Mathematics Enhancement Programme

TEACHING SUPPORT: Year 5

FACTS TO KNOW AND REMEMBER

Multiplication tables
Up to \(10 \times 10\)

Units
\[10 \text{ mm} = 1 \text{ cm}\]
\[1000 \text{ mm} = 1 \text{ m}\]
\[100 \text{ cm} = 1 \text{ m}\]
\[1000 \text{ m} = 1 \text{ km}\]

\[10 \text{ ml} = 1 \text{ cl}\]
\[1000 \text{ ml} = 1 \text{ litre}\]
\[100 \text{ cl} = 1 \text{ litre}\]

\[1000 \text{ g} = 1 \text{ kg}\]
\[1000 \text{ kg} = 1 \text{ tonne}\]

\[60 \text{ seconds} = 1 \text{ minute}\]
\[60 \text{ minutes} = 1 \text{ hour}\]
\[24 \text{ hours} = 1 \text{ day}\]
\[7 \text{ days} = 1 \text{ week}\]
\[52 \text{ weeks} = 1 \text{ year}\]
\[12 \text{ months} = 1 \text{ year}\]

Numbers
\[1 \text{ h} = \frac{1}{100}\]
\[1 \text{ t} = \frac{1}{10}\]
\[1 \text{ T} = 10\]
\[1 \text{ H} = 10 \text{ T} = 100\]
\[1 \text{ Th} = 10 \text{ H} = 100 \text{ T} = 1000\]

Negative Numbers
\[-5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5\]

© CIMT, University of Plymouth
Compass Points

![Compass Points Diagram]

Roman Numerals

<table>
<thead>
<tr>
<th>Number</th>
<th>Roman Numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>50</td>
<td>L</td>
</tr>
<tr>
<td>100</td>
<td>C</td>
</tr>
<tr>
<td>500</td>
<td>D</td>
</tr>
<tr>
<td>1000</td>
<td>M</td>
</tr>
</tbody>
</table>

Even / Odd

Whole numbers ending in 0, 2, 4, 6, 8 are EVEN (and divisible by 2 with no remainder).

Whole numbers ending in 1, 3, 5, 7, 9 are ODD (and have remainder 1 when divided by 2).

Equivalent Fractions

\[
\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \ldots
\]

\[
\frac{1}{10} = \frac{5}{50} = \frac{10}{100} = \ldots
\]

Adding/Subtracting Fractions

\[
\frac{a}{b} + \frac{c}{b} = \frac{a + c}{b}
\]

\[
\frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}
\]

(a, b and c are natural numbers, that is, numbers used for counting)
Decimals

\[0.a = \frac{a}{10} \quad (a = 0, 1, \ldots, 9) \]

\[0.ab = \frac{a}{10} + \frac{b}{100} \quad (a, b = 0, 1, 2, \ldots, 9) \]

Fraction, Decimal, Percentage Equivalents

For example,

\[
\begin{array}{cccccc}
-1 & -0.5 & 0 & 0.25 & 0.50 & 0.75 & 1 \\
-1 & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & \\
-100\% & -50\% & 25\% & 50\% & 75\%
\end{array}
\]

Similarly,

\[\frac{1}{10} = 0.1 = 10\%, \quad \frac{1}{20} = 0.05 = 5\%, \quad \text{etc.} \]

Shapes : 2D

- **Triangle** (3 straight sides)
- **Quadrilateral** (4 straight sides)
- **Rectangle** (opposite sides equal and parallel, and four right angles)
- **Square** (all sides equal and four right angles)

(Note that all squares are rectangles and all rectangles are quadrilaterals.)

- **Polygon** (any closed 2D shape with sides (edges) all straight lines)
- **Pentagon** (any 5-sided polygon: a regular pentagon has all internal angles of 108° and all sides the same length)
Hexagon (any 6-sided polygon; a regular hexagon has internal angles of 120° and all sides of equal length)

Octagon (any 8-sided polygon; a regular octagon has internal angles of 135°)

Trapezium (a quadrilateral with at least one pair of sides parallel)

Rhombus (a quadrilateral with 4 equal sides; opposite sides are parallel)

Parallelogram (2 pairs of equal and parallel sides)

Shapes : 3D

Cube (all sides equal so each face is a square)

Cuboid (all opposite sides equal so each face is a rectangle)

Sphere

Square-based pyramid

Triangle-based prism

Triangle-based pyramid
Nets

A *net* is a 2-D figure which can be folded to make a 3-D shape.

![Net and 3D Shape Diagram](image)

Convex and Concave Shapes

Concave: a straight line cannot always be drawn between any two points on the shape that is always inside the shape. In each of the examples below, the two points are *inside* the shape but the straight line drawn between them passes *outside* the shape.

![Concave Shape Example](image)

Convex: a straight line drawn between any two points on the shape will always lie *inside* the shape, as can be seen from the example below.

![Convex Shape Example](image)

Symmetry

The whole shape has one line of symmetry.
Four lines of symmetry are shown here.

Similarity

(a) These shapes are similar.

(b) These shapes are similar.

(The sides are in the same ratio, that is, 1 : 1 in (a) and 1 : 2 (i.e, 2 : 4 and 3 : 6) in (b).

Congruence

Congruent shapes are identical in shape and size but can be rotated or reflected; the 4 shapes shown are congruent.

Parallel and Perpendicular Lines

- Lines are perpendicular
- Lines are parallel

right angle (a quarter of a circle)

right angles
Transformations and Enlargements

Transformations are ways of moving a shape; for example, reflection, rotation and translation.

A reflection is obtained by drawing the image of a shape in a mirror line. An example is shown opposite.

A rotation is obtained when a shape is rotated about a point, the centre of rotation, through a specified angle. An example is shown opposite.

A translation moves a shape so that it is in a different position but retains the same size, area, angles and line lengths. The diagram opposite shows the translation

\[
\begin{align*}
2 & \text{ in } x - \text{direction} \\
3 & \text{ in } y - \text{direction}
\end{align*}
\]

Enlargements are similar to transformations but they alter (enlarge or reduce) the size of the shape. For example, the shape on the left below has been enlarged by a scale factor of 2 to give the image on the right.
Divisor or Factor and Multiple

Any whole number that divides exactly into a whole number with no remainder is called a *divisor* or *factor* of the number.

For example, 1, 2, 3, 4, 6 and 12 are all divisors (or factors) of 12.

Any whole number that can be divided by a whole number with no remainder is called a *multiple* of the number.

For example, 5, 10, 15, 20, . . . are all multiples of 5.

Perimeter, Area and Volume

The *perimeter* is the total distance around the outside of a 2D shape.

For example,

The *area* is the quantity inside a 2D shape.

For example,

The *volume* is the number of cubic units that will exactly fill a 3D shape.

For example,

Illustrating Data

You can illustrate data with a:

Tally Chart

The tally chart represents 18 items of data

Bar Chart

The bar chart represents 18 items of data (3 Red, 6 Blue, 1 Green, 4 Black and 4 Silver cars)
FACTS TO KNOW AND REMEMBER

Pictogram

The pictogram represents the 18 cars above.
A pictogram must always have a key.

<table>
<thead>
<tr>
<th>Car Color</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>3</td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
</tr>
<tr>
<td>Black</td>
<td>2</td>
</tr>
<tr>
<td>Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Median of a set of numbers is the middle value when they are arranged in order.

For example,
2, 5, 3, 1, 4, 9, 8 ⇒ 1, 2, 3, 4, 5, 8, 9

Mean of a set of numbers is the average value calculated by adding all the numbers in the set and then dividing by the total number of numbers in the set.

For example,
2, 5, 3, 1, 4, 9, 8 ⇒ mean = \(\frac{2 + 5 + 3 + 1 + 4 + 5 + 8}{7} \)
= \(\frac{28}{7} \)
= 4

Mode of a set of numbers (or objects) is the number (or object) that has the highest frequency, that is, occurs most often.

For example, for the set of numbers
4, 7, 3, 2, 7, 1, 3, 5, 4, 7
we have:

<table>
<thead>
<tr>
<th>Number</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
| 7 | 3 | ← highest frequency

So the mode is 7 as it occurs most frequently.