • T points out: 0.1 in b) = 0.1 in a), 0.3 in b) = 0.1 + 0.2 in a),
 0.7 in b) = 0.1 + 0.2 + 0.4 in a), 1.5 in b) = 0.1 + 0.2 + 0.4 +
 0.7 in a), etc.
 c) 25 \[\frac{1}{3}\], 24 \[\frac{2}{3}\], 24, 23 \[\frac{1}{3}\] (22 \[\frac{2}{3}\],
 22, \[\frac{2}{3}\], 20 \[\frac{2}{3}\], 20, 19 \[\frac{1}{3}\], . . .)
 Rule: Terms are decreasing by \[\frac{2}{3}\]. \[-\frac{2}{3}\]

18 min

4 Subtraction practice
Let's fill in the missing numbers. Ps come to BB to write numbers,
explaining calculation in detail. Class points out errors.

BB:
\[
\begin{array}{c}
3 0 4 9 \\
\underline{- 1 4 1 0} \\
1 6 3 9
\end{array}
\quad \begin{array}{c}
1 6 3 9 \\
\underline{1 4 2 9} \\
8 7 4
\end{array}
\quad \begin{array}{c}
1 4 2 9 \\
\underline{5 5 5} \\
8 7 4
\end{array}
\quad \begin{array}{c}
1 4 2 9 \\
\underline{2 1 0} \\
8 7 4
\end{array}
\quad \begin{array}{c}
1 4 2 9 \\
\underline{8 7 3} \\
8 7 3
\end{array}
\quad \begin{array}{c}
1 4 2 9 \\
\underline{1} \\
8 7 4
\end{array}
\]

What do you notice? We could have written it as one subtraction!
(3049 – 3048 = 1)

22 min
Multiplication and division practice
Let’s fill in the missing numbers. Ps come to BB to write numbers, explaining calculation in detail. Class points out errors. Let’s check the division! P comes to BB to work through the long division, saying each step loudly and using place values.

BB:

\[
\begin{array}{c}
427 \\
\times 3 \\
\hline
1281 \\
\times 5 \\
\hline
3843 \\
\end{array}
\]

What do you notice? (Multiplying by 3 and again by 3 is the same as multiplying by 9, so dividing by 9 is the reverse operation and you end up with the number you started with.)

Q.1 Read: Solve the problems in your exercise book. Write the answers here.

Set a time limit. Ps read questions themselves and solve in Ex. Bks, then write the answers in Pbs.

Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected.

Solution: e.g.

a) Sarah cut 2 m 10 cm from a 3.3 m piece of lace to trim a cushion. How much lace did she have left?
 Plan: 3.3 m – 2 m 10 cm
 E: 3 m – 2 m = 1 m
 C: 3.3 m – 2.1 cm = 1.2 m
 (or 330 cm – 210 cm = 120 cm = 1.2 m)
 Answer: Sarah had 1.2 m of lace left.

b) Jim bought 5 litres of plant food. He used 2 litres 70 cl on his vegetables and 1.2 litres on the other plants in his garden. How much plant food did he have left?
 Plan: 5 litres – (2 litres 70 cl + 1.2 litres)
 E: 5 – (3 + 1) = 5 – 4 = 1 (litre)
 C: 5 – (2.7 + 1.2) = 5 – 3.9 = 1.1 (litres),
 or 500 cl – (270 cl + 120 cl) = 500 cl – 390 cl = 110 cl
 = 1.1 litres
 Answer: Jim had 1.1 litres left.
Lesson Plan 103

Y4

Activity

7
PbY4b, page103

Q.2 Read: *How can the butterfly get to the flower? Calculate the length of the possible routes.*

How many routes are possible? (4) You can work out the length of each route in fractions or decimals. Set a time limit.

Review at BB with whole class. Ps come to BB to show their route on the diagram and then to calculate its total length. Class points out errors. Mistakes corrected. Who found another one? etc. Deal with all cases.

Stand up if you found all 4 routes correctly. Let's give them 3 cheers!

Which route would you take if you were the butterfly? Why?

Solution:

1) \(10.3 \text{ m} + 8 \text{ m 50 cm} = 10.3 \text{ m} + 8.5 \text{ m} = 18.8 \text{ m}\)

2) \(10.3 \text{ m} + 220 \text{ cm} + 9.1 \text{ m} = 10.3 \text{ m} + 2.2 \text{ m} + 9.1 \text{ m} = 21.6 \text{ m}\)

3) \(11 \frac{4}{10} \text{ m} + 220 \text{ cm} + 8 \text{ m 50 cm} = 11.4 + 2.2 + 8.5 \text{ (m)} = 22.1 \text{ m}\)

4) \(11 \frac{4}{10} \text{ m} + 9.1 \text{ m} = 11.4 \text{ m} + 9.1 \text{ m} = 20.5 \text{ m}\)

37 min

8
PbY4b, page103

Q.3 Read: *Three boys are giving each other clues about their heights. How tall is each boy?*

Ps read the clues themselves and do any necessary calculations in Ex. Bks. Heights written in Pbs. Set a time limit.

Review at BB with whole class. Ps could show heights on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Mistakes discussed and corrected.

Solution: e.g.

A: My height is 2 thirds of 180 cm.

\[
\frac{2}{3} \text{ of 180 cm} = 180 \text{ cm} \div 3 \times 2 = 60 \text{ cm} \times 2 = 120 \text{ cm}
\]

B: My height is 8 tenths of 160 cm.

\[
\frac{8}{10} \text{ of 160 cm} = 160 \text{ cm} \div 10 \times 8 = 16 \text{ cm} \times 8 = 128 \text{ cm}
\]

C: Three fifths of my height is 72 cm.

\[
\frac{3}{5} \rightarrow 72 \text{ cm}
\]

\[
\frac{1}{5} \rightarrow 72 \text{ cm} \div 3 = 60 \text{ cm} \div 3 + 12 \text{ cm} \div 3 = 24 \text{ cm}
\]

\[
\frac{5}{5} \rightarrow 72 \text{ cm} \div 3 \times 5 = 24 \text{ cm} \times 5 = 120 \text{ cm}
\]

41 min

Notes

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Discussion, reasoning, agreement, self-correcting, praising

But also praise all Ps who calculated a route correctly!

Ask several Ps. In good humour!

© CIMT, University of Exeter
Lesson Plan 103

Notes

Individual work, monitored, helped
(Or whole class activity if time is short)
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, self-correcting, praising

Extension

What would the numbers be as decimals?

\[\frac{8}{5} = \frac{8}{10} = 8.8 \]
\[\frac{7}{5} = \frac{6}{10} = 7.6 \]

etc.
Activity 1

Mental calculation

- **a)** T says an addition or a subtraction. Ps say the result (in steps if necessary), e.g. 150 + 280 (= 350 + 80 = 430), 4500 − 2900 (= 1500 + 100 = 1600), 137 + 54 (= 187 + 4 = 191), 5403 − 36 (= 5373 − 6 = 5367), etc.

- **b)** Multiplication and division tables relay (up to 10×10)
 T says a multiplication or division, e.g. 5×9, P says result (= 45) and says another multiplication or division to next P, and so on.
 Class points out errors or duplications.

- **c)** T says a multiplication or division, P says result (in steps if necessary), e.g. $64 \div 4 (= 16)$, $42 \times 3 (= 126)$, $210 \div 7 (= 30)$, $500 \times 3 (= 1500)$, $81 \times 40 (= 3240)$, etc.

Ps can think of operations for a) and c) too!

Activity 2

Mental questions

T asks a question. Ps calculate mentally and show result on slates or scrap paper on command. P responding incorrectly come to BB to write the operation on BB and do the calculation (with help of class).

- **a)** *Which number should we add to 45 to get 80?*
 Show me . . . now! (35)
 (BB: 80 − 45 = 40 − 5 = 35, or 45 + 35 = 80)

- **b)** *Which number should we subtract from 120 to get 72?*
 Show me . . . now! (48)
 (BB: 120 − 72 = 50 − 2 = 48, or 120 − 48 = 72)

- **c)** How many 61s are in 183? Show me . . . now! (3)
 (BB: 183 ÷ 61 = 3, as $\frac{3}{61} \times 183$)

Activity 3

Mental addition/subtraction of fractions and decimals

Tell me the number which is:

- **a)** $\frac{2}{5}$ more than: $\frac{1}{5}$; $\frac{3}{5}$; $\frac{4}{5} = \frac{6}{5} = \frac{1}{5}$; $\frac{3}{5}$; $\frac{5}{5} = \frac{2}{5}$; etc.

- **b)** $\frac{3}{8}$ less than: $\frac{7}{8}$; $\frac{4}{8} = \frac{1}{2}$; $\frac{1}{5}$; $\frac{4}{3}$; $\frac{1}{6} = \frac{3}{4}$; etc.

- **c)** 0.4 more than: 0.3 (0.7); 1.9 (2.3); 4.6 (5). etc.

- **d)** 2.1 less than: 8.9 (6.8); 2.1 (0); 10 (7.9), etc.

Ps can think of questions to ask too.

Notes

Whole class activity
T chooses Ps at random for a) and c), but in order round class for b)
Operations for a) and c) could be written on BB if T thinks it is necessary.
At speed. In good humour!
Agreement, praising
Class points out mistakes.
Write steps of some operations on BB if problems.

Lesson Plan 104

R: Mental and written calculations with natural numbers

C: Fractions and decimals. Measures

E: Problems. Puzzles

© CIMT, University of Exeter
Activity

4
PbY4b, page 104

Q.1 Read: *Change the quantities.*

Elicit that 1 cm = 10 mm and 1 m = 100 cm = 1000 mm (BB)

Let's see how many of these you can do in 3 minutes!

Start . . . now! . . . Stop! Ps sit up with arms folded when finished.

Ps dictate results and T writes on BB (or T has solution already prepared and uncovers each answer as it is dealt with).

Ps mark and correct own (or neighbour's) work. Who had all 8 correct (1 mistake)? Let's give them a pat on the back!

What kind of mistakes did you make? Deal with all cases.

Solution:

a) 40 cm = 400 mm
b) 30 mm = 3 cm

508 cm = 5080 mm
8060 mm = 806 cm = 8 m 6 cm

70 m = 7000 cm
7800 cm = 78 m

68 m = 6800 cm
520 cm = 5 m 20 cm = 5200 mm

Extension

How could we write 5200 mm using only metres? (5.2 m)

25 min

5
PbY4b, page 104

Q.2 Read: *Change the quantities.*

Elicit that 1 litre = 100 cl = 1000 ml and 1 kg = 1000 g (BB)

Let's see if you can do better this time! (Quicker or more accurate)

Start . . . now! . . . Stop! Ps put hands on heads when finished.

Ps dictate results and T writes on BB (or uncovers each answer on a prepared solution as it is dealt with).

Ps mark and correct own (or neighbour's) work. Who had all 8 correct or did better than last time? Let's give them a clap!

What kind of mistakes did you make? Deal with all cases.

Solution:

a) 73 litres = 7300 cl
b) 40 ml = 4 cl

57 cl = 570 ml
93 ml = 9 cl 3 ml = 9.3 cl

6.2 kg = 6200 g
1800 g = 1 kg 800 g = 1.8 kg

5.8 litres = 580 cl
450 cl = 4 litres 50 cl = 4.5 litres

Extension

How could we write 4 cl using only litres? (0.04 of a litre)

30 min

6
PbY4b, page 104

Q.3 Read: *Fill in the missing numbers.*

What do you think the arrows show? (Results of the operations)

Set at ime limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees.

Solution:

BB: e.g.

\[
\begin{align*}
82 - 60 \frac{2}{3} & = 22 - \frac{2}{3} \\
& = 21 \frac{1}{3}
\end{align*}
\]

\[
\begin{align*}
26 \frac{1}{2} + 34 \frac{1}{2} & = 60 \frac{1}{2} \\
50 \frac{1}{2} & = 50 \\
75 \frac{2}{5} + 5.2 & = 80.4 \\
44 \frac{1}{2} - 14 & = 30 \frac{1}{2} \\
78 \frac{1}{2} - 28 \frac{1}{2} & = 50 \\
58 - 27 \frac{1}{2} & = 30.5
\end{align*}
\]

task completed in detail on BB if problems.

35 min

Notes

Individual work, monitored, (helped)

Written on BB or use enlarged copy master or OHP

Differentiation by time limit

Reasoning, agreement, self-correction, praising
Lesson Plan 104

Activity 7

PbY4b, page 104, Q.4

Read: Work out the rule and fill in the missing numbers.
P.s discuss and agree on the rule. (The difference between any two adjacent numbers is the number directly below them.)
P.s come to BB to choose an appropriate box and fill in the missing number, explaining reasoning. Class agrees/disagrees.
(Calculations can be done at side of BB.) Rest of P.s work in Pbs too.

Solution:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>22.7</td>
<td>14.8</td>
<td>11.2</td>
<td>8.7</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>87.9</td>
<td>55.5</td>
<td>33.3</td>
<td>12.1</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td></td>
<td>1</td>
<td></td>
<td>9.2</td>
</tr>
</tbody>
</table>

40 min

Notes

Whole class activity
(or individual work if P.s wish)
Drawn on BB or use enlarged copy master or OHP
At a good pace
Discussion, reasoning, agreement, praising

Extension

T points to each decimal in turn and P.s say it as a fraction, simplified where relevant.

Lesson Plan 104

Activity 8

PbY4b, page 104

Q.5 Read: Solve the problem in your exercise book.
P.s read problem themselves, note the data and do the calculations in their Ex. Bks. Set a time limit.
Review with whole class. P.s could show answer on scrap paper or slates on command. P.s answering correctly explain at BB to those who were wrong. Mistakes discussed and corrected.

Solution:

Uncle Jim earned £2400 in February. He spent one fifth of it on food, one sixth on bills and one quarter on his garden.

How much did he have left?

- **Spent:** Food: \(\frac{1}{5} \) of £2400 = £2400 \(\div \) 5 = £480
- Bills: \(\frac{1}{6} \) of £2400 = £2400 \(\div \) 6 = £400
- Garden: \(\frac{1}{4} \) of £2400 = £2400 \(\div \) 4 = £600

- **Total:** £1480

Had left: £2400 – £1480 = £920.

Answer: Uncle Jim had £920 left.

Extension

Here is another way to solve the problem. Think of £2400 as 1 unit, add all the fractions together and subtract the result from 1.
P.s dictate what T should write. How can we add fifths + sixths + quarters? (Change them to the same denominator.) What is the smallest number which is a multiple of 4, 5 and 6? (60) (T helps.)
If we divided the whole unit into 60 equal parts, what would each part be? (1 sixtieth) Let's show it in a diagram. T draws rectangle and P.s come to BB to colour the appropriate number of squares.

Now let's complete the calculation.

BB: \(1 - \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{4} \right) = 1 - \frac{12 + 10 + 15}{60} = 1 - \frac{37}{60} = \frac{23}{60} \)

23 of £2400 = £2400 \(\div \) 60 \(\times \) 23 = £4 \(\times \) 230 = £920

(= £240 \(\div \) 6)

45 min

Individual work, monitored helped
Discussion, reasoning, agreement, self-correction, praising

Notes

Whole class discussion
BB: 2400

Allow P.s to contribute where they can, otherwise T gives hints or guides or explains.
Agreement, praising

BB:

Food

\(\frac{1}{5} = \frac{12}{60} \)

\(\frac{1}{5} = \frac{12}{60} \)

Bills

\(\frac{1}{5} = \frac{10}{60} \)

Garden

\(\frac{1}{5} = \frac{15}{60} \)

Agree that 23 sixtieths are left.

© CIMT, University of Exeter
Tables practice, revision, activities, consolidation

PbY4b, page 105

Solutions:

Q.1
 a) £3.27 + £4.17 + £5.82 = £13.26
 b) i) \(\frac{3}{10} + \frac{1}{5} = \frac{3}{10} + \frac{2}{10} = \frac{5}{10} = \frac{1}{2} \)
 ii) \(1 - \frac{1}{2} = \frac{1}{2} \)
 c) i) Pears: 2.5 kg + \(\frac{1}{2} \) kg = 2 \(\frac{1}{2} \) kg + \(\frac{1}{2} \) kg = 3 kg
 ii) P + A: 2.5 kg + 3 kg = 5.5 kg

Q.2
 a) \[
 \begin{align*}
 &2 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \\
 &2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
 \end{align*}
 \]
 b) \[
 \begin{align*}
 &1.45 + 1.2 + 0.75 + 0.25 \\
 &1.25 + 2.28 + 0.58 + 0.8 + 1.25
 \end{align*}
 \]

Q.3
 a) \(\frac{3}{10} \) m < 54 cm
 b) 0.9 kg > 90 g
 c) \(\frac{1}{6} \) hour < 30 minutes
 d) £150 20 p = £150.2
 e) \(\frac{7}{100} \) litres < 5 litres 700 ml
 f) 4 \(\frac{1}{2} \) weeks > 29 days
 g) 84.3 cm = 843 mm < 8.43 m

Q.4
 The wood needs to be measured in 4 equal parts:
 1.2 m ÷ 4 = 120 cm ÷ 4 = 30 cm
 Smaller piece: 30 cm
 Larger piece: 3 \times 30 cm = 90 cm
Y4

R: Calculations, polygons
C: Perimeter, area, volume (with fractions and decimals)
E: Problems

Activity

<table>
<thead>
<tr>
<th>Week 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson Plan</td>
</tr>
<tr>
<td>106</td>
</tr>
</tbody>
</table>

Sequences

What is a natural number? (A positive whole number) Let's continue these sequences but with certain conditions! T starts and Ps continue.

<table>
<thead>
<tr>
<th>a) Say 'boom' instead of the natural numbers divisible by 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, boom, 5, (6, 7, boom, 9, 10, 11, boom, . . .)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Say 'boom' instead of the multiples of 6:</th>
</tr>
</thead>
<tbody>
<tr>
<td>83, 82, 81, (80, 79, boom, 77, 76, 75, 74, boom, . . .)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c) Say 'boom' instead of the natural numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{5}, \frac{4}{5}, \frac{2}{5}, \text{boom, } \frac{3}{5}, \frac{3}{5}, \frac{4}{2}, \text{boom, } \frac{5}{3}, \ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d) Say 'boom' instead of the natural numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6, 16.9, 16.2, 15.5, (14.8, 14.1, 13.4, 12.7, boom, 11.3, . . .)</td>
</tr>
</tbody>
</table>

Combinatorics

<table>
<thead>
<tr>
<th>8 min</th>
</tr>
</thead>
</table>

a) How many different ways are there to climb up 4 stairs if you may climb 1, 2, 3, or 4 stairs at a time? Let's show them. Ps come to BB to demonstrate/draw the different ways (with T's help if necessary). Class agrees/disagrees and points out missed ways.

BB:

```
1 1 1 1
1 1 1 2
1 1 2 2
1 2 2 4
```

→ 8 ways

b) How many different ways are possible if we can climb only 1 or 2 stairs at a time? T asks several Ps what they think and why. (5)

Revision of Polygons

<table>
<thead>
<tr>
<th>13 min</th>
</tr>
</thead>
</table>

T says the name of a plane shape and Ps draw it in Ex. Bks. then think of statements to describe their shape. T quickly checks every P's drawing, then chooses Ps to show different versions on BB (or T has diagrams already drawn on BB or OHT and shows them as necessary). Elicit what Ps know about the shapes, both general and specific. T gives hints if necessary. Elicit the names if Ps know them.

<table>
<thead>
<tr>
<th>a) Draw a triangle, e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General: It has 3 straight sides, 3 vertices, 3 angles. It is convex. It has no diagonals. Specific: Each of its angles is acute (it has a right angle and 2 acute angles) or it has an obtuse angle and 2 acute angles)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Draw a quadrilateral, e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General: It has 4 straight sides, 4 vertices, 4 angles, 2 diagonals. Specific: It is regular (not regular). It has parallel (perpendicular, equal) sides. It is convex (concave), etc.</td>
</tr>
</tbody>
</table>

| c) Draw a rectangle. (It is a quadrilateral which has opposite sides parallel and equal. Its adjacent sides are perpendicular. It has two diagonals which are equal and halve each other. It is convex. etc. |

| d) Draw a square. (Regular rectangle, i.e. its 4 sides are equal in length. Its 2 diagonals cross at right angles. It is convex.) |

Discuss how to name certain angles and sides (using letters). T writes letters on the rectangle and points to a side or an angle. Ps name it.
Activity 4

PbY4b, page 106

Q.1 Read: *Measure, count or calculate the perimeter of the polygons.*

What is a polygon? (A plane shape with many straight sides.)

Set a time limit. Ps count or calculate the area and perimeter then write them in *Pbs*.

Review at BB with whole class. Ps come to BB to write the values and explain how they found them. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Polygon</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By calculation: e.g.

a) \(P = (5 + 7) \times 2 = 12 \times 2 = 24 \) (units)

b) \(P = 7 + 2 \times 6 + 4 \times 2 + 3 = 7 + 12 + 8 + 3 = 30 \) (units)

c) \(P = 4 \times 5 = 20 \) (units)

Extension

What is the name of each polygon? (a) rectangle, b) octagon – 8 sides, c) dodecagon – 12 sides (T tells the name as Ps might not know it.)

Extension

What is the name of each polygon? (a) rectangle, b) octagon – 8 sides, c) dodecagon – 12 sides (T tells the name as Ps might not know it.)

26 min

Activity 5

PbY4b, page 106

Q.2 Read: *The sides of a triangular lake are 2400 m, 1350 m and 2130 m long. What is the length of its perimeter?*

Ps write a plan in *Pbs*, estimate the result and do the calculation in Ex. Bks, then write the answer as a sentence in *Pbs*.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

Plan: \(P = 2400 + 1350 + 2130 = 5880 \) m

Answer: The perimeter of the lake is 5880 m.

Extension

What distance is the perimeter of the lake in km? (5.88 km)

30 min

© CIMT, University of Exeter
Activity

6 Pby4b, page 106

Q.3 Read: Write a plan, estimate, calculate and write the answer.

Deal with one part at a time. Set a time limit.

Review at BB with whole class. Ps come to BB to show solution, explaining reasoning. Who agrees? Who did it another way? etc.

Mistakes discussed and corrected. Draw diagrams on BB.

Solution:

a) A practice book is 29.7 cm long and 20.8 cm wide. How long is its perimeter?

Plan: \(P = (29.7 + 20.8) \times 2 \) (cm)

\(E: P \approx (30 + 21) \times 2 = 51 \times 2 = 102 \) (cm)

C: Answer: Its perimeter is 101 cm long.

b) George’s room is four and two fifths metres long and three and a half metres wide. How long is its perimeter?

Plan: \((4 \frac{2}{5} + 3 \frac{1}{2}) \times 2 \) (m)

\(E: (4 + 4) \times 2 = 8 \times 2 = 16 \) (m)

C: \((4 \frac{2}{5} + 3 \frac{1}{2}) \times 2 = (4 \frac{4}{10} + 3 \frac{5}{10}) \times 2 = 7 \frac{9}{10} \times 2 \)

= \(14 + \frac{18}{10} = 15 \frac{8}{10} = 15 \frac{4}{5} \) (m)

Or \((4 \frac{2}{5} + 3 \frac{1}{2}) \times 2 = (4.4 + 3.5) \times 2 = 7.9 \times 2 = 15.8 \) (m)

or \((440 + 350) \times 2 = 790 \times 2 = 1580 \) (cm) = 15.8 m

Answer: The length of its perimeter is 15.8 m.

Extension

What is the area of George’s room? Ps suggest how to do it with T’s help where necessary. Draw grid lines on diagram to show the metre squares, then discuss what the fraction in the bottom right corner is. T explains (with Ps’ help).

BB: 1 metre = 10 cm,
so 1 metre square = 10 cm \(\times \) 10 cm = 100 cm square

Length: 0.4 of 10 cm = 4 tenths of 10 cm = 4 cm
Width: 0.5 of 10 cm = 5 tenths of 10 cm = 5 cm

Area of small rectangle = 4 cm \(\times \) 5 cm = 20 cm squares

\(A = 4 \times 3 + (0.4 + 0.4 + 0.4) + (0.5 + 0.5 + 0.5 + 0.5) + 0.2 \)
= \(12 + 1.2 + 2.0 + 0.2 = 15.4 \) (metre squares) = 15.4 m²

T (or P) could show the addition as a multiplication too.

Whole class discussion.

BB: \(4 \frac{2}{5} \) m (4.4 m)

Elicit its length in metres too.

BB: 101 cm = 1 m 1 cm
= 1.01 m

T (or P) reminds class how to write ‘metre squares’ using mathematical notation.
Lesson Plan 106

Notes

Individual work, monitored, helped
Ps have 1 mm grids on desks.
Digrams drawn on BB.

Extension

Who can think of questions to ask about the rectangle? e.g.
- Which side is parallel to AB? (DC)
- Which side is equal to AD? (BC)
- Which side is perpendicular to AB? (AD and BC)
- What are the names of its diagonals? (AC and BD)
- Which angle is a right angle? (angle DAB, angle ABC, angle BCD, angle ADC)

Activity

<table>
<thead>
<tr>
<th>7</th>
<th>PbY4b, page 106</th>
</tr>
</thead>
</table>
| Q.4 | **Read:** Calculate the area and the perimeter of this rectangle.
Ps may use any method they like (including drawing the rectangle accurately on 1 mm grids if they wish).
Set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.
Solution:
\[P = (0.9 \text{ cm} + 2.4 \text{ cm}) \times 2 = 3.3 \times 2 = 6.6 \text{ cm} \text{ or} \]
\[P = (9 \text{ mm} + 24 \text{ mm}) \times 2 = 33 \times 2 = 66 \text{ mm} \]
\[A = 0.9 \text{ cm} \times 2.4 \text{ cm} = 9 \times 24 \text{ mm} \]
\[= (180 + 36) = 216 \text{ (mm squares)} \]
\[= 216 \text{ mm}^2 = 2.16 \text{ cm}^2 \] |

Extension

Whole class activity
T could start and Ps continue.
T (P) chooses Ps to answer.
Practice in using letters to identify sides and angles in shapes.
Praising, encouragement only

<table>
<thead>
<tr>
<th>8</th>
<th>PbY4b, page 106. Q.5</th>
</tr>
</thead>
</table>
| Read: | How can the fishing lake be enlarged to twice its area without moving the 4 oak trees?
How can we do it? Ps discuss it with their neighbours for a minute and then make suggestions. If no P has a good idea, T might give a hint about drawing the diagonals. Elicit that the square has 4 congruent triangles, so an enlargement to twice its size will need 8 congruent triangles.
T could have 2 congruent squares, one stuck to the BB, the other folded along both diagonals and the triangles formed cut out and stuck on the sides of the original square as shown. (This should all be done with help of Ps.)
Solution: |

Whole class activity
(or individual or paired trial first if Ps wish)
Ps could have 2 congruent squares on desks too.
Discussion, reasoning, agreement, demonstration, praising

BB:

Square: \(A = 4 \text{ unit triangles} \)
Enlargement: \(A = 4 \times 2 = 8 \text{ (unit triangles)} \)
Lesson Plan

Week 22

R: Calculations
C: Natural numbers, fractions and decimals
E: Problems

Activity

Mental practice

- **a)** Listen carefully and try to do the calculations in your head.
 - Nod your head when you have done each step and show me the final result when I say.
 - Start with 0.9, add 1 (1.9) ... subtract 0.3 (1.6) ... add 2.7 (4.3), ... and subtract 0.3.
 - Show me that result ... now! (4) Let’s show the steps on the number line. Ps come to BB to demonstrate the jumps as T reads them again.

 ![Number Line](image)

- **b)** I thought of a number. If I add 5 eighths to it the result will be 2. What was the number I first thought of?
 - Show me ... now! (Accept $\frac{11}{8}$ or $1\frac{3}{8}$)
 - Ps who answered correctly come to BB to explain their reasoning.
 - Class agrees/disagrees. Mistakes discussed. e.g.

 \[
 \begin{align*}
 BB: & \quad \frac{5}{8} + 2 = 2, \quad \frac{5}{8} = 2 - \frac{5}{8} = \frac{16}{8} - \frac{5}{8} = \frac{11}{8} = 1\frac{3}{8} \\
 & \quad 8 \text{ min}
 \end{align*}
 \]

Factorisation

- Let’s factorise these numbers and write them as a product of their prime factors. Then we will use them to list all the factors in order.
 - Ps come to BB to draw the factor trees (with help of class if necessary), to write the products and to list the factors in pairs.

 - **BB:**

 ![Factor Trees](image)

 - **Prime factors**

 - $56 = 2 \times 2 \times 2 \times 7$

 - Elicit that 1 is not a prime number as it has only one factor, itself

 - **Factors**

 - 1, 2, 4, 7, 8, 14, 28, 56

 - **Factors**

 - $600 = 2 \times 2 \times 2 \times 3 \times 5 \times 5$

 - Ps could use a calculator to work out the factors in b.]

 - **Prime factors**

 - E.g.

 - **Factors**

 - 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600

 - **Prime factors**

 - $65 = 5 \times 13$

 - **Factors**

 - 1, 5, 13, 65

 - **Prime factors**

 - $36 = 2 \times 2 \times 3 \times 3$

 - **Factors**

 - 1, 2, 3, 4, 6, 9, 12, 18, 36

 - **Note for Ts only**

 - To find how many factors a number has, add 1 to the power of each of its prime factors, then calculate the product. e.g.

 - $56 = 2^3 \times 7$;

 - $(3+1) \times (1+1) = 4 \times 2 = 8$So 56 has 8 factors.

 - $600 = 2^3 \times 3^2 \times 5^2$;

 - $(3+1) \times (1+1) \times (2+1) = 4 \times 2 \times 3 = 24$ (factors)

 - In unison

 - Reasoning, correcting, agreement, pleasing

 - Whole class activity but individual calculations

 - Less able Ps can note the results of each step in Ex. Bks. or on slates.

 - Give Ps time to calculate.

 - In unison

 - Number line drawn on BB or use enlarged copy master or OHP

 - Agreement, praising

© CIMT, University of Exeter
Y4

Activity

3
PbY4b, page 107

Q.1 Read: The unit of area is 1 cm2. The unit of length is 1 cm. Continue the sequence and complete the table. Write the rule in different ways.

What do you think each row in the table means? What have the rectangles to do with the table? Ask several Ps what they think. T repeats their explanations more clearly and concisely if necessary. If no P knows, T gives hints or explains the task.

(a) is the width and b is the height, in cm, of the rectangle at the top of each column. P is its perimeter (in cm) and A is its area (in cm2). Do one column with whole class first if necessary.

Set a time limit. Ps continue the sequence of numbers in b, complete the rows for P and A, draw the missing rectangles accurately and write the rule in different ways.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit the units of measure for each row in the table. Ps label the sides of the final rectangle.

Solution:

<table>
<thead>
<tr>
<th>a</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

Whole class discussion to start, then individual work, monitored, helped.

Ps have rulers on desks for measuring and drawing.

Table drawn on BB or use enlarged copy master or OHP for demonstration only!

Extra praise if Ps notice that b is increasing by 0.1 cm each time.

Differentiation by time limit or do one step at a time if Ps are not very able.

Discussion, reasoning, agreement, self-correcting, praising

BB:

Rule:

$P = 2 \times (a + b)$

$a = P ÷ 2 - b$

$b = P ÷ 2 - a$

$A = a \times b$

28 min

4
PbY4b, page107, Q.2

Read: Ten pupils measured their heights and wrote them down in various ways.

Look carefully at their heights. What is wrong with them? (They use different units and some are written as decimals, some as fractions.) What should we do first? (Change them all to the same unit and form.) Agree on the unit (cm, as used in the table) and the form.

a) Read: Show the data in this tally chart.

T chooses 10 Ps to be A, B, etc. and they come to BB to convert their heights to cm and draw a tally mark in the correct place in the tally chart. Class points out errors.

BB: A = 130 cm, B = 135 cm, C = 134 cm, D = 135 cm, E = 134 cm, F = 134 cm, G = 140 cm, H = 136 cm, I = 140 cm, J = 134 cm

<table>
<thead>
<tr>
<th>130</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
</tr>
</tbody>
</table>

b) Read: Write the data in decreasing order.

Class dictates what T should write.

BB: 140 cm, 140 cm, 136 cm, 135 cm, 134 cm, 134 cm, 134 cm, 134 cm, 130 cm

c) Read: Which height is the most frequent? This is the mode.

Show me . . . now! (134 cm) Agree that it has the most tally marks.

Ps write in Pbs too.

Responses shown on scrap paper or slates in unison.
Lesson Plan 107

Activity

4 (Continued)

d) Read: *Which are the middle data?*

Show me . . . now! (134 cm and 135 cm)

If a P responds with 135.5 cm, ask him or her to explain their thinking. Otherwise agree that the number of data items is even, so there is no middle height in the set of data. What should we do?

Find the height which is halfway between 134 cm and 135 cm

Elicit that the middle number is 134.5 cm by referring to a number line drawn on BB or a height chart.

We call the middle value in a set of data the **median** and this is how we calculate it if the number of values in the set is even.

\[
BB: \text{median} = \frac{134 \, \text{cm} + 135 \, \text{cm}}{2} = 134 \, \text{cm} + \frac{1}{2} \, \text{cm} = 134.5 \, \text{cm}
\]

What is the **median** of this set of data?

BB: i) 11, 11, 12, 13, 14 (12, as odd number of values)

ii) 10, 11, 12, 13, 15, 15 (12.5, as even number of values)

What is the **mode**? i) 11; ii) 15

5 **PbY4b, page107**

Q.3 Let's see how many of these you can do in 4 minutes! Stand up when you have finished! Start . . . now! . . . Stop!

Review at BB with whole class. Ps dictate results, giving details of reasoning where needed. Ps mark and correct own (or neighbour's) work. Who made a mistake? What kind of mistake? etc.

Stand up if you had them all correct. Let's give them a clap!

Solution:

\[
a) \begin{align*}
&4.76 + 6.53 = 11.29 \\
&4.58 + 3.21 = 7.79 \\
&2.84 + 6.10 = 8.94
\end{align*}
\]

\[
b) \begin{align*}
&2.06 + 1.78 = 3.84 \\
&2.10 + 6.14 = 8.24 \\
&4.05 + 4.64 = 8.69
\end{align*}
\]

6 **PbY4b, page107**

Q.4 Let's see if you can be more accurate and quicker this time!

Start . . . now! . . . Stop!

Review at BB with whole class as in a). Class applauds the most improved score or time.

Solution:

\[
a) \begin{align*}
&2.13 \times 3 = 6.39 \\
&6.10 \times 4 = 24.40 \\
&2.54 \times 3 = 7.62
\end{align*}
\]

\[
b) \begin{align*}
&2.12 \times 3 = 6.36 \\
&3.01 \times 2 = 6.02 \\
&4.84 \times 4 = 19.36
\end{align*}
\]
R: Calculations
C: Natural numbers, fractions and decimals
E: Problems

Activity

1. **Secret shape**
 Ps have shape card sets on desks: (circle, triangle, square, pentagon, hexagon), small or large, black or white, with or without a centre dot.
 a) How many elements are in the set? \(5 \times 2 \times 2 \times 2 = 40\)
 b) I will choose a shape and hide it behind my back. You must ask me questions to find out what it is but I can answer only yes or no.
 As soon as you know the shape, stand up and show me it.
 e.g. T hides the small, white, dotted, hexagon.
 Ps: Is it large? (No); Does it have a centre dot? (Yes); Is it black? (No); Is it a polygon? (Yes); Does it have more than 4 sides? (Yes); Is it a pentagon? (No)
 P(s) holds up You are very clever!

2. **Secret number**
 I am thinking of a natural number not greater than 10 000. You must ask me questions to find out what it is but you cannot ask the same question as the previous one. I can answer only yes or no.
 T (or Ps) could keep a running note of possible numbers on BB too.
 e.g. 3271
 Is it less than 5000? (Yes) Is it more than 2500? (Yes); Does it have an odd digit in the thousands column? (Yes); Is it more than or equal to 3500? (No); Does it have an even digit in the hundreds column? (Yes); Is it more than or equal to 3400? (No); Does it have an even digit in the tens column? (No); Is it more than 3270? (Yes); Is it more than 3275? (No); Does it have an odd number in the units column? (Yes); Is its units digit 3? (No);
 It is 3271! (Yes)
 P who answered correctly thinks of his/her own number and answers questions about it (with T’s help where necessary).

3. **Modelling fractions**
 Let’s see if you are clever enough to find these parts of a whole.
 How could we show it? Ps make suggestions (e.g. draw a diagram, or show with coloured multi-link cubes). Class agrees on number of parts each whole must be divided into (i.e. the smallest multiple of both denominators). Ps come to front of class to show the model and explain their reasoning. Class agrees/disagrees.
 e.g.
 BB: a) \(\frac{1}{3}\) of \(\frac{1}{4}\)
 is \(\frac{1}{12}\)
 b) \(\frac{2}{3}\) of \(\frac{4}{5}\)
 is \(\frac{8}{15}\)

Notes

Whole class activity
Encourage Ps to lay out the cards logically on desks, e.g.

Ask several Ps what they think.

Whole class activity
Encourage Ps to ask logical questions and to keep in mind the clues already given.
Ps may write clues in Ex. Bks. and keep a note of possible numbers, eliminating numbers as more clues are given.
Or Ps ask the same type of question each time, e.g.
Is it more than 5000? (Yes) Is it more than 2500? (Yes) Is it more than 3750? (No), etc.
Praising, encouragement only
Extra praise for clever questions!

Whole class activity
Allow Ps to suggest what to do. T helps (hints) only if necessary.
Discussion, reasoning, agreement, praising
Extra praise if Ps notice that the numerator (denominator) of the final fraction is the product of the numerators (denominators) of the other two fractions, but do not enforce it at this stage.
Activity

4

Number sets
T has some numbers written on the BB. Let's put them in the correct place in this Venn diagram. First elicit (or explain if Ps do not know) the meaning of the label on each set.
- **Numbers** means all numbers,
- **Integer Numbers** means all whole numbers (positive and negative)
- **Natural numbers** means all positive whole numbers.

Ps come to BB to choose a number, point to where they think it should go and say why. Class agrees/disagrees. Elicit that in the case of, e.g. (1.3 + 2.7), Ps should work out its value first (i.e. 4) then decide in which set to write the number.

BB:

\[
\begin{align*}
(4) & \quad \frac{21}{5} \quad \frac{407}{10} \\
0.9, & \quad 1.3 + 2.7, -2, 0, 5016, 7, 4 - \frac{3}{4}, -\frac{4}{9}, 2 + \frac{1}{5}, 408 - \frac{7}{10}
\end{align*}
\]

Venn diagram

\[
\begin{align*}
\text{Numbers} & \quad -2 & \quad 2 \frac{1}{5} & \quad -5 \\
\text{Integer Numbers} & \quad 0.9 & \quad 5016 \\
\text{Natural Numbers} & \quad 4 & \quad 6 \\
\text{Mixed numbers} & \quad \text{Fractions} \\
\text{Decimals} & \quad \text{Positive whole numbers} \\
\text{Negative whole numbers} & \quad \text{Zero}
\end{align*}
\]

Notes

Whole class activity
Drawn on BB or use enlarged copy master or OHP
Discussion/revision of the classification of numbers

At a good pace
Reasoning, agreement, praising
Agree that all natural numbers, all negative whole numbers and zero are integers.

If there is time, Ps can think of other numbers to add to the diagram.
Feedback for T

Lesson Plan 108

5

PbY4b, page 108

Q.1 Read: Write true statements about each diagram in your Ex Bk.

Do part a) with the whole class first if Ps are unsure what to do, or elicit just one example of a possible statement for a).

Set a time limit. Review at BB with whole class. Ps dictate to T who writes statements on BB. Class points out errors or suggests missed statements. Deal with all cases. T helps with missing types.

Solution: e.g. Part shaded is:

\[
\begin{align*}
\text{a) } & \quad \frac{6}{20} = \frac{3}{10} \\
\text{b) } & \quad \frac{6}{12} = \frac{1}{2} \\
\text{c) } & \quad \frac{5}{16}
\end{align*}
\]

\[
\begin{align*}
1 - \frac{14}{20} & = \frac{6}{10} \\
1 - \frac{6}{12} & = \frac{1}{2} \\
1 - \frac{11}{16} & = \frac{5}{16}
\end{align*}
\]

\[
\begin{align*}
\frac{1}{2} & = \frac{3}{10} \\
\frac{2}{3} & = \frac{6}{12} \\
\frac{1}{2} & = \frac{5}{8}
\end{align*}
\]

\[
\begin{align*}
\frac{3}{4} & = \frac{6}{10} \\
\frac{3}{4} & = \frac{6}{12} \\
\frac{5}{8} & = \frac{5}{16}
\end{align*}
\]

Individual work, monitored, helped
(or whole class activity if class is not very able)

Drawn on BB or use enlarged copy master or OHP
Agreement, self-correcting, praising
Make sure that Ps understand that, e.g.

\[
\frac{2}{3} \times \frac{3}{4} = \frac{3}{4} \times \frac{2}{3}
\]

by referring to the diagram.

Reiterate that multiplying (dividing) the numerator and denominator of a fraction by the same amount does not change its value.

Accept statements about the unshaded parts too!
Activity

Lesson Plan 108

6
PbY4b, page 108

Q.2 Read: *Fill in the missing numbers.*

Who can explain what we have to do? (The result of each operation is the number at the top of the column.)

Let's see if you can finish it in 3 minutes! Start . . . now! . . . Stop!

Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9000</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>4000</td>
<td>5000</td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td>3900</td>
<td>5100</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>8150</td>
<td>+ 850</td>
<td>3 1/2</td>
<td>8 1/2</td>
</tr>
<tr>
<td>8933</td>
<td>+ 67</td>
<td>1 1/2</td>
<td>+ 11 1/2</td>
</tr>
<tr>
<td>1 + 8999</td>
<td>0 1/2</td>
<td>0.5</td>
<td>32 1/2</td>
</tr>
</tbody>
</table>

Extension

Ps think of other ways to describe 9000 (12, 16).

7
PbY4b, page 108

Q.3 Read: *Fill in the next nearest tens, units and tenths.*

Set a time limit. T writes additional part d) on BB for the more able Ps if they finish quickly.

Review at BB with whole class. Ps come to BB or dictate to T, saying the whole inequality. Class agrees/disagrees. Mistakes discussed and corrected. If disagreement or difficulty, show on relevant segment of the number line drawn on BB.

Solution:

<table>
<thead>
<tr>
<th></th>
<th>a) tens</th>
<th>b) units</th>
<th>c) tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>5410</td>
<td>5420</td>
<td>5419</td>
<td>5420</td>
</tr>
<tr>
<td>650</td>
<td>657</td>
<td>660</td>
<td>657</td>
</tr>
<tr>
<td>40</td>
<td>43.2</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>100</td>
<td>103 7/8</td>
<td>110</td>
<td>103</td>
</tr>
<tr>
<td>5419.99</td>
<td>5420</td>
<td>5419.99</td>
<td>5420</td>
</tr>
<tr>
<td>656.99</td>
<td>657.01</td>
<td>656.99</td>
<td>657.1</td>
</tr>
<tr>
<td>43.19</td>
<td>43.2</td>
<td>43.2</td>
<td>43.3</td>
</tr>
<tr>
<td>2.92</td>
<td>2.93</td>
<td>2.93</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Extension

T points to a number. Ps round it to the nearest 1000, (100, 10, 1 or tenth as appropriate).

Notes

Individual work, monitored, helped

Written on BB or use enlarged copy master or OHP

Differentiation by time limit

Discussion, reasoning, agreement, self-correction, praising

Write details of calculation on BB if there are problems.

Feedback for T

Orally round class at speed

Extra praise for creativity!
Activity 8

PbY4b, page 108

Q.4 Read: *These were the fruit that 20 children in a class brought for their lunch.*

Ask Ps to make a tally first by drawing a vertical line for each piece of fruit inside the box and then colouring it to show that it has been counted. Demonstrate on BB if necessary.

Review totals for each type of fruit. Ps with incorrect totals check and correct them. Now let's answer the questions.

A P reads each question aloud, then class shows the answer on scrap paper or slates on command. Ps responding correctly explain to those who were wrong. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Tally</th>
<th>(20 pieces of fruit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>🍎</td>
<td>(10)</td>
</tr>
<tr>
<td>🍊</td>
<td>(6)</td>
</tr>
<tr>
<td>🍌</td>
<td>(4)</td>
</tr>
</tbody>
</table>

a) **What fraction of the fruit were apples?**

\[
\frac{10}{20} = \frac{1}{2}
\]

b) **What fraction of the fruit were oranges?**

\[
\frac{6}{20} = \frac{3}{10}
\]

c) **What fraction of the fruit were bananas?**

\[
\frac{4}{20} = \frac{1}{5}
\]

d) **Which was the most popular fruit?** (apple)

Which was the least popular fruit? (banana)

Extension

Sometimes we can give a part of a whole by thinking of the whole as 100 equal parts. Each of these 100 parts is called a percentage.

We say that 1 out of 100 is 1 per cent. ‘Per cent’ comes from the old Roman language, Latin, and means ‘out of 100’, so 1 percent means 1 out of 100 or 1 hundredth. What percentage would the whole be? (100 per cent, i.e. 100 hundredths or 100 out of 100)

Who knows how to write the mathematical symbol for ‘per cent’? T shows it if no P knows. (%)

How many percentages would be in 1 half? (50) Who can come and write it on the BB? Who agrees? etc.

Repeat for each of the other fractions in the answers above.

[This is meant to familiarise Ps with percentage but do not expect Ps to learn it yet.]

Notes

Individual work, imonitored, helped

Fruit drawn (or stuck) on BB or use enlarged copy master/OHP

Quick revision on how to make a tally if necessary.

Agreement, self-correcting, praising

Whole class activity

Reasoning, agreement, praising

Whole class discussion

Allow Ps to tell what they know about percentages. If no P can explain, T does so.

BB: Percentage (part of 100)

<table>
<thead>
<tr>
<th>per cent</th>
<th>mean out of 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{100}{100}) = 100%</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{50}{100}) = 50%</td>
</tr>
<tr>
<td>(\frac{3}{10})</td>
<td>(\frac{30}{100}) = 30%</td>
</tr>
<tr>
<td>(\frac{1}{5})</td>
<td>(\frac{2}{10}) = (\frac{20}{100}) = 20%</td>
</tr>
</tbody>
</table>

© CIMT, University of Exeter
Y4

Lesson Plan
109

Activity

1. **Solids**

These are the ground plans of two solids. (BB) Build them with unit cubes then count their volume and surface area.

T chooses Ps to show their solids to class (or T has large models already prepared). What is the volume (surface area) of this solid? Ps show on scrap paper or slates on command, or T chooses Ps to give the volume and surface area and class agrees/disagrees.

BB:

- **a)**
 - $V = 5$ unit cubes
 - $A = 22$ unit squares

- **b)**
 - $V = 9$ unit cubes
 - $A = 32$ unit squares

2. **Comparing volume and area of cuboids**

T has large cubes for demonstration and Ps have cm cubes on desks if possible. T has table drawn on BB and Ps have a copy on desks too. T (or a P) explains what each row of the table means, using a 1 cm cube and filling in the first column in the table. ($L =$ length of the horizontal edge, $A =$ area of its surface in cm squares, $V =$ volume in cm cubes)

Now let’s make a cuboid with horizontal edge of length 2 cm. Agree that the width and height are still 1 cm but the length has increased by 1 cm. Let’s fill in the 2nd column in the table. Ps come to BB or dictate to T. Class checks by counting the squares and cubes.

If Ps have no cm cubes, continue in this way as a whole class activity, dealing with one column at a time and with Ps filling in their tables too. Otherwise, Ps work individually (or in pairs), building the cuboids of increasing horizontal length and filling in the appropriate columns in their table. In the latter case, set a time limit and review at BB with the whole class. Ps come to BB or dictate their results. Class agrees/disagrees. Mistakes corrected.

BB:

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>38</td>
<td>42</td>
<td>50</td>
<td>66</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

What do you notice? Is there a rule for the table? Elicit that for a cuboid with height and width of 1 unit, but a different length

\[V = L \] and \[A = L \times 4 + 2 \]

Who can explain it? (Volume is the number of 1 cm cubes used, which is the same number as the horizontal length. Area of surface consists of 4 faces [top, bottom, front, back] which are lengthening but the two end faces stay as 1 cm squares)

Extension

If I made a cuboid with 100 (1000) cm cubes laid end to end, what would its length (volume, surface area) be?

Notes

Individual (or paired) work, monitored, helped

Ps have unit cubes on desks.

Agreement, praising

Feedback for T

Whole class activity to start, then individual (paired) work, monitored, helped

Table drawn on BB or use enlarged copy master or OHP, with copies for Ps.

(c) 1 cm 2 cm 1 cm

1 cm

3 cm 1 cm

(c) (Cuisennaire rods could be used instead of cm cubes if class has them.)

At a good pace

Demonstration, reasoning, agreement, self-correction, praising

Discussion, checking, agreement, praising

Extra praise if Ps noticed the relationships while completing the table.

\[L = 100 \ (1000) \ cm \]

\[V = 100 \ (1000) \ cm \]

\[A = 100 \times 4 + 2 = 402 \ (cm^2) \]

\[1000 \times 4 + 2 = 4002 \ (cm^2) \]
3 Changing the unit of measure

In the last activity, we used 1 cm as the unit of length to measure the cuboids we made. Let’s show in this table what their lengths would be if we used some of the other units as the unit of measure.

T holds up each cuboid as it is dealt with, saying, ‘If the length of this cuboid is 1 unit, how many units are the lengths of the other cuboids?’

Class agrees/disagrees. In most cases (apart from the thirds, which is rather difficult), elicit what the fraction would be as a decimal too.

```
<table>
<thead>
<tr>
<th>Length</th>
<th>Unit 1 cm</th>
<th>Unit 2 cm</th>
<th>Unit 3 cm</th>
<th>Unit 4 cm</th>
<th>Unit 5 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>1</td>
<td>1.5</td>
<td>1.25</td>
<td>1.2</td>
<td>1.25</td>
</tr>
<tr>
<td>2 cm</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>3 cm</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>4 cm</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5 cm</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6 cm</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>7 cm</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8 cm</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>9 cm</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10 cm</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>11 cm</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12 cm</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>13 cm</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>14 cm</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>15 cm</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>16 cm</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>
```

BB:

Q.1 Read: Imagine these cubes built from unit cubes.

Fill in the missing numbers.

Elicit that this time the length, width and height of the cube are being increased by the same amount (rather than just the length as in the earlier activity).

How can we calculate the area and volume without needing to build the cubes? T asks several Ps what they think. T gives hints if nobody knows. Elicit that, for a cube:

\(A = L \times L \times 6 \) (each face is a square, so length equals height, and there are 6 equal faces.)

\(V = L \times L \times L \) (as length = height = width)

Set a time limit for Ps to complete the table. Necessary calculations can be done in Ex. Bks.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Length of 1 edge</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of cube</td>
<td>6</td>
<td>24</td>
<td>54</td>
<td>96</td>
<td>150</td>
<td>216</td>
</tr>
<tr>
<td>Volume of cube</td>
<td>1</td>
<td>8</td>
<td>27</td>
<td>64</td>
<td>125</td>
<td>216</td>
</tr>
</tbody>
</table>
Activity

5

PbY4b, page 109

Q.2 Read: Imagine the cuboid which has this net. Calculate its surface area and volume. Complete the table.

If possible, Ps have copies of the net on desks to fold into the cuboid as a check, and/or T has a large demonstration model already folded to show to class.

What do the letters in the table stand for? (a, b and c are the length, width and height [in units] of the cuboid and this time they are all different lengths. A is the surface area [in unit squares] and V is the volume [in unit cubes])

Ps find the values of a, b and c in the diagram by counting the grid squares, then calculate the area and volume in Ex. Bks.

Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected.

Solution:

\[A = 2 \times (3 \times 5 + 3 \times 2 + 5 \times 2) \]
\[= 2 \times (15 + 6 + 10) \]
\[= 2 \times 31 = 62 \text{ (unit squares)} \]

\[V = 3 \times 5 \times 2 = 3 \times 10 = 30 \text{ (unit cubes)} \]

6

PbY4b, page 109, Q.3

The children in a class were allowed to choose which game they would like to play during their physical education lesson. They could choose from basketball, football or tennis.

Read: The pie chart shows which part of the class chose which game to play.

Why do you think this kind of diagram is called a pie chart? (It looks like a pie cut into slices.) What does the whole circle or 'pie' stand for? (the whole class) What does this part stand for? T points and Ps explain.

Which was the most (least) popular sport? (basketball, tennis)

Read: a) Write each part as a fraction.

T asks several Ps what they think. How can we check that they are correct? (Divide the circle into 8 equal parts and count how many are shaded in the different colours.) T uses BB ruler to mark the circle.

Read: b) How many children chose each game if there were 24 pupils in the class?

Ps come to BB to do calculations and explain reasoning. Class points out errors.

Solution:

B: \[24 \div 8 \times 5 = 3 \times 5 = 15 \] (pupils)

F: \[24 \div 8 \times 2 = 3 \times 2 = 6 \] (pupils)

T: \[24 \div 8 = 3 \] (pupils)
Y4

Activity

7

PbY4b, page 109

Q.4 Read: *Solve the equations.*

Let’s see how many of these you can do in 3 minutes!

Start . . . now! . . . Stop!

Review at BB with whole class. Ps dictate to T, saying the whole equation. T writes on BB. Class agrees/disagrees. Ps mark/correct own work. Only ask for details of reasoning if there is disagreement.

Who made a mistake? What was your mistake? Deal with all cases.

Who did not finish them?

Stand up if you had them all correct! Let's give them 3 cheers!

Solution:

<table>
<thead>
<tr>
<th>a)</th>
<th>i) (3 + \frac{8}{5} = 11)</th>
<th>ii) (180 + 820 = 1000)</th>
<th>iii) (\frac{3}{7} + \frac{3}{7} = \frac{6}{7})</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv)</td>
<td>(\frac{7}{9} + \frac{2}{9} = 1)</td>
<td>v) (2.3 + 1.7 = 4)</td>
<td>vi) (0.4 + 0.6 = 1)</td>
</tr>
<tr>
<td>b)</td>
<td>i) (7 - \frac{5}{2} = 2)</td>
<td>ii) (1820 - 820 = 1000)</td>
<td>iii) (\frac{8}{9} - \frac{6}{9} = \frac{2}{9})</td>
</tr>
<tr>
<td>iv)</td>
<td>(\frac{2}{3} - \frac{1}{3} = \frac{1}{3})</td>
<td>v) (4.3 - 1.2 = 3.1)</td>
<td>vi) (1 - 0.6 = 0.4)</td>
</tr>
</tbody>
</table>

Lesson Plan 109

Notes

Individual work, monitored

Written on BB or use enlarged copy master or OHP

Or T could have solution already prepared and uncover each answer as it is dealt with.

Agreement, self-correction, evaluation, praising

Feedback for T

Let’s give the whole class 3 cheers for working so hard!
Y4

Activity

Calculation practice, revision, activities, consolidation
PbY4b, page 110

Notes

Lesson Plan
110

Solutions:

Q.1.

a) \(A = 5 \times 5 = 25 \) unit squares
\[P = 4 \times 5 = 20 \text{ units} \]

b) \(A = 2 \times (2 \times 6) + 4 = 2 \times 12 + 4 = 28 \) square units
\[P = 2 \times 6 + 10 \times 2 = 12 + 20 = 32 \text{ units} \]

c) \(A = 13 \) unit squares; \(P = 20 \) units

Q.2.

a) \(P = 2 \times (2.2 + 8) = 2 \times 10.2 = 20.4 \) (cm)
\[A = 2.2 \text{ cm} \times 8 \text{ cm} = (16 + 1.6) \text{ cm}^2 = 17.6 \text{ cm}^2 \]

b) Length of side of square: \(20.4 \text{ cm} \div 4 = 5.1 \text{ cm} \)

Q.3.

a) \(R: \quad \frac{1}{8}; \quad B: \quad \frac{1}{8}; \quad Y: \quad \frac{4}{8} = \frac{1}{2}; \quad G: \quad \frac{2}{8} = \frac{1}{4} \)

b) \(R: \) 4 pupils; \(B: \) 4 pupils, \(Y: \) 16 pupils, \(G: \) 8 pupils

Q.4.

a) i) \(5 + 1.5 = 6.5 \)
ii) \(1.8 + 3.9 = 5.7 \)
iii) \(1 + \frac{1}{4} = \frac{5}{4} \)

iv) \(\frac{5}{7} + \frac{2}{7} = 1 \)
v) \(4.7 + 1.6 = 6.3 \)
vi) \(0.3 + 0.7 = 1 \)

b) i) \(6 - 1.5 = 4.5 \)
ii) \(7.2 - 2.3 = 4.9 \)
iii) \(\frac{5}{7} - \frac{3}{7} = \frac{2}{7} \)

iv) \(1 - \frac{1}{5} = \frac{4}{5} \)
v) \(4.7 - 0.8 = 3.9 \)
vi) \(1 - 0.3 = 0.7 \)

Q.5.

\(\frac{0.8}{2.3} \)

\(\frac{2.3}{4.5} \)

\(\frac{6}{10} \)
\(1 \text{ and a half} \)

\(\frac{3}{0.6} \)

\(\frac{3}{4} \)

© CIMT, University of Exeter