Lesson Plan 31

Week 7

Notes

Whole class activity
(If possible, Ps have calculators.)
Involve several Ps.
Praise all positive contributions.
BB: decade: 10 years
 century: 100 years
 millennium: 1000 years

Agreement, praising

Drawn on BB or SB or OHT
At a good pace
Agreement, praising

BB: Leap year
 February: 29 days

Ps say what they know and T explains what they don't.
Praising, encouragement only

Extensions

T shows the fractions as decimals using a calculator:

\[
\frac{4}{7} = 0.57142857142857142857142857 \approx 0.57 \\
\frac{3}{7} = 0.42857142857142857142857143 \approx 0.43 \\
\frac{2}{7} = 0.28571428571428571428571429 \approx 0.29 \\
\frac{1}{7} = 0.14285714285714285714285714 \approx 0.14
\]

What do you notice? (Same cycle of digits in each decimal)

Ps use calculators to work out:

\[
\frac{4}{7} = 0.57142857142857142857142857 \approx 0.57 \\
\frac{3}{7} = 0.42857142857142857142857143 \approx 0.43 \\
\frac{2}{7} = 0.28571428571428571428571429 \approx 0.29 \\
\frac{1}{7} = 0.14285714285714285714285714 \approx 0.14
\]

What do you notice? (Same cycle of digits in each decimal)

[A raised dot next to a decimal digit means that the digit is recurring.]

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Activity 2</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) In how many months in a year are there 30 days?</td>
<td></td>
</tr>
<tr>
<td>Show me . . . now! (Majority will probably have written 4 months, but some might have written 11 months.) Who is correct?</td>
<td></td>
</tr>
<tr>
<td>After discussion, agree that there are 30 days in 11 of the months as 'there are' in this case means 'there are at least'.</td>
<td></td>
</tr>
<tr>
<td>b) How many months are 30 days long? (4) (In this case 4 is correct.)</td>
<td></td>
</tr>
<tr>
<td>c) Close your eyes, count from 1 to 20 in your head when I say, and stand up as soon as you have finished. Start counting . . . now!</td>
<td></td>
</tr>
<tr>
<td>T keeps a note of the seconds taken by 1st and last P to stand up. (e.g. 15 to 20 seconds)</td>
<td></td>
</tr>
<tr>
<td>d) Let's see how long you take to do this calculation. Watch the second hand on the clock and we will start when it gets to 12. Start . . now! (T uncovers calculation.)</td>
<td></td>
</tr>
<tr>
<td>BB: 1828 – (123 + 942 + 516) = (1828 – 1581 = 247)</td>
<td></td>
</tr>
<tr>
<td>Ps stand up when they have finished and note how many seconds they took. Ask several Ps for their times, then review answers and methods used. (Mental calculation will probably be quickest.)</td>
<td></td>
</tr>
<tr>
<td>e) Let's see if you can be quicker this time! Write the next 10 terms in this sequence in your Ex. Bks. Start . . now! (T uncovers terms.)</td>
<td></td>
</tr>
<tr>
<td>BB: 56, 51, 46, 41, (36, 31, 26, 21, 16, 11, 6, 1, – 4, – 9) [Rule: – 5]</td>
<td></td>
</tr>
<tr>
<td>Ps stand up when they have finished and note their times. T chooses Ps to dictate the terms and give the rule. Class agrees/ disagrees. Mistakes corrected. Class applauds quickest, correct Ps.</td>
<td></td>
</tr>
<tr>
<td>f) Let's knock on our desks for 1 minute, keeping time with the seconds ticking on the clock. Listen . . . start! T starts clock.</td>
<td></td>
</tr>
<tr>
<td>g) Close your eyes. Estimate 1 minute of time passing from when I clap my hands, then stand up. . . . T claps!</td>
<td></td>
</tr>
<tr>
<td>T asks most accurate Ps how they did it. (e.g. counting mentally from 1 to 60 in a steady beat)</td>
<td></td>
</tr>
<tr>
<td>h) i) How many years old are you? (e.g. 9 to 10)</td>
<td></td>
</tr>
<tr>
<td>ii) How many months old are you? (e.g. 108 to 120)</td>
<td></td>
</tr>
<tr>
<td>iii) How many days old are you?</td>
<td></td>
</tr>
<tr>
<td>T chooses own or a P's birth date as an example.</td>
<td></td>
</tr>
<tr>
<td>e.g. P born on 3 March 1993 and today is 18 November 2002:</td>
<td></td>
</tr>
<tr>
<td>BB: 3 March 1993 to 3 March 2002: 9 × 365 days = 3285 days</td>
<td></td>
</tr>
<tr>
<td>3 March 2002 to 18 November 2002:</td>
<td></td>
</tr>
<tr>
<td>Mar Apr May Jun Jul Aug Sep Oct Nov</td>
<td></td>
</tr>
<tr>
<td>28 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 18 = 260 (days)</td>
<td></td>
</tr>
<tr>
<td>But 1996 and 2000 were leap years, so 2 extra days are needed.</td>
<td></td>
</tr>
<tr>
<td>BB: Total age: 3285 + 260 + 2 = 3547 (days)</td>
<td></td>
</tr>
<tr>
<td>T asks Ps who have finished their calculations to tell class their results. T (class) teases Ps with obviously unrealistic ages.</td>
<td></td>
</tr>
<tr>
<td>Ps not finished can complete calculations at home if they wish.</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Whole class activities and individual exercises

Responses shown on scrap paper or slates in unison (or T asks 1 or 2 Ps what they think)

Discussion, agreement

Ps name the 4 months.

Why are the counting times different? Ps suggest reasons.

Written on BB or SB or OHT

Ps may use own watches if they have second hands.

Ps calculate mentally or on slates/scrap paper or in Ex. Bks.

Discussion, self-correction, agreement, praising

First 4 terms written on BB but covered up.

Ps use class clock or own watches to time themselves.

Reasoning, agreement, self-correction, praising

In unison. Use clock with loud tick or a metronome.

Make sure that there is no clock ticking this time!

[T tells Ps with poor estimation that saying 'elephant' between each number helps.]

Shown on slates or scrap paper in unison on command.

Whole class discussion on how to work out the answer.

Allow Ps to suggest what to do, otherwise T directs Ps' thinking.

T (P) works at BB while rest of Ps calculate own ages using same method in Ex. Bks.

Allow the use of calculators to speed up calculations.

Extra praise if Ps think of leap years without prompting.

In good humour!

Praising, encouragement only
Lesson Plan 31

Notes

Whole class activity (but if possible, individual work in drawing/setting times)
Discussion, agreement, (self-correction), praising
Agree that the time could be a.m. or p.m. if part of day is not specified.
Individual work, monitored
Set short time limits, and encourage quick writing, so that several times can be dealt with.
Discussion, agreement, self-correction, praising

Y5

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>T has large model clock for demonstration and Ps have model clocks on desks if possible (or draw clocks and arms on slates or scrap paper).</td>
</tr>
<tr>
<td></td>
<td>a) T says a time. Ps draw or set their clocks and show T on command. P with correct response explains to those who were wrong.</td>
</tr>
<tr>
<td></td>
<td>e.g. 2 o’clock, half past 3, 5 hours 45 minutes, 10 minutes to 8, twenty past 1, seven twenty-one am, 2.58 am, 1300 hours, etc.</td>
</tr>
<tr>
<td></td>
<td>Ps can say times too but encourage the use of different forms.</td>
</tr>
<tr>
<td></td>
<td>b) T sets a time on large clock, saying whether it is morning or night.</td>
</tr>
<tr>
<td></td>
<td>Ps write time in Ex. Bks. in as many different ways as they can.</td>
</tr>
<tr>
<td></td>
<td>e.g. a quarter to 6, 5:45, 1745 hours, 5 hr 45 min, 5 and 3 quarter hours, 15 minutes to 6, 5.45 am (pm)</td>
</tr>
<tr>
<td></td>
<td>Review with whole class. Deal with all cases. Class points out incorrect times. Ps can set some times too.</td>
</tr>
</tbody>
</table>

25 min

PbY5a, page 31

<table>
<thead>
<tr>
<th>Q.1 Read: Fill in the missing numbers and signs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.</td>
</tr>
<tr>
<td>Allow Ps to check approximations with calculators after the review and discuss cyclic/recurring digits and rounding.</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>a) 1 second < 1 minute 60</td>
</tr>
<tr>
<td>× 60 × 1 hour</td>
</tr>
<tr>
<td>24 × 1 day</td>
</tr>
<tr>
<td>7 × 1 week</td>
</tr>
<tr>
<td>b) 1 hour = 3600 seconds, 1 month = 30 days, 1 year = 52 weeks</td>
</tr>
<tr>
<td>365 days, 1 year = 12 months, 1 day = 24 hours</td>
</tr>
<tr>
<td>c) 85 minutes = 1 hour 25 minutes, 1 week = 168 hours</td>
</tr>
</tbody>
</table>

30 min

PbY5a, page 31

<table>
<thead>
<tr>
<th>Q.2 Read: Draw the hours and minute hands on the clocks. Write each time in another way.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set a time limit. Ps finished early could write additional forms in Ex. Bks.</td>
</tr>
<tr>
<td>Review with whole class. Ps come to BB to complete clocks and write and say times. Class points out errors. Mistakes corrected. Deal with all forms written by Ps and elicit any not given.</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>a) 7 hrs 25 min</td>
</tr>
<tr>
<td>b) 05:35</td>
</tr>
<tr>
<td>c) 20 min to 8</td>
</tr>
<tr>
<td>d) 0 hrs 5 min</td>
</tr>
<tr>
<td>e) 15 h 20 min 45 sec</td>
</tr>
</tbody>
</table>

35 min
Lesson Plan 31

Notes

Individual work, monitored, (helped)
Drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, self-correction, praising
At speed. Praising
Feedback for T

<table>
<thead>
<tr>
<th>Activity</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PbY5a, page 31</td>
</tr>
<tr>
<td>Q.3 Read: Write these times using the 24 hour clock.</td>
<td></td>
</tr>
<tr>
<td>Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.</td>
<td></td>
</tr>
<tr>
<td>T points to each clock in turn and chooses Ps to express the time in other ways. Class points out errors.</td>
<td></td>
</tr>
<tr>
<td>Solution:</td>
<td></td>
</tr>
<tr>
<td>a) morning</td>
<td>b) evening</td>
</tr>
<tr>
<td>10:35</td>
<td>10:05</td>
</tr>
<tr>
<td>39 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbY5a, page 31</td>
<td></td>
</tr>
<tr>
<td>Q.4 a) Read: How many days are in the first 5 months of a leap year?</td>
<td></td>
</tr>
<tr>
<td>Set a time limit. Ps write plan in Pbs, do calculation in Ex. Bks if necessary, then write answer as a sentence in Pbs.</td>
<td></td>
</tr>
<tr>
<td>Review with whole class. Ps could show results on scrap paper or slates in unison on command. Ps responding correctly explain at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected.</td>
<td></td>
</tr>
<tr>
<td>Solution:</td>
<td></td>
</tr>
<tr>
<td>Plan: $31 + 29 + 31 + 30 + 31 = 3 \times 31 + 29 + 30$</td>
<td></td>
</tr>
<tr>
<td>or $= 93 + 59 = 152$ (days)</td>
<td></td>
</tr>
<tr>
<td>Answer: There are 152 days in the first 5 months of a leap year.</td>
<td></td>
</tr>
<tr>
<td>b) Read: A train travelled 127 km in the first hour and a half of a journey, then it stopped for 12 minutes. It took 65 minutes to cover the remaining 102 km. How much time did the train take to do the whole journey?</td>
<td></td>
</tr>
<tr>
<td>Set a time limit. Ps write plan and answer in Pbs, but calculations can be done in Ex. Bks if necessary.</td>
<td></td>
</tr>
<tr>
<td>Review with whole class. Ps could show results on scrap paper or slates in unison on command. Ps responding correctly explain at BB to Ps who were wrong. Who agrees? Who solved it another way? etc. Mistakes discussed and corrected. Agree that the distances are not needed for solution.</td>
<td></td>
</tr>
<tr>
<td>Solution:</td>
<td></td>
</tr>
<tr>
<td>Plan: $1 \frac{1}{2}$ hours + 12 min + 65 min = (90 + 12 + 65) min</td>
<td></td>
</tr>
<tr>
<td>$= 167$ min = 2 hr 47 min</td>
<td></td>
</tr>
<tr>
<td>Answer: The whole journey took 2 hours 47 minutes.</td>
<td></td>
</tr>
<tr>
<td>45 min</td>
<td></td>
</tr>
</tbody>
</table>
Y5 Lesson Plan 32

Activity

<table>
<thead>
<tr>
<th></th>
<th>Problem 1</th>
<th>Problem 2</th>
<th>Addition of units of time</th>
<th>Timetables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Johnny wants to invite his friends to his birthday party on the 6th of December at 2 o'clock in the afternoon. How could he write the date and time on the invitation cards? Ps come to BB or dictate to T. Class agrees/disagrees. e.g. BB: 6th December 2002 at 1400 hours, 6 December 2002 at 2.00 pm, 16.12.02 at 14.00, etc.</td>
<td>Listen carefully, note the data, and show me the answer when I say. Four boys took part in a race. Adam's time was 5 and a half minutes, Brian's time was 5 minutes 25 seconds, Callum's time was 330 seconds and David's time was 5 and a third minutes. Who won the race? Show me...now! (David) (as he had the shortest time) Let's list their times in increasing order. Ps dictate to T. BB: D B A C 5 min 20 sec < 5 min 25 sec < 5 min 30 sec = 5 min 30 sec or 320 sec < 325 sec < 330 sec = 330 sec</td>
<td>I want to add up these time periods using vertical addition. Who can help me to do it? Ps suggest ideas and come to BB to explain reasoning in detail. Class points out errors or helps if Ps are stuck. BB: a) 4 hours 32 min + 3 hours 49 min = 7 hours 81 min b) 3 hours 25 min 30 sec + 11 hours 41 min 45 sec = 14 hours 66 min 75 sec or 15 hours 7 min 15 sec</td>
<td>T has enlarged pages from real local bus (train, plane, boat) timetables for demonstration and Ps have copies on desks too. Discuss meaning of abbreviations and symbols and relate to Ps' own experiences where possible. (e.g. the different classes of seats, whether food and drink is available; D: departure time, A: arrival time; whether bicycles can be taken, where passengers have to change trains, which days the service operates, downward facing arrows show continuous journeys without stops, etc.)</td>
</tr>
<tr>
<td></td>
<td>4 min</td>
<td>8 min</td>
<td>13 min</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- Whole class activity
- At a good pace
- Agreement, praising
- Feedback for T
- Whole class activity
- T repeats slowly to give Ps time to note the data and convert the units.
- In unison (on scrap paper or slates)
- Discussion, reasoning, agreement, praising
- Feedback for T
- Whole class activity
- Written on BB or SB or OHT
- BB: 1 hour = 60 min 1 min = 60 sec
- Discussion, reasoning, agreement, praising
- Ps write calculations in Ex. Bks. at same time.
- Ps can use this notation in future to save time if they wish.
- Whole class activity
- Involve as many Ps as possible in the discussion.
- Ps might also mention reserving seats, special cheap prices and travel times, etc.

© CIMT, University of Exeter
Activity 4

(Continued)

Here is a fictional (made-up) timetable. What does it tell you? (Train leaves London at 10:20 and gets to York at 16:21, stopping at Sheffield and Doncaster on the way.)

Let's work out how long the journeys are between the stations. How can we do it? Ps come to BB to do calculations, with T's help. Class agrees/disagrees. Rest of Ps write calculations in Ex. Bks too.

BB: e.g.

<table>
<thead>
<tr>
<th></th>
<th>D 10:20</th>
<th>London to Sheffield:</th>
<th>Sheffield to Doncaster:</th>
<th>Doncaster to York: 1 h 21 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td></td>
<td>12 h 72 min</td>
<td>14 h 53 min</td>
<td></td>
</tr>
<tr>
<td>Sheffield</td>
<td>A 13:12</td>
<td>13 h 12 min</td>
<td>– 10 h 20 min</td>
<td>1 h 38 min</td>
</tr>
<tr>
<td></td>
<td>D 13:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doncaster</td>
<td>A 14:53</td>
<td>2 h 52 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 15:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>York</td>
<td>A 16:21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>14 h 20 min</th>
<th>14 h 40 min</th>
<th>15 h</th>
<th>(15 h 20 min, 15 h 40 min, 16 h, 16 h 20 min, 16 h 40 min)</th>
<th>Rule: + 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.50 pm</td>
<td>3.10 pm</td>
<td>2.30 pm</td>
<td>(1.10 pm, 12.30 pm, 11:50 am, 11:10 am, 10:30 am)</td>
<td>Rule: – 40 min</td>
</tr>
<tr>
<td></td>
<td>3.50 am</td>
<td>3.10 am</td>
<td>2.30 am</td>
<td>(1.10 am, 0.30 am, 11:50 pm, 11:10 pm, 10:30 pm)</td>
<td>Rule: – 40 min</td>
</tr>
<tr>
<td></td>
<td>03:50, 03:10, 02:30, 01:50, 01:10, 00:30, 23:50, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

Or use a real timetable if it is simple enough

Written on BB or SB or OHT

Allow Ps to suggest ideas. T intervenes or gives hints only if Ps are stuck and other Ps cannot help.

Reasoning, agreement, praising

T might show other forms of writing times of arrival and departure, e.g.

10 \(\frac{2}{3} \), 14 \(\frac{1}{2} \), etc.

Activity 5

Yearly calendar

T has large class calendar and Ps have small calendars on desks (for current year if possible).

T asks questions and Ps use their calendar to find the answer. e.g.

- Number of Sundays in certain months
- Which days can be counted 4 (5) times in certain months?
- Number of days between two given dates. (e.g. Ps' birthdays)
- Length of Easter (summer, Christmas, mid-term) holidays in weeks and days.
- Length of school term (year) in weeks (months). etc.

Ps can think of questions to ask too.

Activity 6

Sequences

T dictates first few terms of a sequence. Ps write in Ex. Bks, then continue the sequence for 5 more terms.

Set a time limit. Review with whole class. Ps come to BB or dictate terms to T, saying the rule that they used. Who agrees? Who used a different rule? Mistakes discussed and corrected.

BB:

a) 14 h 20 min, 14 h 40 min, 15 h, (15 h 20 min, 15 h 40 min, 16 h, 16 h 20 min, 16 h 40 min) [**Rule:** + 20 min]

b) 3.50 pm, 3.10 pm, 2.30 pm, 1.50 pm, (1.10 pm, 12.30 pm, 11:50 am, 11:10 am, 10:30 am) [**Rule:** – 40 min]

c) 3.50 am, 3.10 am, 2.30 am, 1.50 am, (1.10 am, 0.30 am, 11:50 pm, 11:10 pm, 10:30 pm) [**Rule:** – 40 min]

Ps say the terms in b) and c) using the 24 hour clock.

b) 15:50, 15:10, 14:30, 13:50, 13:10, 12:30, etc.

c) 03:50, 03:10, 02:30, 01:50, 01:10, 00:30, 23:50, etc.

Extension

Ps dictate terms to T. Class points out errors.

© CIMT, University of Exeter
Activity 7

PbY5a, page 32

Q.2 Read: A ship sailed from A to B in 1 hour 47 minutes, then from B to C in 2 hours 35 minutes
 a) How much time did it take to sail from A to C?
 b) How much more time did it take to sail from B to C than from A to B?

Deal with one part at a time if class is not very able, otherwise set time limit. Ps calculate in Ex. Bks, then write answer as a sentence in Pbs.

Review at BB with whole class. Ps come to BB to write calculations and explain reasoning. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected.

Solution: e.g.

a) **Plan:** 1 h 47 min + 2 h 35 min or C: 1 h 47 min + 2 h 35 min

 = 3 h + 82 min
 = 3 h + 1 h 22 min
 = 4 h 22 min

Answer: It took 4 hours 22 minutes to sail from A to C.

b) **Plan:** 2 h 35 min – 1 h 47 min or C:

 = 1 h 35 min – 47 min
 = 95 min – 47 min
 = 48 min

Answer: It took 48 minutes more to sail from B to C than A to B.

Notes

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
BB:

Discussion, reasoning, agreement, self-correction, praising

Accept any correct form of calculation but T shows column form if Ps have not used it.

[Another method of subtraction is shown in Activity 8.]

Activity 8

PbY5a, page 32

Q.3 Read: Write a plan, do the calculation and check your result in the context of the question. Write the answer in a sentence.

Deal with one part at a time. Set a time limit. Ps read questions themselves and solve in Ex. Bks if they need more space.

Review with whole class. Ps could show results on scrap paper or slates in unison on command. Ps answering correctly explain solution at BB. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected.

Solution:

a) **How many minutes are there between half past ten in the morning and a quarter past one in the afternoon of the same day?**

 Plan: 13 h 15 min – 10 h 30 min or

 = 3 h 15 min – 30 min
 = 2 h 75 min – 30 min
 = 2 h 45 min
 = 120 min + 45 min
 = 165 min

 Answer: There are 165 minutes between 10.30 am and 1.15 pm on the same day.

or.

10.30 am to 12 noon: 90 min
12 noon to 1.15 pm: 75 min
Total time:

(90 + 75 = 165) min

Check:

10 h 30 min = 630 min
630 min + 165 min = 795 min
= 13 h 15 min ✔
Activity 8 (Continued)

b) Lenny spent 6 and a half hours on maths last week.

He had 5 maths lessons of 45 minutes each and spent 90 minutes at the school's maths club. The rest of the time was spent on his maths homework.

How long did it take Lenny to do his maths homework last week?

Plan:

\[
6 \text{ h 30 min} - (5 \times 45 \text{ min} + 90 \text{ min})
\]

\[
= 390 \text{ min} - (225 \text{ min} + 90 \text{ min})
\]

\[
= 390 \text{ min} - 315 \text{ min}
\]

\[
= 75 \text{ min}
\]

\[
= 1 \text{ h 15 min}
\]

Answer: Lenny took 1 hour 15 minutes to do his homework last week.

Notes

or

\[
5 \times 45 + 9 + \underline{\quad} = 390 \text{ (min)}
\]

\[
225 + 90 + \underline{\quad} = 390 \text{ (min)}
\]

\[
\underline{\quad} = 390 - 315 \text{ (min)}
\]

\[
= 75 \text{ min} = 1 \text{ h 15 in}
\]

Check:

\[
5 \times 45 \text{ min} = 225 \text{ min}
\]

\[
= 3 \text{ h 45 min}
\]

\[
90 \text{ min} = 1 \text{ h 30 min}
\]

\[
3 \text{ h 45 min} + 1 \text{ h 30 min} + 1 \text{ h 15 min}
\]

\[
= 5 \text{ h 90 min} = 6 \text{ h 30 min}
\]

Activity 9

PbY5a, page 32, Q.4

Read: *Draw two straight lines to divide this clock face into three parts so that the sum of the numbers in each part is the same.*

Who has an idea on how to solve this problem? Ps suggest strategies. Accept any valid method, including trial and error.

If no P has thought of method below, T gives hints and directs Ps’ thinking. Then Ps suggest where the 2 lines should be drawn. Class checks that they are correct.

Solution:

Total sum of numbers on the clock:

\[
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 6 \times 13 = 78
\]

Total of each part should be 1 third of 78: 78 / 3 = 26

BB:

![Clock with lines drawn](image)

Check:

\[
12 + 11 + 2 + 1 = 26
\]

\[
10 + 9 + 4 + 3 = 26
\]

\[
8 + 7 + 6 + 5 = 26
\]

Whole class activity

(or individual trial first if Ps wish, monitored)

Drawn on BB or use enlarged copy master or OHP

Discussion, reasoning, agreement, checking, praising

Extra praise for clever strategies and for Ps who find the positions of the 2 lines.
R: Mental calculation
C: Simple problems with ratio and proportion
E: Fractions and decimals in problems

Activity

1
Missing items
Let's fill in the missing numbers and units. Ps come to BB or dictate to T, explaining reasoning. Class points out errors.

BB:
a) \(\frac{1}{4} \) hour = \(\frac{15}{4} \) min = \(\frac{900}{4} \) sec.
b) \(\frac{3}{4} \) hour = \(\frac{45}{4} \) min = \(\frac{2700}{4} \) sec.

c) \(\frac{1}{2} \) hour = \(\frac{30}{2} \) min = \(\frac{1800}{2} \) sec.
d) \(\frac{3}{2} \) hour = \(\frac{90}{2} \) min = \(\frac{5400}{2} \) sec.

e) \(\frac{1}{3} \) hour = \(\frac{20}{3} \) min = \(\frac{1200}{3} \) sec.
f) \(\frac{2}{3} \) hour = \(\frac{40}{3} \) min = \(\frac{2400}{3} \) sec.

g) \(\frac{1}{5} \) hour = \(\frac{12}{5} \) min = \(\frac{720}{5} \) sec.
h) \(\frac{3}{5} \) hour = \(\frac{36}{5} \) min = \(\frac{2160}{5} \) sec.

\[i) \frac{1}{6} \text{ hour} = \frac{10}{6} \text{ min} = \frac{600}{6} \text{ sec.} \quad j) \frac{5}{6} \text{ hour} = \frac{50}{6} \text{ min} = \frac{3000}{6} \text{ sec.} \]

\[k) \frac{1}{8} \text{ hour} = \frac{7.5}{8} \text{ min} = \frac{450}{8} \text{ sec.} \quad l) \frac{7}{8} \text{ hour} = \frac{52.5}{8} \text{ min} = \frac{3150}{8} \text{ sec.} \]

\[m) \frac{1}{10} \text{ hour} = \frac{6}{10} \text{ min} = \frac{360}{10} \text{ sec.} \quad n) \frac{3}{10} \text{ hour} = \frac{18}{10} \text{ min} = \frac{1080}{10} \text{ sec.} \]

What relationships do you notice among the statements?
BB:
T or Ps if they can) explains about direct and inverse proportion.

\[\frac{1}{4} \text{ hour} \times \frac{60}{15} \text{ min} \times \frac{60}{900} \text{ sec} = \frac{2}{4} \times \frac{60}{15} \text{ min} \times \frac{60}{900} \text{ sec} = \frac{2}{5} \text{ min} \times \frac{60}{7.5} \text{ min} \times \frac{60}{450} \text{ sec} = \frac{5}{20} \text{ min} \times \frac{60}{360} \text{ min} \times \frac{60}{1080} \text{ sec} \]

2
Problems 1
Listen carefully, note the data and work out the answer in your Ex. Bks.
Show me the answer when I say.
P answering correctly explains at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.

a) If Jenny spent on average 1 hour 40 minutes each evening reading her new book, and she finished it after 5 evenings, how long did it take her to read the book?

Show me . . . now! (8 h 20 min)

BB:
e.g. 1 evening \(\rightarrow \) 1 h 40 min

5 evenings \(\rightarrow \) 5 \(\times \) 1 h 40 min = 5 \(\times \) 1h + 5 \(\times \) 40 min

\(= \) 5 h 200 min = \(\frac{8}{2} \) h 20 min

or 5 \(\times \) 1 h 40 min = 5 \(\times \) 100 min. = 500 min = \(\frac{8}{2} \) h 20 min

Answer: Jenny took 8 h 20 min to read her book.

b) If Benny exercises for 45 minutes 4 times a week, how many hours of exercises does he do in a year?

Show me . . . now! (156 hours)

BB:
e.g. 1 week \(\rightarrow \) 4 \(\times \) 45 min = 180 min = 3 hours

52 weeks \(\rightarrow \) 3 h \(\times \) 52 = 150 h + 6 h = \(\frac{156}{6} \) h

Answer: In 1 year, Benny exercises for 156 hours.

Lesson Plan

Week 7

Notes

Whole class activity
Written on BB or use enlarged copy master or OHP
At a good pace

Discuss
• Direct proportion among the rows: as one amount increases (decreases), the other amount also increases (decreases) at the same rate;
• Inverse proportion between the measuring numbers and the units: as one value increases, the other decreases at the same rate.

Praise all positive contributions to the discussion.
Problems 2

Listen carefully, note the data and work out the answer in your *Ex. Bks.* Show me the result when I say.

Deal with one question at a time. T reads problem and asks a P to repeat it in own words. Set a time limit.

Review with whole class. Ps show results on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence.

a) How much does 1 m of wire cost if 45 m of wire cost £93.15?

BB:

\[
\frac{45 \text{ m}}{£93.15} = \frac{1 \text{ m}}{x} \quad \text{or} \quad 1 \text{ m} = \frac{£93.15}{45} = 207 \text{ p} \quad \text{or} \quad \frac{£93.15}{45} \div 5 = £2.07
\]

Answer: 1 m of wire costs £2.07.

b) How many lbs of apples can the leader of a group of 32 people on a day trip buy if he has £15 to spend and 1 lb of apples costs 68 p?

BB: Plan:

\[
\frac{£15}{68 \text{ p}} = \frac{1500 \text{ p}}{68 \text{ p}} \quad \text{or} \quad \frac{1500 \text{ p}}{68 \text{ p}} \div (\text{times}) = \frac{1500 \text{ p}}{68 \text{ p}} \quad \text{or} \quad \frac{1500 \text{ p}}{68 \text{ p}} = 22 \frac{1}{17} \text{ lb}
\]

Answer: With £15 he can buy 22 lbs of apples and he will have 4 p left over.

Which data were not needed? (32 people, 1-day trip)

Problem 3

Listen carefully, note the data and think how to solve this problem.

124 000 litres of water flows steadily into a pool in 4 and a half hours. How much water flowed into the pool every minute? T chooses Ps to come to BB to write a plan and do the calculation, with help of class where necessary. e.g. Using direct proportion:

BB:

\[
\frac{4 \text{ h} 30 \text{ min}}{240 \text{ min} + 30 \text{ min} = 270 \text{ min}} \quad 270 \text{ min} \rightarrow 124 000 \text{ litres} \quad 1 \text{ min} \rightarrow 124 000 \text{ litres} \div 270 \text{ litres} \div 27
\]

Discuss what to do with the 7 remaining. Elicit that the amount remaining is really 70 litres, as 124 000 litres \(\div 270 = 27 \) litres, and 70 litres remain (i.e. the remainder 7 must be changed back to its original magnitude). Agree that the 70 litres cannot be left as a remainder, as it does not make sense in the context of the question.

What should we do? Elicit that the 70 litres should be divided into 270 equal parts. Ps dictate what T should write:

BB:

\[
\frac{70}{270} = \frac{7}{27} \text{ (litre)} \quad 459 \text{ litres} + \frac{7}{27} \text{ litre} = 459 \frac{7}{27} \text{ litres}
\]

Answer: Every minute, 459 \(\frac{7}{27} \) litres flow into the pool.
Problem 4

Listen carefully and think how you would solve this problem.

A bucket holds 15 litres of water and it takes 16 buckets of water to fill a tank. If we used an 8-litre jug instead of a bucket, how many jugfuls of water would we need to fill the same tank?

Let’s estimate the answer first. How could we do it?

(e.g. The capacity of the bucket is nearly twice that of the jug, so the number of jugfuls needed is roughly twice the number of bucketfuls, i.e. approximately 32 jugfuls will be needed.)

How can we work it out exactly? Ps suggest plans and calculations. If Ps are stuck, T shows this method and Ps copy in Ex. Bks.

BB: 15 litre container → 16 (times)
 1 litre container → 16
 8 litre container → 240 \div 8 = 30 (times)

Who can write an operation in a shorter form on one line?

BB: Plan: 15 \times 16 \div 8 = 15 \times 2 = 30 (jugs)

Answer: We would need thirty 8-litre jugfuls of water to fill the tank.

Q.1 Read: If 1 lb of cherries costs 32 p, how much do 2 lb, 3 lb, 10 lb, 437 lb of cherries cost? Continue the table and complete the statement.

Solution:

<table>
<thead>
<tr>
<th>Amounts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lb</td>
<td>32 p</td>
</tr>
<tr>
<td>2 lb</td>
<td>2 \times 32 p = 64 p</td>
</tr>
<tr>
<td>3 lb</td>
<td>3 \times 32 p = 96 p</td>
</tr>
<tr>
<td>10 lb</td>
<td>10 \times 32 p = 320 p = £3.20</td>
</tr>
<tr>
<td>437 lb</td>
<td>437 \times 32 p = 13,984 p = £139.84</td>
</tr>
</tbody>
</table>

Elicit that the costs are in direct proportion to the amounts.

Q.2 and Q.3 Read: Solve this problem in your exercise book and write the answer here.

Set a time limit. Ps read problems themselves and solve them. Review with whole class. Ps could show results on scrap paper or slates on command. P answering correctly explains reasoning at BB. Who agrees? Who did it another way? Mistakes discussed and corrected. Elicit that within each question the amounts are in direct proportion to one another.

Individual work, monitored (helped)

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

Notes

Individual work, monitored (helped)

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

Final calculation shown in detail on BB:

As the quantity increases, so does the price at the same rate.
Lesson Plan 33

Activity

Q.2 If 4 rolls of material contain 256 m, what length of material would be in 150 such rolls?

Solution: e.g.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 kg</td>
<td>£9.45</td>
</tr>
<tr>
<td>1 kg</td>
<td>£0.63</td>
</tr>
<tr>
<td>2 kg</td>
<td>£1.26</td>
</tr>
<tr>
<td>5 kg</td>
<td>£3.15</td>
</tr>
<tr>
<td>11 kg</td>
<td>£6.93</td>
</tr>
<tr>
<td>20 kg</td>
<td>£12.60</td>
</tr>
<tr>
<td>27 kg</td>
<td>£17.01</td>
</tr>
<tr>
<td>30 kg</td>
<td>£18.90</td>
</tr>
<tr>
<td>150 kg</td>
<td>£94.50</td>
</tr>
</tbody>
</table>

Or 64 × 150 = 640 × 15
= 640 × 10 + 640 × 5
= 6400 + 3000 + 200
= 9600

Answer: There would be 9600 m in 150 rolls of material.

Q.3 If 6 pens cost 240 p, how many pens can we buy for 360 p?

Solution: e.g.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kg</td>
<td>£9.45</td>
</tr>
<tr>
<td>11 kg</td>
<td>£6.93</td>
</tr>
<tr>
<td>20 kg</td>
<td>£1.26</td>
</tr>
<tr>
<td>27 kg</td>
<td>£3.15</td>
</tr>
<tr>
<td>30 kg</td>
<td>£18.90</td>
</tr>
<tr>
<td>150 kg</td>
<td>£94.50</td>
</tr>
</tbody>
</table>

T might show other methods: e.g. using ratio:

360 : 240 = 36 : 24 = 3 : 2
x : 6 = 3 : 2 = 9 : 6, so x = 9
or 360 p is 1 and a half times 240 p, so we can buy 1 and a half times 6 pens, i.e. 9 pens.

Extension

What do you think is wrong with this question if you consider what happens in real life?

(Paint is usually sold by the litre, not by the kg. Price of paint is not usually in direct proportion to the amount – the larger the tin, the cheaper the paint is per litre to encourage customers to buy more.)

Notes

T might show other methods: e.g. using ratio:

360 : 240 = 36 : 24 = 3 : 2
x : 6 = 3 : 2 = 9 : 6, so x = 9
or 360 p is 1 and a half times 240 p, so we can buy 1 and a half times 6 pens, i.e. 9 pens.

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Discussion, reasoning, agreement, self-correction, praising
Extra praise if Ps suggest clever ways to calculate, e.g.
945 p ÷ 15 = 315 ÷ 5 = 63 p
5 kg → £9.45 ÷ 3 = £3.15
11 kg → £630 p + £63 p = £693 p
20 kg → £1.26 × 10 = £12.60
27 kg → £12.60 + £3.15 + £1.26 = £17.01
30 kg → £3.15 × 6 = £18.90
150 kg → £9.45 × 10 = £94.50

Whole class activity
Written on BB or SB or OHT
At a good pace
Reasoning, agreement, praising. Ps write in Pbs too.

Solution:

50 km/h → 6 h
25 km/h → 12 h (6 h × 2)
60 km/h → 5 h (6 h ÷ 6)
100 km/h → 3 h (6h ÷ 2)
40 km/h → 7.5 h (6 h × 5 ÷ 4)

Q.4 Read: If 1 kg of paint cost £9.45, how much do 1 kg, 2 kg, 5 kg, 11 kg, 20 kg, 27 kg, 30 kg, 150 kg of paint cost? Complete the table. Do the calculations in your exercise book.

Set a time limit. Encourage Ps to look for relationships to make calculations easier.

Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who did it a quicker way? etc. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 kg</td>
<td>£9.45</td>
</tr>
<tr>
<td>1 kg</td>
<td>£0.63</td>
</tr>
<tr>
<td>2 kg</td>
<td>£1.26</td>
</tr>
<tr>
<td>5 kg</td>
<td>£3.15</td>
</tr>
<tr>
<td>11 kg</td>
<td>£6.93</td>
</tr>
<tr>
<td>20 kg</td>
<td>£12.60</td>
</tr>
<tr>
<td>27 kg</td>
<td>£17.01</td>
</tr>
<tr>
<td>30 kg</td>
<td>£18.90</td>
</tr>
<tr>
<td>150 kg</td>
<td>£94.50</td>
</tr>
</tbody>
</table>

What do you think is wrong with this question if you consider what happens in real life?

(Paint is usually sold by the litre, not by the kg. Price of paint is not usually in direct proportion to the amount – the larger the tin, the cheaper the paint is per litre to encourage customers to buy more.)

9

PbY5a, page 33, Q.5

Read: A journey took 6 hours in a car travelling at an average speed of 50 km per hour. How much time would the journey have taken if the car had travelled at these average speeds?

What does average speed mean? (As if the car had travelled at the same speed all the time, which is not likely in real life.)

Ps come to BB or dictate to T, using quick ways to calculate where possible. Class points out errors or easier calculations.

What is the relationship between speed and time? Ask several Ps what they think. (Elicit that they are in inverse proportion to one another, i.e. as speed increases, time taken decreases, and as speed decreases, time taken increases.)
Lesson Plan 34

Notes

Whole class activity

Table and axes drawn on BB or use enlarged copy master or OHP

If possible, use real class data and amend the activities accordingly.

Praise all contributions.

Reasoning, agreement, praising

At a good pace

(If possible, Ps have copies of axes on desks too.)

Discussion, agreement, praising

Activity 1

Presenting and reading discrete data

This table shows the results of a class test. Who can explain what it means? P comes to BB. Class agrees/disagrees. How many Ps did the test? (30) What do you think the test was out of? (8 marks)

(T points out that if the test was out of, e.g. 10 marks, there would be two more columns, with 9 and 10 in top row and zeros in bottom row.)

BB:

<table>
<thead>
<tr>
<th>Mark</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pupils</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

In what other ways could the data have been shown? (e.g. simple list, graph, bar chart, pie chart, pictogram)

a) Let's show the data in a **graph**.

BB:

T has axes already drawn on BB. Ps come to BB to draw a dot for each column in table, pointing to appropriate values on x and y axes and moving fingers along grid lines until they meet. Class points out errors.

Is it correct to join up the dots?

(No, as it is not possible to have part of a person or part of a mark. They are separate points.) T: We call such data **discrete data**. (BB)

b) Let's show the data in a **bar chart**. Again, T has axes already drawn and Ps come to BB to draw appropriate 'bars' for each column in the table. Class points out errors.

c) We could also show the data in **sets**. How many should we draw? What should their labels be? Which numbers should we write in them? How could we show which number belongs with which? Ps dictate what T should draw/write then come to BB to draw joining lines. Class agrees/disagrees.

BB: **Sets**

T asks questions about the data. Class points out errors.

- How many Ps scored 1 mark (2, 3, 4, 5, 6, 7, 8 marks)?
- What mark was scored by 1 (2, 3, 4, 5, 6, 7) Ps?
- Which mark was the most (least) frequent? (4, 8)

Which diagram helped you most to answer the questions?

© CIMT, University of Exeter
Activity

Continuous data

The Environment Agency has set up a piece of equipment which measures continuously the level of the water in a river. The normal level at 0 cm has been fixed after years of experience.

BB: Water level (cm) **Line graph**

Who can explain the graph? (e.g. level above 0 is positive; level below zero is negative; data shown by a continuous line; if line is rising, water level is increasing; if line is falling, water level is decreasing, data collected over 30 days, or a month; etc.)

We say that such data are continuous data and are shown on a *line* graph.

Use the graph to help you answer these questions.

a) What height was the water level on these dates and was it raising or falling?
 i) 10th (about 110 cm; rising) ii) 20th (about – 60 cm; falling)
 iii) 22nd (about – 60 cm; rising) ii) 12th (about 120 cm; falling)

b) Did the water level rise or fall during the first 7 days? (fall)

c) When was the water level highest (lowest)? (11th, 21st) etc.

Pie chart

The pupils in a class were asked what was their favourite subject and the T showed the results like this. Who remembers the name for this method of showing data? (pie chart)

BB: Pie Chart
e.g.

Who can explain it? Ps come to BB to point and explain, with T's help. Let's write the fraction of the class which preferred each subject. Ps come to BB to point to relevant section and write as a fraction. Class agrees/disagrees. T asks Ps questions about the diagram. e.g.

- If there were 24 pupils in the class. How many Ps preferred each subject?
 Ps come to BB or dictate to T, explaining reasoning.

- What is the ratio of Ps choosing:
 i) English to French? (6 to 2, or 3 to 1) **BB:** 6 : 2 = 3 : 1
 ii) French to English? (2 to 6, or 1 to 3) **BB:** 2 : 6 = 1 : 3
 iii) English to Science? (6 to 4, or 3 to 2) **BB:** 6 : 4 = 3 : 2
<table>
<thead>
<tr>
<th>Y5</th>
<th>Lesson Plan 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Notes</td>
</tr>
</tbody>
</table>
| 4 | Whole class activity
(Or Ps choose another topic)
Discussion about strategy and in which order things should be done.
Fractions should be accurate but sections of circle need only be approximate.
Discussion, reasoning, agreement, praising
Ps could finish pie charts in Lesson 35 if necessary. |

Class Pie Chart
Let’s make a pie chart about which subjects you prefer.
What should we do first? (Collect the data) Ps suggest (e.g. 4) subjects and T writes them on BB. T points to each subject in turn and Ps put up their hands if they prefer it. Check that the data match the number of Ps in the class. Now what should we do?
Ps work out the fractions for the various subjects, then suggest how to draw the pie-chart, with Ts help where necessary.
T works on BB (using BB instruments if possible) and Ps work in Ex. Bks. (drawing around circular object or using compasses if they have them). Ps choose a colour for each subject, write a key or label diagram.
T (and Ps) ask questions about the data. |

<table>
<thead>
<tr>
<th>5</th>
<th>Individual work, monitored, helped</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbY5a, page 34</td>
<td>Drawn on BB or use enlarged copy master or OHP:</td>
</tr>
</tbody>
</table>

Q.1 Read: *The graph shows the variation in temperature over one day.*
Discuss the graph and context first. (e.g. line graph; shows continuous data, so the temperature must have been monitored throughout the day; grid lines at every hour on x-axis and every °C on y-axis; as graph line rises, temperature is increasing, etc.)
Set a time limit. Ps read questions and find answers on graph.
Review with whole class. Ps could show answers on slates or scrap paper. Ps answering correctly come to BB to confirm on graph. Class agrees/disagrees. Mistakes discussed and corrected.
Solution:

a) *What temperature was it at 10.00 am?*
(15 °C)
b) *At what time of day was it hottest?*
(3.00 pm – 4.00 pm)
c) *During which times was the temperature rising?*
(00:00 to 15:00)
d) *There was a downpour during the day.*
When do you think that it happened?
(4.00 pm to 6.00 pm)
(as the temperature dropped sudenly)
Who can think of other questions to ask about the graph?
(e.g. highest (lowest) temperature, probable time of year, at what time was it a certain temperature, what was the temperature at a certain time, etc.) |

Extension
Who can think of other questions to ask about the graph?
(e.g. highest (lowest) temperature, probable time of year, at what time was it a certain temperature, what was the temperature at a certain time, etc.)
Whole class activity
Praise clever questions and good answers. |

| 6 | Whole class activity to start to clarify the relationship between the data and graph.
Coordinates written on BB.
Graph drawn on BB or use enlarged copy master or OHP
Individual work, monitored, helped (or continue as whole class activity if Ps are still unsure)
Reasoning, agreement, self-correction, praising |

PbY5a, page 34
Q.2 Read: *One day we measured the temperature every hour from 6 o’clock in the morning to 3 o’clock in the afternoon.*
We noted the data as pairs of numbers.
Discuss how the pairs of numbers relate to the graph and ask a P to demonstrate and explain by plotting (6, 2).Likens to a pair of coordinates, i.e. the x value is given first.
a) *Read: Show the data on a graph.*
Set a time limit. Review with whole class. Ps come to BB to draw dots, explaining what they are doing. Class agrees/disagrees. Mistakes corrected before Ps read remaining questions themselves and answer them in *Pbs.*
Individual work, monitored, helped (or continue as whole class activity if Ps are still unsure)
Reasoning, agreement, self-correction, praising |
Activity

6

(Continued)

Solution:

(6, 2), (7, 2), (8, 4), (9, 5), (10, 7), (11, 10), (12, 13), (13, 15), (14, 14), (15, 12)

b) Is it correct to join the dots with a continuous curve? Why?

(Accept Yes and No with correct reasoning, e.g.
No, as the data was collected hourly and we do not know what
the exact temperature was between the hours, BUT
Yes, as temperature is continuous and a continuous curve
would show the approximate temperatures between the hours.)

T joins up dots on BB and Ps join up dots in Pbs.

c) When was the temperature highest? (At about 1300 h or 1.00 pm)

d) Estimate the temperature at:

6.30 am (= 2°C); 9.15 am (= 5.5°C); 12.45 pm (= 14.75°C)

e) Which season do you think it was? (Accept autumn or spring)

When was the temperature rising (falling)? Ps come to graph to
show the relevant sections of the curve and to say the approximate
times.

Extension

7

PbY5a, page 34

Q.3 Read: Among 60 people at a conference, 10 are American,
20 are British, 5 are Chinese, 15 are Japanese and 10
are Hungarian.

a) Show the data in a pie chart.

Into how many equal part should we divide the circle? T asks
several Ps what they think. If nobody has an idea, T suggests:

BB: A: 60 ÷ 10 = 6
B: 60 ÷ 20 = 3
C: 60 ÷ 5 = 12
J: 60 ÷ 15 = 4
H: 60 ÷ 10 = 6

What is the lowest number which is divisible by 3, 4, 6 and
12? (12) Let's divide the circle into 12 equal parts. How could
we do it? (Divide circle into quarters first, then divide each
quarter into 3 equal parts.) T works at BB and Ps work in Pbs.

Ps decide on a colour for each nationality, then work out how
how many twelfths they should colour and label with the initial
letter of the country.

Review with whole class. Mistakes discussed and corrected.

Notes

Check correct positions of
points first, then after
discussion (as below) and
agreement, join points with a
curved line.

T repeats reasoning more
clearly if necessary, but extra
praise for Ps who think of
these ideas.

Curve need only be rough, as
long as it passes through the
points.

[or c), d) and e) done as a
whole class activity]

Discussion, agreement,
praising

Whole class activity to start,
then individual work,
monitored, helped
(or continue as whole class
activity if Ps are unsure or
time is short)

Discussion, reasoning,
agreement, self-correction,
praising

Solution:

\[
\begin{align*}
&\frac{2}{12} = \frac{1}{6} \\
&\frac{4}{12} = \frac{1}{3} \\
&\frac{5}{12} = \frac{5}{12} \\
&\frac{1}{12} = \frac{1}{12}
\end{align*}
\]

Extension

What is the ratio of, e.g.:

C to B (1 to 4 or : 4)
B to C (4 to 1, or : 4),
J to B? (3 to 4, or : 4), etc.
Activity

Tables and calculation practice, revision (completing pie charts)

PbY5a, page 35

Solutions:

Q.1

- **a)** $13:25$
- **b)** ten to seven
- **c)** 9.12 am
- **d)** 5 h 40 min
- **e)** twenty-five to three

Q.2

- a) 5 hours 24 min 36 sec
- b) 21 hours 77 min 44 sec
- c) 6 hours 55 min 41 sec
- d) 11 hours 79 min 77 sec
- e) 11 hours 80 min 17 sec
- f) 12 hours 20 min 17 sec

Q.3

- a) $3478 + 123 + 6032 = 9633$
- b) $7359 + 22 + 450 + 13687 = 21518$
- c) $14722 - 1853 = 12869$
- d) $5380 - 3953 = 1427$
- e) $\frac{4}{5} + \frac{7}{10} - 1\frac{2}{10} = \frac{8}{10} + \frac{7}{10} - \frac{12}{10} = \frac{15 - 12}{10} = \frac{3}{10}$
- f) $12.35 + 37.9 - 0.98 = 50.25 - 0.98 = 49.27$

Q.4

```
-0.9  -1.1  -2/5  3/10  0.75  5/10  1.1  1/5  1.8
```

Q.5

- **Red:** $\frac{1}{9}$ of 27 = $\frac{27}{9} = 3$ (pupils)
- **Blue:** $\frac{4}{9}$ of 27 = $\frac{27}{9} \times 4 = 3 \times 4 = 12$ (pupils)
- **Yellow:** $\frac{1}{9}$ of 27 = $\frac{27}{9} = 3$ (pupils)
- **Green:** $\frac{2}{9}$ of 27 = $\frac{27}{9} \times 2 = 3 \times 2 = 6$ (pupils)

b) The uncoloured part could represent absent pupils, or pupils who did not like any of the 4 colours.
Y5

Activity

<table>
<thead>
<tr>
<th>Week 8</th>
</tr>
</thead>
</table>

Lesson Plan

Order of operations 1

Let's do these calculations. For each calculation, T asks class what kind of operations are involved and in what order they should be done. Ps come to BB to work out answer using conventional order and explaining reasoning. Class agrees/disagrees.

Could we calculate the operations in a different order? Ps try other orders in *Ex. Bks*, then decide which are possible.

BB:

- **a)** $150 - 45 - 5 + 50 = (150)$

 Only addition and subtraction (or addition of positive and negative values), so we normally calculate from left to right.

 Agree that it can be calculated in other orders too, but only as long as the same signs remain in front of the same numbers!

 e.g. $-45 + 150 + 50 = -50 + 200 = 150$

 or $150 + 50 - (45 + 5) = 200 - 50 = 150$, etc.

- **b)** $24 \times 14 \div 12 \div 7 = (4)$

 Only multiplication and division so we normally calculate from left to right.

 Is there an easier way?

 Agree that it can be calculated in other orders too.

 e.g. $24 \div 12 \times 14 \div 7 = 2 \times 14 \div 7 = 28 \div 7 = 4$

 or $24 \div 12 \times 14 \div 7 = (24 \div 12) \times (14 \div 7) = 2 \times 2 = 4$

- **c)** What is different about this one? (All 4 operations are involved, so multiplication and division should be done first, from left to right.)

 Order:

 $\begin{array}{c}
 3 \\
 1 \\
 3 \\
 2
 \end{array}$

 $110 + 56 \times 2 - 70 \div 10 = (222 - 7 = 215)$

 Agree that in this case the order **cannot** be changed, as different orders will give different results!.

 8 min

Order of operations 2

Is there anything new in this calculation, compared with the previous ones? (This calculation has brackets.) How does this affect the order? (Operations in brackets should always be done first.)

Ps write calculation in *Ex. Bks* and work out the answer. A, come and show us how you did it. Who agrees? Who did it a different way? (If all Ps calculated in the same way, T asks whether it could be done a simpler way and shows it if Ps cannot think of it.)

BB:

- $44 + (128 - 28) \times 5 - 44$

 $(44 + 100 \times 5 - 44 = 44 + 500 - 44 = 544 - 44 = 500)$

 or $44 + (128 - 28) \times 5 - 44 = (128 - 28) \times 5 + 44 - 44$

 $= 100 \times 5 + 0$

 $= 500$

 Agree that operations in brackets must be done first, then multiplication or division, then addition or subtraction, but within each type, look for the easiest order.

 12 min

Notes

Whole class activity

Operations written on BB or SB or OHT

Individual trials in *Ex. Bks.*

Discussion, reasoning, agreement, praising
Activity 3

Order of operations 3

Who can do this calculation? P comes to BB to mark the normal order of operations and work out the answer. Class agrees/disagrees.

Could we have used a different order and still get the right answer? Ps suggest other orders for the operations. Class calculates the operations mentally and decides whether the order is valid.

BB: e.g.

\[
\frac{120}{15} \times 8 + \frac{150}{25} - \frac{140}{10} = (120 \div 150 \div 25 - 14 = 126 - 14 = 112)
\]

or \(\frac{150}{25} - \frac{140}{10} = (120 + 150 - 14 = 95) \) (different orders of calculation)

Notes

Whole class activity

Written on BB or SB or OHT

Discussion, reasoning, agreement, praising

Feedback for T

Agree that multiplication and division can be done before brackets but only if they do not affect the operations on either side of the brackets!

Activity 4

Problem

Think of a word problem for this plan.

BB: \((17.5 + 2.5) \times 4 + 1.5 \times 10\) =

Allow Ps to discuss with their neighbours for a minute, then Ps tell their contexts to class. Class agrees/disagrees. Class chooses one of the contexts and Ps come to BB to work out the calculation. Class agrees/disagrees. Could we have written another plan? Come and show it to us. Class decides whether that is valid too. e.g.

Mum and Dad bought each of their 4 children a Christmas present for £17.50 and a card for £2.50. Then they bought 10 sheets of wrapping paper at £1.50 per sheet. How much did they spend altogether?

Plan:

\[(17.5 + 2.5) \times 4 + 1.5 \times 10 = 70 + 10 + 15 = 95 \text{ (£)} \]

P whose context was used says the answer in a sentence. e.g.

Answer: They spent £95 altogether.

Activity 5

Find the mistakes!

Silly Sammy had to calculate the perimeter and area of these rectangles for homework, but he did it too quickly and made some mistakes.

Can you find them? Ps come to BB to point to a mistake and say why it is wrong. Class agrees/disagrees. Who can write the solution correctly? Ps come to BB to write operations and do calculations, showing details at side of BB if necessary, and explaining reasoning in a loud voice. Class agrees/disagrees. Elicit that:

BB: 1 m\(^2\) = 1 m \times 1 m = 100 cm \times 100 cm = 10000 cm\(^2\)

BB:

\[
\begin{array}{c|c|c}
\hline
a & b & \text{Mistake!} \\
\hline
2 \text{ m} & 4 \frac{1}{4} \text{ cm} & a = 210 \text{ cm} \\
10 \text{ cm} & 43 \text{ cm} & b = 425 \text{ cm} \\
\hline
\end{array}
\]

\(A = 2 \times (210 + 430) \text{ cm} = 1300 \text{ cm} \times \)

\(P = 440 \text{ cm} \times 210 \text{ cm} = 92400 \text{ cm}^2 \times \)

\(\text{Mistake! (Area and perimeter are the wrong way round.)} \)

Notes

Whole class activity

Written on BB or use enlarged copy master or OHT

Praise all suggestions but give extra praise for creative, correct contexts.

Discussion, reasoning, agreement, praising

In 2nd plan, T shows how to multiply a decimal.

\[
\begin{array}{c|c|c|c}
\hline
\text{U} & \times & \text{h} & \Rightarrow \text{h} \\
\text{U} & \times & \text{t} & \Rightarrow \text{t} \\
\text{U} & \times & \text{U} & \Rightarrow \text{U} \\
\text{U} & \times & \text{T} & \Rightarrow \text{T} \\
\hline
\end{array}
\]

Correct solution: e.g.

\(A = 425 \text{ cm} \times 210 \text{ cm} = 4250 \text{ cm} \times 21 \text{ cm} = (85000 + 4250) \text{ cm}^2 = 89250 \text{ cm}^2 = 8.925 \text{ m}^2 \)

\(P = 2 \times (210 + 425) \text{ cm} = 2 \times 635 \text{ cm} = 1270 \text{ cm} = 12.7 \text{ m} \)
Lesson Plan 36

Agree that perimeter is o.k.
but perimeter of a square
would normally be written as:

P = 4 \times \frac{3}{2} \times \frac{1}{2} = 12 + 2 = \frac{14}{2} (m)

T confirms area is incorrect
by drawing lines on the square
as shown.

[Preparation for multiplication
of fractions and decimals]

BB:

\[
\begin{array}{c}
\begin{array}{c}
\times \\
35 \\
-12 \quad 2 \\
-1 \quad 7 \quad 5 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\times \\
0 \quad 5 \\
-1 \quad 0 \quad 5 \quad 0 \quad 1 \quad 0 \\
\end{array}
\end{array}
\]

Individual work, monitored
Drawn on BB or use enlarged
copy master or OHP

Reasoning, agreement, self-
correction, praising

Feedback for T

Extra shading shown darker
than original.

\[
\begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 2 \quad 5 \\
5 \quad 0 \quad 1 \quad 0 \\
\end{array}
\end{array}
\]

Individual work, monitored,
helped

Drawn on BB or use enlarged
copy master or OHP

Discussion, agreement,
self-correction, praising

Extension

Tell me possible values for
Joe's weight.

At speed, T chooses Ps at
random. Class points out
errors. Praising

(e.g. 30 kg 501 g, 31.49 kg, etc.)
Activity 8 PbY5a, page 36

Q.3 Read: Do the calculations and compare the results in each row. Ps do necessary calculations in Ex. Bks but encourage mental calculation where possible, with Ps writing interim results above operation signs in Pbs. Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations on BB if problems or disagreement.

Solution:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>15 × 8 + 25 × 8 = 320</td>
<td>(5+25) × 8 = 320</td>
</tr>
<tr>
<td>b)</td>
<td>42 × 12 ÷ 3 = 168</td>
<td>(42 × 12) ÷ 3 = 168</td>
</tr>
<tr>
<td>c)</td>
<td>24 + 72 ÷ 3 × 12 = 312</td>
<td>(24 + 72) ÷ 3 × 12 = 312</td>
</tr>
</tbody>
</table>

36 min

Notes

Individual work, monitored, helped

Written on BB or SB or OHT

Discussion, reasoning, agreement, self-correction, praising

Details: e.g. [4 2]

[× 1 2]

[8 4]

[+ 4 2 0]

[5 0 4]

[1 2 4]

[× 1 2]

[4 8]

[+ 2 4 0]

[2 8 8]

[3 5 0 4]

[2 2]

Activity 9 PbY5a, page 36

Q.4 Read: Which is more? Try to fill in the missing signs without doing the calculations. Let’s see how many you can do in 2 minutes! Start . . . now! . . . Stop!

Review with whole class. Ps come to BB or dictate to T, explaining reasoning, or class shows signs on scrap paper or slates on command and Ps answering correctly explain at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>(32 + 18) – 16</td>
<td>32 + (18 – 16)</td>
</tr>
<tr>
<td>c)</td>
<td>480 + 237</td>
<td>482 + 235</td>
</tr>
<tr>
<td>e)</td>
<td>(17 + 5) × 7</td>
<td>17 × 5 + 7</td>
</tr>
<tr>
<td>g)</td>
<td>480 × 60</td>
<td>400 × 60 ÷ 80 × 60</td>
</tr>
</tbody>
</table>

40 min

Notes

Individual work, monitored, helped

Written on BB or use enlarged copy master or OHT

Differentiation by time limit

Discussion, reasoning, agreement, self-correction, praising

T helps Ps to explain reasoning and repeats in a clearer way if necessary.

Only show calculations on BB if there is disagreement.

Activity 10 PbY5a, page 36

Q.5 Read: Solve the equations. Do the calculations in your exercise book. Write the results here. Set a time limit of 3 minutes. Remind Ps to check that their answers make the statements true.

Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class checks that statement is true. Mistakes corrected. Show solutions on relevant sections of the number line drawn on BB, or on class number line.

Solution:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>35.2 = 209</td>
<td>209 = 35.2</td>
</tr>
</tbody>
</table>

Notes

Individual work, monitored, helped

(or whole class activity if time is short)

Written on BB or SB or OHT

Differentiation by time limit

Discussion, reasoning, checking, agreement, self-correction, praising

Show details of calculations on BB if problems or disagreement.

Feedback for T

© CIMT, University of Exeter
<table>
<thead>
<tr>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

(Continued)

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>
| Check: $\frac{34}{2} - \frac{45}{2}$

Then we have to step down another 11 to reach -11.

\[y = \frac{34}{2} + 11 = 45 \]

\[z \times 35 = 2100 \]

\[z = 2100 \div 35 = 60 \times 35 = 6 \times 350 = 2100 \checkmark \]

\[x \div x + 40 = 41 \]

\[x \div x = 41 - 40 = 1 \]

\[x \text{ can be any number except zero. } x \neq 0 \]

45 min
Lesson Plan

Activity 1

Missing signs

Give a meaning for these numbers, then fill in the missing sign.

Ps come to BB to explain meaning of LHS and RHS of each statement by drawing a diagram or showing on number line, or explaining in words, then to fill in the missing sign. Class agrees/disagrees.

BB:

- a) $\frac{2}{3} \quad \square \quad \frac{4}{6}$
- b) $\frac{4}{5} \quad \square \quad \frac{9}{5}$
- c) $\frac{5}{8} \quad \square \quad \frac{2}{4}$
- d) $0.8 \quad \square \quad 0.08$
- e) $1.2 \quad \square \quad \frac{1}{5}$
- f) $-0.9 \quad \square \quad \frac{1}{2}$

"5 min"

Activity 2

Fractions and decimals

What part of each square is shaded? Ps come to BB to explain reasoning. Class agrees/disagrees or suggests another way to do it. Allow Ps to use their own ideas if they are on the right track, otherwise T gives hints or directs Ps’ thinking if they are stuck.

Once Ps have found the fraction shaded, allow the use of calculators to obtain the equivalent decimal.

BB: e.g.

- a) ![Fraction Diagram](image1)
 - **Area:** $5 \times 5 = 25$ (grid squares)
 - Part shaded: $\frac{7}{25} = \frac{14}{50} = \frac{28}{100} = 0.28$

- b) ![Fraction Diagram](image2)
 - **Area:** $4 \times 4 = 16$ (grid squares)
 - Grid squares shaded: $4 + 4 \times 1.5 = 4 + 2 \times 3 = 4 + 6 = 10$
 - Part shaded: $\frac{10}{16} = \frac{5}{8} = 0.625$ (by calculator)

- c) ![Fraction Diagram](image3)
 - **Area:** $6 \times 6 = 36$ (grid squares)
 - Grid squares shaded: $36 - 4.5 - 2 \times 9 = 36 - 4.5 - 18 = 31.5 - 18 = 13.5$
 - Part shaded: $\frac{13.5}{36} = \frac{27}{72} = \frac{3}{8} = 0.375$ (using a calculator)
 - Or $1 - \frac{1}{8} - \frac{1}{4} - \frac{1}{4} = 1 - \frac{1 + 2 + 2}{8} = 1 - \frac{5}{8} = \frac{3}{8}$

"11 min"

© CIMT, University of Exeter
Lesson Plan 37

Activity 3

Combinatorics

V is a village at the bottom of the mountain, R is a rest hut half-way up and T is the top of the mountain. How many possible routes are there from the village to the top of the mountain?

Allow P's to think about it for a minute. If you have an answer, show me . . . now! (12) P answering correctly explains reasoning at BB.

(For each of the 3 possible routes from the village to the rest hut, there are 4 possible routes from the rest hut to the top of the mountain, i.e. \(3 \times 4 = 12\) possible routes.) Mistakes discussed and corrected.

How could we show all the routes? T suggests using 1, 2, 3 for routes from V to R and a, b, c, d, for routes from R to P. Who has an idea what we could do now? (e.g. list them, put them in 2 sets and join them up, draw tree diagrams) T gives hints about those not suggested by P's.

BB: e.g.

15 min

Activity 4

Sets

This Venn diagram shows the initial letters of the names of P's who joined the Maths Club and Art Club. Think about what the diagram means! T asks questions and P's come to BB to show on diagram and list the relevant letters. Class agrees/disagrees.

a) Which P's belong to the Maths club? (All of them)

We write the number of element in set M like this. BB: \(n(M) = 9\)

b) Which P's belong to the Art Club?

BB: A: F, J, S, T (4 pupils)

We write the number of elements in set A like this. BB: \(n(A) = 4\)

T: We say that A is a sub-set of M and write it like this.

It means that set A is part of set M.

c) Which P's belong to both clubs?

BB: M + A: F, J, S, T (4 pupils)

d) Which P's belong to the Maths Club but not the Art Club?

BB: M but not A: P, Z, K, B, L (5 pupils)

T: We call this set the complement of A and write it like this.

We write the number of elements in the complement of A like this. Who could write an addition and subtraction about the sets?

BB: \(M = A + \overline{A}\) (read as, 'M = A + the complement of A'.

or \(n(M) = n(A) + n(\overline{A}) = 4 + 5 = 9\)

\(A = M - \overline{A}\) or \(\overline{A} = M - A\)

or \(n(A) = n(M) - n(\overline{A}) = 9 - 5 = 4\)

20 min

Notes

Individual trial first

Drawn on BB or SB or OHT (but without routes numbered or labelled)

In unison

Reasoning, agreement, praising

Praising, encouragement only

Feedback for T

Whole class activity

BB: Sub-set

Maths Club

\[\overline{A}\]

Art Club

Reasoning, agreement, praising

BB: Complement of A

\[n(\overline{A}) = 5\]

Have no expectations but praise any P who makes a good attempt!

Do not expect P's to learn this notation yet – just to become familiar with it!
Activity 5

Sequences competition

T says the first 3 terms of a sequence and Ps write as many of the following terms in Ex. Bks. Allow 1 minute per sequence.

Review with whole class. Ps stand up and dictate the terms in order round class. Class points out errors. Ps sit down when they have made a mistake or reached the end of their terms. Last P(s) standing dictate their remaining terms and say the rule. If all correct, class gives them a round of applause.

a) \(-5.1, -3.9, -2.7, (-1.5, -0.3, 0.9, 2.1, 3.3, 4.5, 5.7, \ldots)\)

Rule: increasing by 1.2

b) \(2 \frac{3}{4}, 2.5, 2 \frac{1}{4}, (2, 1 \frac{3}{4}, 1.5, 1 \frac{1}{4}, 1, \frac{3}{4}, 0.5, \frac{1}{4}, 0, -\frac{3}{4}, \ldots)\)

Rule: decreasing by \(\frac{1}{4}\) or 0.25.

25 min

Extension

Extension

How many 4-digit numbers could you make from these number cards? Try to work it out without listing all the numbers.

After a minute, ask several Ps what they think (or Ps could show on number cards or slates on command).

Elicit that for each of the 4 possible thousands digits, there are 3 possible hundreds digits, and for each of the 3 possible tens digits there are 2 possible tens digits, and for each of the 2 possible tens digits there is only 1 possible units digit.

i.e. The number of possible numbers is:

\[4 \times 3 \times 2 \times 1 = 24\]

31 min

Notes

Individual work, monitored (or whole class activity done orally at speed round class.)

Differentiation by time limit

Agreement, (self-correcting), praising

In good humour!

Accept terms as decimals or fractions.

Individual work, monitored helped

Written or stuck on BB:

\[
\begin{array}{cccc}
4 & 4 & 5 & 6 \\
4 & 5 & 4 & 6 \\
5 & 4 & 6 & 4 \\
6 & 5 & 4 & 4 \\
6 & 4 & 5 & 4 \\
5 & 6 & 4 & 4 \\
6 & 4 & 6 & 5 \\
5 & 6 & 4 & 5 \\
4 & 5 & 6 & 4 \\
4 & 6 & 5 & 4 \\
5 & 6 & 4 & 5 \\
6 & 5 & 4 & 6 \\
\end{array}
\]

Discussion, reasoning, agreement, self-correction, praising

Whole class activity

If Ps do not suggest a tree diagram, T starts diagram and Ps continue.

Agreement, praising (T prompts Ps to give reasoning too.)

Individual trial first, monitored, then whole class discussion

\[
\begin{array}{cccc}
3 & 4 & 5 & 6 \\
\end{array}
\]

Reasoning, agreement, praising

Discuss the connection with the digits 4, 4, 5, 6.

Elicit that if 2 cards are equal, the number of possibilities is halved.
Activity 7

PbY5a, page 37

Q.2 Read: The five members of a committee, A, B, C, D and E, elected one member as chairman and another as secretary. List the possible outcomes in the table.

Set a time limit of 2 minutes. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes/omissions corrected.

Solution:

<table>
<thead>
<tr>
<th>Chairman</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>D</th>
<th>D</th>
<th>E</th>
<th>E</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretary</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Read: How could you have worked out the answer without listing all the possibilities?

I will give you 1 minute to think about it and to write the operation you would use. Show me it...now! \((5 \times 4 = 20)\)

Who can explain it? (e.g. For each of the 5 possible members as chairman, there are 4 possible members as secretary.)

35 min

Activity 8

PbY5a, page 37

Q.3 Read: Peter invented a trick for guessing numbers and he is trying it out on his classmates.

Everyone think of a number. T reads instructions and Ps follow them step by step.

Think of a number. Add 5. Double the result. Subtract 10. Subtract your original number. You are left with your original number, aren’t you?

Stand up if you ended up with a different number from the one that you that you started with! (Everyone remains seated!)

Now write down your calculations in a mathematical way using

a) your own number

b) 21

c) any number, \(n\).

Set a time limit. Review with whole class. P comes to BB to say their own number and write their calculation. Class points out any mistakes in the order of operations. Ps correct own answers where necessary and then agree on correct answers for b) and c).

Solution:

a) e.g. \((6 + 5) \times 2 - 10 - 6 = 11 \times 2 - 16 = 22 - 16 = 6\)

b) \((21 + 5) \times 2 - 10 - 21 = 26 \times 2 - 31 = 52 - 31 = 21\)

c) \((n + 5) \times 2 - 10 - n = 2 \times n + 10 - 10 - n = 2 \times n - n = n\)

40 min
Q.4 Read: Solve the problems. Use the diagrams to help you.

Let's see how many you can do in 3 minutes! Remember to check your answer in the context of the question.

Start . . . now! . . . Stop!

Review with whole class. Ps come to BB to write plans, do calculations and say the answer in a sentence. Who agrees? Who did it another way? Who made a mistake? What did you do? Who did the same? etc.

Solutions: e.g.

a) Kate has £94.50 and Eve has £34.50. How much should Kate give to Eve so that they both have the same amount?

Plan:

\[
\left(£94.50 - £34.50\right) \div 2 = £60 \div 2 = £30
\]

Check: £94.50 – £30 = £64.50 = £34.50 + £30

Answer: Kate should give £30 to Eve.

b) Joe and Sam have £92.50 altogether but Sam has £12.50 more than Joe. How much money do they each have?

Plan:

\[
\begin{align*}
J & : (£92.50 - £12.50) \div 2 = £80 \div 2 = £40 \\
S & : £40 + £12.50 = £52.50
\end{align*}
\]

or \[
\begin{align*}
S & : (£92.50 + £12.50) \div 2 = £105 \div 2 = £52.50 \\
J & : £52.50 - £12.50 = £40
\end{align*}
\]

Check: J + S: £40 + £52.50 = £92.50

Answer: Joe has £40 and Sam has £52.50.

c) These two bunches of flowers cost the same. How many daisies is a tulip worth?

Ps come to BB to cross out (remove) flowers at each step.

BB:

\[
\begin{align*}
5D + 3T & = 1D + 5T \\
\text{Subtract 1D from each side:} & \\
4D + 3T & = 5T \\
\text{Subtract 3T from each side:} & \\
4D & = 2T \\
\text{Halve each side (or divide each side by 2):} & \\
2D & = 1T \\
\text{(and 1 Daisy is worth half a Tulip)} & \\
\end{align*}
\]

Answer: One tulip is worth 2 daisies.

(And 1 Daisy is worth half a Tulip)

It is easier to take off the extra money first, then halve the remaining money, so T should show this method if no P has used it.

BB:

\[
\begin{align*}
J & : £92.50 \\
S & : £12.50
\end{align*}
\]

Drawn (stuck) on BB or use enlarged copy master or OHP

If any Ps got correct answer, ask them how they worked it out, then show the method opposite, involving Ps where possible.

Stress that LHS and RHS of equations must always balance, so whatever is done to one side must also be done to the other side.

[Preparation for solution of equations with 2 unknowns]
Components in operations

What is the name of the underlined component in each operation? Ps come to BB to point to whatever is underlined and to say and write its name. Class agrees/disagrees or corrects spelling.

BB:

- a) \(842 + 158 = 1000\) (sum)
- b) \(452 \times 14 = 6328\) (multiplicand or multiplier or factor)
- c) \(7542 - 1542 = 6000\) (difference)
- d) \(9145 + 455 = 9600\) (sum, or terms of addition)
- e) \(9872 - 972 = 8900\) (difference, or subtrahend and subtrahend)
- f) \(6432 \div 32 = 201\) (quotient)
- g) \(645 \times 100 = 64500\) (product)
- h) \(5656 \div 28 = 202\) (dividend and divisor, or quotient)

Check that my answers are correct with your calculator. Ps point out errors if T has made any deliberate mistakes.

Problem 1

Who can think of a word problem about this diagram? T asks Ps for their contexts. Class chooses one of Ps’ contexts or T has one already prepared on BB or SB or OHT. E.g.

Jenny weighs 40 kg 500 g (rounded to the nearest 10 g). Sean weighs 4 kg 500 g more than Jenny and Bill weighs 2 kg 500 g less than Jenny. If they all stand on a weighing machine, what would it read?

Solve the problem in your Ex. Bks. and show me the answer when I say! . . . Show me . . . now! (123.5 kg)

P with correct answer comes to BB to explain their reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.

BB: e.g.

- J: 40.5 kg
- S: 45 kg
- B: 38 kg

J + S + B: 40.5 kg + 45 kg + 38 kg = 123.5 kg

or \(\frac{40}{2} \times 3 + \frac{4}{2} - \frac{2}{2} = 120 + \frac{1}{2} + 2 = 123\frac{1}{2}\) (kg)

Answer: The weighing machine would read 123.5 kg.

Problem 2

Ps suggest contexts for each equation, then solve it in their Ex. Bks.

If you have an answer, show me . . . now! P answering correctly comes to BB to explain solution. Class checks that the answer makes the statement true. Mistakes discussed and corrected.

BB: e.g.

\[
\begin{align*}
4 \times x + 40 &= 200 \quad [\div 40] & 15 \times y + 450 &= 600 \quad [-450] \\
4 \times x &= 160 & 15 \times y &= 150 \quad [\div 15] \\
x &= 40 & y &= 10 \\
Ch: 4 \times 40 + 40 &= 160 + 40 & Ch: 15 \times 10 + 450 &= 150 + 450 \\
&= 200 & \text{✔} & = 600 & \text{✔}
\end{align*}
\]

Whole class activity

Drawn on BB or SB or OHT

BB:

- 1 \(\frac{40 \text{ kg} 500 \text{ g}}{\text{kg}}\)
- 8 \(\frac{4 \text{ kg} 500 \text{ g}}{\text{kg}}\)
- 3 \(\frac{2 \text{ kg} 500 \text{ g}}{\text{kg}}\)

Responses shown in unison on scrap paper or slates.

Discussion, reasoning, agreement, self-correction, praising

Accept 123 kg 500 g but point out that in the diagram, the missing total is in kg, not kg and g.

Whole class discussion of context first, then individual work, monitored

Written on BB or SB or OHT

Reasoning, agreement, self-correction, praising

\(c) \ 350 \div (30 + z) = 10\)

\[30 + z = 350 \div 10 = 35\]
\[z = 35 - 30 = 5\]

\(Ch: \ 350 \div (30 + 5) = 10 \checkmark\)

\(Ch: \ 350 \div 35 = 10 \checkmark\)
4 Combinatorics

In how many ways can we read ORANGE from this grid? Ps come to BB to point them out.

Agree that there are 10 ways (as below).

We could have listed them in a quicker way.

Which movements does each route involve? (3 steps to the right and 2 steps down) We could write it like this:

BB: R R R D D

and the 10 ways are the 10 different possible orders of these letters.

Ps dictate the orders above and T writes on BB.

BB: RRRDD, RRDRD, RRDDR, RDRRD, RDRDR,
 RDDRR, DRRRD, DRRDR, DRDRR, DDRRR

Here is another way to do it! Let's write in each grid square the number of different ways there are to get to it if we start in the top RH corner.

T points to each grid square (letter) in turn and Ps dictate the number of possible ways to get there. (Some Ps might remember method from Y4.)

BB: What do you notice?
 (The number in each grid square is the sum of the numbers in the grid square above it and to the left of it.)

[Note to Ts only: The diagonal pattern of numbers follows that of Pascal's Triangle – see opposite.]

5 Venn diagram

A T asked a group of children what they ate as soon as they got home from school yesterday and showed the results in this diagram.

What do you think the letters stand for? (Children's names) How many Ps are in the group? (9) Study the diagram and answer these questions.

BB:

b) How many children ate chocolate? (4)
b) How many children ate chocolate and biscuits? (1)
c) Who ate none of them? (F)
d) How many children ate all of them? (1)
e) How many children ate chocolate or sweets or biscuits? (8)
f) Who ate only sweets? (P, G, W)
g) Who ate sweets and biscuits but not chocolate? (Nobody)

Whole class activity

Drawn on BB or use enlarged copy master or OHP

Encourage a logical listing.

At a good pace

If done with whole class, Ps could show the routes by writing out the letters again on blank grids (use enlarged copy master or OHT)

Discussion, reasoning, agreement, praising

At a fast pace

Class shouts out in unison, or T chooses Ps at random.

Ps could copy in Ex. Bks. too.

Agreement, praising

Pascal's Triangle

\[
\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
1 & 2 & 1 & \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1
\end{array}
\]

etc.

Whole class activity

Drawn on BB or use enlarged copy master or OHP

(If possible, Ps have copies on desks too.)

Quick discussion on meaning of diagram.

T asks some questions and Ps think of others to ask.

Ps chosen at random, or Ps show answers on scrap paper or slates in unison.

In good humour!

Extra praise for creative questions!
Y5

<table>
<thead>
<tr>
<th>Activity</th>
<th>PbY5a, page 38</th>
</tr>
</thead>
</table>
| **6** | Q1 Read: *Five friends (A, B, C, D and E) said goodbye to each other after a party and shook hands with each other.*

T chooses 5 Ps to come to front of class to be A, B, C, D and E and to stand around as if at a party. Then they say goodbye to each other and shake hands with each other, and go back to their seats.

Read: *Complete the diagrams and fill in the answers.*

a) *How many goodbyes were said?*

b) *How many handshakes were there?*

Elicit that in the table, each square represents a 'goodbye' and in the digram, each line represents a handshake. Why are some squares in the table shaded? (They are not needed, as you don't say goodbye to yourself!)

Set a time limit. Review with whole class. Ps come to BB to complete diagrams and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

Reasoning: e.g.		
-----------------	20 'Goodbyes'	10 handshakes
a) each of the 5 friends said goodbye to each of the other 4 friends, i.e. $5 \times 4 = 20$ goodbyes were said,		
b) the 1st friend shakes hands with 4 others, the 2nd friend shakes hands with 3 others (as he has already shaken hands with the 1st), the 3rd shakes hands with 2 others, and the 4th shakes hands with 1 other, i.e. $(4 + 3 + 2 + 1 = 10)$ handshakes.		
or each of the 5 friends shakes hands with 4 others, but each handshake involves 2 people, so the number must be halved, i.e. $(5 \times 4 \div 2 = 20 \div 2 = 10)$ handshakes		

| 30 min |

<table>
<thead>
<tr>
<th>7</th>
<th>PbY5a, page 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 Read: Form two 3-digit numbers from the digits 2, 5, 8, 0, 1, 4, so that one of them is the smallest possible and the other is the greatest possible.

Calculate their sum and difference.</td>
<td></td>
</tr>
</tbody>
</table>

Set a time limit. Review with whole class. Ps come to BB to show calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

Solution:

<table>
<thead>
<tr>
<th>Smallest: 102</th>
<th>Sum:</th>
<th>Difference:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 8 5 4</td>
<td>+ 9 5 6</td>
<td>8 5 4</td>
</tr>
<tr>
<td>1 1 0 2</td>
<td>1 1 0 2</td>
<td>7 5 2</td>
</tr>
</tbody>
</table>

| 34 min |

Lesson Plan 38

Notes

Whole class introduction

In good humour!

Make sure that Ps understand the diagrams.

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Reasoning, agreement, self-correction, praising

Extra praise if Ps think of 5×4 and $5 \times 4 \div 2$ without prompting from T.

Individual work, monitored, (less able helped)

Reasoning, agreement, self-correction, praising

Feedback for T

Extension for quick Ps:

Form two numbers which are the closest possible to each other on the number line.

$(204 – 185 = 19, \text{ or } 501 – 482 = 19)$
Activity 8

PhY5a, page 38

Q.3 Read: Practise calculation.

Let's see how many you can do in 3 minutes! Use any method of calculation you wish and work in your Ex. Bks if necessary. Remember to check your answers. Start . . . now! . . . Stop!

Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who did it a different way? Who made a mistake? What was your mistake? Who did the same? etc. Stand up if you had all 8 correct (only 1 mistake). Let's give them a clap!

Solution:

a) $12 + 3.5 = 15.5$ (°C)

Answer: The temperature has cooled down by 15.5 degrees.

b) Augustus Caesar was born in 63 B.C. and died in 14 A.D. How long did he live?

Plan: $63 + 14 = 77$ (years)

Answer: Augustus Caesar lived for 77 years.

c) The Roman Empire lasted for 1229 years and ended in 476 A.D. In what year did the Roman Empire begin?

Plan: $1229 – 476 = 753$ (years before the birth of Christ)

Answer: The Roman Empire began in 753 B.C.

Notes

Individual work, monitored (less able Ps helped with divisions)

Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, self-correction, praising

Deal with all methods used by Ps and accept any giving correct answer.

Show details of checking calculation on BB if problems or disagreement.

In f) and h) discuss other ways of showing the remainder:

f) $337 \div 7 = 337.7$

h) $465 \div 30 = 465.3$

Individual work, monitored, helped

Differentiation by time limit

Discussion, reasoning, agreement, self-correction, praising

T chooses a P to say answer in a sentence.

(Ps could be asked to find out information about Augustus Caesar and the Roman Empire.)

BB: e.g.

\[\begin{array}{c}
\text{a)} \\
12 + 3.5 = 15.5 \\
\text{b)} \\
63 + 14 = 77 \\
\text{c)} \\
1229 – 476 = 753
\end{array}\]
Lesson Plan

Week 8

R: Numbers and calculations
C: Calculation practice. Word problems
E: Combinatorics, logic and set problems

Activity

1 - Calculations

Study these operations. What do you think about them? Are they correct? What reasoning has been used? Ps go through calculations mentally, or use estimation to determine whether answer is correct.

a) BB:

```
  4123
× 3011
```

By estimation:

4000 × 300 = 1200000

1st row: A line has not been drawn under the multiplicand, so we can think of it as being multiplied by 1U.
2nd row: To show multiplication by 0T, a blank has been left in tens column. Multiplication by 3H starts in the hundreds column.
3rd row: Results of multiplications by 1U and 3H are then added.

b) BB:

6231 ÷ 31 = 21

By estimation, 6000 ÷ 30 = 600 ÷ 3 = 200

Let's do the calculation again correctly! Ps come to BB to write division, explaining reasoning in detail. Class points out errors.

c) BB:

```
  458
× 73
```

Correction:

```
  458
× 73
```

It is not correct because by estimation, 500 × 70 = 35 000.
Let's write the calculation again correctly! Ps come to BB, explaining reasoning in detail. Class agrees/disagrees.

2 - Venn diagrams

Study these Venn diagrams. Are they correct or is there something wrong with them? T asks several Ps what they think and why.
Let's check them together! What range of numbers should we check? (e.g. in a) 1 to 24, as 1 is the smallest and 24 is the greatest possible factor) Class checks the numbers one after the other until a mistake or anomaly is reached, then discusses what to do about it.

BB:

a) Factors of 24

b) Factors of 18

Notes

Whole class activity

Written on BB or SB or OHT
(or Ps do correct calculations in Ex. Bks.)
Discussion, reasoning, agreement, checking, praising

T repeats Ps' reasoning in a clearer way if necessary.
Agree that it is a shortcut – but correct.

b) BB:

```
  31
× 62
```

Correct calculation:

```
  31
× 62
```

c) Elicit the mistakes:

- digits in 2nd row should be moved 1 place to the left: (458 × 70 = 32060)
- digits in 3rd row should be moved 1 place to the right. (458 × 3 = 1374)

Correction:

```
  5473
× 61
```

```
  5473
× 61
```

Whole class activity

Drawn on BB or SB or OHT
Checking, agreement, praising
Ps come to BB or dictate to T.
Ps say what is wrong with the diagrams and how they could be made better.
Involve several Ps.
Better diagrams:

© CIMT, University of Exeter
Lesson Plan 39

Y5

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **3** Combinatorics 1
In a box there are 1 red, 2 white and 3 green marbles. Draw a diagram in your Ex Bks. First P finished comes to BB to draw a diagram on BB.
If you took 3 marbles out of the box with your eyes shut, what colours could they be? List all the possibilities in your Ex Bk.
Review whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes corrected. Elicit that 6 cases are possible:
BB: RWW, RWG, RGG, WWG, WGG, GGG | Individual work, monitored, helped
BB: (or T uses real mables and box)
Discussion, agreement, self-correction, praising
Feedback for T |
| **4** Combinatorics 2
Four children, A, B, C and D are spending the night in a tent in a field. They want to keep a 2-man watch. In how many ways could they do it?
List the possibilities in your Ex Bk.
Review whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes corrected. Agree that there are 6 possibilities. | Individual work, monitored
Discussion, agreement, self-correction, praising
BB: AB, AC, AD, BC, BD, CD |
| **5** Problem
Look at this picture. How many envelopes is a pencil worth?
Let’s write an equation first. What should I write? Ps dictate.
BB: 1e + 4p = 6e + lp
We say that the two sides balance each other and as it is an equation, we must keep them balanced. Let’s take away the same number of pencils or envelopes on each side. Ps come to BB to cross out (or remove) appropriate number of envelopes/pencils and write equations (with T’s help).
Ps write initial equation and lines of solution in Ex Bks.
BB: Subtract 1p from each side: 1e + 3p = 6e [−lp]
Subtract 1e from each side: 3p = 5e [−1e]
If 3 pencils → 5 envelopes.
then 1 pencil → \[\frac{5}{3} \] envelopes = 1 \[\frac{2}{3} \] envelopes
Answer: A pencil is worth 1 and 2 thirds envelopes. | Whole class activity
Drawn or stuck on BB or use enlarged copy master or OHP:
If Ps are stuck, T gives hints about what to do.
Envelopes/pencils crossed out or removed from BB:
Discussion, reasoning, agreement, praising
What is 1 envelope worth? (3 fifths of a pencil) |
| **6** Calculation practice
Do these calculations in your Ex Bk. as quickly as you can, using any method you wish. Remember to estimate first, then check your answer.
BB: a) 417 × 92 b) 784 ÷ 8 c) 5253 ÷ 70 d) 856 × 103
Deal with all calculation methods used by Ps.
Solution: e.g.
a) \[\begin{array}{c} 417 \\ \times 92 \end{array} \]
\[\begin{array}{c} \hline 417 \\ \times 92 \end{array} \]
\[\begin{array}{c} + \hline 38534 \end{array} \]
\[\begin{array}{c} 38360 \end{array} \]
b) \[\begin{array}{c} 8784 \\ \div 8 \end{array} \]
\[\begin{array}{c} 8784 \\ \div 8 \end{array} \]
\[\begin{array}{c} + \hline 879 \end{array} \]
\[\begin{array}{c} 879 \end{array} \]
c) \[\begin{array}{c} 7853 \\ \div 3 \end{array} \]
\[\begin{array}{c} 7853 \\ \div 3 \end{array} \]
\[\begin{array}{c} + \hline 53 \end{array} \]
\[\begin{array}{c} 53 \end{array} \]
d) \[\begin{array}{c} 856 \\ \times 103 \end{array} \]
\[\begin{array}{c} 856 \\ \times 103 \end{array} \]
\[\begin{array}{c} + \hline 56 \end{array} \]
\[\begin{array}{c} 56 \end{array} \]
\[\begin{array}{c} 8560 \end{array} \]
\[\begin{array}{c} 8560 \end{array} \]
\[\begin{array}{c} + \hline 81 \end{array} \]
\[\begin{array}{c} 81 \end{array} \]
\[\begin{array}{c} 85616 \end{array} \]
\[\begin{array}{c} 85616 \end{array} \]
\[\begin{array}{c} + \hline 13 \end{array} \]
\[\begin{array}{c} 13 \end{array} \]
\[\begin{array}{c} 85629 \end{array} \]
\[\begin{array}{c} 85629 \end{array} \]
| Individual work, monitored
[c] and [d] helped
Written on BB or SB or OHT
Differentiation by time limit
Reasoning, agreement, self-correction, praising
Extra praise if a P suggests for c): \[\frac{753}{70} \]
Feedback for T |
<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PbY5a, page 39</td>
<td>Lesson Plan 39</td>
</tr>
</tbody>
</table>
| Q.1 Read: *Solve the problems in your exercise book.*
Write the answer in a sentence here.
Deal with one at a time. Ps read question themselves and solve it under a time limit.
Review with whole class. Ps could show results on scrap paper or slates on command. P responding correctly explains at BB to Ps who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.
Solutions:
a) *The farmer harvested 983 kg of wheat. He put the wheat into sacks which held 75 kg each.*
How many sacks did he need?
Plan: 983 kg ÷ 75 kg
C: 7 5 9 8 3 r 8 (kg)
Answer: He needs 14 sacks.
(13 full sacks and 1 sack holding only 8 kg of wheat)
| Individual work, monitored (helped)
Discussion, reasoning, agreement, self-correction, praising |
| b) *If 30 cans of lemonade are packed in 5 boxes, how many boxes should we buy if we need 44 cans of lemonade for a party?*
Plan: 5 boxes → 30 cans
1 box → 30 ÷ 5 = 6 (cans)
44 cans ÷ 6 cans = 7 (times), r 2 cans
Answer: We should buy 8 boxes (although we will have 4 cans more than we need).
| Extra praise for Ps who realise the significance of the remainders in a) and b) |
| c) *3 metres of a certain type of material cost £6.00. What would be the price of 12 metres of the same material?*
Plan: 3 m → £6.00
1 m → £6 ÷ 3 = £2
12 m → £2 × 12 = £24
Answer: The price of 12 m of material is £24.
| or 12 m = 3 m × 4,
so will cost:
£6 × 4 = £24 |
| 8 | |
| **Erratum**
In *Pb in d)*: (19 8) should be (19 – 8) | **Notes** |
| Q.2 Read: *Do the calculations in your exercise book and write the results here.*
Set a time limit. Review with whole class. Ps come to BB to or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations in column form on BB if problems or disagreement.
Solutions:
a) 1273 – 27 × 19 – 8 = 1273 – 513 – 8 = 1273 – 521 = 752
b) (1273 – 27) × (19 – 8) = 1246 × 11 = 13706
c) 1273 – (27 × 19 – 8) = 1273 – (513 – 8) = 1273 – 505 = 768
d) 1273 – 27 × (19 – 8) = 1273 – 27 × 11 = 1273 – 297 = 976
| Individual work, monitored
Written on BB or SB or OHT
Differentiation by time limit
Discussion, reasoning, agreement, self-correction, praising
Extra praise for Ps who notice connection between a) and c):
In a), the 8 has been subtracted, in c) it has been added, so result is 16 more than result in a). |
Y5

Activity 9

PbY5a, page 39

Q.3 Read: Continue each sequence for 5 more terms. Write the rule that you used.

Set a time limit. Review with whole class.

Ps come to BB or dictate to T and give the rule. Who agrees? Who used a different rule? etc. Mistakes discussed and corrected.

Solutions:

a) 0, 1, –2, 3, –4, 5, –6, (7, –8, 9, –10, 11)

Rule: Absolute value (i.e. distance from 0) increasing by 1, and signs alternating between + and –

Show on the class number line. What else do you notice? Elicit that it can be separated into 2 sequences, one increasing and the other decreasing:

1, 3, 5, 7, 9, 11, . . . (+ 2)
0, –2, –4, –6, –8, –10, . . . (– 2)

b) \(-\frac{1}{3}, 0, \frac{2}{3}, (1, \frac{1}{3}, \frac{2}{3}, \frac{2}{3})\)

Rule: + \(\frac{1}{3}\)

c) 0.1, 0.2, 0.4, 0.8, (1.6, 3.2, 6.4, 12.8, 25.6) *Rule:* \(\times 2\)

d) 1, 3, 6, 10, 15, 21, (28, 36, 45, 55, 66)

Rule: Difference between terms is increasing by 1.

e) 0, 1, 3, 7, 15, (31, 63, 127, 255, 511.)

Rule: Difference between terms is increasing by 2 times, or 'Each following term is 1 more than twice the previous term.'

Lesson Plan 39

Notes

Individual work, monitored, helped
Written on BB or SB or OHT
Differentiation by time limit.
Discussion, reasoning, agreement, self-correction
Praising, encouragement only
Accept 'digits increasing by 1', but T mentions absolute value.
Extra praise if Ps suggest this without help of T.

To Ts only:

b) is a geometric sequence
c) is an arithmetic sequence
d) or \(d_n = \frac{n(n + 1)}{2}\)
e) or \(e_n = 2^{n-1} – 1\)

Week 8

PbY5a, page 39. Q.4

Read: In how many ways can you read the word EXETER in these grids if you can only move one step down or one step to the right?

Ps come to BB to indicate the ways on the grids, and to write numbers in the boxes. Class agrees/disagrees and points out missed routes.

Solution:

a) \[
\begin{array}{ccc}
E & X & E \\
X & E & T \\
E & T & E \\
E & R & R
\end{array}
\]

1

b) \[
\begin{array}{ccc}
E & X & E \\
X & E & T \\
E & T & E \\
E & T & E \\
E & R & R
\end{array}
\]

5

10

In what other ways could we check the routes? T gives hints if necessary. Ps come to BB to write and explain, with T’s help.

c) Each route involves 2 steps to the right and 3 steps down:

BB: RRDDD, RDRDD, RDDRR, RDDDR, DRDRR, DRDDR, DRRDD, DRDDR, DDRDR, DDRRR (10)

or Write in each grid square the number of ways to reach it from the top RH corner. Ps come to BB or dictate to T.

Elicit that the number of routes to each letter is the sum of the routes to the letters directly above it and to the left of it.

Extra praise if Ps remember these methods without help from T.

Whole class activity
(or individual trial first if Ps wish and there is time)

Drawn on BB or use enlarged copy master or OHP

At a good pace
Demonstration, agreement praising

Extra praise if Ps remember these methods without help from T.

(the different possible orders of the 5 steps)

BB:

\[
\begin{array}{ccc}
E_1 & X_1 & E_1 \\
X_1 & E_1 & T_1 \\
E_1 & T_1 & E_1 \\
T_1 & E_1 & R_1
\end{array}
\]

(10)
Y5

Activity

Tables and calculation practice, revision, activities, consolidation
PhY5a, page 40

Solutions:

Q.1

a) \(3210 - 738 + 49 - 262 + 4051\)

\[= 3210 - (738 + 262) + (49 + 4051)\]

\[= 3210 - 1000 + 4100 = 6310\]

b) \(220 + 65 \times 3 - 95 \div 5 - 729 \div 9\)

\[= 220 + 195 - 19 - 81 = 220 + 195 - 100\]

\[= 220 + 95 = 315\]

c) \(25 \times 9 + (150 - 25) \div 25 - 175 \div 5\)

\[= 225 + 125 \div 25 - 35\]

\[= 230 - 35 = 195\]

Q.2

<table>
<thead>
<tr>
<th>Route</th>
<th>Departs</th>
<th>Arrives</th>
<th>Journey time</th>
</tr>
</thead>
<tbody>
<tr>
<td>London – Birmingham</td>
<td>09:15</td>
<td>10:35</td>
<td>1 hour 20 minutes</td>
</tr>
<tr>
<td>London – Manchester</td>
<td>10:05</td>
<td>12:03</td>
<td>1 hour 58 minutes</td>
</tr>
<tr>
<td>Liverpool – London</td>
<td>07:26</td>
<td>09:37</td>
<td>2 hours 11 minutes</td>
</tr>
<tr>
<td>Manchester – Glasgow</td>
<td>08:49</td>
<td>11:12</td>
<td>2 hours 23 minutes</td>
</tr>
<tr>
<td>London – Carlisle</td>
<td>11:55</td>
<td>15:12</td>
<td>3 hours 17 minutes</td>
</tr>
<tr>
<td>Glasgow – London</td>
<td>17:30</td>
<td>21:42</td>
<td>4 hours 12 minutes</td>
</tr>
</tbody>
</table>

Q.3

a) \((29 - 8) \div 3 = 21 \div 3 = 7\)

John gave each of his friends 7 sweets.

b) \(35 \times 6 + 60 = 210 + 60 = 270\) (p) = £2.70

Harvey was given £2.70 as pocket money.

c) \(23 \times 3 + 40 \times 6 + 49 = 69 + 240 + 49 = 358\) (p) = £3.58

Suzy had £3.58 at first.

d) i) 6 litres → 8 bottles

3 litres → 4 bottles

15 litres → 4 × 5 = 20 (bottles)

I need to buy 20 bottles of wine.

ii) 8 bottles → 6 litres

1 bottle → 6 ÷ 8 = \(\frac{6}{8} = \frac{3}{4}\) (litres) = 75 cl

Each bottle contains 75 cl of wine.

Q.4

e.g. Three friends pooled all their money and went to town. They had £1.83 when they left home, spent 36 p on bus fares, then bought a packet of sweets for 27 p. They shared what was left equally when they got home. How much money did they each have left?

\[(183 – 36) \div 3 – 27 \div 3 = 61 – 12 – 9 = 40\) (p)

Q.5

\(R, A, G, A, R; \ R, AG, G, A, R; \ R, RA, G, GA, R\)
Y5 Activity

1 Solids

Let's look at these solids. T has large models on display at front of class. e.g.

Let's talk about this one. (T holds one up.) Who can tell us something about it? Who knows something else about it? T asks questions about any features not mentioned by Ps. [e.g. name of solid, curved or plane surfaces, number and type of faces (plane or curved, name of shape); number of vertex and edges; whether there is a hole through it; convex/concave, etc]

How would you put the solids into sets? Ps suggest how it could be done. Class agrees/disagrees. Who can think of another way to do it? Where possible, Ps find real objects in the classroom which belong in the different sets.

Agree that a solid is a shape which has 3-dimensions (length, breadth and height) but is not hollow. e.g. a wooden cube is a solid but a box shaped like a cube on the outside but empty inside is not a solid.

2 Other 3-D shapes

a) Ps have strips of coloured paper on desks. T has large strips for demonstration. Let's make 3-D shapes which are not solids by folding your strips of paper in different ways. T can demonstrate a shape first, then Ps make their own shapes. T chooses Ps to show their shapes to the class.

e.g.

Elicit that these shapes have 3 dimensions (i.e. height, breadth, depth) but they are not solids, as the paper is so thin that we can disregard its thickness.

Here is a special shape. T makes 1 twist in a strip of paper and Ps copy. (Use glue or a paper clip to keep the 2 edges together).

This shape is called a Möbius strip.

How many faces and edges do you think it has? T asks several Ps what they think. Imagine an ant starting at one point and walking all around the surface. Will the ant cross any edges? (No)

Agree that this shape has 1 edge and 1 face but is 3-D.

If we make such a shape with 2 twists, does it make a difference to the number of edges and faces? (Yes, it has 2 edges and 2 faces)

b) T has shapes made from wire to show to class. e.g. (not plane)

What kind of shapes are these? Are they plane shapes? (No) Are they solids? (No) Agree that they are 3-D shapes but they are not solids.

Lesson Plan

Week 9

| R: Straight lines, half-lines/rays, line segments |
| C: 2-D and 3-D shapes. Using compasses to copy and measure line segments |
| E: Various shapes. Creating shapes |

Notes

Whole class activity

T need not use all the solids shown but make sure that there is a variety of curved and straight edges and plane and curved surfaces.

At a good pace

Discussion, agreement, praising

T uses, and encourages Ps to use, correct mathematical names and terms. e.g. pyramid, cube, sphere, cylinder, cone, polyhedron (shape with many plane faces), prism, etc.

Possible sets: plane and curved surfaces; straight and curved edges; vertices and no vertices; has a triangular face and has no triangular face, etc.)

Individual work in making shapes, followed by whole class discussion

Extra praise for unusual shapes

Discussion, agreement, praising

O: Möbius strip

1 edge, 1 face

Agreement, praising

Or Ps have wire or pipe-cleaners on desks and make their own shapes. T chooses some Ps to show their shapes to the class.

Discussion, agreement, praising
Y5

Activity

<table>
<thead>
<tr>
<th>Week 9</th>
<th>Lesson Plan 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Notes</td>
</tr>
<tr>
<td>Plane shapes (2-D)</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Study these shapes and think how you could put them into groups.</td>
<td>Shapes drawn (or stuck) on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>BB: e.g.</td>
<td>Involve all Ps in the discussion.</td>
</tr>
</tbody>
</table>

Ps suggest labels for sets and might mention e.g.:
- **base set**: plane shapes;
- **subsets**: curved sides, polygons (i.e. plane shapes with straight sides), quadrilaterals, triangles, shapes with holes, closed or open shapes, line shapes, bounded or unbounded (i.e. endless in a certain direction), etc. Class agrees/disagrees.

T points to to certain shapes and asks Ps to say what they know about them. Who agrees/ Who knows something else? etc.

For example, Ps might mention:
- name of shape if known (triangle, crescent, oval, semicircle, quadrilateral, rectangle, square, parallelogram, trapezium, triangle, hexagon);
- number of sides and vertices;
- concave or convex,
- symmetrical or not,
- parallel or perpendicular lines;
- angles (right, acute, obtuse);
- line (stretches to infinity in both directions);
- line segment (part of a line – begins and ends at certain points, ray (line drawn from a certain point and stretching to infinity in one direction);
- part of a plane (flat surface), etc.)

20 min

<table>
<thead>
<tr>
<th>4</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing and cutting plane shapes</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Ps have coloured paper and scissors on desks.</td>
<td>Shapes drawn (or stuck) on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Ps have 2 minutes to create their own plane shapes by cutting and drawing. T chooses Ps to stand up and describe the shape that they have made. They then show their shape and class points out any errors or omissions in the descriptions. T helps with language.</td>
<td>Involve all Ps in the discussion.</td>
</tr>
</tbody>
</table>

T helps and corrects.

Encourage Ps to use correct mathematical names and terms.

Revise properties or meanings of any Ps have forgotten.

Feedback for T

Praising, encouragement only

25 min

<table>
<thead>
<tr>
<th>5</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbY5a, page 41</td>
<td>Whole class activity</td>
</tr>
<tr>
<td>Q.1 Read: Join up each item to the matching label.</td>
<td>Shapes drawn (or stuck) on BB or use enlarged copy master or OHP</td>
</tr>
<tr>
<td>Set a time limit. Review with whole class. Ps come to BB to draw joining lines and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected.</td>
<td>At a good pace</td>
</tr>
<tr>
<td>Solution:</td>
<td>Reasoning, agreement, self-correction, praising</td>
</tr>
</tbody>
</table>

Discuss the circle: its border *(circumference)* is a line but its area is a surface) Feedback for T

Individual work, monitored

Written on BB or use enlarged copy master or OHP

At a good pace

Individual work, monitored

Praising, encouragement only

Feedback for T

28 min

© CIMT, University of Exeter
Activity 6

PbY5a, page 41

Q.2 Read: *Use a ruler and a pair of compasses. Draw on plain paper. Follow the instructions.*

T chooses a different P to read each step, then Ps carry out the instruction on plain sheets of paper and T helps a P to work at BB, using BB instruments. T uses and explains correct mathematical terms for lines and parts of lines.

Steps:

a) **Draw a straight line with a ruler.**

b) **Mark a point on the line and label it Q.**

c) **Draw over one part of the line in red and the other part in blue.**

T tells Ps that we can think of the parts of a line on either side of a point as **half lines**, as they both stretch to infinity in either direction.

What colour is the point Q?

T asks several Ps what they think and why. (Accept ‘half red and half blue’, or one of them, or none of them, with correct reasoning.)

d) **Draw another straight line. Mark two different points on the line and label them A and B. Draw over the segment between A and B in red. Draw over the other parts of the line in green.**

T tells class that the red part of the line is a **line segment** because it has a start point at A and an end point at B. We would name it AB. The **green** parts of the line are called **rays**, because they start at a point and stretch to infinity in one direction.

e) **Using the pair of compasses, copy your segment AB on to the line below. Estimate its length first, then measure its actual length to the nearest mm.**

Elicit that the line beginning at point A’ (read as A dash) is really a **ray**, as it starts at point A’ and stretches endlessly to the right.

T explains and demonstrates how to set the compasses to the required width and then use them to mark A’B’ on the ray. Ps copy what T does. Then Ps write estimated length in *Pbs*, measure the exact length with a ruler and write result in *Pbs*.

T asks several Ps for the lengths of their lines (in cm and mm) and how close they were to their estimates.

We can also use our compasses to measure! Who can think how to do it? If no P knows, T demonstrates and explains:

The compasses set to the width of A’B’ can be laid on top of the ruler, with the LH arm resting exactly on zero. The point where the RH arm rests is where to read the length.

35 min

Notes

Lesson Plan 41

Individual work but class kept together at each step

Agree that the paper is plain and plane!

Do not expect Ps to use the new terms just yet!

BB:

a)

![Diagram](https://via.placeholder.com/150)

b)

![Diagram](https://via.placeholder.com/150)

c) ![Diagram](https://via.placeholder.com/150)

Discussion, reasoning, agreement, praising

d)

<table>
<thead>
<tr>
<th>green</th>
<th>red</th>
<th>green</th>
</tr>
</thead>
<tbody>
<tr>
<td>ray A</td>
<td>B</td>
<td>ray line segment</td>
</tr>
</tbody>
</table>

e)

![Diagram](https://via.placeholder.com/150)

e.g.

BB: \(AB = A'B' = 1.6 \text{ cm} \)
Lesson Plan 41

Y5

Activity

7
PbY5a, page 41

Q.3 Read: *Estimate the length of each line segment in cm, then measure it accurately to the nearest mm. Fill in the table.*

Ps estimate the lines first and write lengths in table. Then they measure them with rulers (or rulers and compasses) in mm and complete the table. Warn Ps about converting their estimates to mm before calculating the differences. Set a time limit.

Review at BB with whole class. Ps come to BB or dictate to T. Who had a different estimate? Who had a different measurement? Allow a generous leeway for estimates and ±1 mm in measurements. Ps with obviously incorrect results measure the lines again more carefully and correct their table. Ps with closest estimates explain how they estimated so well.

Solution: e.g.

<table>
<thead>
<tr>
<th>Estimated (cm)</th>
<th>Measured (mm)</th>
<th>Difference (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>CD</td>
<td>34</td>
<td>81</td>
</tr>
<tr>
<td>EF</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GH</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td>MN</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e.g.</th>
<th>AB</th>
<th>CD</th>
<th>EF</th>
<th>GH</th>
<th>MN</th>
</tr>
</thead>
</table>

Notes

Individual work, monitored

Lines and table drawn on BB or use enlarged copy master or OHP for demonstration only!

Differentiation by time limit.

Discussion, reasoning, agreement, self-correction, praising

8
PbY5a, page 41

Q.4 Read: *Draw a copy of these shapes on plain paper using only a pair of compasses.*

T demonstrates how to set the compasses to different widths on BB first, using BB compasses, and how parts of a curve can be used for ears and mouths. (If class is not very able, T could work on BB and Ps copy what T does on sheets of paper.)

Set a time limit of 3 minutes. T helps and corrects, guiding Ps’ hands while they draw if necessary.

Review with whole class. T asks some Ps to show their drawing to class and asks them which parts they found most difficult and which easiest. Who likes the pig (bear) best? Why?

Ps could plan, draw and colour other animals’ faces at home or in *Lesson 45* (e.g. lion, monkey, rabbit) and T could exhibit them in the classroom or corridor.

<table>
<thead>
<tr>
<th>AB</th>
<th>CD</th>
<th>EF</th>
<th>GH</th>
<th>MN</th>
</tr>
</thead>
</table>

Extension

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

BB: ![Smiley face](image)

Praising, encouragement only

In good humour!

Discussion on results

[Practice in using compasses to copy and draw]
Y5

Activity

1 Classifying shapes

T shows a range of various shapes on BB (or their images on an OHP).

BB:

- a: Rectangle
- b: Square
- c: Cube
- d: Cuboid
- e: Rhombus
- f: Parallelogram
- g: Circle
- h: Cone
- i: Segment of a circle
- j: Pyramid

How could we put them into two groups (i.e. classify them)?

- 2–D and 3–D shapes, or plane shapes and solids
- Curved surface (i) and only plane surfaces (all the rest)
- Curved side and no curved sides: (h, i, j) and (all the rest)

Elicit the name of each shape. (square, cube, rectangle, cuboid, rhombus, cuboid, parallelogram, circle, cone, segment of a circle)

2 Shapes

Which of these shapes are plane shapes?

BB:

- a: Parallelogram
- b: Triangle
- c: Circle
- d: Circle
- e: Rectangle
- f: Triangle
- g: Circle

T asks several Ps what they think and why. Elicit or tell that:

- A plane shape consists of all the points in the same plane inside a closed line, so only b), c) and e) are plane shapes;
- a), d) and f) are line shapes, not plane shapes, because they are not an enclosed part of the plane;
- g) is not a plane shape because it is 3-dimensional, i.e. it is in more than one plane. It is a solid and its name is a pyramid or a prism.

3 Lines

Let’s join up the name cards to the matching diagrams. Ps come to BB to draw joining lines, explaining meaning of the terms (with T’s help). Class agrees/disagrees.

BB:

- ray
- perpendicular lines
- line segment
- straight line
- parallel lines

T elicits meanings and shows short notation on BB.

- **perpendicular lines** form a right angle where they meet (shown by drawing a small square in the angle they make)
- **parallel** lines stay the same perpendicular distance apart, however far they are extended, and will never meet.

Lesson Plan

Notes

Whole class activity

Drawn on BB or use enlarged copy master or OHP (or real objects placed on OHP so that only shadows are seen on the screen)

(Ps could have copies of copy master on desks.)

Discussion, agreement, praising

T writes on BB any name Ps cannot remember and revises its properties.
Activity 4
PbY5a, page 42

Q.1 Read: List the numbers of the plane shapes which match the descriptions.

Deal with one part at a time. T chooses a P to read the description, then Ps list numbers in *Pbs*. Review with whole class. Ps dictate answers to T, explaining reasoning. Class points out errors or missed shapes. Mistakes discussed/corrected.

Tell me the name of any of these shapes that you know. Ps come to BB to point to a shape and name it. Class agrees/disagrees. T reminds Ps of names that they have forgotten.

Solution:

a) *It is enclosed only by straight lines.*
(1, 2, 5, 6, 7, 9, 11, 12)

b) *It is enclosed by straight and curved lines.*
(4, 10)

c) *It is enclosed only by curved lines.*
(3, 8)

d) *It is not enclosed.*
(13, 14)

e) *It has parallel sides.*
(1, 2, 4, 6, 9, 11, 12, 14)

f) *It has perpendicular sides.*
(2, 9, 10, 14)

g) *It has exactly 4 straight sides.*
(1, 6), 7, 12)

h) *It has exactly 6 vertices.*
(11)

Elicit that shapes 1, 5, 7, 9, 11 and 12 are also called polygons (i.e. plane shapes bounded by a continuous set of many straight sides)

T amends the definition to say that the line segments cannot cross and only 2 can meet at a vertex, so 6 is not a polygon.

Who remembers what convex and concave mean? If Ps cannot explain clearly, T reminds class.

Imagine the shapes 1 to 12 as being clearings in a forest. Could two people be hidden from each other inside them? If they can, the shapes are concave and if they can't, the shapes are convex. You could imagine a convex shape as being a courtyard with high walls, so there is no place to hide.

T points to each shape in turn and Ps say whether it is concave or convex. If disagreement, Ps come to BB to show where two people could be hidden from each other.

Extension

T puts forward these ideas for Ps to think about.

- A plane shape is part of a plane bordered by a closed line, but shapes 2 and 6 are plane shapes and are made up of parts of the plane bordered by straight lines, so we should amend our definition to:
 A plane shape is a part or parts of a plane bordered by a closed line or lines.

- In a wider sense, shapes 13 and 14 are also plane shapes because Shape 13 is bordered by 2 rays which extend endlessly, or to infinity; Shape 14 is bordered by the square on the inside and then extends to infinity in all directions.

Notes

Individual work but class kept together throughout.

Drawn on BB or use enlarged copy master or OHP

Discussion, agreement, self-correction, praising

Names of shapes Ps have met already and might remember:

1: *rhombus* (equal sides and opposite sides parallel)
2: *rectangle* (with quadrilateral and triangle cut out of it)
5: *triangle* (acute-angled)
7: *deltoid* (adjacent sides equal) or concave quadrilateral
8: *circle*
9: *pentagon* (irregular)
11: *hexagon* (regular)
12: *trapezium* (quadrilateral with only 1 pair of || sides)

g) Depending on whether you think of shape 6 as having 4 sides, with 2 of its sides crossing, or whether you think of it as having 6 sides, with 4 sides meeting at a point. Accept both answers.

Extra praise for Ps who can explain without T’s help.

BB:

Convex: 1, 5, 8, 11, 12
(no hiding places)

Concave: 2, 3, 4, 5, 7, 9, 10
(hiding places)

Whole class discussion
Ps might disagree with T and if so, allow them to explain their thinking to class.

Who agrees? Who disagrees? Involve several Ps in the debate.

BB: infinity: ∞
(Ps might notice that shape 3 is this symbol.)
Lesson Plan 42

Activity

5 Making plane shapes

Let’s see if you can draw (cut out) the shapes that I describe. T reads the descriptions one at a time, while walking around class closely monitoring Ps work. T chooses Ps to show their shapes to class. (Some might be incorrect, and hopefully class will say what is wrong with them.)

- a) convex triangle, (quadrilateral, pentagon)
- b) concave triangle, (quadrilateral, pentagon)
 [Concave Δ impossible!]
- c) plane shape with straight sides but not a polygon
- d) plane shape enclosed not only by straight lines
- e) a polygon with two sides
 (Ps laughing – it is impossible!)

Notes

Individual or paired work, monitored, helped

Ps have scissors and scrap paper on desks, or Ps use rulers to draw shapes in *Ex. Bks.*

Discussion, agreement, praising

BB:

- a)
- b)
- c)
- d)
- e)

Whole class discussion, but individual drawing in *Ex. Bks.* monitored

Drawn on BB or SB or OHT

- **acute-angled:** all angles < 90°
- **isosceles:** 2 equal sides
- **right-angled:** 1 angle = 90°
- **equilateral:** 3 equal sides (and 3 equal angles)

- **obtuse-angled:** 1 angle > 90°

Discussion, agreement, praising

BB:

- Sides join 2 adjacent vertices.

- Individual work, monitored, then whole class review and discussion

- Deal only with those drawn by Ps.

BB:

- Diagonals join 2 non-adjacent vertices.

© CIMT, University of Exeter
Y5

Activity

<table>
<thead>
<tr>
<th>Lesson Plan 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>

Q.2 Read: Label the vertices. Write the name of the shape and how many diagonals it has below it.

Label the sides of the shapes too and draw the diagonals.

Use your rulers! Set a time limit Review with whole class Ps come to BB to label, write and draw.

Class agrees/disagrees. Mistakes discussed and corrected.

In c), expect only the ablest Ps to give the correct number of diagonals. T helps by drawing a convex hexagon on BB and Ps come to BB to draw the diagonals. Agree that each of the 6 vertices is joined to 5 other vertices, but 2 of the 5 vertices are adjacent, so the joining lines are sides. This leaves joining lines to 3 vertices as diagonals but 2 vertices are needed for each diagonal, so number must be halved.

Solution:

![Shapes]

T ask other questions about the shapes. e.g.

- Which of them are convex? (a, b, d, f)
- Which of them are symmetrical? (a, e, f)
- Which of them has a right angle? (b, c, d*, f) *at A
- Which of them has parallel lines? (f) etc.

Q.3 Read:

- a) Write what the labels S and P might mean.
- b) Draw one more element in each set.
- c) Fill in the missing words.

Allow Ps to work with their neighbour if they wish. Set a time limit. Review with whole class. Deal with one part at a time. Ask several Ps what they wrote (drew). Ps come to BB to draw their extra elements.

Class decides whether they belong in the set.

A, read your completed sentence. Who agrees? Who wrote something different? Class agrees on correct solution and reads the sentence.

Solution:

a) \(S = \{\text{plane shapes}\}\), \(P = \{\text{polygons}\}\)

b) Accept any valid shapes.

c) Every **polygon** is a **plane shape** but not every **plane shape** is a **polygon**.

T: We can say that the set of polygons is a **subset** of the set of plane shapes.

Hexagons

Which of these diagrams are hexagons? (None) Why not? Ps come to BB to draw correct hexagons.

BB:

- [Diagram of hexagon]

 - only 2 sides should meet at each vertex
 - quadrilateral, (points circled are not vertices)
 - bounded by 2 closed lines instead of 1

Whole class activity

Drawn on BB or SB or OHT

Discussion, reasoning, agreement, praising

Feedback for T
Activity 1

Sequences

T says the first few terms of sequence. Ps continue the sequence. If a P makes a mistake, the next P must correct it. Final P gives the rule.

a) 1, 4, 9, 16, (25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, . . .)
 [Rule: the square numbers in increasing order]

b) 150, 120, 90, (60, 30, 0, – 30, – 60, – 90, – 120, – 150, . . .)
 [Rule: decreasing by 30]

c) $\frac{2}{5}, \frac{3}{5}, 3, \frac{2}{5}, \frac{4}{5}, \frac{4}{5}, 5, \frac{6}{5}, \frac{6}{5}, 6, \frac{3}{5}, \ldots$
 [Rule: increasing by 2 fifths]

d) – 0.45, – 0.32, – 0.19, (– 0.06, 0.07, 0.2, 0.33, 0.46, 0.59, . . .)
 [Rule: increasing by 0.13]

--- 5 min ---

Plane shapes

Ps have set of cut-out shapes on desks. T has larger shapes stuck to BB.

I will give you 2 minutes to write the name of each shape on the back of it and think of as many of its properties as you can. List them in your Ex. Bks, if it will help you to remember them. Discuss it with your neighbour if you wish.

Review with whole class. Ps come to BB to choose a shape, name it and say what they know about it. Who agrees? Who thought of something else about it? etc. Class points out errors. e.g.

- **a)** triangle (equilateral or regular, 3 vertices, 3 equal sides, 3 equal acute angles, convex, symmetrical)
- **b)** trapezium (quadrilateral, 4 vertices, 4 angles – 2 acute and 2 obtuse, 4 sides – 1 pair of opposite sides parallel, 2 diagonals, convex)
- **c)** rectangle (quadrilateral, parallelogram, 4 vertices, 4 right angles, 4 sides – opposite sides equal and parallel, 2 diagonals, convex, symmetrical)
- **d)** triangle (isosceles, 3 vertices, 3 acute angles – 2 equal, 3 sides – 2 equal, convex, symmetrical)
- **e)** square (quadrilateral, parallelogram, regular rectangle, etc.)
- **f)** circle (bordered by 1 curved closed line around a central point.)
- **g)** triangle (right-angled – 1 right-angle and 2 acute angles, 3 vertices, 3 sides – 2 adjacent sides perpendicular, etc.)

Hold up the equilateral triangle. Trace its border line with your finger. Show its surface with your palm. What do we mean by its perimeter? (total length of its sides, or the length of its border line)

Measure its sides and calculate its perimeter in your Ex. Bk. Do the same for all the other shapes except the circle. Set a time limit.

Review quickly orally with whole class. T holds up shape and Ps dictate its sides and perimeter lengths. Class agrees/disagrees.

How can we measure the border line on the circle? Ps (T) suggests:

Make a mark on its border, draw a ray from that mark and turn the circle along the ray until the mark meets the ray again. The distance between the two marks is the perimeter. Ps do it in Ex. Bks and tell their results.

--- 12 min ---

Notes

Whole class activity
At speed, in order round class
T decides when Ps should stop.
Class points out missed errors.
In good humour!
Praising, encouragement only
Feedback for T

Paired trial to start, then whole class activity
Cut from coloured paper, or from copy master, enlarged and cut out.
BB:

- a)
- b)
- c)
- d)
- e)
- f)
- g)

Reasoning, agreement. Praising
Extra praise for clever features such as symmetry.
At a good pace
Ps could stand to do this.
Agreement, praising
Ps use rulers, or compasses and rulers, to measure to the nearest mm.
Accept approximate lengths.
Discussion, agreement
Constructing polygons with straws

Ps each have coloured straws of different lengths on desks, with the same length of straw the same colour.

e.g. 2 cm, 3 cm, 3.5 cm and 4 cm straws.

a) i) Make a triangle from the 3 shortest straws. What is its perimeter?

\[
P = 2 \text{ cm} + 3 \text{ cm} + 3.5 \text{ cm} = 8.5 \text{ cm}
\]

ii) Make a triangle from three 3.5 cm straws. What is its perimeter?

\[
P = 3 \times 3.5 \text{ cm} = 10.5 \text{ cm}
\]

Elicit that it is an equilateral triangle, as it has equal sides.

Repeat for other combinations of straws.

b) i) Form an open broken line with the 4 different straws. In how many different ways can you order them?

\[
4 \times 3 \times 2 \times 1 = 24
\]

ii) Form a closed broken line with the 4 different straws. What shape have you made? (quadrilateral) How many different orders of sides are possible (going in 1 direction)? (6)

T shows them on BB, as dictated by Ps.

\[
\begin{array}{c}
\begin{array}{c}
\text{BB:}
\end{array}
\end{array}
\]

What is the perimeter of each one?

\[
\text{BB: } 2 + 3 + 3.5 + 4 = 12.5 \text{ cm}
\]

Q.1 Read: Measure the length of each side of the polygon and calculate the length of its perimeter.

Set a time limit. Ps write lengths in Pbs, do the necessary calculation in Ex. Bks. then write the result in Pbs.

Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected.

Elicit that the perimeter is the total length of all the sides.

What can you tell me about the shape? (hexagon, concave, plane shape, polygon, 6 sides, 6 angles 6 vertices)

\[
P = 5 + 3 + 1 + 1.8 + 2.4 + 2.9 = 14 + 2.1 = 16.1 \text{ cm}
\]

Individual or paired work in manipulation of straws, tmonitored, then whole class discussion

(4 different triangles can be formed)
Reasoning, agreement, praising

Ps could suggest them. (in one direction)
(Ps could show on slates or scrap paper on command.)

Discussion, agreement, praising
(or T has possibilities already prepared)

What did you have to do to make sure that adjacent straws touched each other?

(Change the angles at the vertices.)

Individual work, monitored, (helped with measuring)

Drawn on BB or use enlarged copy master or OHP
Ps measure with rulers (or compasses and rulers) in cm or mm
Reasoning, agreement, self-correction, praising

Accept lengths of ± 1 mm on each side.

T points to a vertex and Ps say what kind of angle is formed by the two adjacent sides.
Perimeters
Ps have set of polygons on desks and T has set (enlarged by 5 or 10 times) drawn or stuck on BB.

a) Measure the sides of each of your polygons and calculate its perimeter in your Ex Bks. Set a time limit. Ps take turns measuring and recording, then both do calculation and check their results.

Review with whole class. T holds up one shape at a time and Ps say its perimeter. Who agrees? Who thinks something else? Accept slight differences in measurements but ask Ps with wildly inaccurate results to measure and calculate again.

BB:

b) Let’s measure the large shapes stuck on the BB. What do you notice? (similar to Ps’ shapes but enlarged) Ps come to BB to measure each side of A and do calculations. After the 1st shape, T asks if Ps if they know by how much the shapes have been enlarged. (By 5 (or 10) times, so the perimeters will be 5 (or 10) times more. T points to each of the other enlarged shapes and Ps give their perimeters by multiplying their own perimeters by 5 (or 10).

c) T draws rectangle on BB. This is the plan of a garden. (T writes only a and b on the sides.) Who can write a plan for its perimeter using the letters? P comes to BB. Class agrees/disagrees.

BB: \[P = 2 \times (120 + 43) = 2 \times 163 = 326 \text{ (m)} \]

Why would we need to know its perimeter in real life? (e.g. To find out how much wood to buy for a fence, or how many bricks to buy for a wall, or how many plants to buy for a hedge, etc.)

If we wanted an accurate scale drawing of the garden, so that we could plan where to lay turf for the lawn, or where to make paths or where to plant shrubs, how could we do it? T asks several Ps what they think.

(e.g. Change the unit of measure to cm, i.e. reduce the sides by 100 times, so that \(a = 120 \text{ cm} \) and \(b = 43 \text{ cm} \); or reduce the sides by 1000 times so that \(a = 120 \text{ mm} \) and \(b = 43 \text{ mm} \))

Who remembers how to write a scale? P dictates or comes to BB. What does it mean? (Every 1 mm on the diagram represents 1 m in real life.) Let’s see if you can draw the garden to scale in your Ex. Bks.
Activity

6

PbY5a, page 43

Q.2 Read: *Measure the sides then calculate the length of each perimeter.*

Ps write lengths beside relevant sides on diagrams in *Pbs*, calculate perimeter in *Ex.Bks*, then write the result in *Pbs*.

Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who had a different length of perimeter? etc. Accept small differences in lengths but Ps who are obviously wrong find and correct their mistakes (with neighbour’s help if necessary).

Solution:

- a)
 ![Diagram](image1)
 \[P = 4 \times 3 \text{ cm} = 12 \text{ cm}\]

- b)
 ![Diagram](image2)
 \[P = 2 \times (3 \text{ cm} + 6 \text{ cm}) = 2 \times 9 \text{ cm} = 18 \text{ cm}\]

- c)
 ![Diagram](image3)
 \[P = 2 \times (1.5 \text{ cm} + 3 \text{ cm}) = 2 \times 4.5 \text{ cm} = 9 \text{ cm}\]

- d)
 ![Diagram](image4)
 \[P = 2 \times (1.5 \text{ cm} + 5.5 \text{ cm}) = 2 \times 7 \text{ cm} = 14 \text{ cm}\]

- e)
 ![Diagram](image5)
 \[P = 4 \times 1.5 \text{ cm} = 6 \text{ cm}\]

7

PbY5a, page 43

Q.3 Read: *What length of fence (including the gate) is needed to enclose each of these gardens?*

Set a time limit. Ps do calculations in *Ex. Bks*, and write only results in *Pbs*.

Review with whole class. Ps could show perimeters on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected.

Solution:

- a)
 ![Diagram](image6)
 \[P = 30 \text{ m} + 40 \text{ m} + 45 \text{ m} = 115 \text{ m}\]

- b)
 ![Diagram](image7)
 \[P = 2 \times (42 \text{ m} + 23 \text{ m}) = 2 \times 65 \text{ m} = 130 \text{ m}\]

- c)
 ![Diagram](image8)
 \[P = 4 \times 100 \text{ m} = 400 \text{ m}\]
Activity 8

PbY5a, page 43, Q.4

a) Read: *Calculate the perimeter of a rectangle if:*
 - i) one side is 17 cm and the other is 38 cm
 - ii) one side is 2 m 10 cm and the other is 130 cm
 - iii) each side is 31 cm.

Deal with one at a time. T reads out question. Ps do calculations mentally or in in Ex. Bks, and show result on command. P answering correctly explains reasoning to Ps who were wrong. Class agrees/disagrees. Correct result written in Pbs.

Solution:
 - i) \(P = 2 \times (17 + 38) = 2 \times 55 = 110 \text{ cm} = 1 \text{ m 10 cm} \)
 - ii) \(P = 2 \times (210 + 130) = 2 \times 340 = 680 \text{ cm} = 6 \text{ m 80 cm} \)
 - iii) \(P = 4 \times 31 \text{ cm} = 124 \text{ cm} = 1 \text{ m 24 cm} \) (a square)

b) Read: *Calculate the length of the other side of a rectangle if one side is 70 cm and its perimeter is 350 cm.*

Show me the answer . . . now! (105 cm) P who responded correctly explains reasoning at BB. Class agrees/disagrees. If no P was correct, T helps class to solve it together on BB.

Solution: e.g.

\[
\text{Plan: } P = 2 \times (a + b), \quad 350 \text{ cm} = 2 \times (70 \text{ cm} + b)
\]

\[
b = \frac{350 \text{ cm}}{2} - 70 \text{ cm} = 175 \text{ cm} - 70 \text{ cm} = 105 \text{ cm}
\]

b) Read: *Calculate the side of a square if its perimeter is:*
 - i) 360 cm
 - ii) 1 m 4 cm.

Ps who responded correctly explain reasoning. Class agrees or disagrees. Ps write correct operations and answers in Pbs.

Solution:
 - i) \(a = \frac{360 \text{ cm}}{4} = 90 \text{ cm} \)
 - ii) \(a = \frac{104 \text{ cm}}{4} = 26 \text{ cm} \)

Let’s write the general rules for perimeters of rectangles in your Ex. Bks. Try to learn them by heart! T writes on BB and Ps copy in Ex. Bks.

Notes

Whole class activity (or individual work, monitored, helped if Ps prefer)

T repeats slowly to give Ps time to think and calculate.

Results written on scrap paper or slates and shown in unison.

Reasoning, agreement, (self-correction), praising

Ps write correct operation in Pbs.

Encourage mental calculation by brighter Ps but Ex. Bks or slates can be used if necessary.

Discussion, reasoning, agreement, (self-correction), praising

Ps write correct operation in Pbs.

Again, encourage mental calculation if possible.

Reasoning, agreement, (self-correction), praising

BB: *General rules*

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>(P = 2 \times (a + b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>(P = 4 \times a = 4a)</td>
</tr>
</tbody>
</table>
Lesson Plan

Y5

<table>
<thead>
<tr>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **Mental practice**
T says a multiplication or division. Ps say result. e.g. 6 × 4, 9 × 7, 81 ÷ 9, 70 ÷ 3, 400 ÷ 10, 279 ÷ 0, 0 ÷ 17, 413 ÷ 1, 355 ÷ 5, 100 ÷ 4, 1000 ÷ 4, 320 ÷ 0 (impossible!), etc. Ps can give think of operations too! Class points out errors missed by the next Ps. **3 min**

Coordinate grid
Ps draw axes in Ex. Bks (or have already-prepared grid sheets on desks).
a) Mark these points on your grid and then join them up. BB: A (1, 0), B (6, 0), C (6, 6), D (1, 6)
Calculate its perimeter. X, come and show us your calculation. BB: \[P = 2 \times (5 + 6) = 2 \times 11 = 22 \text{ (grid units)} \]
What is the area of the rectangle? Agree on the unit of measure. (grid squares) Elicit that there are 5 rows of 6 grid squares, so BB: \[A = 5 \times 6 = 30 \text{ (grid squares)} \]
b) Repeat for: BB: E (– 8, 0), F (– 3, 0), G (– 3, 5), H (– 8, 5)
Elicit that it is a square with area and perimeter: BB: \[P = 4 \times 5 = 20 \text{ (grid units)} \]
\[A = 5 \times 5 = 25 \text{ (grid squares)} \]**10 min**

PbY5a, page 44
Q.1 Read: The floor of a doll’s house can be covered by three different shapes of tiles. What is the unit of area used in each case and how many such units are needed?
Set a time limit. Review with whole class. Ps dictate to T or come to BB, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Agree that the area of the floor is the same in all 3 cases, but the number of units of area (i.e. tiles) needed changes according to their size.

Solution:

a) \[4 \text{ cm} \times 4 \text{ cm} \]

Unit used: \[8 \times 4 = 32 \text{ cm}^2 \]

Units needed: \[5 \times 5 = 25 \]

b) \[4 \text{ cm} \times 4 \text{ cm} \]

Unit used: \[4 \times 4 = 16 \text{ cm}^2 \]

Units needed: \[5 \times 10 = 50 \]

c) \[5 \text{ cm} \times 10 \text{ cm} \]

Unit used: \[10 \times 5 = 50 \text{ cm}^2 \]

Units needed: \[4 \times 4 = 16 \]

What are the actual dimensions of the room? Who knows how to work it out? Come and explain. Who agrees? Elicit that:

Actual dimensions
a) \[5 \times 8 \text{ cm (or 10 } \times 4 \text{ cm, or } 4 \times 10 \text{ cm) = 40 cm} \]

b) \[5 \times 4 \text{ cm (or 4 } \times 5 \text{ cm) = 20 cm} \]

\[P = 2 \times (40 \text{ cm + 20 cm}) = 2 \times 60 \text{ cm} = 120 \text{ cm} \]

\[A = 40 \text{ cm } \times 20 \text{ cm} = 800 \text{ cm}^2 \]

Check:

\[25 \times 32 = 50 \times 16 = 16 \times 50 = 800 \]

15 min
Perimeter and area 1

Draw a shape following my instructions. Start near the top of the page and close to the LHS. Draw a dot where the grid lines cross. From the dot, move your pencil by the number of units in the direction I say.

a) 5 units to the right, 8 units down, 2 units to the left, 3 units up, 3 units to the left and 5 units up.

What shape have you drawn? (hexagon)

What is its perimeter? Count the units or calculate in your Ex. Bk and show me . . . now! (26 units) P answering correctly explains.

BB: \[P = 5 + 8 + 2 + 3 + 3 + 5 = 26 \] (units)

What is its area? Show me . . . now! (31 unit squares) P answering correctly explains reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.

BB: \[A = 5 \times 5 + 3 \times 2 = 25 + 6 = 31 \] (unit squares)

Similarly for:

b) 2 right, 2 up, 3 right, 8 down, 3 left, 2 up, 2 left and 4 up

\[P = 26 \text{ units}; \quad A = 3 \times 8 + 2 \times 4 = 24 + 8 = 32 \] (unit squares)

\[P = 2 \times (8 + 2) = 2 \times 10 = 20 \] (units)

\[P = 4 \times 4 = 16 \] (units)

c) 5 right, 3 down, 2 left, 2 down, 2 right, 3 down, 5 left, 3 up, 2 right, 2 up, 2 left and 3 up

\[P = 26 + 4 \times 2 = 26 + 8 = 34 \] (units); \[P \] of 5 by 8 rectangle + 4

\[A = 2 \times 3 \times 5 + 2 = 30 + 2 = 32 \] (unit squares)

Perimeter and area 2

In your Ex. Bks, draw different rectangles which have:

a) area 16 unit squares and calculate their perimeters.

Set a time limit. BB:

Review with whole class. Ps come to BB or dictate to T.

Elicit that possible side lengths are factor pairs of 16, and that the rectangle with the shortest perimeter is the most regular, i.e. a square.

b) perimeter 16 units and calculate their areas.

Repeat as with a).

Elicit that the rectangle with the greatest area is the most regular, i.e. a square.

Individual work, monitored, helped

T has square grid drawn on BB or SB or OHT

Discussion, reasoning, agreement, self-correcting, praising

Involve as many Ps as possible in the review and discussion.

Elicit the general rules for perimeter and area of a rectangle and square:

BB:

Rectangle: \[P = 2 \times (a + b) \]

\[A = a \times b \]

Square: \[P = 4 \times a \]

\[A = a \times a \]
Lesson Plan 44

Notes

Individual work, monitored, helped
Drawn on BB or use enlarged copy master or OHP
Discuss the unit of area to be used compared with grid unit.
Reasoning, agreement, self-correction, praising
What do you notice? (The sequences formed in all cases are the square numbers.)
In e), elicit that if the unit of area used is the grid unit, the sequence of enlargement is: 6, 24, 54, . . . (i.e. \(\times 6 \))
Extra praise if Ps can generalise their findings, e.g.
If the sides of a polygon are increased by \(n \) times, its area is increased by \(n \times n \) times.
but do not expect this!

Extension

If we use 2 grid triangles as the unit of measure, i.e. a diamond, what are the areas of shapes L to P? T points to each shape in turn and Ps shout out the number of units of area.

BB: Unit of area: \(\text{Unit of area: grid triangles} \)

In unison. Praising
Standard units of area

What is the area of a square with sides 1 cm long? (1 cm square, or 1 square cm) How do we write it mathematically? P comes to BB. Class agrees/disagrees. (BB: 1 cm × 1 cm = 1 cm^2)

What is the area of a square with sides 1 mm long? P comes to BB. How many mm² are equal to 1 cm²? Let's write it on the BB. Ps dictate what T should write.

BB: $1 \text{ cm}^2 = 10 \times 10 \text{ mm}^2 = 100 \text{ mm}^2$

What is the area of a square with sides 1 m? (1 m²) How many cm² (mm²) are equal to 1 m²? Ps dictate what T should write.

BB: $1 \text{ m}^2 = 100 \times 100 \text{ cm}^2 = 10 000 \text{ cm}^2$ (10 thousand: 4 zeros)

$1 \text{ m}^2 = 1000 \times 1000 \text{ mm}^2 = 1 000 000 \text{ mm}^2$ (1 million: 6 zeros)

What is the area of a square with sides 1 km long? (1 km²) How many m² are equal to 1 km²? Ps come to BB or dictate what T should write.

BB: $1 \text{ km}^2 = 1000 \times 1000 \text{ m}^2 = 1 000 000 \text{ m}^2$

Let’s practise using these standard units of area.

a) T says the lengths of 2 sides of a rectangle. Ps calculate its area mentally or in Ex. Bks and show on command (or dictate to T), giving the unit of area too. Show details of calculations on BB if problems.

i) $a = 15 \text{ cm}, \ b = 21 \text{ cm}$ $[A = 15 \text{ cm} \times 21 \text{ cm} = 315 \text{ cm}^2]$

ii) $a = 30 \text{ cm}, \ b = 21 \text{ cm}$ $[A = 30 \text{ cm} \times 21 \text{ cm} = 630 \text{ cm}^2]$

iii) $a = 30 \text{ cm}, \ b = 42 \text{ cm}$ $[A = 30 \text{ cm} \times 42 \text{ cm} = 1260 \text{ cm}^2]$

b) How long is the other side of a rectangle if one side is 70 cm and its area is 3500 cm²?

P comes to BB or dictate what T should write. Class agrees/disagrees.

BB: $a = 70 \text{ cm}, \ A = 3500 \text{ cm}^2$

$b = 3500 \text{ cm}^2 \div 70 \text{ cm} = 50 \text{ cm}$

PbY5a, page 44, Q.4

Read: *The area of this shape is i) more than what ii) less than what?*

How can we work it out? Give Ps a minute to think about it, and if no P has thought of a strategy, T gives hints.

Draw the biggest polygons possible inside and outside the shape and count their areas. Ps come to BB to draw the polygons (with T’s help) and rest of class work in Pbs too. Agree on the two areas (in grid squares). What should we do now? (Write an inequality)

Ps come to BB or dictate to T. BB: 22 grid squares $< A < 42$ grid squares

How could we get closer to the exact area? (Make the grid more dense, e.g. draw grid lines at every mm.)
Practice in drawing and measuring with compasses, revision, activities, consolidation

PbY5a, page 45

Solutions:

Q.1

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>60</td>
</tr>
</tbody>
</table>

\[P = 2 \times (a + b) \]

Q.2

a) i) 16 ii) 32 iii) 80 iv) 128 (tiles)

b) Area: 4 m × 3 m = 12 m² No. of tiles: 12 × 16 = 192

Q.3

a) and b)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Q.4

a)

b) i) greatest area: D ii) smallest area: B

c) C and E
Y5

R: Area, perimeter
C: Nets: surface area of cubes and cuboids
E: Polyhedrons and other solids

Lesson Plan

Week 10

46

Activity

1 Mental relay practice
T says a 3-term multiplication. P says result and gives another 3-term multiplication to next P. e.g.
1 × 2 × 2, 4 × 3 × 5, 6 × 3 × 3, 9 × 20 × 2, 10 × 4 × 6, etc.
Class points out errors. (Multiplications can be done in easiest order.)

2 Area and perimeter
What do these diagrams suggest to you? (perimeter or area)
Ps come to BB to point to a shape, name it, say whether perimeter or area is shown and write an appropriate operation using the given letters. Other Ps help if necessary.

BB:

<table>
<thead>
<tr>
<th></th>
<th>squares</th>
<th>rectangles</th>
<th>deltoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Area</td>
<td>a × a</td>
<td>a × (a + b)</td>
<td>a × (a + b)</td>
</tr>
</tbody>
</table>

Agree that we have not yet learned how to find the area of a deltoid without the help of a grid, but we will learn it another time.

3 Solids
T has a demonstration set of various solids on desk (including at least 1 cube and 2 other different types of cuboid, one with a square base)

a) A, come and choose the solids which have only plane faces. Is A correct? Who remembers the name we give a solid with many plane faces? (polyhedron) T tells class that 'poly' means 'many' and 'hedron' means 'plane faces'. What other word that you know begins with poly? (polygon, a plane shape with many straight sides)
B, come and choose the polyhedrons which have rectangular faces. Is B correct? Who remembers what we call such solids? (cuboids)
C, come and choose a cuboid which has both square and rectangular faces. We call this a square-based cuboid.
D, come and choose a cuboid which has only square faces.
What do we call it? (a cube)

b) Let's show these 3 types of cuboid in a Venn diagram. Ps dictate what T should draw. Let's check it is correct.
Agree that every cube is a cuboid, but not every cuboid is a cube.

c) Eeveryone hold up a cuboid. Show me one of its faces with your hand. How many faces does it have? (6 faces) P comes to BB to label a face on one of the diagrams. Repeat for edges (12) and vertices (8).
BB:

<table>
<thead>
<tr>
<th></th>
<th>cuboid (square-based)</th>
<th>cuboid (regular cuboid)</th>
<th>cube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuboids</td>
<td>6 faces</td>
<td>12 edges</td>
<td>8 vertices</td>
</tr>
</tbody>
</table>

Demonstration, agreement, praising
T could also show a frame model of a cuboid and Ps come to front of class to identify the components.

Notes

Whole class activity
At speed, in order round class.
In good humour!
Praising, encouragement only

Whole class activity
Drawn on BB or SB or OHT
At a good pace
Discussion, agreement, praising

Elicit that a deltoid is a quadrilateral with 2 pairs of adjacent sides equal.
It is not a rectangle, so we cannot use the equation:

\[A = a \times b \]
Surface area of cuboids

a) This cuboid has edges 4 cm, 2 cm and 3 cm. Let’s show the measurements in a larger diagram. T shows drawing of cuboid on BB and Ps come to BB to write lengths beside appropriate edges.

What sizes of rectangles cover its surface?
(Two 4×3 rectangles, two 4×2 rectangles and two 3×2 rectangles, i.e. 6 rectangles altogether)

What lengths are its edges? (Four 4 cm edges, four 3 cm edges and four 2 cm edges, i.e. 12 edges altogether)

Elicit that adjacent faces (edges) are perpendicular to each other and opposite faces (edges) are equal and parallel to each other.

What can you tell me about each vertex? (3 edges join at each vertex and any 2 of them are perpendicular to one another.)

T shows a net for the cuboid and folds it around the cuboid to show that it covers its surface exactly, with no overlaps. Here is a larger diagram of the net. Class discusses which part of the net relates to which part of the cuboid’s surface. Ps come to BB to point and explain, referring to model and to both diagrams on BB. Class agrees/disagrees. After agreement, Ps write lengths on net too.

Agree that the area of the net equals the area of the surface of the cuboid. How can we calculate the area of the net? (Add up the areas of the 6 rectangles) Ps dictate what T should write. Class agrees/disagrees.

BB: $A = (4 \times 3 + 4 \times 2 + 3 \times 2) \times 2 = (12 + 8 + 6) \times 2$

$= 26 \times 2 = 52 (cm^2)$

So what is the surface area of the cuboid? (52 cm2)

b) Repeat the procedure with a cube of sides 3 cm. First discuss its faces, edges and vertices. (6 faces are congruent squares)

Draw a net for a cube and write an operation to calculate its area in your Ex. Bks. Set a time limit. (Ps can work in pairs if they wish.)

Review with whole class. T shows a net and wraps it around the cube to check that it covers the surface exactly. Who drew a different net? Deal with all cases. Agree that many nets are possible.

X, come and write an operation to calculate its area. Who agrees? Who wrote a different one? etc Mistakes discussed and corrected.

BB: $A = 6 \times (3 \times 3) = 6 \times 9 = 54 (cm^2)$

Whole class discussion to start

BB: Cube

Net for a cube:

Individual work, monitored, helped in completing the net.

Drawn on BB or use enlarged copy master or OHP.

Discussion, agreement, self-correction, praising

Solution: $ABCD = 4 \times 2 = 8 \quad DCGH = 4 \times 1 = 4$

$EFGH = 4 \times 2 = 8 \quad ADHE = 2 \times 1 = 2$

$ABFE = 4 \times 1 = 4 \quad BCGF = 2 \times 1 = 2$

Total area = $2 \times (8 + 4 + 2) = 2 \times 14 = 28$ (grid squares)
Y5

Activity 5

(Continued)

b) Read: In your exercise book, draw a net for each of these cuboids, then calculate the area of each face and its total surface area. Write the surface area here.

Deal with one at a time. Set a time limit.

Review with whole class. T has grids already prepared. T chooses 2 Ps to come to BB to draw their (different) nets. Who drew another one? Come and show us. Class decides whether nets are correct.

What is the surface area of the cube (cuboid)?

Show me . . . now! Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected.

Solution:

i)

\[A = 6 \times 4 = 24 \text{ (grid squares)} \]

ii)

\[A = 2 \times 4 + 4 \times 8 = 8 + 32 = 40 \text{ (grid squares)} \]

Notes

T could have models already made up to show to class.

Grids drawn on BB or use enlarged copy master or OHP

(Less able Ps could use copy master instead of Ex. Bks.)

Or to save time, T could have some nets already prepared and ask who drew them.

T helps with labelling vertices on the nets

Discussion, reasoning, agreement, self-correction, praising

Extra praise for unexpected but correct nets.

6 PbY5a, page 46

Q.2 Read: In your exercise book, draw 3 different nets for a cube of side 2 units.

Try to think of 3 nets which are different from the net that you drew in Q.1b. Try it out roughly on scrap paper first.

Set a time limit of 3 minutes. Review with whole class. T has 3 nets already prepared on BB. T points to each in turn and asks who drew it. Who drew a net which is different from these? Come and draw it for us. Class decides whether it is correct.

Solution: e.g.

Individual work, monitored, helped

Less able Ps could use grid sheets from copy master in LP 46/5.

Agreement, self-correction, praising

(If disagreement, check nets by drawing on grids, cutting out and folding to see if they form cubes.)
Y5

Activity

7 **PbY5a, page 46**

Q.3 Read: Calculate the surface area of each cuboid if \(a\), \(b\) and \(c\) are the lengths of its edges.

T helps by showing a diagram and net (see copy master) on BB and labelling them with \(a\), \(b\) and \(c\). Set a time limit.

Review with whole class. Ps come to BB to write operations and explain reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected.

Solution:

a) \(a = 5\) cm, \(b = 10\) cm, \(c = 3\) cm

\[
A = 5 \times 10 \times 2 + 5 \times 3 \times 2 + 10 \times 3 \times 2 = 100 + 30 + 60 = 190\text{ cm}^2, \text{ or}
\]

\[
A = 2 \times (5 \times 10 + 5 \times 3 + 10 \times 3) = 2 \times (50 + 15 + 30) = 2 \times 95 = 190\text{ cm}^2
\]

b) \(a = 8\) m, \(b = 7\) m, \(c = 10\) m

\[
A = 2 \times (8 \times 7 + 8 \times 10 + 7 \times 10) = 2 \times (56 + 80 + 70) = 2 \times 206 = 412\text{ m}^2
\]

c) \(a = 1\) m, \(b = 1\) m, \(c = 7\) m 50 cm

\[
A = 2 \times (1 \times 1 + 1 \times 7.5 + 1 \times 7.5) = 2 \times (1 + 7.5 + 7.5) = 2 \times 16 = 32\text{ m}^2
\]

Who could write for the general rule for the surface area of any cuboid, using only letters? Ps come to BB or dictate to T.

BB: \(A = 2(ab + ac + bc)\)

Extension

PbY5a, page 46. Q.4

Read: How many unit cubes are needed to build these cubes?

Ps could show on slates or scrap paper on command. Ps come to BB to explain on diagrams (or on model). Elicit/tell that the number of unit cubes is the **volume** of the cube, i.e. the amount of space it takes up.

What is the surface area of each cube? Ps come to BB or dictate to T, explaining reasoning. (If nobody knows, T gives hints: What is the area of each face? How many faces does it have?)

Solution:

a) 8 unit cubes

\[
A = 6 \times 2 \times 2 = 24\text{ unit squares}
\]

b) 27 unit cubes

\[
A = 6 \times 3 \times 3 = 54\text{ unit squares}
\]

Let's compare the surface area of (a) with 8 separate unit cubes and that of (b) with 27 separate unit cubes.

BB: 1 unit cube: \(A = 6 \times (1 \times 1) = 6\) (unit squares)

a) 8 unit cubes: \(A = 8 \times 6 = 48\) unit squares \(> 24\) unit squares \((\times 2)\)

b) 27 unit cubes: \(A = 27 \times 6 = 162\) unit squares \(> 54\) unit squares \((\times 3)\)

Notes

Individual work, monitored, helped

BB:

![Diagram](image)

Discussion, reasoning, agreement, self-correction, praising

Discuss what the cuboids could be in real life. e.g.

a) a box
b) a building
c) a pillar

Whole class activity

T could show short form:

BB: \(A = 2(ab + ac + bc)\)

Extension

8 **PbY5a, page 46. Q.4**

Drawn on BB or use enlarged copy master or OHP

If possible, T has real models made from multi-link cubes.

BB: **volume**

unit of volume: unit cube

(Ps could do calculations in Ex. Bks. first before coming to BB.)

Discussion, reasoning, agreement, (self-correction) praising

Ps dictate what T should write.

Agreement, praising

(Or done as homework if there is not enough time.)

© CIMT, University of Exeter
1 **Surface area 1**

Use Cuisenaire rods if T and Ps have them, otherwise T has already prepared strips made from multi-link 1 cm cubes.

Let's calculate the area of the Cuisennaire rods (plastic strips).

Ps measure own rods or strips (1 cm to 10 cm) and dictate lengths to T, or Ps come to T's desk to measure T's rods (strips) and tell class the lengths. Ps dictate calculations for the surface areas (or come to BB to write some). Class points out errors. What do you notice?

BB:

<table>
<thead>
<tr>
<th>Strip</th>
<th>Surface Area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>1 x 1 x 2 = 2</td>
</tr>
<tr>
<td>2 cm</td>
<td>2 x 2 x 2 = 8</td>
</tr>
<tr>
<td>3 cm</td>
<td>3 x 3 x 2 = 18</td>
</tr>
<tr>
<td>4 cm</td>
<td>4 x 4 x 2 = 32</td>
</tr>
<tr>
<td>5 cm</td>
<td>5 x 5 x 2 = 50</td>
</tr>
<tr>
<td>6 cm</td>
<td>6 x 6 x 2 = 72</td>
</tr>
<tr>
<td>7 cm</td>
<td>7 x 7 x 2 = 98</td>
</tr>
<tr>
<td>8 cm</td>
<td>8 x 8 x 2 = 128</td>
</tr>
<tr>
<td>9 cm</td>
<td>9 x 9 x 2 = 162</td>
</tr>
<tr>
<td>10 cm</td>
<td>10 x 10 x 2 = 200</td>
</tr>
</tbody>
</table>

What do you think the surface area of a 12 cm (16 cm) rod (strip) would be? Show me... now! (50 cm², 66 cm²)

Ps answering correctly explain how they worked it out.

(12 cm rod: 42 cm² + 2 x 4 cm² = 50 cm²)

(16 cm rod: 50 cm² + 4 x 4 cm² = 66 cm²)

Let's check by doing the calculations for surface area. Ps dictate operations and T writes beside 12 and 16 cm strips in diagram on BB.

T lays the 1 cm to 10 cm rods one on top of the other, (or sticks the multilink strips together) as in the top part of the diagram.

What shape have I made? (polyhedron) Elicit that a **polyhedron** is a solid with many plane faces.

- How many cm cubes are in this polyhedron? Ps dictate the addition.
 - BB: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55
 - What is its surface area? Ps suggest how to work it out. T gives hints if necessary. (55 on front, 55 on back, 10 on bottom, 10 on LHS, 10 on tops of steps and 10 on fronts of steps on RHS) i.e.
 - BB: A = 2 x 55 + 4 x 10 = 150 (cm²)
 - How many faces, edges and vertices does it have? (f: 24, e: 66, v: 44)

2 **Surface area 2**

Let's calculate the surface area of this polyhedron made from 7 cm rods (or strips of seven 1 cm multilink cubes). T shows model and also a diagram on BB or OHT. Discuss the best way to do the calculation.

BB:

- If no P suggests method below, T gives hints.
 - 1 rod: A = 2 x 4 x 7 = 2 x 28 = 56 (cm²)
 - Polyhedron: A = 4 x 30 – 3 x 2 = 120 – 6 = 114 (cm²)

[As there are (1 cm² + 1 cm²) hidden 3 times.]
Find the mistakes!

I did these calculations in a hurry. Do you think that they are correct, or can you find any mistakes? Give Ps a minute to think about it and discuss with their neighbour’s if they wish.

Ps come to BB to analyse each calculation and say whether they think it is correct or not. If incorrect, Ps correct the mistakes. Class agrees/disagrees.

a) BB:

\[
\begin{align*}
A &= 2 \times (50 \times 20) + 140 \times 30 \\
&= 2 \times 1000 + 4200 \\
&= 2000 + 4200 \\
&= 6200 \text{ (cm}^2) \\
\end{align*}
\]

(It is correct, as 4 of the faces laid next to each other horizontally make a longer rectangle measuring 140 cm by 30 cm.)

b) I wanted to paint the wall and ceiling of my living room, so I worked out the surface area in order to buy the right amount of paint. My living room is 6 m long, 5 m wide and 3.5 m high, so this is the calculation I did to work out the area I wanted to paint.

BB:

\[
A = 2 \times (6 \times 5 + 6 \times 3.5 + 5 \times 3.5) = 2 \times 68.5 = 137 \text{ (m}^2) \\
\]

(Calculation is correct but this is the surface area of the whole room – the floor does not need to be painted! Surface area of the walls and ceiling is:

BB: \(A = 137 - 30 = 107 \text{ (m}^2) \)

but the area to be painted will be less than this, because of doors, windows, fireplace, etc.)

c) My fish tank is 60 cm long, 300 mm wide and 40 cm high and I did this calculation to work out its surface area.

BB: \(A = 60 \times 300 + 2 \times (60 \times 40) + 2 \times (300 \times 40) \)

\[
= 18000 + 2 \times 2400 + 2 \times 12000 \\
= 18000 + 4800 + 24000 \\
= 46800 \text{ (cm}^2) \]

(It does not have a lid!)

(Method is correct, but calculation is wrong, as 300 mm = 30 cm)

Who can do the calculation correctly? Ps come to BB or dictate to T, explaining reasoning. Class checks that they are correct.

BB: \(A = 60 \times 30 + 2 \times (60 \times 40) + 2 \times (30 \times 40) \)

\[
= 1800 + 2 \times 2400 + 2 \times 1200 \\
= 1800 + 4800 + 2400 = 9000 \text{ (cm}^2) \\
\]

Extension

How could we write the general rule for the surface area of a cuboid?

BB:

\[
A = 2 \times (a \times b) + 2 \times (a \times c) + 2 \times (b \times c) \\
= 2 \times (ab + ac + bc) \\
\]

T draws cuboid and its net on BB and Ps come to BB to label them and write the calculation, with help of other Ps and T where necessary.

Some Ps might remember this as the extension to Lesson 46, Activity 7.

Have no expectations and do not expect Ps to learn it. [T might show short form in order that Ps become familiar with the meaning of the notation, but do not expect them to use it yet.]
Y5

Activity 4
PbY5a, page 47

Q.1 Read: *Calculate the surface area of these cuboids.*

Deal with one part at a time under a time limit. Ps write operation and calculate the result in Pbs. Remember to write the unit too!

Review with whole class. Ps come to BB to show their solution, explaining reasoning. Who agrees? Who wrote something else? etc. If disagreement, allow Ps to check with a calculator. Mistakes discussed and corrected.

Solution:

a) ![Cube Diagram]

\[A = 6 \times (11 \times 11) = 6 \times 121 = 726 \text{ (m}^2)\]

b) ![Square-based Cuboid Diagram]

\[A = 2 \times (12 \times 12) + 4 \times (12 \times 25) = 2 \times 144 + 4 \times 300 = 288 + 1200 = 1488 \text{ (cm}^2)\]

(c) ![Another Square-based Cuboid Diagram]

\[A = 2 \times (45 \times 20 + 45 \times 110 + 20 \times 110) = 2 \times (900 + 4950 + 2200) = 1800 + 9900 + 4400 = 16100 \text{ (cm}^2)\]

\[(= 1 \text{ m}^2 \times 6100 \text{ cm}^2)\]

Q.2 Read: *Calculate the surface area of these solids in your exercise book. Write the answers here.*

How many unit cubes is each of them made from? *This is its volume.*

Agree that the unit of area is unit squares and the unit of volume is unit cubes. Ps count the squares on the visible faces to determine the dimensions of the cuboids. Set a time limit or deal with one at a time if class is not very able.

Review with whole class. Ps could show areas and volumes on command. Ps answering correctly come to BB to explain reasoning. Class agrees/ disagrees. Mistakes discussed/corrected.

Compare the surface areas and volumes. What do you notice?

Solution:

a) ![Cuboid Diagram]

\[A = 72 \text{ square units}\]

\[V = 36 \text{ unit cubes}\]

b) ![Another Cuboid Diagram]

\[A = 72 \text{ square units}\]

\[V = 35 \text{ unit cubes}\]

c) ![Another Cuboid Diagram]

\[A = 70 \text{ square units}\]

\[V = 33 \text{ unit cubes}\]

Reasoning: e.g.

a) \[A = 2 \times (6 \times 2 + 3 \times 2 + 6 \times 3) = 2 \times (12 + 6 + 18) = 2 \times 36 = 72 \text{ (unit}^2)\]

b) \[A = 72 - 3 + 3 = 72 \text{ (unit squares)}\]

c) \[A = 72 - 8 + 6 = 70 \text{ (unit squares)}\]

Notes

Individual work, monitored, (helped)

Drawn on BB or use enlarged copy master or OHP

Difficult interim calculations can be done in *Ex.Bks.*

Discussion, reasoning, agreement, self-correction, praising

Show details on side of BB if problems, e.g.

BB:

\[
\begin{array}{ccc}
45 & 110 & 1800 \\
\times 110 & \times 20 & 9900 \\
4500 & 2200 & 16100 \\
4950 & 2200 & 2
\end{array}
\]

As \(10000 \text{ cm}^2 = 1 \text{ m}^2\)

Extra praise if Ps notice that:

b) 3 unit squares lost, 3 gained

c) 8 unit squares lost, 6 gained
Activity

6 PbY5a, page 47
Q.3 Read: A box is shaped like a cuboid but is open at the top. Inside, it is 1.4 m long, 1 m wide and 80 cm high. What is its inner surface area?

Ps can draw a diagram in Ex. Bks or on scrap paper to help them. Set a time limit.

Review with whole class. Ps could show result on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Class agrees/disagrees. Ps can check with a calculator. Mistakes discussed and corrected.

Solution:

1.4 m = 140 cm, 1 m = 100 cm

\[A = 140 \times 80 + 100 \times 80 + 140 \times 100 + 2 \times (100 \times 80) \]

\[= 14000 + 2 \times 11200 + 28000 \]

\[= 52400 \text{ cm}^2 \]

\[= 5 \text{ m}^2 2400 \text{ cm}^2 \]

(as 10000 cm2 = 1 m2)

Answer: Its inner surface area is 52400 cm2.

Extension

PbY5a, page 47, Q.4
Read: Calculate the surface area of a small box which has these measurements. \(a = 5 \text{ cm}, \ b = 17 \text{ mm}, \ c = 4 \text{ cm 3 mm} \)

What should we do first? (Draw a diagram.) Ps come to BB to draw cuboid and write the lengths beside the relevant edges.

BB: Now what should we do? (Convert the lengths to the same unit.) Ps come to BB or dictate to T.

Now let's calculate the area. Ps come to BB to write operations, doing necessary calculations at side of BB. Class agrees/disagrees.

BB: \(A = 2 \times (50 \times 17 + 50 \times 43 + 17 \times 43) \)

\[= 2 \times (850 + 2150 + 731) \]

\[= 2 \times 3731 \]

\[= 7462 \text{ mm}^2 \]

[\(= 74 \text{ cm}^2 62 \text{ mm}^2 = 74.62 \text{ cm}^2 \)]

Elicit that: 100 mm2 = 1 cm2

Whole class activity

(or individual work if Ps wish, with calculation finished at home if time runs out)

At a good pace

Discussion, reasoning, checking, agreement, self-correction, praising

(Other Ps check calculations with calculators.)

BB: e.g.

\[
\begin{array}{ccc}
170 & 430 & 43 \\
\times 5 & \times 5 & \times 17 \\
850 & 2150 & 301 \\
\end{array}
\]

Elicit that: 100 mm2 = 1 cm2

Area of a cube = 6 \times a \times a [= 6a^2] T could show short forms.

© CIMT, University of Exeter
Activity 1

Nets

T has nets drawn on BB and Ps have cut-out nets on desks if possible.
Which nets can cover a cuboid exactly? Deal with one row at a time.
T asks one or two Ps to say which nets they think will not cover a cuboid
then class folds their nets to confirm (or Ps coming to front of class to fold large nets). What can you tell me about the cuboid the nets make?

a) i) ii) iii) iv) v)

Elicit that they form a cube. If the length of each edge is 3 cm, what is its surface area? \(A = 6 \times 3 \times 3 = 6 \times 9 = 54 \) (cm\(^2\))

b) i) ii) iii) iv)

Elicit that they form a cuboid. Let's colour the opposite faces in the same colour. Ps colour own nets and/or come to BB to colour diagrams.

c) i) ii) iii) iv)

Elicit that they form a square-based cuboid. If \(a = 3 \) cm and \(b = 1 \) cm, what is the area of the net? Ps dictate to T.

BB: \[A = 2 \times (3 \times 3) + 4 \times (3 \times 1) = 2 \times 9 + 4 \times 3 = 18 + 12 = 30 \text{ (cm}^2) \]

d) Everyone stand up!

i) Show me 1 cm\(^2\) in the air. What is the length of each side? (1 cm)

ii) Draw the outline of a square with 1 m long sides in the air.

T watches out for Ps who are obviously wrong and helps them.

(T could have a metre stick to compare against.)

What is the area of your square? (1 m\(^2\))

\[8 \text{ min} \]

2

Missing words

a) Which words do you think are covered up? T asks several Ps what they think. Ps come to BB to uncover the words and then class reads complete sentence in unison, stressing the words which were covered.

BB:

i) A cuboid is a part of space which is enclosed by rectangles.

ii) The surface area of a polyhedron is the sum of the area of its faces.

iii) A solid occupies part of space.

b) This enclosed part of space is measured by volume (or capacity).

I heard this statement the other day. 'The cost of heating a room depends on how many cubic metres of air are in the room.'

What do you think a cubic metre is? (That part of space which is taken up by a cube with 1 m long edges.) We write it like this.

BB: 1 cubic metre = 1 m\(^3\) T shows class a cube with sides 1 m.

© CIMT, University of Exeter
Lesson Plan 48

Activity

2 (Continued)

c) Here is a 1 cm unit cube. What is the length of each edge? (1 cm)

What is the area of each of its faces? (1 cm²)

What is its volume? (1 cubic cm) Who can write it? (BB: 1 cm³)

Notes

Ps should have 1 cm unit cubes on desks too (or white Cuisennaire rods)

Have no expectations – extra praise if a P writes it correctly.

11 min

3 Building cuboids

Ps have multi-link cubes (or Cuisennaire rods) on desks (24 cubes per pair of Ps) and T has larger version for demonstration.

a) Build a cuboid which is 4 cm long, 3 cm wide and 2 cm high.

BB: 4 cm × 3 cm × 2 cm

Allow a couple of minutes, then ask Ps how they did it.

e.g.

11 min

b) Build a different cuboid using unit cubes (or cuisennaire rods).

Allow a couple of minutes, then T asks some Ps to hold up their cuboids and tell class their dimensions, volume and surface area.

(With help of other Ps and T)

16 min

4 Volume and capacity 1

T has a transparent plastic or glass cube with 10 cm edges and open at the top (or the frame of such a cube).

Let’s find out how many of these 1 cm cubes are needed to fill this cube (frame). T holds up a 1 cm cube. If this cube was filled with water, how much water would it hold? T reminds Ps if necessary. (1 ml)

T calls Ps to front of class to build up the cube gradually, as below. After each stage, elicit the number of cubes, their volume and their capacity.

BB:

10 cm

10 cm

1 cm

1 cl

1 ml

V = 1000 cm³

Whole class activity

Initial discussion on similarity between volume (how much space something takes up) and capacity (how much space is inside it, or how much liquid something can hold)

T has single rows and layers already prepared to save time.

T could have diagrams drawn on BB too, or use enlarged copy master or OHP.

Involve as many Ps as possible in demonstration and discussion.

Elicit that:

BB: 1000 cm³ → 1 litre (water at 4° C)

BB: 1000 cm³ = 1 dm³

10 cubes in a row

10 rows in 1 layer

10 layers in the whole cube

V = 10 cm × 1 cm³

V = 10 × 10 cm³

V = 10 × 10 × 10 cm³

= 10 cm³

= 100 cm³

= 1000 cm³

T tells class that in some countries this size of cube, which holds 1 litre of water, is called a cubic decimetre because each edge is 10 cm, i.e. \(\frac{1}{10} \) m.
Lesson Plan 48

Activity

5 Volume and capacity 2
Let’s summarise what we have learned.
A 1 cm cube, or cubic cm, can be built from 1000 1 mm cubes.
A 10 cm cube (or cubic decimetre) can be built from 1000 1 cm cubes.
A 1 m cube (or cubic m) can be built from 1000 10 cm cubes or dm cubes.
Let’s write them in increasing order and compare them. T starts and at each unit, T gives Ps the chance to dictate if they can.
BB: 1 mm3 < 1 cm3 < 1 dm3 < 1 m3

Or we could write it this way. (Again give Ps the chance to dictate.)
BB: 1 cm3 = 1000 mm3 (capacity: 1 ml)
1 dm3 = 1000 cm3 = 1 000 000 mm3 (capacity: 1 litre)
1 m3 = 1000 dm3 = 1 000 000 cm3 = 1 000 000 000 mm3

6 PbY5a, page 48
Q.1 Read: Pete has already made the base layer of a cuboid from unit cubes. If Pete has 72 unit cubes, how high can he build his cuboid?
Set a time limit. Review with whole class. Ps could show height on scrap paper or slates on command. P answering correctly comes to BB to show solution, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.
Solution:
BB: Number of unit cubes in base: 3 × 4 = 12
Number of layers: 72 ÷ 12 = 6
Height of cuboid: 6 units
What is the volume of the cuboid? (72 unit cubes, or cubic units)
What is its surface area? Ps come to BB to write calculation.
BB: $A = 2 \times (4 \times 3 + 4 \times 6 + 3 \times 6)$
= 2 × (12 + 24 + 18) = 2 × 54 = 108 (square units)
If we wanted to make a frame model for this cuboid, what length of tubing would we need? Ps come to BB or dictate to T.
BB: Sum of edges of cuboid: 4 × (4 + 3 + 6) = 4 × 13 = 52 (units)

7 PbY5a, page 48
Q.2 Read: Calculate the volume of each of these cuboids if the length of its edges in units are:
a) a = 8, b = 5, c = 6 b) a = b = 5, c = 10
 c) a = b = c = 9
Set a time limit. Review with whole class. Ps come to BB to write calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.
Solution:
a) $V = 8 \times 5 \times 6 = 40 \times 6 = 240$ (cubic units)
b) $V = 5 \times 5 \times 10 = 25 \times 10 = 250$ (cubic units) (squ.-based)
c) $V = 9 \times 9 \times 9 = 81 \times 9 = 729$ (cubic units) (cube)
Activity

7
Extension

(Continued)

What is the surface area of each cuboid?

a) \(A = 2 \times (8 \times 5 + 8 \times 6 + 5 \times 6) = 2 \times 118 = 236 \) (square units)

b) \(A = 2 \times (5 \times 5) + 4 \times (5 \times 10) = 50 + 200 = 250 \) (square units)

c) \(A = 6 \times (9 \times 9) = 480 + 6 = 486 \) (square units)

Notes

What is the general rule for surface area of a cuboid (cube)?

BB:

\[A = 2 \times (a \times b + a \times c + b \times c) = 2(a \times b + a \times c + b \times c) \]

and for a cube:

\[A = 6 \times (a \times a) = 6a^2 \]

Other activities:

- Individual work, monitored, helped
- Tables drawn on BB or use enlarged copy master or OHP
- Differentiation by time limit
- Reasoning, agreement, self-correction, praising

Extension for quicker Ps:

Calculate the surface areas in your Ex. Bks.

Which columns show square-based cuboids?

Which column shows a cube?

Whole class activity

(or individual or paired trial first if Ps wish)

Diagram drawn on BB or use enlarged copy master or OHP

BB:

If possible, T has a model too.

T gives hints if Ps are stuck.

Discussion, reasoning, agreement, correcting, praising

[If time is short, surface area could be set as a challenge for homework.]
Lesson Plan

49

Notes

Whole class activity
Drawn on BB or use enlarged copy master or OHP
BB: formula – a general rule
At a good pace
Reasoning, agreement, praising, encouragement only

N.B.
It is neither expected nor required that Ps know the formulae by heart but in a whole class situation, with T’s and other Ps’ help, they might understand the ideas.

Solution:
Cubes: a) and f)
Square-based cuboids: c), e and g)
Cuboids: b) and d)

Activity

1

Formulæ for area and volume
Study these solids and nets. Join them up to the matching name and fill in the missing formulæ. (T elicits or explains that a formula is a general rule.)
Ps come to BB to join up each diagram to an appropriate name and to fill in the boxes, explaining reasoning. Class agrees/disagrees.

BB:

\[
\begin{align*}
\text{a) } & \quad V = a \times a \times a \\
\text{b) } & \quad V = a \times a \times b \\
\text{c) } & \quad V = a \times b \times c \\
\text{cube} & \quad A = 6 \times a \times a \\
\text{square-based cuboid} & \quad A = 2 \times a \times a + 4 \times a \times b \\
\text{cuboid} & \quad A = 2 \times (a \times b + a \times c + b \times c)
\end{align*}
\]

2

Surface area and capacity
Ps have 14 cm squares of paper, rulers, scissors and sellotape on desks.
Cut a 3 cm square from each corner and fold the paper to make a box.
T demonstrates each step with a larger sheet, using sellotape to fix the edges together and draws on BB:

Show me your completed box . . .now!
What can you tell me about the dimensions of your box?
e.g. It has a square base, 8 cm long and 8 cm wide. It is 3 cm high.
How many 1 cm cubes could fit in it? (192)
BB: 6
4
3
192
1
9
2
We could say that its capacity is 192 cubic cm.

What is its surface area? Ps might point out that it has outside and inside surface areas. Agree that paper is so thin that we can think of both as being the same.
Inner (or outer) surface area:
BB: A = 8 \times 8 + 4 \times (3 \times 8) = 64 + 4 \times 24 = 64 + 96 = 160 (cm\(^2\))
or A = 14 \times 14 - 4 \times (3 \times 3) = 196 - 4 \times 9 = 196 - 36 = 160 (cm\(^2\))

3

Cuboids with equal volume

How many different cuboids could be built from 64 unit cubes?
Let’s show them in a table. Ps come to BB or dictate to T in a logical order. Class checks that they are correct and points out missed values.

<table>
<thead>
<tr>
<th>a</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Agree that 7 different cuboids are possible.
Which has the greatest surface area? (1st column)
Whole class activity
Drawn on BB or use enlarged copy master or OHP
At a good pace
Reasoning, agreement, praising
Extra praise if Ps remember that it is the least regular, i.e. 1 \times 1 \times 64

10 min
Problem 1

The surface of a cube with edge 3 cm was painted red, then cut into 1 cm cubes. How many of the 1 cm cubes will have 3 (2, 1, 0) faces painted red?

T illustrates with a real cube made from unit cubes, or draw a diagram on BB. Allow Ps to think about it for a minute and discuss with their neighbours if they wish.

Ps tell their thoughts and findings. Other Ps agree or disagree, or add other points. T intervenes or give hints only if necessary.

(T could confirm by breaking down the painted 3 cm cube.)

Elicit the following points.

- At each vertex there is a unit cube with 3 red faces.
- At the middle of each edge there is a unit cube with 2 red faces.
- In the middle of each face there is a unit cube with 1 red face.
- The unit cube in the centre of the large cube has no red faces.

ie. 3 faces red → 8 unit cubes (as 8 vertices)
2 faces red → 12 unit cubes (as 12 edges)
1 face red → 6 unit cubes (as 6 faces)
no face red → 1 unit cube

Check:

\[V = 3 \times 3 \times 3 = 27 \text{ (unit cubes)} \]

\[8 + 12 + 6 + 1 = 27 \text{ unit cubes} \]

\[[Euler's \ formula: \ v + f - e = 2] \]

\[8 + 6 - 12 = 2 \]

Problem 2

Imagine an empty cuboid-shaped glass container which is 1 m high and has a 40 cm by 40 cm square base.

If we poured 16 litres of water into it, how high would the level of water be?

T illustrates with a diagram drawn on BB. Allow Ps a minute to think about it and discuss with their neighbours if they wish.

What do we need to remember before we can solve the problem? Elicit or tell that 1 litre of water takes up the same space as a 10 cm by 10 cm by 10 cm cube, i.e. 1 litre of water has a volume of 1000 cm³)

Who thinks that they know how to solve it? Come and explain to us. Who agrees? Who thinks something else? etc.

BB: e.g.

\[\text{litr} \rightarrow 1000 \text{ cm}^3 \]

16 litres → 16 000 cm³

Let height of water level be \(h \):

\[(40 \times 40) \text{ cm}^2 \times h = 16 000 \text{ cm}^3 \]

\[1600 \text{ cm}^2 \times h = 16 000 \text{ cm}^3 \]

\[h = 16 000 \text{ cm}^3 \div 1600 \text{ cm}^2 = 10 \text{ cm} \]

Answer: The level of water would be 10 cm high.
Lesson Plan 49

Activity

6 PbY5a, page 49

Q.1 Read: *Join up the calculation plans to the correct shapes.

Colour the plan blue if it is a perimeter, red if it is an area and green if it is a volume.*

Set a time limit. Ask quicker Ps to do the calculations in their Ex. Bks. and write the results above or below each calculation box in *Pbs*.

Review with whole class. Ps come to BB to draw joining lines, identify the relevant shape, say the type of calculation, and colour appropriately. Class agrees/disagrees. Mistakes discussed and corrected.

Who has done the calculation? What is your result? Who agrees? etc. (If disagreement, show details on BB.)

Solution:

30 min

7 PbY5a, page 49

Q.2 Read: *A rectangular-shaped garden is 22 m long and 12 m wide.*

a) How long is the fence around if if the gate is 3 m wide? Draw a diagram first.

b) What is the area of the garden?

You do not need to draw an accurate diagram – a rough sketch will do. Remember to write on it the information given in the question. Set a time limit.

Review one part at a time. Ps could show results on scrap paper or slates in unison on command. Ps answering correctly explain at BB to those who were wrong. Mistakes discussed and corrected.

Solution: e.g.

a) *Plan:* \(F = 2 \times (22 + 12) - 3 \) m = 68 m – 3 m = 65 m

 Answer: The fence around the garden is 65 m long.

b) *Plan:* \(A = 22 \times 12 = 220 + 44 = 264 \) (m²)

 Answer: The area of the garden is 264 m².

Extension

Ps draw a scale diagram of the garden. (e.g. *Scale:* 1 cm \(\rightarrow \) 1 m)

35 min

Notes

Individual work, monitored, helped

Drawn on BB or use enlarged copy master or OHP

Differentiation by time limit and extra task

Discussion, agreement, self-correcting, praising
Activity 8 PbY5a, page 49

Q.3 Read: Solve these problems in your exercise book.
Write only the answers here.

Set a time limit. Ps read problems themselves and solve in Ex. Bks.
Review with whole class. Ps could show results on scrap paper or
slates in unison on command. Ps answering correctly
explain at BB to those who were wrong. Who agrees? Who
did it a different way? Who made a mistake? etc.

Solution:
a) The area of the surface of a cube is 150 cm².
What is its volume in centimetre cubes?
e.g. \(A = 6 \times a \times a = 150 \text{ cm}^2 \)
 \(a \times a = 150 \text{ cm}^2 \div 6 = 25 \text{ cm}^2 \)
 \(6 \div 150 = \frac{25}{3} \)
 but \(5 \times 5 = 25 \), so \(a = \frac{5}{3} \text{ cm} \)
 \(V = a \times a \times a = 5 \times 5 \times 5 = 25 \times 5 = 125 \text{ (cm}^3) \)
Answer: Its volume is 125 cm³.

b) A cube is built from 64 one cm cubes, so its volume is 64 cm³.
What is its surface area in centimetre squares?
e.g. \(V = a \times a \times a = 64 \text{ cm}^3 \)
But \(64 = 4 \times 4 \times 4 \), so \(a = 4 \text{ cm} \)
 \(A = 6 \times a \times a = 6 \times 4 \times 4 = 24 \times 4 = 96 \text{ (cm}^2) \)
Answer: Its surface area is 96 cm².

40 min

Notes

Individual work, monitored, helped
Expect only more the able Ps to solve question b).
Discussion, reasoning, agreement, self-correction, praising
Feedback for T
BB:

Extension
What is its capacity in cl?
1 cm³ → 1 ml
125 cm³ → 125 ml = 12.5 cl

Ps might remember this from previous calculations, but
otherwise allow trial and error (or use of calculators)

Activity 9 PbY5a, page 49, Q.4

Choose one of these problems and solve it in your Ex. Bks. If you
have time, try another one too. I will give you 3 minutes!
Start... now! ... Stop!
Who chose problem a)? X, come and show us how you worked out
the answer. If you did not try it, watch out for any mistakes!
Repeat in a similar way for the other two questions.

Solutions:
a) We poured water into a 10 cm cube which was open at the top.
How much water did we pour in if the water level was:
i) 5 cm Volume of water = 10 × 10 × 5 = 500 (cm³)
 But 1 cm³ → 1 ml, so 500 cm³ → 500 ml = 50 cl
ii) 3.5 cm? Volume of water = 10 × 10 × 3.5 = 350 (cm³)
 But 1 cm³ → 1 ml, so 350 cm³ → 350 ml = 35 cl

b) Divide this hexagon into 4 congruent parts.
First divide the hexagon into squares. BB:
It makes 3 congruent squares.
If we divide each square into 4 equal parts, there are 12 grid squares altogether.
If we divide the 12 grid squares into 4 equal parts, each part is
made up of 3 grid squares.
c) Make 4 congruent triangles from 6 straws of equal length.
It is impossible in 1 plane, but can be done in space (i.e. 3-D).

45 min

Extra praise for Ps who realised this!
Activity

Calculation and tables practice, revision, activities, consolidation
PbY5a, page 50

Solutions:

Q.1

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>40 cm³</td>
<td>36 cm³</td>
<td>64 cm³</td>
<td>80 cm³</td>
</tr>
<tr>
<td>A</td>
<td>84 cm²</td>
<td>66 cm²</td>
<td>96 cm²</td>
<td>122 cm²</td>
</tr>
</tbody>
</table>

Q.2.

	a	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	4				
b	1	2	3	4	6	8	9	12	2	3	4	6	9	3	4	6	8	6						
c	2	1	6	1	8	7	2	5	4	3	6	27	24	18	54	36	27	18	12	24	18	12	9	9

Q.3

a) \[V = 40 \times 25 \times 30 = 1000 \times 30 = 30,000 \text{ cm}^3 \]

\[30,000 \text{ cm}^3 \rightarrow 30 \text{ litres} \]

Answer: There are 30 litres of water in a full tank.

b) 8 litres \(\rightarrow \) 8000 cm³

\[h = \frac{8000 \text{ cm}^3}{(40 \text{ cm} \times 25 \text{ cm})} \]

\[= \frac{8000 \text{ cm}^3}{1000 \text{ cm}^2} = 8 \text{ cm} \]

Answer: The water level is at a height of 8 cm.

Q.4

a) \[V = 512 \text{ cm}^3 = a \times a \times a \]

But \[8 \times 8 \times 8 = 512, \] so \[a = 8 \text{ cm} \]

Answer: The length of each edge is 8 cm.

b) i) \[h = 300 \text{ m}^3 \div (12 \text{ cm} \times 5 \text{ m}) \]

\[= 300 \text{ m}^3 \div 60 \text{ cm}^2 = 5 \text{ m} \]

Answer: The height of the reservoir is 5 m.

ii) \[1000 \text{ cm}^3 \rightarrow 1 \text{ litre} \]

\[1 \text{ m}^3 = \frac{1,000,000 \text{ cm}^3}{1,000 \text{ litres}} \]

\[300 \text{ m}^3 \rightarrow 300,000 \text{ litres} \]

Answer: The reservoir could hold 300 thousand litres of water.

iii) \[300,000 \text{ litres} \div 500 \text{ litres} = 600 \text{ (times)} \]

Answer: The tank will be empty after 600 days.

An extra column must be added to table in *Phs!*
Extra praise if Ps notice this.