	R: Measures, quantities C: Numbers up to 1000 000: reading, writing, place value. E: Decimals (Powers of 10)	$\begin{gathered} \text { Lesson Plan } \\ 1 \end{gathered}$
Activity 1	The number 1 T writes '1' on BB. Tell me different ways of defining 'one'. Ps dictate different ways and T writes them on BB. Class agrees/ disgrees. e.g. BB: $1=4 \div 4=\frac{3}{3}=23-22=\frac{1}{8}+\frac{7}{8}=3 \times \frac{1}{3}=50 \%$ of 2 , etc. T: 1 is the base unit among the numbers. Let's think about what its role is in the 4 operations. What are the 4 operations? $(+,-, \times, \div)$ T writes a few calculations on BB for each type of operation and Ps dictate results, then discuss the general role of ' 1 '. e.g. $\begin{aligned} & \mathrm{BB}: 1+1=\underline{2}, 2+1=\underline{3}, 3+1=\underline{4}, \ldots \\ & 100-1=\underline{99}, 44-1=\underline{43}, 5-1=\underline{4}, 1-1=\underline{0}, \ldots \\ & 5 \times 1=\underline{5}, 1 \times 439=\underline{439}, 1 \times \frac{5}{8}=\frac{5}{8}, 1 \times 0.7=\underline{0.7} \\ & 1 \times 0=\underline{0}, 1 \times 1 \times 1 \times 1 \times 1=\underline{1}, 10 \div 1=\underline{10}, 7.5 \div 1=\underline{7.5}, \ldots \end{aligned}$ Elicit that: - adding 1 to a whole number results in the next greater whole number; - subtracting 1 from a whole number results in the next smaller whole number; - multiplying or dividing a number by 1 results in that number. 4 min	Notes Whole class activity Encourage Ps to make use of all the operations and types of numbers that they know. At speed Involve the majority of Ps. Agreement, praising Extra praise for creativity (or Ps dictate the operations) Agreement, praising T repeats clearly if necessary.
2	Factorising Factorise each of these numbers in your exercise book and then list all its positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB to show their method of finding the prime factors. Who did the same? Who did it a different way? etc. Then Ps dictate all the positive factors for each number. $\underline{176}=2 \times 2 \times 2 \times 2 \times 11$ Positive factors of: $\underline{176: ~} 1,2,4,8,11,16,22,44,88,176$ $\begin{aligned} & \text { 351: } 1,3,9,13,27,39,117,351 \\ & \underline{1001:} 1,7,11,13,77,91,143,1001 \end{aligned}$ Are there any common factors? (Only 1 is common to all three numbers; 11 is a common factor of 176 and $1001 ; 13$ is a common factor of 351 and 1001)	Individual work, monitored, (helped) Numbers written on BB or SB or OHT (T decides whether to allow the use of calculators.) Discussion, agreement, selfcorrection, praising If all Ps used the same method, T shows the other method too. Whole class activity Ps could join up the factor pairs. Ps come to BB to point them out. Praising

		Lesson Plan 1
Activity 5	PbY6a, page 1 Q. 2 Read: In your exercise book: a) write these numbers as digits in a place-value table i) nine hundred and forty one thousand, two hundred and seventy six ii) five hundred and four thousand, eight hundred and twenty five iii) two hundred and ninety thousand and thirty eight iv) one hundred amd six thousand and twenty seven b) write each number in sum form. How many place-value columns will you need? (6: HTh, TTh, Th, H, T, U) How many rows will you need? (5) Encourage Ps to use rulers to draw the table. Set a time limit of 4 minutes. If you have time, calculate the sum of the 4 numbers. Review with whole class. T chooses a P to read out a number, then another P to come to BB to write the digits in the table and a 3rd P to write and say the numbers in sum form. Class agrees/ disagrees. Mistakes discussed and corrected. (T could also ask a 4th P to write the sum form as powers of 10 , with the help of other Ps if necessary.) Who had time to calculate the sum? If several Ps did it, ask them to show their results on scrap paper or slates in unison. If no P had time, do it now quickly with the whole class. Solution: i) ii) iii) Sum: 1842166 i) $941276=9 \times 100000+4 \times 10000+1 \times 1000+2 \times 100$ ii) $\mathbf{5 0 4} \mathbf{8 2 5}=5 \times 100000+0 \times 10000+4 \times 1000+8 \times 100$ $+2 \times 10+5 \times 1$ $=5 \times 10^{5}+0 \times 10^{4}+4 \times 10^{3}+8 \times 10^{2}+2 \times 10$ $+5 \times 1$ $\text { iii) } \begin{aligned} & 290038=2 \times 100000+9 \times 10000+0 \times 1000+0 \times 100 \\ &+3 \times 10+8 \times 1 \\ &=2 \times 10^{5}+9 \times 10^{4}+0 \times 10^{3}+0 \times 10^{2}+3 \times 10 \\ &+8 \times 1 \end{aligned}$ iv) $\mathbf{1 0 6 0 2 7}=1 \times 100000+0 \times 10000+6 \times 1000+0 \times 100$ $+2 \times 10+7 \times 1$ $=1 \times 10^{5}+0 \times 10^{4}+6 \times 10^{3}+0 \times 10^{2}+2 \times 10$ $+7 \times 1$	Notes Individual work, monitored (helped) T has place-value table already prepared on BB or SB or OHT, or uses enlarged copy master. Very slow Ps could have a copy of the table to stick into their Ex. Bks, rather than having to draw it. Differentiaton by time limit Discussion, agreement, selfcorrection, praising Have no expectations for this! Agreement, praising Write on one line on BB if possible. (or T has sum forms already prepared to save time and uncovers each line as it is dictated by a P) Feedback for T

16									Lesson Plan 1
Activity 6	PbY6a, page 1 Q. 3 Read: a) What are these numbers? Write them in decreasing order in your exercise book. b) Write the numbers in words. Set a time limit of 3 minutes. Review with whole class. T chooses a P to read each sum form, then Ps show the number as digits on scrap paper or slates on command. Ask Ps who made a mistake to read out the number they have actually written, then to correct their mistake in their Pbs. Ps dictate the numbers in order and T writes the inequality on BB and uncovers the number written in words. Class points out errors. Mistakes (including spelling and grammatical mistakes) corrected in Pbs. Solution: a) i) 2 $\begin{aligned} & 2 \times 100000+3 \times 10000+8 \times 1000+1 \times 100+ \\ & \quad 5 \times 10+6 \times 1=\underline{238156} \end{aligned}$ ii) $\begin{aligned} & 7 \times 100000+0 \times 10000+9 \times 1000+4 \times 100+ \\ & \quad 0 \times 10+0 \times 1=\underline{709401} \end{aligned}$ iii) $7 \times 100000+8 \times 1000+8 \times 100+5 \times 1=\underline{708805}$ iv) $9 \times 10000+9 \times 100+9 \times 1=\underline{90909}$ In order: $709401>708805>238156>90909$ b) i) $\underline{238156}$ two hundred and thirty eight thousand, one hundred and fifty six ii) $\underline{709401}$ seven hundred and nine thousand, four hundred and one iii) $\underline{708805}$ seven hundred and eight thousand, eight hundred and five iv) $\underline{90909}$ ninety thousand, nine hundred and nine								Notes Individual work, monitored, (helped) Written on BB or SB or OHT Differentiation by time limit. Ps finished first could come to BB to write the numbers as words, hidden from rest of class (or T could have the words already prepared and uncover them as they are dealt with in the review). Discussion, agreement, self-correction, praising Class applauds Ps with all numbers correct. (Written on BB in one line) Ps could say the inequality in unison. Feedback for T
7	PbY6a, page 1 Q. 4 Read: Fill in the table for the amount $£ 38406.52$. What does the thick line in the table mean? (It separates the whole units from the parts of a unit, just like the decimal point.) Set a time limit. (Ps finished quickly could write the sum form as powers of 10 , otherwise do it as a whole class extension.) Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution:								Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Feedback for T Praising, encouragement only Have no expectations!

16	R: Measures, quantities C: Place value. Reading, writing, ordering, rounding numbers E: Decimals (Powers of 10)	$\begin{gathered} \text { Lesson Plan } \\ 2 \end{gathered}$
Activity 1	Factorising Factorise each of these numbers in your exercise book and list the positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB to show their method of finding the prime factors, explaining reasoning. Who did the same? Who did it a different way? etc. Let's list all its positive factors. Ps dictate to T in increasing order. Elicit that: - $\underline{2}$ is a prime number, as it has only 2 factors, itself and 1 . T : Among the natural numbers, 2 is the smallest prime number and the only even one. - 179 is also a prime number, as it is not exactly divisible by $2,3,5$, 7,11 and 13 , and $17 \times 17>179$ Factors: 1, 179 - $\underline{352}=2 \times 2 \times 2 \times 2 \times 2 \times 11 \quad\left(=2^{5} \times 11\right)$ Positive factors: $1,2,4,8,11,16,22,32,44,88,176,352$ - e.g. Positive factors: $1,2,3,6,167,334,501,1002$ 8 min	Notes Individual work, monitored, helped (or whole class activity if T prefers) BB: 2, 179, 352, 1002 T decides whether to allow Ps to use a calculator. Discussion, reasoning, agreement, self-correction, praising $\begin{array}{lr\|r} \text { BB: e.g. } & 352 & 2 \\ & 176 & 2 \\ & 88 & 2 \\ & 44 & 2 \\ & 22 & 2 \\ & 11 & 11 \\ & 1 & \end{array}$ Elicit that 1 is a factor of all natural numbers and 2 is the lowest common factor of all even natural numbers.
2	PbY6a, page 2 Q. 1 Read: List these numbers as digits in increasing order. one thousand, one, one hundred thousand, one hundred, ten thousand, ten, one million, ten million Set a time limit of 2 minutes. Review with whole class. Ps come to BB to say and write the numbers. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: $1<10<100<1000<10000<100000<1000000<10000000$ How many zeros are to the right of the digit 1 ? $[0,1,2,3,4,5,6,7]$ Let's use the number of zeros to help us write each number as a power of 10 . Ps dictate what T should write if possible. BB: $10^{0}<10^{1}<10^{2}<10^{3}<10^{4}<10^{5}<10^{6}<10^{7}$ Is 1 million a great or a small number? T asks several Ps what they think. T suggests that it is relative and depends on what it is being compared with, or what the context is. For example: - If you said every natural number from 1 to 1 million, on average you could say 4 numbers every 10 seconds and it would take you about 29 days and nights to do it but one million drops of water could not fill a bath. - One million years ago, mankind did not exist on Earth but the Earth is about 4500 times older than 1 million years.	Individual work, monitored Agreement, self-correction, praising Feedback for T T points to each number in turn and Ps shout out the number of zeros. Agreement, praising Ps write the powers of 10 below each number in Pbs. Whole class discussion. Involve several Ps. Extra praise if a P suggests that it is relative, or if Ps think of their own examples without help from T.

		Lesson Plan 2
Activity 5	PbY6a, page 2 Q. 4 Read: a) Follow the pattern and complete the table. b) Write an \approx sign beside the correct rounding to the nearest whole hundred. Set a time limit. (Ask Ps to add the numbers if they have time.) Review with whole class. Ps come to BB to choose a number and complete its row, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: Let's say the numbers in decreasing order. 33 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit At a good pace Reasoning, agreement, selfcorrection, praising Agree that 812500 is already a whole hundred. Ps who calculated the sum could show their results on scrap paper or slates in unison; otherwise do the calculation with the whole class. BB: Sum: 3299298 T chooses Ps at random.
6	Rounding quantities Let's round these quantities. Ps come to BB to write the appropriate amount, explaining reasoning, then to read out the completed approximation. Class points out errors. BB: a) Round to the nearest 10 units: $\begin{aligned} £ 78326 & \approx £ 78330 \\ 10508.4 \mathrm{~m} & \approx 10510 \mathrm{~m} \\ 2065 \ell 51 \mathrm{cl} & \approx 2070 \\ 429 \mathrm{~km} \mathrm{350m} & \approx 430 \mathrm{~km} \end{aligned}$ b) Round to the nearest unit: $\begin{aligned} £ 671065 \mathrm{p} & \approx £ 6711 \\ 2356 \mathrm{~m} 48 \mathrm{~cm} & \approx 2356 \mathrm{~m} \\ 41.3 \mathrm{litres} & \approx 41 \mathrm{l} \\ 18.38 \mathrm{~kg} & \approx 418 \mathrm{~kg} \end{aligned}$ c) Round to the nearest tenth of a unit: $\begin{aligned} £ 580.27 & \approx £ £ 580.3 \\ 120.55 \mathrm{~m} & \approx 120.6 \mathrm{~m} \\ 66 \text { litres } 99 \mathrm{cl} & \approx 67.0 \\ 46 \mathrm{~kg} 87 \mathrm{~g} & \approx 46.1 \mathrm{~kg} \quad \text { (as } 46 \mathrm{~kg} 87 \mathrm{~g}=46.087 \mathrm{~kg}) \end{aligned}$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T Extension Could any of the amounts be written in other ways? e.g. 41.3 litres $=41$ litres 30 cl $10508.4 \mathrm{~m}=10.5084 \mathrm{~km}$ $18.38 \mathrm{~kg}=18 \mathrm{~kg} 380 \mathrm{~g}$ etc.

16	R: Measures, quantities C: Multiplying/dividng natural numbers mentally by $10,100,1000$ E: Explaining the effect. Decimals	$\begin{gathered} \text { Lesson Plan } \\ 3 \end{gathered}$
Activity 1	Factorising Factorise each of these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB to show their method of finding the prime factors, explaining reasoning. Who did the same? Who did it a different way? etc. Let's list all its positive factors. Ps dictate to T in increasing order. Elicit that: - $\quad \underline{3}$ is a prime number. Factors: 1, 3 - $\underline{178}=2 \times 89$ Factors: 1, 2, 89, 178 $-178=2 \times 89$ - $\quad 353$ is a prime number. (as it is not exactly divisible by $2,3,5,7,11,13$ or 17 , and $19 \times 19>353$) - $\underline{1003}=17 \times 59$ Factors: 1, 17, 59, 1003 Who remembers the name we gave to a number which has only 2 factors apart from itself and 1? (178 and 2003 are nice numbers.) \qquad 8 min \qquad	Notes Individual work, monitored, helped (or whole class activity) BB: 3, 178, 353, 1003 Allow Ps to use a calculator. Discussion, reasoning, agreement, self-correction, praising
2 Extension	Sequences 1 In these sequences, each following term is 10 times the previous term. Let's continue the sequences for 5 more terms. Ps come to BB to write the terms, explaining reasoning. Class agrees/ disagrees. BB: a) $1,10,(100,1000,10000,100000,1000000) \quad[$ Rule $: \times 10]$ Who could write the terms as powers of 10 ? Ps come to BB to write and say the numbers or dictate what T should write. BB: $10^{0}, 10^{1}, 10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, \ldots$ Elicit that the value of the power is the same as the number of zeros to the right of the digit ' 1 '. Ask questions about the terms. e.g. What is the product of the 2 nd and 4th terms? $(10 \times 1000=10000)$ Which 2 terms have a product of 1000000 ? Are there other pairs? $\left(10 \times 100000=100 \times 10000=1000 \times 1000=1 \times 10^{6} \ldots\right)$ b) $3,(30,300,3000,30000,300000, \ldots) \quad[$ Rule: $\times 10]$ c) $0.007,(0.07,0.7,7,70,700, \ldots) \quad[$ Rule: $\times 10]$ Who can explain what happens when we multiply a number by 10 ? T asks several Ps what they think. If necessary T repeats in a clear way. 'When a natural number or a decimal number is multiplied by 10 , each digit of the multiplicand moves to the next greater place value in the product.'	Whole class activity (or individual work in Ex. Bks first) Written on BB or SB or OHT At a good pace Reasoning, agreement, (selfcorrection), praising T helps with wording if necessary. (e.g. 'one hundred thousand is ten to the power five') [Extra praise if a P notices that $10^{1} \times 10^{3}=10^{4}=10^{1+3}$ but do not stress it at this stage.] Explanation, agreement, praising (i.e. each digit moves 1 place-value to the left)

16	R: Measures, units C: Operations with natural numbers. Mental strategies E: Decimals. Word problems	$\begin{gathered} \text { Lesson Plan } \\ 4 \end{gathered}$
Activity 1	Factorising Factorise each of these numbers in your exercise book and list the positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB to show their method of finding the prime factors, explaining reasoning. Who did the same? Who did it a different way? etc. Let's list all its positive factors. Ps dictate to T in increasing order. Elicit that: - $\underline{4}=2 \times 2$ Factors: 1, 2, 4 (4 is a square number and can be written as 2^{2}) - 179 is a prime number Factors: 1, 179 (as it is not exactly divisible by $2,3,5,7,11,13 ; 17 \times 17>179$) - $\quad \underline{354}=2 \times 3 \times 59$ Factors: 1, 2, 3, 6, 59, 118, 177, 354 - $1004=2 \times 2 \times 251$ Factors: 1, 2, 4, 251, 502, 1004 8 min	Notes Individual work, monitored, helped (or whole class activity) BB: 4, 179, 354, 1004 T decides whether to allow Ps to use a calculator. Discussion, reasoning, agreement, self-correction, praising BB: e.g.
2	Calculation strategies How could you do these calculations in your head? Think of different ways to do it. Ps come to BB to explain their methods. Class decides whether it is valid. T shows any strategies not suggested by Ps and asks whether it is correct. BB: e.g. a) $17405+1385=\underbrace{\underbrace{1705}_{\underbrace{18405}_{18405}}}_{\underbrace{17405+1000}_{18785}+300}+5=18790$ or $\quad=17400+1390=18790$ or $\quad=17405+1000+400-15=18805-15=18790$ b) $\begin{aligned} 5072+969 & =5972+60+9=6032+9=\underline{6041} \\ \text { or } & =5072+1000-31=6072-31=6041 \end{aligned}$ c) $73825-4167=\underbrace{\underbrace{69825}_{69725}}_{\underbrace{73825-4000-100}_{69665}-60-7}=\underline{69658}$ d) $243.6-8.8=243.6-8-0.8=235.6-0.8=\underline{234.8}$ or $=243.6-10+1.2=233.6+1.2=234.8$ or $=(243.6+1.2)-(8.8+1.2)=244.8-10=234.8$ 15 min	Whole class activity Written on BB or SB or OHT Discussion, reasoning, agreement, praising Involve as many Ps as possible Ask Ps to explain their methods using the correct names for the components: Addition: terms, sum Subtraction: reductant, subtrahend, difference Extra praise for unexpected methods, e.g. $\begin{aligned} & \text { c) } 73825-4167 \\ & =73825-3125-1000-42 \\ & =70700-1000-42 \\ & =69700-42 \\ & =69658 \end{aligned}$ Ps say which method they think is easiest.

		Lesson Plan 4
Activity 3	PbY6a, page 4 Q. 1 Read: Work out the calculation strategy and fill in the missing numbers. Set a time limit of 4 minutes. Review with whole class. Ps come to BB to fill in the missing numbers, explaining the strategy. Who agrees? Who wrote a different number? Why? etc. Mistakes discussed and corrected. Solution: a) $60419+897=60416+900=61316$ b) $5643+489=5643+500-11=6132$ c) $12345-678=12367-700$ +22 $=11667$ d) $9636-3482=\underbrace{6636}_{\underbrace{9636-3000}_{6136}-500}=18=6154$ e) $41.3-12.4=41.3-12-$ \square 0.4 $=28.9$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit. Discussion, reasoning using the correct names of the components, agreement, self-correction, praising Elicit that: - in a 2 -term addition, increasing one term and reducing the other term by the same amount does not change the sum; - in a subtraction, increasing or reducing the reductant and the subtrahend by the same amount does not change the difference.
4	PbY6a, page 4 Q. 2 Read: Work out the calculation strategy and fill in the missing numbers. Set 2 at a time, then review before dealing with the next 2 . Ps come to BB to fill in the missing numbers, explaining the strategy. Class agrees/disagrees. Mistakes discussed/corrected. Solution: a) $628 \times 20=6280 \times$ \square 2 $=$ 12560 b) $135 \times 18=\overbrace{\underbrace{135 \times 2}_{270} \times 3}^{810} \times$ \square 3 \square 2430 c) $135 \times 18=\underbrace{135 \times 20}_{2700}$ - \square 270 $=$ 2430 d) $43 \times 51=\underbrace{43 \times 50}_{2150}+43=2193$ e) $305 \times 14=\underbrace{305 \times 1}_{3050} 10+\underbrace{305 \times \boxed{4}}_{1220}=44270$ f) $15.2 \times 25=\underbrace{\overbrace{5.2 \times 100}^{760} \div 2}_{1520} \div$ $2=380$ g) $252 \div 6=\underbrace{252 \div 2}_{126} \div 3$ $3=$ \square 42	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Discuss the names of the components in a) and g): a) $628 \times 20=12560$ 628 is the multiplicant, 20 is the multiplier and 12560 is the product; but $20 \times 628=12560$ where 20 is the multiplicant and 628 is the multiplier, so the factors can be exchanged and give the same product. g) $252 \div 6=42$ 252 is the dividend, 6 is the divisor, 42 is the quotient, and they cannot be exchanged. Also, e.g. $152 \div 6=25$, r 2 where 2 is the remainder, so $25 \times 6+\underline{2}=152$

16		Lesson Plan 4
Activity 5	PbY6a, page 4 Q. 3 Read: Do these calculations in a clever way in your exercise book (or mentally if you can). Set a time limit, or deal with one or two at a time then review before Ps continue with the next pair. Ps could show results on scrap paper or slates on command. Ps answering correctly come to BB to explain their thought processes. Who did the same? Who did it another way? Mistakes discussed and corrected. Solution: e.g. a) $2087-1022=1087-22=\underline{1065}$ b) $249+63+151+27=400+90=\underline{490}$ c) $13 \times 4 \times 25=13 \times 100=\underline{1300}$ d) $1063 \times 29 \times 0=\underline{0}$ (as zero times any number is zero) e) $8.2 \times 13=82+24+0.6=\underline{106.6}$ f) $3740 \div 170=374 \div 17=340 \div 17+34 \div 17$ $=20+2=\underline{22}$ g) $998 \times 35=100 \times 35-2 \times 35=3500-70=\underline{34930}$ h) $28500 \div 25 \div 4=28500 \div 100=\underline{285}$ 40 min	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Responses shown in unison. Discussion, reasoning, agreement, self-correcting, praising T shows any easier method not suggested by Ps. Feedback for T (Reducing the dividend and divisor by the same amount does not change the quotient.)
6	PbY6a, page 4 Q. 4 Read: Write a plan, convert the quantities where necessary, do the calculation and write the answer as a sentence in your exercise book. Let's see how many of these problems you can do in 3 minutes! Start . . . now! . . . Stop! Review quickly with whole class. Ps show results on scrap paper or slates on command. Ps responding correctly explain reasoning to Ps who were wong. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solutions: e.g. a) The sides of a triangle are $2.3 \mathrm{~cm}, 31 \mathrm{~mm}$ and 0.018 m long. What is the perimeter of the triangle? Plan: $P=2.3 \mathrm{~cm}+3.1 \mathrm{~cm}+1.8 \mathrm{~cm}=\underline{7.2 \mathrm{~cm}}$ Answer: The perimeter of the triangle is 7.2 cm . b) How many hours are in September? Plan: $24 \times 30=240 \times 3=\underline{720}$ (hours) Answer: There are 720 hours in September. c) A car travels 20 m every second. How far does it travel in: i) 1 minute ii) 2 hours? Plan: i) $20 \mathrm{~m} \times 60=1200 \mathrm{~m}(=1.2 \mathrm{~km})$ ii) $1200 \times 120=12000 \times 12=\underline{144000(m)(=144 \mathrm{~km})}$ Answer: The car travels 1.2 km in 1 minute and 144 km in 2 hours.	Individual work, monitored (or could be a competition among groups of roughly equal ability, with the more able Ps helping the slower Ps in their group once they have finished their own work.) Responses shown in unison. Discusson, reasoning, agreement, self-correction, praising or $23+31+18=\underline{72}(\mathrm{~mm})$ $\mathrm{BB}: 2 \mathrm{~h}=\underline{120} \mathrm{~min}$ or $1.2 \mathrm{~km} \times 120$ $=12 \mathrm{~km} \times 12$ $=144 \mathrm{~km}$

16		$\begin{gathered} \text { Lesson Plan } \\ 5 \end{gathered}$
Activity	Calculation practice, revision, consolidation PbY6a, page 5 Solutions: Q. $1 \quad$ a) $17083.26<111215.09<462590.5<1300450.46$ b) i) to nearest 1000 : $\begin{aligned} & 17083.26 \approx 17000 ; \quad 1300450.46 \approx 1300000 ; \\ & 111215.09 \approx 111000 ; \quad 462590.5 \approx 463000 \\ & \text { ii) } \text { to nearest } 100 \text { : } \\ & 17083.26 \approx 17100 ; \quad 1300450.46 \approx 1300500 ; \\ & 111215.09 \approx 111200 ; 462590.5 \approx 462600 \end{aligned}$ iii) to nearest 10 : $\begin{aligned} & 17083.26 \approx 17080 ; \quad 1300450.46 \approx 1300450 ; \\ & 111215.09 \approx 111220 ; \quad 462590.5 \approx 462590 \end{aligned}$ iv) to nearest 1 : $\begin{aligned} & 17083.26 \approx 17083 ; \quad 1300450.46 \approx 1300450 ; \\ & 111215.09 \approx 111215 ; \quad 462590.5 \approx 462591 \\ & \text { v) to nearest } 0.1: \\ & 17083.26 \approx 17083.3 ; \quad 1300450.46 \approx 1300450.5 ; \\ & 111215.09 \approx 111215.1 ; 462590.5=462590.5 \end{aligned}$ Q. 2 Q. 3 a) to the nearest 10 units: b) to the nearest unit: $£ 503455 \approx £ 503460$ $£ 61132 \mathrm{p} \approx £ 611$ $7459.8 \mathrm{~m} \approx 7460 \mathrm{~m}$ $88 \mathrm{~cm} 6.9 \mathrm{~mm} \approx 1 \mathrm{~m}$ $300005 \mathrm{~g} \approx 300010 \mathrm{~g}$ $4205.29 \mathrm{~kg} \approx 4205 \mathrm{~kg}$ 15 litres $46 \mathrm{cl} \approx 20$ litres 1453.51 litres ≈ 1454 litres $83104.55 \mathrm{~km} \approx 83100 \mathrm{~km}$ $83104 \mathrm{~km} 52 \mathrm{~m} \approx 83105 \mathrm{~km}$ Q. 4 a) i) $51328+786=\underline{52114}$ ii) $41.84+62.79+103.06=\underline{207.69}$ iii) $35879+64121=\underline{100000}$ b) i) $8574-1569=\underline{7005}$ ii) $9000-2456=\underline{6544}$ iii) $137.82-48.93=\underline{88.89}$ c) i) $413 \times 600=\underline{247800}$ ii) $75 \times 16 \div 4=\underline{300}$ iii) $5376 \times 11-1=\underline{59135}$ d) i) $4254 \div 24=\underline{177.25}$ ii) $(7023+542) \div 5=7565 \div 5=\underline{1513}$ iii) $1269 \div 18 \times 2=1269 \div 9=\underline{141}$ e) i) $(121 \div 11) \div 100=\underline{0.11}$ ii) $8151 \div 4=\underline{2037.75}$ iii) $(6000-4368) \div 8=1632 \div 8=\underline{204}$	Notes c) to the nearest 10th: $\begin{aligned} & £ 101154 \mathrm{p} \approx £ 1011.5 \\ & 1766.21 \mathrm{~cm} \approx 1766.2 \mathrm{~cm} \\ & 4205.29 \mathrm{~kg} \approx 4205.3 \mathrm{~kg} \\ & 1994.06 \mathrm{ml} \approx 1994.1 \mathrm{ml} \\ & 7477.47 \mathrm{~km} \approx 7477.5 \mathrm{~km} \end{aligned}$ or 2037 , r 4 , or $2037 \frac{3}{4}$

16		Lesson Plan 5
Activity	Q. 5 a) $5.44 \mathrm{~cm} \div 8=0.68(\mathrm{~cm})$ Answer: The length of each side of the octagon is 0.68 cm . b) $\begin{aligned} 60 \times 60 \times 24 \times 7=60 \times 1440 \times 7 & =86400 \times 7 \\ & =\underline{604800(\mathrm{sec})} \end{aligned}$ Answer: There are 604800 seconds in 1 week. c) $2 \mathrm{~h} 36 \mathrm{~min} \div 13=156 \mathrm{~min} \div 13=\underline{12 \mathrm{~min}}$ Answer: Paula ran each mile in 12 minutes on average. d) $1 \mathrm{~kg} \rightarrow 1000000$ flowers $1 \mathrm{~g} \rightarrow 1000000 \div 1000=\underline{1000} \text { (flowers) }$ Answer: One thousand jasmine flowers are needed to produce one gram of jasmine oil.	Notes

16	R: Relationships among the 4 operations C: Understanding multiplication and division with natural numbers E: Decimals	Lesson Plan 6
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{6}=2 \times 3$ Factors: 1, 2, 3, 6 - 181 is a prime number Factors: 1,181 (as it is not exactly divisible by $2,3,5,7,11,13 ; 17 \times 17>181$) - $\underline{356}=2 \times 2 \times 89 \quad$ Factors: $1,2,4,89,178,356$ - $\underline{1006}=2 \times 503 \quad$ Factors: 1, 2, 503, 1006 (503 is not exactly divisible by $2,3,5,7,11,13,17,19$ and $23 \times 23>503$)	Notes Individual work, monitored, (helped) (or whole class activity) BB: 6, 181, 356, 1006 Calculators allowed Discussion, reasoning, agreement, self-correction, praising BB: e.g.
2	Relay: Multiplication and division Everyone stand up! T says a multiplication or division and a P says the result. If the P answers correctly, he or she sits down. If not, the P remains standing and the next P answers. Ps still standing after one round of the class are given another multiplication or division. Continue until all Ps have answered at least one question correctly. Ps who had difficulties should be given a copy of the multiplication table square and be asked to learn the facts which they do not know at home. T notes the facts that certain Ps did not know and checks them regularly (and not only in maths lessons!).	Whole class activity At speed in order round class In good humour Some differentiation by questions Ps seated can ask some questions too. Feedback for T
3	Place values Let's complete the missing place values. Ps come to BB to say and write the place values. If a box is not large enough to write the whole word, Ps should use initial letters, as below. Class points out errors. BB: (or Billion)	Whole class activity Written on BB or use enlarged copy master of OHP At a good pace Discuss which initial letters should be used. Agreement, praising Extension T points to a place-value and asks a P to write it with digits, then asks another P to write it as a power of 10 . Praising, encouragement only

		Lesson Plan 6
Activity 4	PbY6a, page 6 Q. 1 Read: Write each addition in a shorter way, then calculate the result. Set a time limit. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $700+700+700=700 \times 3=\underline{2100}$ b) $45+45+45+45+45+45=45 \times 6=\underline{270}$ c) $7100+7100+7100+7100+7100=7100 \times 5=\underline{35500}$ d) $600+600+600+600+600+600+600=600 \times 7$ $=\underline{4200}$ e) $10.5+10.5+10.5=10.5 \times 3=\underline{31.5}$ f) $0.3+0.3+0.3+0.3+0.3+0.3+0.3+0.3+0.3=0.3 \times 9$ $=\underline{2.7}$ T: What does 78×19 really mean? A, what do you think? Who can explain it another way? And another? e.g. $\mathrm{P}_{1}: 78$ is added to itself 19 times. P_{2} : It is an addition with 19 terms, and each term is 78. $P_{3}: 19$ is added to itself 78 times. $P_{4}:$ It is an addition with 78 terms, and each term is 19. T: Who can explain what 1.25×43 really means? (It is an addition with 43 terms and each term is 1.25)	Notes Individual work, monitored (helped) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Whole class discussion Involve several Ps. Praising, encouragement only Elicit that the order of terms in an addition or a multiplication does not matter, as the result will always be the same.
5	PbY6a, page 6 Q. 2 Read: Fill in the missing factors. What is a factor of a number? (A number which divides into that number exactly, or a number which multiplies another number to make the original number.) Set a time limit or deal with one row at a time. Review with the whole class. Ps come to BB or dictate to T, explaining reasoning with division. (e.g. $7 \times \underline{8}=56$, because $56 \div 7=\underline{8}$) T helps with wording if necessary. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) $7 \times \underline{\mathbf{8}}=56, \quad 7 \times \underline{\mathbf{8 0 0}}=5600, \quad \underline{\mathbf{0 . 8}} \times 7=5.6, \quad 70 \times \underline{\mathbf{8 0}}=5600$ b) $\underline{\mathbf{1 5 0}} \times 5=750,5 \times \underline{\mathbf{1 5}}=75, \quad 50 \times \underline{\mathbf{1 5}}=750, \quad 50 \times \underline{\mathbf{1 . 5}}=75$ c) $60 \times \underline{\underline{\mathbf{7}}}=420, \underline{\mathbf{7 0}} \times 60=4200,600 \times \underline{\boldsymbol{7}}=4200, \quad 60 \times \underline{\mathbf{0} . \boldsymbol{7}}=42$ d) $\underline{\mathbf{1 2 5}} \times 4=500, \underline{\mathbf{1 2 5}} \times 40=5000, \underline{\mathbf{1 2 5 0}} \times 40=50000,40 \times \underline{\mathbf{1 2 . 5}}=500$ e) $4 \times \underline{\mathbf{2 5}}=100,4 \times \underline{\mathbf{2 5 0}}=1000, \quad \underline{\mathbf{2 5}} \times 40=1000, \quad \underline{\mathbf{2 . 5}} \times 40=100$ f) $\underline{\mathbf{8}} \times 15=120, \underline{\mathbf{8}} \times 150=1200, \quad 15 \times \underline{\mathbf{8 0}}=1200, \quad \underline{\mathbf{0} \boldsymbol{8}} \times 150=120$	Individual work, monitored, Written on BB or use enlarged copy master or OHT Reasoning, agreement, selfcorrection, praising Differentiation by praising (Less able Ps deserve praise for getting at least one multiplication in each row correct.) Extra praise for clever reasoning: e.g. d) \square $\times 4=500$ $\times 2=250$ \square $=\underline{125}$ or $\begin{aligned} 500 \div 2 \div 2 & =250 \div 2 \\ & =\underline{125} \end{aligned}$

		Lesson Plan 6
Activity 6	Relationship between subtraction and division T writes a subtraction on the BB. How can we shorten this calculation? BB: $197-20-20-20-20-20-20-20-20-20$ e.g. $=197-9 \times 20=197-180=\underline{17}$ (i.e. 17 remains when you subtract 9 lots of 20 from 197) or 'we could work out how many 20's are in 197 by doing a division.' BB: $\quad 197 \div 20=9$, r 17 $-\frac{180}{17}$ T: How many times did we take 20 away from 197 in the subtraction? (9) What number remained? (17) Compare the numbers in the division and the subtraction What do you notice? Elicit that: - the dividend, 197, in the division is the same as the reductant in the subtraction; - the divisor, 20, in the division is the number which is being taken away lots of times in the subtraction ; - the quotient, 9 , in the division is the number of times the 20 is taken away in the subtraction. - the remainder, 17, in the division is the same as the difference in the subtraction; What does this way of writing the information have to do with the division? BB: $\quad 197=9 \times 20+17$ (197: dividend, 9: quotient, 20: divisor, 17: remainder) When would we use this form? (To check a division with a remainder.) \qquad 35 min \qquad	Notes Whole class activity Ps dictate what T should write or T directs Ps' thinking if nobody has any ideas. Discussion, reasoning, agreement, praising Ask Ps to use the correct names for the components of subtraction and division. Ask several Ps what they think. If necessary T shows the first relationship, then Ps should be able to point out the others. Praising Feedback for T
7	PbY6a, page 6 Q. 3 Read: Calculate the quotient and the remainder mentally. Look for easy ways of dong the division and remember to check your results mentally using reverse operations. Set a time limit. Review with whole class. Ps come to BB to write quotient and remainder, explaining reasoning with reverse multiplication, and addition where relevant. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $64025 \div 2=\underline{32012, ~ r ~} 1$ ii) $64025 \div 30000=\underline{2, r} 4025$ b) i) $1020000 \div 20000=\underline{51}$ ii) $1020000 \div 4=\underline{255000(r 0)}$ c) i) $56000 \div 700=\underline{80}(\mathrm{r} 0)$ ii) $56000 \div 800=\underline{70}(\mathrm{r} 0)$ d) i) $710608 \div 100=\underline{7106, r} 8$ ii) $710608 \div 1=\underline{710608}(\mathrm{r} 0)$ e) i) $3240 \div 324=\underline{10}(\mathrm{r} 0)$ ii) $3240 \div 0 \neq$ (Makes no sense) Checks: e.g a) i) $32012 \times 2+1=64025$ ii) $2 \times 30000+4025=64025$ etc.	Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who noticed that, e.g. - $1020000 \div 20000$ $=102 \div 2=51$ - $56000 \div 700$ $=560 \div 7=\underline{80}$ - any number divided by 1 is the number itself - dividing by 0 is impossible!

16	R: Mental calculation: the 4 operations C: Principles of the arithmetic laws. Brackets E: Decimals	$\begin{gathered} \text { Lesson Plan } \\ 7 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{7}$ is a prime number Factors: 1,7 - $182=2 \times 7 \times 13$ Factors: 1, 2, 7, 13, 14, 26, 91, 182 - $\underline{357}=3 \times 7 \times 17$ Factors: 1, 3, 7, 17, 21, 51, 119, 357 - $\underline{1007}=19 \times 53$ Factors: 1, 19, 53, 1007 (nice) 7 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 7, 182, 357, 1007 Calculators allowed Discussion, reasoning, agreement, self-correction, praising e.g. 357 3 119 7 $1007=19 \times 53$ 17 17 $\overbrace{19}$ 1 53
2	Multiplication and division tables T says related multiplications and divisions. Ps say the results. Ps sit down if they answer correctly. If a P makes a mistake, he or she must stay standing and the next P corrects their mistake. a) e.g. $8 \times 9,9 \times 8,3 \times 70,70 \times 3,7 \times 30$, etc. Who can generalise the rule for multiplication? BB: $a \times b=b \times a$ (i.e. the factors are interchangeable) b) $630 \div 7,630 \div 70,630 \div 90,630 \div 9$, etc. Does the same rule apply for division? (No, $a \div b \neq b \div a$) 12 min	Whole class activity At speed in order round class, or T chooses Ps at random. In good humour! Differentiation by question Ps seated can ask some questons too. T notes which facts are not known by which Ps and regularly checks them throughout the day.
3	PbY6a, page 7 Q. 1 Read: Calculate the sums, differences, products and quotients. How many calculations are there? $(3 \times 3 \times 4=36)$ Set a time limit or deal with one part at a time. Review with whole class. Ps come to BB or dictate results to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed/corrected. Elicit that 1st answer in each row helps calculation of the others. Solution: a) $260+30=\underline{290}$ $5260+30=\underline{5290}$ $5260+430=\underline{5690}$ b) $320-170=\underline{150}$ $625-170=\underline{455}$ $57-37=\underline{20}$ c) $300 \times 8=\underline{2400}$ $26 \times 4=\underline{104}$ $43 \times 7=\underline{301}$ d) $\begin{aligned} 60 \div 12 & =\underline{5} \\ 420 \div 7 & =\underline{60} \\ 78 \div 20 & =\underline{3, r} 18 \end{aligned}$ $\begin{aligned} 2600+300 & =\underline{2900} \\ 52600+300 & =\underline{52900} \\ 52600+4300 & =\underline{56900} \end{aligned}$ $3200-1700=\underline{1500}$ $6250-1700=\underline{4550}$ $585-385=\underline{200}$ $300 \times 80=\underline{24000}$ $2600 \times 4=\underline{10400}$ $430 \times 70=\underline{30100}$ $600 \div 12=\underline{50}$ $4200 \div 70=\underline{60}$ $7800 \div 200=\underline{39}$ $\begin{aligned} 26000+3000 & =\underline{29000} \\ 526000+3000 & =\underline{529000} \\ 526000+43000 & =\underline{569000}\end{aligned}$ $32000-17000=\underline{15000}$ $62500-17000=\underline{45500}$ $5899-3899=\underline{2000}$ $300 \times 8000=\underline{2400000}$ $260 \times 4000=\underline{1040000}$ $4300 \times 700=\underline{3010000}$ $60000 \div 12=\underline{5000}$ $420000 \div 7000=\underline{60}$ $78000 \div 20000=\underline{3, r 18000}$	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Reasoning: e.g. a) $\begin{aligned} & 26000+3000 \\ & =(260+30) \times 100 \\ & =290 \times 100 \\ & =\underline{29000} \end{aligned}$ or $26 \mathrm{Th}+3 \mathrm{Th}=29 \mathrm{Th}$ b) $\begin{aligned} & 62500-17000 \\ & =(625-170) \times 100 \\ & =455 \times 100=\underline{45500} \\ & \text { etc. } \end{aligned}$

		Lesson Plan 7
Activity 4	Formulae Study each formula and think of different numbers which could be written instead of the letters so that the equation is true. Ps suggest numbers and T writes on BB . Is it true for decimals and fractions too? BB: a) \square $a+b=b+a$ [To Ts only: Commutative law of addition] e.g. $6247+503=503+6247(=6750) \leftarrow$ Ps dictate $\frac{4}{5}+\frac{1}{10}=\frac{1}{10}+\frac{4}{5}\left(=\frac{1}{10}+\frac{8}{10}=\frac{9}{10}\right)$ $4.3+10.8=10.8+4.3(=15.1)$ $6+(-9)=(-9)+6(=-3)$ Can you think of a counter example where the formula is not true? (No, it is true for any two numbers.) Let's put it in a sentence. T shows the sentence and Ps say it in unison and write it in Pbs. BB: The two terms of any sum are interchangeable. T: Because this is true for all numbers and there is no example where it is not true, we say that this statement is a law of addition. b) \square $a \times b=b \times a$ [To Ts only: Commutative law of multiplication] $\begin{aligned} & \text { e.g. } \quad \begin{aligned} 415 \times 11 & =11 \times 415(=4565) \\ \frac{6}{8} \times 7 & =7 \times \frac{6}{8}\left(=\frac{42}{8}=\frac{21}{4}=5 \frac{1}{4}\right) \\ 4.25 \times 6 & =6 \times 4.25(=25.5) \\ -12 \times 7 & =7 \times-12(=-84) \end{aligned} \end{aligned}$ Can you think of a counter example where the equation is not true? (No, it is true for any two numbers.) Let's put it in a sentence. T shows the sentence (already pepared on BB or SB or OHT). Ps say it in unison and write it in Pbs. BB: The two factors of a product are interchangeable. c) $a-b=b-a$ Is this formula always true for subtraction? Some Ps might think it is never true and give many counter examples. e.g. $5-3 \neq 3-5$ Can you think of an example where it is true? e.g. $5-5=5-5$ Elicit that the equation is true when $a=b$ but not true when $a \neq b$. Can we say that this is a law of subtraction? (No, as generally it is not true, so there are many counter examples.] d) $a \div b=b \div a$ Deal with this in a similar way to subtraction. Ps give examples and counter examples.e.g. $18 \div 3 \neq 3 \div 18$ but $7 \div 7=7 \div 7$. Elicit that the equation is true for natural numbers when $a=\mathrm{b} \neq 0$ but not true when $a \neq b$, so it is not a law of division. In fact, generally it is not true for natural numbers.	Notes Whole class activity Formulae written on BB or on flash cards stuck to BB. Involve as many Ps as possible Reasoning, agreement, praising T gives prompts where necessary. e.g. What about: $\begin{aligned} 5+0 & =0+5 \\ 0+0 & =0+0 \\ 7+7 & =7+7 ? \end{aligned}$ Agree that the formula is true for these too. Already prepared on BB or SB or OHT Elicit that only one counter example is needed to show that a statement is not true in all cases. Again, Ps dictate what T should write. T prompts if necessary. e,g What about: $0 \times 0=0 \times 0$ $\begin{aligned} & 7 \times 0=0 \times 7 \\ & 6 \times 6=6 \times 6 ? \end{aligned}$ Agree that the formula is true for these too. Elicit that it is a law of multiplication Also agree that, e.g. $\begin{aligned} & 5-0 \neq 0-5 \\ & 0-0=0-0 \end{aligned}$ Discussion, agreeement, praising Also agree that: $\begin{aligned} & 0 \div 5 \neq 5 \div 0 \\ & 0 \div 0 \neq 0 \div 0 \end{aligned}$ as dividing by zero makes no sense.

16		Lesson Plan 7
Activity 4 Extension	(Continued) T might also ask about the following formulae if Ps are interested. e) $(a+b)+c=a+(b+c)$ e.g. $(320+50.6)+29.4=320+(50.6+29.4)(=400)$, etc. Elicit that it is true for any 3 numbers, so it is a law. f) $(a \times b) \times c=a \times(b \times c)$ e.g. $(100 \times 6) \times 2=100 \times(6 \times 2)(=1200)$, etc. Elicit that it is true for any 3 numbers, so it is a law. g) $a \times(b+c)=a \times b+a \times c$ e.g. $6 \times(3.4+5.6)=6 \times 3.4+6 \times 5.6(=20.4+33.6=54)$ Elicit that it is true for any 3 numbers, so it is a law. There is no need to tell Ps the names of these laws but ask Ps to explain them in a sentence in their own words. 30 min	Notes To Ts only: Associative law for addition There are no counter examples. Associative law for multiplication There are no counter examples. Distributive law for multiplication There are no counter examples.
5	PbY6a, page 7 Q. 2 Read: Colour the box if the statement is true. If it is not true, change the $'=$ ' sign to ' \neq '. Set a time limit of 6 minutes. Review with whole class. Ps could write T and F on slates and show to T on command. Ps with different responses explain reasoning to class, either by citing a law they have learned or by working out the value of each side of the equation. Class agrees/disagrees. Mistakes corrected. In some cases, Ps could asked what should be done to make the false statement true. Solution: a) $368+152=152+368$ b) $1230 \times 21=21 \times 1230$ c) $\begin{aligned} & 290-0 \neq 0-290 \\ & 0 \times 8=8 \times 0 \end{aligned}$ d) $(82+38)+15=82+(38+15)$ $(400-250)+50 \neq 400-(250+50) \square$ $400-(250+50)=400-250-50$ e) $(18 \times 2) \times 4=18 \times(2 \times 4)$ $(60 \div 3) \times 5 \neq 60 \div(3 \times 5)$ $60 \div(3 \div 5) \neq 60 \div 3 \div 5$ f) $7 \times(15+25)=7 \times 15+7 \times 25$ $\begin{aligned} & 7230-430 \neq 430-7230 \square \\ & 460 \div 23 \neq 23 \div 460 \\ & 1 \times 167=167 \times 1 \\ & 0 \div 63 \neq 63 \div 0 \end{aligned}$ $(670+130)-100=670+(130-100)$ $(360-160)-30 \neq 360-(160-30)$ $360-(160-30)=360-160+30$ $\begin{aligned} & (18 \times 4) \div 2=18 \times(4 \div 2) \\ & (80 \div 4) \div 2 \neq 80 \div(4 \div 2) \\ & 80 \div(4 \div 2) \neq 80 \div 4 \div 2 \end{aligned}$ $7+(15 \times 25) \neq(7+15) \times(7+25)$ 38 min	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Responses shown in unison. (or T chooses a P to say whether a statement is true or false and asks who agrees/ disagrees. Why? Ps could write interim results above the relevant operations when they explain at BB. Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who realised that in c) iv), dividing 63 by 0 makes no sense. Who had them all correct? Let's give them a clap! Who made just 1 mistake? The person nearest them, give them a pat on the back.

	R: Rapid recall of multiplication and division facts. Consolidation C: Calculations. Order of operations E: Using arithmetic laws	$\begin{gathered} \text { Lesson Plan } \\ 8 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{8}=2 \times 2 \times 2 \quad$ Factors: $1,2,4,8 \quad$ (cubic number: 2^{3}) - $\underline{183}=3 \times 61$ Factors: 1, 3, 61, 181 (a nice number) - $358=2 \times 179 \quad$ Factors: 1,2, 179, $358 \quad 358=2 \times 179$ T shows the number as powers of of its prime factors.	Notes Individual work, monitored, (helped) (or whole class activity) BB: 8, 183, 358, 1008 Calculators allowed Discussion, reasoning, agreement, self-correction, praising Do the listing of the factors of 1008 on BB with whole class, showing the factor pairs as opposite or vertically or in one long line but with the factor pairs joined up. BB: $\underline{1008}=2^{4} \times 3^{2} \times 7$
2	Mental practice a) Let's list the natural multiples of: $\begin{array}{ll} \text { 2: }(2,4,6,8,10,12, \ldots) & 3: \\ \text { 4: }(4,8,12,16,20,24, \ldots) & \text { 5: } \\ (5,10,15,20,25,30 \ldots) \\ \text { 6: }[6,12,18,24,30, \ldots] & 7: \\ \text { 8: }:[8,16,24,32,40,48, \ldots] & 9: \\ {[9,14,21,28,35,42, \ldots]} \\ \hline \end{array}$ b) T says a multiplication or division table fact and Ps say result. c) More complicated multiplications and divisions. T starts, P_{1} answers then says a multiplication or division for $\mathrm{P}_{2}, \mathrm{P}_{2}$ answers then says a multiplication or division for P_{3}, and so on.	Whole class activity a) In order at speed round class. b) T chooses Ps at random. c) Relay at speed In good humour! T decides when each type of activity hould stop. Praising, encouragement only T notes which facts are not known by which Ps.
3	PbY6a, page 8 Q. 1 Read: Calculate the sums in a clever way. Set a time limit. Review with whole class. Ps come to BB to explain reasoning. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. Solution: a) $275+99+25+34+66=300+100+99=\underline{499}$ b) $605+13+300+67+95=700+300+80=\underline{1080}$ c) $810+183+140+7+1860=810+190+2000=\underline{3000}$ d) $15+35+6666+50+3334=50+50+10000=\underline{10100}$ 20 min	Individual work, monitored Written on BB or SB or OHT Reasoning, agreement, self-correction, praising Extra praise for Ps who looked for terms which could be combined to make whole tens, hundreds or thousands Feedback for T

		Lesson Plan 8
Activity 4	PbY6a, page 8 Q. 2 Read: Calculate the products in a clever way. Set a time limit. Review with whole class. Ps come to BB to explain reasoning. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. Solution: a) $5 \times 37 \times 25 \times 20 \times 4=100 \times 100 \times 37=10000 \times 37$ $=\underline{37000}$ b) $25 \times 125 \times 4 \times 8 \times 7=100 \times 1000 \times 7=100000 \times 7$ $=\underline{700000}$ c) $2 \times 25 \times 8 \times 20 \times 70=1000 \times 560=\underline{560000}$ d) $5 \times 40 \times 5 \times 20 \times 65=20000 \times 65=\underline{1300000}$	Notes Individual work, monitored Written on BB or SB or OHT Reasoning, agreement, self-correction praising Extra praise for Ps who looked for factors which could be combined to make whole hundreds or thousands or for d): $\begin{aligned} & (5 \times 20) \times(5 \times 20) \times 2 \times 65 \\ & =100 \times 100 \times 130 \\ & =10000 \times 130=1300000 \end{aligned}$
5	PBY6a, page 8 Q. 3 Read: Calculate the results. Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solutions: a) $\begin{aligned} 75-52+39+25-18 & =(75+25)-(52+18)+39 \\ & =100-70+39=30+39=\underline{69} \end{aligned}$ or from left to right in order: $75 \xrightarrow{-52} 23 \xrightarrow{+39} 62 \xrightarrow{+25} 87 \xrightarrow{-18} \underline{69}$ or collecting terms with the same sign: $(75+25+39)-(52+18)=139-70=\underline{69}$ Agree that when there are only additions and subtractions without brackets, we usually calculate from left to right but clever grouping of terms might help us. b) $\begin{aligned} 84 \div 15 \times 30 \div 12 \times 20 & =(84 \div 12) \times(30 \div 15) \times 20 \\ & =7 \times 2 \times 20=7 \times 40=\underline{280} \end{aligned}$ Agree that when there are only multiplications and divisions without brackets, we usually calculate from left to right but clever grouping of terms can make the calculation easier (as in this case). c) $\underbrace{60 \div 15}_{4}+67-37-\underbrace{25 \times 8 \div 5}_{40}+\underbrace{15 \times 30}_{450}$ $=4+(67-37)+450-40=4+30+410=\underline{444}$ Agree that if there are all 4 operations without brackets, the multiplications and divisions must be done first, then the additions and subtractions.	Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Accept and praise any valid method of calculation but extra praise for Ps who noticed the easy ways shown opposite. T shows them if no P noticed them. Feedback for T

		Lesson Plan 8
Activity 6	PbY6a, page 8 Q. 4 Read: Calculate the results and compare them. Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Who did the same? Who did it a different way? Mistakes discussed and corrected. What do you notice about the results? (Top and bottom calculations are the same and the two middle calculations are the same.) Why? Ps explain in own words. Solution: a) i) $675-(453+123)=675-576=\underline{99}$ ii) $675-(453-123)=675-330=\underline{345}$ iii) $675-453+123=222+123=\underline{345}$ iv) $675-453-123=222-123=\underline{99}$ b) i) $480 \div(12 \times 4)=480 \div 48=\underline{10}$ ii) $480 \div(12 \div 4)=480 \div 3=\underline{160}$ iii) $480 \div 12 \times 4=40 \times 4=\underline{160}$ iv) $480 \div 12 \div 4=40 \div 4=\underline{10}$ Agree that when when there are brackets, the operations inside the brackets should be done first.	Notes Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T
7	PbY6a page 8 Q. 5 Deal with 3 or 4 questions at a time, then review and discuss and correct mistakes before Ps continue with the next 3 or 4 . Ps could show results on scrap paper or slates on command. Ps with different results explain their reasoning at BB. Class decides who is correct. Where relevant, Ps show two ways to do the calculation and class decides which method is simpler. Solution: a) $\begin{aligned} & 16 \times(26+30)=16 \times 56=560+336=\underline{896} \\ & \text { or }=(16 \times 26)+(16 \times 30)=416+480=\underline{896} \end{aligned}$ b) $\begin{aligned} & 37 \times(200-100)=37 \times 100=\underline{3700} \\ & \text { or }=(37 \times 200)-(37 \times 100)=7400-3700=\underline{3700} \end{aligned}$ c) $\begin{aligned} & (156+44) \times 5=200 \times 5=\underline{1000} \\ & \text { or }=(156 \times 5)+(44 \times 5)=780+220=\underline{1000} \end{aligned}$ d) $\begin{aligned} & (200-20) \times 45=180 \times 45=7200+900=\underline{8100} \\ & \text { or }=(200 \times 45)-(20 \times 45)=9000-900=\underline{8100} \end{aligned}$ e) $\begin{aligned} & (78+96) \div 6=174 \div 6=\underline{29} \\ & \text { or }=(78 \div 6)+(96 \div 6)=13+16=\underline{29} \end{aligned}$ f) $\begin{aligned} & (160-75) \div 5=85 \div 5=\underline{17} \\ & \text { or }=(160 \div 5)-(75 \div 5)=32-15=\underline{17} \end{aligned}$ g) $750 \div(10+15)=750 \div 25=150 \div 5=\underline{30}$ h) $144 \div(72-48)=144 \div 24=72 \div 12=\underline{6}$ i) $(430+220) \div 1=650 \div 1=\underline{650}$ j) $(220+430) \div 0 \neq$ (dividing by zero makes no sense)	Individual work, monitored Written on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, selfcorrection, praising Elicit that there are 20 calculations altogether. Who had all 20 correct? Who made just 1 mistake? Let's give them 3 cheers! [If time runs out before all the questions have been dealt with, Ps complete the questions at home. Review before the start of Lesson 9.]

		Lesson Plan 8
Activity 7	(Continued) k) $(365-165) \div 1=200 \div 1=\underline{200}$ l) $(493-203) \div 0 \neq$ anything m) $(147-147) \div 29=0 \div 29=\underline{0}$ n) $300 \div(15-15)=300 \div 0 \neq$ anything o) $4 \times(12 \times 25)=4 \times 25 \times 12=100 \times 12=\underline{1200}$ p) $8 \times(45 \div 5)=8 \times 9=\underline{72}$ q) $350 \div(14 \times 5)=350 \div 70=35 \div 7=\underline{5}$ r) $600 \div(60 \div 4)=600 \div 15=200 \div 5=\underline{40}$ or $=600 \div 60 \times 4=10 \times 4=\underline{40}$ s) $9 \times(0 \div 3)=9 \times 0=\underline{0}$ t) $4 \times(9 \div 0) \neq$ anything	Notes Elicit that dividing by zero makes no sense, but zero divided by any number is zero.

16	R: Doubling and halving. Relationship between \times and \div C: Calculations. Squares of multiples of $\mathbf{1 0}$ up to $\mathbf{1 0 0}$ E: Powers as positive integers. Word problems	Lesson Plan 9
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{9}=3 \times 3\left(=3^{2}\right) \quad$ Factors: 1,3,9 \quad (square number) - $\underline{184}=2 \times 2 \times 2 \times 23\left(=2^{3} \times 23\right)$ Factors: 1, 2, 4, 8, 23, 46, 92, 184 - 359 is a prime number Factors: 1,359 (as not exactly divisible by $2,3,5,7,11,13,17 ; 19 \times 19>359$) - $\underline{1009}$ is a prime number Factors: 1, 1009 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37 \times 37>1009$)	Notes Individual work, monitored, (helped) (or whole class activity) BB: 9, 184, 359, 1009 Calculators allowed Discussion, reasoning, agreement, self-correction, praising Elicit that: 3^{2} is read as ' 3 squared' or ' 3 to the power 2 ' 2^{3} is read as ' 2 cubed' or ' 2 to the power 3 '
2	Multiplication and division practice a) T says a multiplication or division fact. Ps say the result. b) T says a more complicated multiplication or division. Ps say the result. e.g. $60 \times 90,400 \div 40,640 \div 8$, etc. c) Relay with the 4 operations. T says an operation, P_{1} says result and thinks of an operation for the next P to answer, etc. (Operations can be combined.)	Whole class activity At speed in order round class (or T chooses Ps at random) If a P makes a mistake, the next P must correct it. In good humour. Praising
3	PbY6a, page 9 Q. 1 Read: Fill in the missing numbers. Set a time limit of 3 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning with reverse operation. Class agrees/disagrees. Mistakes corrected. Solution: a) $4 \times \underline{7}=28, \quad 81 \div \underline{9}=9, \quad \underline{9} \times 6=54, \quad \underline{63} \div 7=9$ b) $5 \times \underline{70}=350,560 \div \underline{80}=7, \underline{90} \times 3=270, \underline{480} \div 8=60$ c) $20 \times \underline{60}=1200, \quad 3200 \div \underline{80}=40, \quad \underline{90} \times 50=4500$, $\underline{1800} \div 60=30$	Individual work, monitored (helped) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Reasoning: e.g. $81 \div \underline{9}=9, \text { as } 9 \times \underline{9}=81$ Elicit that 81 is a square number.

		Lesson Plan 9
Activity 4	PbY6a, page 9 Q. 2 Read: Write the area of each square in cm^{2} and in mm^{2}. How many mm are in 1 cm ? (10) How many mm squares are in 1 cm square? $(10 \times 10=100)$ Set a time limit of 3 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning and referring to diagram. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: 1 cm 2 cm 3 cm 4 cm 5 cm 6 cm Area of: A: $1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$ B: \square 4 $\mathrm{cm}^{2}=400 \mathrm{~mm}^{2}$ C: $9 \mathrm{~cm}^{2}=900 \mathrm{~mm}^{2}$ D: \square $\mathrm{cm}^{2}=1600 \mathrm{~mm}^{2}$ E: $25 \mathrm{~cm}^{2}=2500 \mathrm{~mm}^{2}$ F: \square $\mathrm{cm}^{2}=3600 \mathrm{~mm}^{2}$ Let's continue the sequence. Ps say what the side lengths of the following squares would be, then give their area in cm^{2} and in mm^{2}. Class points out errors. Ps write the dimensions in Ex. Bks. BB: $\begin{aligned} & a=7 \mathrm{~cm}, A=49 \mathrm{~cm}^{2}=4900 \mathrm{~mm}^{2} \\ & a=8 \mathrm{~cm}, A=64 \mathrm{~cm}^{2}=6400 \mathrm{~mm}^{2} \\ & a=9 \mathrm{~cm}, A=81 \mathrm{~cm}^{2}=8100 \mathrm{~mm}^{2} \\ & a=10 \mathrm{~cm}, A=100 \mathrm{~cm}^{2}=10000 \mathrm{~mm}^{2} \\ & a=11 \mathrm{~cm}, A=121 \mathrm{~cm}^{2}=12100 \mathrm{~mm}^{2} \end{aligned}$	Notes Individual work, monitored Drawn on BB or use enlarged copy master or OHP BB: $1 \mathrm{~cm}=10 \mathrm{~mm}$ $1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$ Discussion, reasoning, agreement, self-correction, praising Whole class activity At a good pace Reasoning, agreement, praising Elicit that $1,4,9,16,25$, etc. are square numbers, i.e. they are the product of a number multiplied by itself.
5	PbY6a, page 9 Q. 3 Read: Continue the sequences using your own rule. Set a time limit of 4 minutes. Ps write the terms and the rule that they used. Review with the whole class. Ps come to BB or dicate to T, explaining their rule. Who used the same rule? Who used a different one? Class decides whether the rules are valid. Mistakes discussed and corrected. Solution: a) $1,4,9,16,(25,36,49,64,81,100,121,144,169, \ldots)$ Rule: the square numbes in increasing order. The majority of Ps will most likely give the terms above, but a P might say the rule in a different way. e.g. Rule: The difference between terms is increasing by 2. or The natural numbers to the power 2 in increasing order: $1^{2}=1,2^{2}=4,3^{2}=9,4^{2}=16,5^{2}=25, \text { etc. }$ b) $100,400,900,1600,(2500,3600,4900,6400, \ldots)$ Rule: Difference between terms is increasing by 200. i.e. Difference sequence is $300,500,700,900, \ldots$ or $100=10 \times 10,400=20 \times 20,900=30 \times 30$, etc. c) $10 \times 10,20 \times 20,30 \times 30,(40 \times 40,50 \times 50, \ldots)$ Elicit that this sequence is the same as b): the whole tens to the second power, or to the power 2 , or squared.	Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Accept any valid sequence, if the rule is given correctly, e.g. a) $1,4,9,16,(1,4,9,16, \ldots)$ $1,4,9,16,(9,4,1,4,9, \ldots)$ Extension Why do you think we call the numbers $1,4,9, \ldots$ 'square' numbers? (They could be the area of a square and their factors could be the length of a side. BB:

		Lesson Plan 9
Activity 6	PbY6a, page 9 Q. 4 Read: Calculate the required values in your exercise book. Deal with one at a time. T chooses a P to read out the question. Ps write a plan and do the calculation in Ex. Bks, then show the answer on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) The area of a square is $10000 \mathrm{~cm}^{2}$. What length is each side? What is its perimeter? $\begin{aligned} & A=10000 \mathrm{~cm}^{2}=100 \mathrm{~cm} \times 100 \mathrm{~cm} ; \text { so } a=\underline{100 \mathrm{~cm}} \\ & P=4 \times 100 \mathrm{~cm}=\underline{400 \mathrm{~cm}} \end{aligned}$ b) The side of a square is 50 cm . What is its perimeter? What is its area? $\begin{aligned} & P=4 \times 50 \mathrm{~cm}=\underline{200 \mathrm{~cm}} \\ & A=50 \mathrm{~cm} \times 50 \mathrm{~cm}=500 \mathrm{~cm} \times 5 \mathrm{~cm}=\underline{2500 \mathrm{~cm}^{2}} \end{aligned}$ c) The side of a square is 25 cm . What is its perimeter? What is its area? $\begin{aligned} & P=4 \times 25 \mathrm{~cm}=\underline{100 \mathrm{~cm}} \\ & \begin{aligned} A & =25 \mathrm{~cm} \times 25 \mathrm{~cm}=(500+125) \mathrm{cm}^{2}=\underline{625 \mathrm{~cm}^{2}} \\ \text { or } & =50 \mathrm{~cm} \times 50 \mathrm{~cm} \div 2 \div 2 \end{aligned} \\ & =2500 \mathrm{~cm}^{2} \div 2 \div 2 \\ & \\ & =1250 \mathrm{~cm}^{2} \div 2=\underline{625 \mathrm{~cm}^{2}} \end{aligned}$ d) The perimeter of a square is 60 cm . What length is each side? What is its area? $\begin{aligned} & a=60 \mathrm{~cm} \div 4=\underline{15 \mathrm{~cm}} \\ & \begin{aligned} A & =15 \mathrm{~cm} \times 15 \mathrm{~cm}=(150+75) \mathrm{cm}^{2}=\underline{225 \mathrm{~cm}^{2}} \\ \text { or } & =30 \mathrm{~cm} \times 30 \mathrm{~cm} \div 2 \div 2 \end{aligned} \\ & \qquad 900 \mathrm{~cm}^{2} \div 2 \div 2 \\ & \\ & =450 \mathrm{~cm}^{2} \div 2=\underline{225 \mathrm{~cm}^{2}} \end{aligned}$ e) The side of a square is 35 cm . What is its perimeter? What is its area? $\begin{aligned} & P=4 \times 35 \mathrm{~cm}=120 \mathrm{~cm}+20 \mathrm{~cm}=\underline{140 \mathrm{~cm}} \\ & \begin{aligned} A & =35 \mathrm{~cm} \times 35 \mathrm{~cm}=(1050+175) \mathrm{cm}^{2}=\underline{1225 \mathrm{~cm}^{2}} \\ \text { or } & =70 \mathrm{~cm} \times 70 \mathrm{~cm} \div 2 \div 2 \end{aligned} \\ & \qquad 4900 \mathrm{~cm}^{2} \div 2 \div 2 \\ &=2450 \mathrm{~cm}^{2} \div 2=\underline{1225 \mathrm{~cm}^{2}} \end{aligned}$ f) The perimeter of a square is 560 cm . What length is each side? What is its area? $\begin{aligned} & a=560 \mathrm{~cm} \div 4=\underline{140 \mathrm{~cm}} \\ & \begin{aligned} A=140 \mathrm{~cm} \times 140 \mathrm{~cm} & =70 \mathrm{~cm} \times 70 \mathrm{~cm} \times 2 \times 2 \\ & =4900 \mathrm{~cm}^{2} \times 2 \times 2 \\ & =9800 \mathrm{~cm}^{2} \times 2=\underline{19600 \mathrm{~cm}^{2}} \\ & 39 \mathrm{~min} \end{aligned} \end{aligned}$	Notes Individual calculation, but class kept together, then whole class review. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method of calculation but T shows the quick method of halving and doubling if no P suggests it.

		Lesson Plan 9
Activity ${ }^{7}$	PbY6a, page 9 Q. 5 Read: Work out Tommy's method and use it to calculate the area of these rectangles. BB: Allow Ps to think about it for a couple of minutes and to discuss with their neighboursr if they wish. Who thinks that they understand what Tommy has done? A, come and explain it to us. Who thought the same? Who has a different idea? Elicit that Tommy has halved the a value, ignoring the remainder, and doubled the b value until the a value is 1 , then he scored out the b value if the a value is an even number and added up the b values which are left. The sum is the area of the rectangle. Use this method to work out the areas of the rectangles in questions a) to c) in your Ex. Bks. Set a time limit or deal with one rectangle at a time. (If Ps are struggling, stop individual work and continue as a whole class activity.) Review with the whole class. Ps show areas on scrap paper or slates on command. Ps with correct result explain reasoning at BB. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $a=16 \mathrm{~m}, b=57 \mathrm{~m}$ b) $a=18 \mathrm{~m}, b=57 \mathrm{~m}$ c) $a=20 \mathrm{~m}, b=57 \mathrm{~m}$ Who can explain why Tommy's method works? Ask several Ps what they think, or leave the question open for homework. [Think of the a value as the number of rows of grid squares, and the b value as the number of squares in each row. Any even number of rows can be halved and the extra squares added to the end of the rows left so that b is twice as long but the area stays the same. Because the grid squares in each new shorter but wider rectangle were contained in the previous rectangle, the even values of b are scored out so that these grid squares won't be counted more than once. If there is an odd number of rows, when a is halved there will be one row over which cannot be added evenly to b, so only these extra rows are added to the final row in the rectangle where a is 1.]	Notes Individual trial first, then whole class discussion to establish the rule. Drawn on BB or use enlarged copy master or OHP If no P is on the right track, T gives hints. Extra praise for Ps who worked it out without help from T. Discussion, reasoning, agreement, praising Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising T directs Ps thinking if no P has an idea. Demonstrate on a pin board using elastic bands or draw diagram on BB. e.g. Agreement, praising
Homework	Factorise 10, 185, 360 and 1010 in your exercise book. Solution: $\begin{aligned} & \underline{10}=2 \times 5, \quad \underline{185}=5 \times 37, \quad \underline{360}=2^{3} \times 3^{2} \times 5, \\ & \underline{1010}=2 \times 5 \times 101 \end{aligned}$	Review before the start of Lesson 5. (More able Ps could be asked to list all the positive factors too.)

16		Lesson Plan 10
Activity Erratum In Pbs, 2nd g) should be h)	Mental and written calculations. Activities, consolidation Practice Book Y6a, page 10 Solutions: Q. $1 \quad$ a) $410.5+410.5+410.5+410.5=410.5 \times 4=\underline{1642}$ b) $7063.6-20.4-30.2=7063.6-50.6=\underline{7013}$ c) $160 \div 100 \times 5=1.6 \times 5=\underline{8}$ d) $12 \times 12+2 \times 10 \times 10=144+200=\underline{344}$ e) $5 \times(32+110) \div 5=32+110=\underline{142}$ f) $761 \times 100 \div 5 \div 2=761 \times 10=\underline{7610}$ g) $7867+435-128-207=7867+435-335=\underline{7967}$ h) $200.6-33.2 \times 3+899=200.6-99.6+899=101+899$ $=\underline{1000}$ Q. 2 a) $386+78+83+22+517=386+100+600=\underline{1086}$ b) $106-43+54-117=160-160=\underline{0}$ c) $1000-4 \times 25-8.09 \times 100=1000-100-809$ $=1000-909=\underline{91}$ d) $5792-76+300-16=6092-92=\underline{6000}$ e) $140.5+359=160.5+339$ f) $\underbrace{280 \div 5 \div 14}_{4} \times 25=100$ Q.3. a) $4.3,12.9,38.7,(116.1,348.3,1044.9,3134.7, \ldots)[\times 3]$ b) $250,50,10,(2,0.4,0.08,0.016,0.0032, \ldots) \quad[\div 5]$ c) $4575,4470,4365,(4260,4155,4050,3945, \ldots)[-105]$ d) $100.73,120.80,140.87,(160.94,181.01, \ldots) \quad[+20.07]$ Q. $4 \quad$ A: $P=4 \mathrm{~cm}$ B: $P=12 \mathrm{~cm}$ C: $P=28 \mathrm{~cm}$ D: $P=36 \mathrm{~cm}$ E: $P=52 \mathrm{~cm}$ F: $P=400 \mathrm{~cm}$ A $\sim \mathrm{B} \sim \mathrm{C} \sim \mathrm{D} \sim \mathrm{E} \sim \mathrm{F} \quad$ (All squares are similar.) Q.5. a) $A=30 \mathrm{~cm} \times 30 \mathrm{~cm}=900 \mathrm{~cm}^{2}$ b) $a=14.8 \mathrm{~cm} \div 4=3.7 \mathrm{~cm}$, $\begin{aligned} A=3.7 \mathrm{~cm} \times 3.7 \mathrm{~cm}=37 \mathrm{~mm} \times 37 \mathrm{~mm} & =1369 \mathrm{~mm}^{2} \\ & =\underline{13.69 \mathrm{~cm}^{2}} \end{aligned}$ c) $A=121 \mathrm{~cm}^{2}=11 \mathrm{~cm} \times 11 \mathrm{~cm} ; P=11 \mathrm{~cm} \times 4=\underline{44 \mathrm{~cm}}$ d) $A=1.69 \mathrm{~cm}^{2}=169 \mathrm{~mm}^{2}=13 \mathrm{~mm} \times 13 \mathrm{~mm}$ $a=13 \mathrm{~mm}=\underline{1.3 \mathrm{~cm}}$ e) $V=125 \mathrm{~cm}^{3}=5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}, e=\underline{5 \mathrm{~cm}}$	Notes

Week 3

16	R: Mental calculation C: Pencil and paper procedures: Multiplication, division (HTU \div (T) U] E: Larger numbers. Puzzles	$\begin{gathered} \text { Lesson Plan } \\ 12 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{12}=2 \times 2 \times 3\left(=2^{2} \times 3\right) \quad$ Factors: $1,2,3,4,6,12$ - $\underline{187}=11 \times 17$ Factors: 1, 11, 17, 187 (nice number) - $\underline{362}=2 \times 181 \quad$ Factors: 1, 2, 181,362 (nice) - $\underline{1012}=2 \times 2 \times 11 \times 23\left(=2^{2} \times 11 \times 23\right)$ Factors: 1, 2, 4, 11, 22, 23, 44, 46, 92, 253, 506, 1012	Notes Individual work, monitored, (helped) (or whole class activity) BB: 12, 187, 362, 1012 Calculators allowed Reasoning, agreement, selfcorrection, praising Join up the factor pairs for 1012
2	Missing digits Which digits are missing from these calculations? Ps come to BB or dictate to T , explaining reasoning with place-value detail. Class checks completed calculation mentally and agrees/disagrees. BB: a) b)	Whole class activity Written on BB or use enlarged copy master or OHP Reasoning, checking, agreement, praising
3	PbY6a, page 12 Q. 1 Read: Fill in the missing digits so that the results are correct. Set a time limit. Remind Ps to check their solutions. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) $+$8 7 6 5 3 4 5 6 1 2 2 2 b) $\begin{array}{r}9753 \\ \hline\end{array}$ $+\begin{array}{r}2 \mathbf{4} 6 \underline{8} \\ \hline 12221\end{array}$ c)7 7 7 7 -3 3 3 4 4 4 4 d) $\quad \underline{8} \underline{0} 80$	Individual trial, monitored (helped) (or whole class activity if Ps are not very able) Written on BB or use enlarged copy master or OHP Discussion, reasoning, checking, agreement, selfcorrection, praising

Week 3

		Lesson Plan 12
Activity 6	(Continued) b) Let's divide 8253 by 8 using short division. Ps come to BB to write the calculation, explain reasoning with place-value detail and check with reverse multiplication and addition. Class points out errors. BB: $\text { Check: } \begin{aligned} 1031 \times 8+5 & =8248+5 \\ & =8253 \end{aligned}$ T points to certain components and asks Ps to name them. (divisor, dividend, quotient, remainder)	Notes At a good pace Reasoning, checking, agreement praising In unison
7	PbY6a, page 12 Q. 4 Read: Practise division. Calculate the quotient and remainder. Check in your exercise book. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning with place-value detail. Class agreees/disagrees. Mistakes discussed and corrected. Solution: a)1 5 8 7 5 7 9 3 8 2 4 3 3 b) c) Check: $657 \times 6+4=3946$ $1587 \times 5+3=7938$ $900 \times 9+6=8106$	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by short time limit Reasoning, checking, agreement, self-correction praising Feedback for T
8	PbY6a, page 12 Q. 5 Read: Calculate the quotient and remainder. Check the results in your exercise book. Set a time limit. of 4 minutes. (Ps finished early could be asked to use another method of division in Ex. Bks.) Review with whole class. Ps could show quotients and remainders on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) b) c) Check s: a) $295 \times 25+7=7382$ b) $334 \times 29+10=9696$ c) $41 \times 75+16=3091$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit and extra task Reasoning with place-value detail, checking, agreement, self-correction, praising Who had time to write a different type of division? Come and show us. Deal with all cases (e.g. subtracting known multiples, short division, horizontal division) If disagreement, check results on a calculator.

16	R: Mental calculation C: Pencil and paper procedures for multiplication and division E: Word problems	Lesson Plan 13
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{13}$ is a prime number Factors: 1, 13 - $\underline{188}=2 \times 2 \times 47=2^{2} \times 47 \quad$ Factors: 1, 2, 4, 47, 94, 188 - $\underline{363}=3 \times 11 \times 11=3 \times 11^{2} \quad$ Factors: $1,3,11,33,121,363$ - $\underline{1013}$ is a prime number Factors: 1, 1013 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37 \times 37>1013$)	Notes Individual work, monitored, (helped) (or whole class activity) BB: 13, 188, 363, 1013 Calculators allowed Reasoning, agreement, selfcorrection, praising BB: 188 2 363 3 e.g. 94 2 121 11 47 47 11 11 1 1
2	Long multiplication Let's do this multiplication in different orders. T suggests the order each time. Ps come to BB to do the calculation or dictate what T should write, explaining reasoning with place-value detail, while rest of Ps write the calculation in Ex. Bks. BB: etc. Are any other orders possible? (Yes) How many different orders are there? T asks several Ps what they think and why. (Agree that $\underline{12}$ orders are possible, as for each of the two possible numbers as the multiplier, there are 6 different orders of multiplying by the 3 digits: BB: $1,2,3 ; 1,3,2 ; 2,1,3 ; 2,3,1 ; 3,1,2,3,2,1$ Agree that any of the 12 ways will give the correct product (as long as the digits are written in the correct place-value column).	Whole class activity Written on BB or SB or OHT, if possible on prepared grids, or use grids on copy master. Ps could have copies of grids on desks too. At a good pace Reasoning, agreement, praising Discussion Involve several Ps. Extra praise for Ps who give the correct number of different ways and the correct reasoning to support it.

176	R: Calculations C: Money, measures, real-life problems E: Eplaining reasoning clearly and succinctly	$\begin{gathered} \text { Lesson Plan } \\ 14 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $14=2 \times 7 \quad$ Factors: $1,2,7,14$ (nice number) - $\underline{189}=3 \times 3 \times 3 \times 7=3^{3} \times 7$ Factors: 1, 3, 7, 9, 21, 27, 63, 189 - $\underline{364}=2 \times 2 \times 7 \times 13=2^{2} \times 7 \times 11$ Factors: 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364 - $\underline{1014}=2 \times 3 \times 13 \times 13=2 \times 3 \times 13^{2}$ Factors: 1, 2, 3, 6, 13, 26, 39, 78, 169, 338, 507, 1014	Notes Individual work, monitored, (helped) (or whole class activity) BB: 14, 189, 364, 1014 Calculators allowed Reasoning, agreement, selfcorrection, praising BB: e.g. 364 2 1014 2 182 2 507 3 91 7 169 13 13 13 13 13 1 1 Listing of factors for 1014 can be done with the whole class. Ps join up the factor pairs.
2	Problems If I read out a problem, what are the first steps you must take to solve it? (Listen carefully, picture the story in our heads and note down the important data in our Ex. Bks.) What should you do after that? (Write a plan, estimate, calculate, check calculation, check that the result makes sense in the context and write the answer as a sentence.) T reminds Ps of any steps not mentioned. Deal with one problem at a time. T reads out problem, Ps solve it in Ex. Bks. and show results on scrap paper or slates on command. P answering correctly explains reasoning at BB. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. a) 75 pupils in Year 5 and 69 pupils in Year 6 went on a school trip. How many pupils went on the trip altogether? Plan: $75+69=74+70=\underline{144}$ (pupils) Answer: 144 pupils went on the school trip. b) If each pupil had to pay $£ 23$, what did they pay altogether? $\begin{aligned} \text { Plan: } & £ 23 \times 144 \quad E: £ 20 \times 150=£ 3000 \\ \text { or } & £ 23 \times 75+£ 23 \times 69(=£ 1725+£ 1587=\underline{£ 3312}) \end{aligned}$ Answer: The pupils paid $£ 3312$ altogether. c) A group of pupils from another school went to a concert. There were 73 Year 5 pupils and 22 members of the school choir. Some Year 5 pupils are in the school choir. How many pupils went to the concert? As we do not know if the Year 5 pupils who are in the choir are included in the 22 choir members who went to the concert, we can only say that it is certain that: - not more than $73+22=\underline{95}$ pupils went to the concert; and - not less than 73 pupils went to the concert (if all 22 are Y5 Ps). Answer: At least 73, and not more than 95, pupils went to the concert.	Whole class discussion on how to solve word problems Involve several Ps. Agreement, praising Whole class activity but individual calculation T repeats problem while walking around the class to give Ps time to think and calculate. Responses shown in unison. Reasoning, agreement, selfcorrection, praising C : T asks Ps with different responses to explain their reasoning. Extra praise for Ps who wrote '?' or an inequality on slates. (if the 22 are not Y 5 Ps) BB: $73 \leq n \leq 95$ (where n is a natural number)

		Lesson Plan 14
Activity 3	(Continued) d) Peter has saved $£ 735$, which is 5 times as much as the amount that Paul has saved. How much money has Paul saved? Plan: $£ 735 \div 5=\underline{£ 147}$ Check: $£ 147 \times 5=£ 735$ V Answer: Paul has saved $£ 147$. e) Ann has $£ 214$ in her bank account, which is one fifteenth of the money in Dave's account. How much is in Dave's account? Plan: $£ 214 \times 15$ $E: £ 200 \times 15=£ 3000$ Answer: Dave has $£ 3210$ in his account. 30 min	Notes C : C :
4	PbY6a, page 14 Q. 2 Read: Write a plan, estimate, calculate and check your answer in your exercise book. Write the answer in a sentence here. Underline any data not needed in the calculation. Set questions a) and b) under a time limit and review with the whole class as usual. Agree on the irrelevant data. Then do questions c) and d) with the whole class. Ps come to BB to write plans and do calculations. T helps or prompts as necessary. Ps write solutions in Ex. Bks. too. Agree on which data are irrelevant. Ps write answers as sentences in Pbs. Solutions: e.g. a) Christopher bought a painting for $£ 2600$. Then he sold it $\underline{3 \text { weeks later for } £ 2800 \text {. After another } 2 \text { weeks he changed }}$ his mind and bought the painting back for $£ 3100$. After 1 week he sold the painting again for $£ 3200$. Did he make a profit or a loss on the painting and how much was it? $\text { Plan: } \begin{aligned} -£ 2600+£ 2800-£ 3100+£ 3200 & =£ 6000-£ 5700 \\ & =\underline{£ 300} \\ \text { or }(2800-2600)+(3200-3100)= & 200+100=\underline{300} \end{aligned}$ Answer: He made a profit of $£ 300$ on the painting. b) A box $\underline{15 \mathrm{~cm}}$ deep holds 13 kg of tomatoes and a box $\underline{20 \mathrm{~cm}}$ deep holds 17 kg of tomatoes. What is the total price of all the tomatoes in the 2 boxes if 1 kg of tomatoes costs $£ 2.25$? Plan: $(13+17) \times £ 2.25=30 \times 225 \mathrm{p}=3 \times 2250 \mathrm{p}$ $=6750 \mathrm{p}=\underline{£ 67.50}$ Answer: The total cost of the tomatoes is $£ 67.50$.	Individual work for a) and b), monitored, helped Questions written on BB or use enlarged copy master Ps read questions themselves and solve them, write answers as sentences in Pbs, then show results on scrap paper or slates in unison on command. Ps answering correctly explain solutions at BB. Class agrees/ disagrees. Mistakes discussed and corrected. Praising Whole class activity for c) and d) Discussion, reasoning, checking, agreement Accept any correct method of solution. Praising, encouragement only

		$\begin{gathered} \text { Lesson Plan } \\ 15 \end{gathered}$
Activity	Factorising 15, 190, 365 and 1015. Revision, activities, consolidation PbY6a, page 15 Solutions: a) Q. 1 i) $51 \underline{8} 3+659 \underline{9}=11782$ iv) $5273+6 \underline{6} 98=11971$ ii) $5173+6 \underline{498}=11671$ v) $5173+6 \underline{998}=11271$ iii) $15173+598=15771$ vi) $51 \underline{8} 6+65 \underline{8} 5=11771$ b) $\quad 10 \quad 10 \quad 10$ i) $7405-2 \underline{9} 66=4439$ iv) $7 \underline{5} 05-\underline{3066}=4439$ $\begin{array}{r}22_{1} 6_{1} 6 \\ \hline 453 \\ \hline\end{array}$ ii) $7 \underline{5} 05-2 \underline{7} 66=4739$ v) $8405-\underline{1} 866=6539$ iii) $74 \underline{10}-286 \underline{5}=4545$ vi) $74 \underline{95}-2 \underline{956}=4539$ Q. 3 a) (other solutions are possible) are possible) d) Q. 4 a) i) $46121+3875+56203=\underline{106199}$ ii) $289742-148867=\underline{140875}$ iii) $888+99 \times 9=888+891=\underline{1779}$ R.i) $305117+4999999=5305116$ ii) $375215-64837=\underline{310378}$ iii) $4326 \div 70=\underline{61, r} 56$ S.i) $7013+35+9+2663=\underline{9720}$ ii) $127564-46572=\underline{80992}$ iii) $3580 \times 28=\underline{100240}$ T. $5 \quad$ a) $£ 50-4 \times(£ 7.25+£ 1.30)=£ 50-4 \times £ 8.55$ $=£ 50-£ 34.20=£ 15.80$ Answer: Tom had $£ 15.80$ left. b) $54 \times 15=54 \times 10+54 \times 5=540+270=\underline{810}$ (buttons) Answer: Gran used to have 810 buttons in her sewing box. c) Oranges: $852 \div 6 \times 16=142 \times 16=\underline{2272}(\mathrm{~g})$ Sugar: $2.7 \div 6 \times 16=0.45 \times 16=4.5+2.7=\underline{7.2}(\mathrm{~kg})$ Answer: She would need 2 kg 272 g of oranges and 7.2 kg of sugar.	Notes $\underline{15}=3 \times 5$ Factors: $1,3,5,15$ $\underline{190}=2 \times 5 \times 19$ Factors: 1, 2, 5, 10, 19, 38, $95,190$ $\underline{365}=5 \times 73$ Factors: 1, 5, 73, 365 (nice) $\underline{1015}=5 \times 7 \times 29$ Factors: 1, 5, 7, 29, 35, 145, 203, 1015 (or set factorising as homework at the end of Lesson 14 and review at the start of Lesson 15) Tom should be included too, so the costs are for 4 people. $(=2 \mathrm{~kg} 272 \mathrm{~g})$

16	R: Multiples and factors. Odd and even numbers C: Properties of natural numbers. Simple tests for divisibility E: Problems	Lesson Plan 16
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{16}=2 \times 2 \times 2 \times 2=2^{4} \quad$ Factors: $1,2,4,8,16$ - $\underline{191}$ is a prime number Factors: 1,191 - $\underline{366}=2 \times 3 \times 61 \quad$ Factors: $1,2,3,6,61,122,183,366$ - $\underline{1016}=2 \times 2 \times 2 \times 127=2^{3} \times 127 \quad 1016 \mid 2$ Factors: 1, 2, 4, 8, 127, 254, 508, 1016 T revises the concepts and vocabulary. We say that 8 is a a factor of 1016 because $\underline{8} \times 127=1016$, or because 1016 divided by 8 equals 127 and there is no remainder (or the remainder is zero). We say that 2 and 127 are prime factors of 1016 because they are factors which are prime numbers.	Notes Individual work, monitored, (helped) (or whole class activity) BB: 16, 191, 366, 1016 Calculators allowed Reasoning, agreement, selfcorrection, praising BB: e.g.
2	Divisibility 1 a) i) Let's list the multiples of 6 from the set of integers which are not negative. Ps dictate what T should write. BB: $0,6,12,18,24,30,36,42,48,54,60,66,72, \ldots$ T: We can say that 42 is a multiple of 6 , or 42 is exactly divisible by 6 , or 6 is a factor of 42 . Elicit/write the general formula for multiples of 6 . BB: $6 \times n$, or $6 n$, where n is an integer which is not negative ii) Let's list the multiples of 6 from the set of integers. Ps dictate what T should write. BB: ..., $-36,-30,-24,-18,-12,-6,0,6,12,18, \ldots$ Elicit the general formula for such numbers. BB: $6 \times n$, or $6 n$, where n is an integer. b) Let's list the multiples of other natural numbers from the set of integers. T says each number and Ps dictate its multiples then give a general formula for them using n, where n is an integer, and check that the formula is correct by giving an example. BB: Multiples of: $\begin{array}{ll} 0,0,0, \ldots & \text { General formula: } \\ \ldots,-3,-2,-1,0,1,2,3, \ldots & 1 \times n=0 n=0 \\ \ldots,-3, & 2 \times n=2 n \\ \ldots,-4,-2,0,2,4,6,8, \ldots & 3 \times n=3 n \\ \ldots,-9,-6,-3,0,3,6,9, \ldots & 4 \times n=4 n \end{array}$	Whole class activity At a good pace Agreement, praising Feedback for T Elicit that non-negative integers are the natural numbers and zero. T shows it if Ps cannot form it. Examples: e.g. if $n=5$ $\begin{aligned} & 0 \times 5=0 \\ & 1 \times 5=5 \\ & 2 \times 5=10 \\ & 3 \times 5=10 \\ & 4 \times 5=20 \end{aligned}$

176		Lesson Plan 16
Activity 2	(Continued) c) What is the rule for this sequence? Who agrees? Who can think of another way to say the rule? BB: $\quad 5,11,17,23,29,35,41,47, \ldots$ e.g. P_{1} : Starting at 5 and increasing by 6 , or +6 P_{2} : The non-negative integers which give a remainder of 5 when divided by 6 . T : The general rule can be written like this. BB: $6 \times n+5=6 n+5$, where $n=0,1,2,3, \ldots$ d) This table shows the possible remainders after dividing by a natural number. What is the natural number? (6) Let's put these numbers in the correct place in the table. Ps come to BB to write numbers in table, explaining reasoning and doing divisions at side of BB when necessary. Class agrees/disagrees. BB: $5,27,300,19,43,200,64,1111,126,449$ Who can tell me true statements about the table? e.g. '64 is not a multiple of 6 ' or ' 6 is not a factor of 64 ' or ' 64 is not exactly divisible by 6^{\prime}	Notes T gives hint about remainder if Ps cannot think of it. Table drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising BB:
3	PbY6a, page 16 Q. 1 Read: Show in the graphs the remainders obtained when whole numbers which are not negative and not greater than 15 are: a) divided by 2 b) divided by 5 . Set a time limit of 3 minutes. Ps mark the remainders with dots. Review with whole class. Ps come to BB to complete the graphs, explaning reasoning. Class agrees/disagrees. Mistakes corrected. Solution: Ps say what they notice about each graph. e.g. a) Dots on the x axis show even numbers, or multiples of 2 ; dots on the '1' horizontal grid line show odd numbers; a remainder greater than 1 is impossible after dividing by 2 , so ' 2 ' to ' 5 ' on the y axis are not needed. b) There are no dots on the ' 5 ' grid line, as it is impossible to have a remainder greater than 4 after dividing by 5 . Dividends with dots on the x axis are multiples of 5 . What are the possible remainders after dividing by 10 ?	Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Whole class discussion Involve several Ps. Agreement, praising $(0,1,2,3,4,5,6,7,8,9)$

176		Lesson Plan 16
Activity 4	PbY6a, page 16 Q. 2 Read: Use the regular pentagon and decagon to help you to complete the table. What do the polygons have to do with the table? Ps come to BB to explain, referring to diagram. T prompts if necessary. Elicit that the vertices on the pentagon (decagon) show the 5 (10) possible remainders after dividing by 5 (10). Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Which natural numbers are exactly divisible by: - 2 (even numbers, i.e. numbers which have units digit $0,2,4,6$ or 8) - 5 (Numbers which have units digit 0 or 5) - 10? (Numbers which have units digit 0)	Notes Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Initial whole class discussion to clarify the task BB: pentagon: 5 vertices decagon: 10 vertices Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T Whole class activity Agree that only the units digit needs to be taken into account when determining whether a number is exactly divisible by 2,5 or 10 .
5	PbY6a, page 16 Q. 3 Read: Follow the pattern. Fill in the missing numbers and words. Do part a) as individual work under a time limit, then review and correct mistakes before doing part b) with the whole class. Ps could write each missing word on scrap paper or slates and show on command. T writes agreed words in sentence on BB, while Ps write them in Pbs. Ps say the sentence together. Solution: a) $\text { i) } \begin{aligned} 7 & =0 \times 10+7 \\ 33 & =3 \times 10+3 \\ 60 & =6 \times 10+0 \\ 85 & =\underbrace{\boxed{8} \times 10}+5 \\ & \text { Divisible by } \\ & 10,2 \text { and } 5 \end{aligned}$ $\text { ii) } \left.\begin{array}{rl} 704 & =70 \\ 4358 & =435+\boxed{4} \\ 30521 & =405+\boxed{3052} \times 10+\boxed{1} \\ 285029 & =\underbrace{28502}_{\begin{array}{c} \text { Divisible by } \\ 10,2 \text { and } 5 \end{array}} \times 10+9 \end{array}\right\}$ b) When a natural number is divided by 10,2 or 5 , the remainder is the same as when its units digit is divided by 10,2 or 5 . T has extra sentence already prepared on BB or OHT. Ps come to BB or dictate the missing words. Class agrees/disagrees. c) Natural numbers which are exactly divisible by: i) 10 have units digit \square ii) 5 have units digit \square 0 or \square 5 iii) 2 have units digit \square 0 or 2 or \square \square 4 \square 6 \square 8	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Agree that we only need to look at the units digit because any whole 10 is exactly divisible by 2,5 and 10 . Whole class activity Written on BB or SB or OHT At a good pace Agreement, praising. Ps could write sentence in Ex. Bks. too.

		Lesson Plan 16
Activity 6	PbY6a, page 16 Q. 4 Read: Follow the pattern. Fill in the missing numbers. Write a sentence about what you notice. Set a time limit. Ps write sentence in Ex. Bks. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. T asks several Ps to read out their sentences. Class decides whether or not it is true. Ps with incorrect or vague sentences wrrite them again correctly. Solution: $\text { a) } \begin{aligned} 7 & =0 \times 100+7 \\ 33 & =0 \times 100+33 \\ 200 & =2 \times 100+0 \\ 375 & =3 \times 100+75 \\ 524 & =\underbrace{5} \times 100+24 \\ & =7 \\ & \text { Divisible by } \\ & 100,4 \text { and } 25 \end{aligned}$ $\text { b) } \begin{aligned} & 2176=721 \times 100+76 \\ & 7390=73 \\ & 28408=284 \\ & 11950=100+90 \\ & 678462=\underbrace{6784}_{\begin{array}{c} \text { Divisible by } \\ 100,4 \text { and } 25 \end{array}} \times 100+50 \\ & 670 \\ & \hline 62 \end{aligned}$ Sentences: e.g. When a natural number is divided by 100,4 or 25 , the remainder is the same as when its last two digits are divided by 100,4 or 25 . or Natural numbers which are exactly divisible by 100 end in $\underline{00}$. or Natural numbers which are exactly divisible by 25 end in $\underline{00}$ or $\underline{25}$ or $\underline{50}$ or $\underline{55}$.	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Extra praise for Ps who noticed that they could use the sentence in Q. 3 b) with appropriate amendments. Agree that we only need to look at the last 2 digits because any whole 100 is exactly divisible by 100,4 and 25 . If Ps are not very able, T could have sentences written on BB or OHT with appropriate words missing for Ps to fill in (e.g. as underlined). Praising, encouragement only
7	Divisibility 2 a) Study these numbers. BB: 53, 504, 6402, 72 331, 517, 966, 2040 Which of them have a remainder of: i) 1 when divided by 2 (53, 72331,517 , i.e. odd numbers) ii) 0 when divided by 2 (504, 6402, 966, 2040, i.e even nos.) iii) 0 when divided by 5 (2040) iv) 1 when divided by $5 \quad(72331,966)$ v) 2 when divided by 5 ? $(6402,517)$ After each description, Ps dictate the appropriate numbers. Class agrees/disagrees. b) T has a new list of numbers already prepared. BB: $0,6,8,5,25,40,50,72,78,100,102,125$, $722,755,2600,14550,64316,80000$ Which of them are exactly divisible by: i) $100(100,2600,80000$, i.e. numbers ending in 00$)$ ii) $4(8,40,72,100,2600,64316,80000)$ iii) 25 ? $(25,50,100,125,2600,14550,80000)$	Whole class activity Numbers written on BB or SB or OHT T chooses Ps at random. At a good pace Ps say why they have chosen certain numbers. Class points out errors. Elicit that in: a) only the units digit needs to be taken into account as any whole 10 is divisible by 2 and by 5 b) only the units and tens digits need to be taken into account, as any whole hundred is divisible by 4 , 25 and 100. Praising, encouragement only

16	R: Calculations C: Multiples, factors, remainders. Tests of divisibility (3 and 9) E: Deduction and reasoning. Tests of divisibility: sum of digits	$\begin{gathered} \text { Lesson Plan } \\ 17 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 17 is a prime number Factors: 1, 17 - $\underline{192}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3=2^{6} \times 3$ Factors: 1, 2, 3, 4, 6, 8, 12, $192,96,64,48,32,24,16$ - $\underline{367}$ is a prime number Factors: 1,367 (as not exactly divisible by $2,3,5,7,11,13,17$ and 19 and $23 \times 23>367$) - $\underline{1017}=3 \times 3 \times 113=3^{2} \times 113$ Factors: 1, 3, 9, 113, 339, 1017	Notes Individual work, monitored, (helped) (or whole class activity) BB: 17, 192, 367, 1017 Calculators allowed Reasoning, agreement, selfcorrection, praising Feedback for T $\begin{array}{lr\|ll\|l} & 192 & 2 & & \\ \text { e.g. } & 96 & 2 & & \\ & 48 & 2 & & \\ & 24 & 2 & & \\ & 12 & 2 & 1017 & 3 \\ & 6 & 2 & 339 & 3 \\ & 3 & 3 & 113 & 113 \\ & 1 & & 1 & \end{array}$
2	Remainders 1 a) If we divide each of these numbers by 5 , what is the remainder? Ps come to BB to explain reasoning (or do a division) and to write the remainder in a circle below the numbers. Class points out errors. BB: 315, 608, 512, 828, 41, 63, 15, 9, 3, 4 (0) (3) (2) (3) (4) 3 (3) b) Let's do these operations. Ps come to BB or dictate what T should write. Class points out errors. If we divide each operation by 5 , what is the remainder? Ps come to BB to divide each term and the result and to write the remainders below. What do you notice? BB: i) $\begin{aligned} & 315+608=(923) \\ & 0+3 \rightarrow 3 \end{aligned}$ ii) $608 \times 41=(24928)$ $\text { (3) } \times(1) \rightarrow 3$ iii) $828-315=(513)$ iv) $315 \times 63=(19845)$ $\text { (3) }-(0) \rightarrow 3$ (0) $\times 3 \rightarrow(0)$ v) $\begin{aligned} & 512 \times 9=(4608) \\ & 2 \times 4 \rightarrow 3 \end{aligned}$ vi) $\begin{aligned} & 828 \times 3-512 \times 4=(2484-2048=436) \\ & 3 \times 3-2 \times 4 \rightarrow 4-3 \rightarrow(1) \end{aligned}$ Ps try to put what they noticed into sentences, with T's help. e.g. - The result's remainder can be calculated from the remainders of the components. - The sum's remainder is equal to the sum of the remainders of the addition terms. - The difference's remainder is equal to the difference between the remainders of the reductand and subtrahend. - The product's remainder is equal to the remainder from the product of the factors' remainders.	Whole class actvity Numbers and operations already written on BB or SB or OHT At a good pace Reasoning, agreement, praising (Calculators might be allowed for more difficult calculations.) Discussion. Involve several Ps. (Operation signs and arrows drawn in after Ps have pointed out the connections.) Note that in multiplication, the product of the factors' remainders is divided by 5 , and its remainder gives the final result's remainder. e.g. $\text { v) } \begin{aligned} & 2 \times 4=8 \\ & 8 \div 5=1, r \underline{3} \end{aligned}$ Praising, encouragement only Discuss what to do when the difference between remainders is negative, as the final remainder cannot be negative! (Add 5 to negative remainders.) e.g. BB: $32-14=18$

		Lesson Plan 17
Activity 6	Completing sentences Let's fill in the words and numbers missing from these sentences. Ps come to BB or dictate what T should write. Who agrees? Who thinks something else? Class agrees on which items are missing. BB: a) When 7000 is divided by 9 or by 3 , the remainder is the same as when 7 is divided by 9 or by 3 . b) When 400 is divided by 9 or by 3 , the remainder is the same as when 4 is divided by 9 or by 3 . c) When 50 is divided by 9 or by 3 , the remainder is the same as when 5 is divided by 9 or by 3 . d) When 8 is divided by 9 , the remainder is itself, but when 8 is divided by 3 the remainder is 2. e) When 7458 is divided by 9 , the remainder is the same as when $7+4+5+8=24$ is divided by 9 , so the remainder is 6 . f) When 7458 is divided by 3 , the remainder is the same as when $7+4+5+8=24$ is divided by 3 , so the remainder is 0 .	Notes Whole class activity Sentences written on BB or use enlarged copy master or OHP At a good pace Agreement, praising Elicit the remainders too. a) $\begin{aligned} & 7000 \div 9 \rightarrow \text { r } 7 \\ & 7000 \div 3 \rightarrow \text { r } 1 \end{aligned}$ b) $\begin{aligned} & 400 \div 9 \rightarrow r 4 \\ & 400 \div 3 \rightarrow \text { r } 1 \end{aligned}$ c) $\begin{aligned} & 50 \div 9 \rightarrow \text { r } 5 \\ & 50 \div 3 \rightarrow \text { r } 2 \end{aligned}$ T could also point out that the digits of 24 can also be added: e) $24 \rightarrow 2+4=$ (6) f) $24 \rightarrow 2+4=6 \rightarrow(0)$
7	PbY6a, page 17 Q. 3 Read: Circle in red the numbers which are exactly divisible by 9. Underline in green the numbers which are exactly divisible by 3. Write a sentence about what you notice in your exercise book. Set a time limit of 3 minutes. Review with the whole class. Ps come to BB or dictate to T, explaining reasoning (by adding the digits and dividing their sum). Class agrees/disagrees. Mistakes discussed and corrected. T chooses a few Ps to read out their sentences. Who wrote much the same? Who wrote something else? etc. Solution: 534 Elicit that: Numbers marked in green and red are multiples of both 3 and 9. Numbers marked in green or red are multiples of 3 .	Individual work, monitored, helped Numbers written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection praising Accept and praise all valid points made in Ps' sentences. Extra praise for creative thinking! Reasoning: e.g. $555555555 \rightarrow 45 \rightarrow 9$ so divisible by 3 and by 9 ; $56418 \rightarrow 24 \rightarrow 6$ so divisible by 3 but not by 9 ; etc.

		Lesson Plan 18
Activity 6	Problem 2 Listen carefully, note the data in your Ex. Bks and try to solve this problem. Set a time limit of 3 minutes. A bus leaves the station every 6th minute and a train leaves the station every 8th minute. At exactly mid-day, a bus and a train leaves the station at the same time. At what times after that will a bus and a train leave the station together? Ps who have an answer, or know what to do come to BB to explain their reasoning. Who agrees? Who would do it another way? etc. If no P is on the right track, T gives hints. Ps write solution in Ex. Bks. too. e.g. BB: Bus: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ... (min) (i.e. the positive multiples of 6) (i.e. the positive multiples of 8) Elicit that they will leave together every 24 minutes after 12 noon. Ps dictate the exact times and T writes them on BB. BB: $12: 24,12: 48,13: 12,13: 36,14: 00,14: 24,14: 48, \ldots$ Answer: The bus and train will leave the station every 24 minutes after mid-day.	Notes Individual trial first, monitored (helped) T repeats slowly to give Ps time to think anddiscuss. Discussion, reasoning, selfcorrection, praising Extra praise for Ps who solve the problem without help. Ps underline the common multiples (i.e. the positive multiples of 24) or $6=\underline{2} \times 3$ $8=\underline{2} \times 2 \times 2$ Smallest common multiple: $2 \times 2 \times 2 \times 3=\underline{24}$ Agree on the correct form of words for the answer.
7	PbY6a, page 18, Q. 3 T reads out one part at a time and Ps show required number on slates or scrap paper on command. Ps answering correctly explain to Ps who were wrong. Ps can list factors and multiples in Ex. Bks. a) Which positive whole number is the greatest common factor of: i) 1 and 8 (1) ii) 16 and 24 (8) iii) 8 and 15 (1) iv) 15 and 45? Reasoning: e.g. ii) factors of $16: 1,2,4,(8,16$ factors of 24: $\underline{1}, \underline{2}, 3,4,6,8,12,24$ $\begin{equation*} \text { or } 16=2 \times \overbrace{\underline{2} \times \underline{2} \times \underline{2}}^{8} \tag{15} \end{equation*}$ so greatest common factor of 16 and 24 is 8 . b) Which natural number is the smallest common multiple of: i) 1 and 8 (8) ii) 16 and 24 (48) iii) 8 and 15 (120) iv) 15 and 45? (15) Reasoning: e.g. iv) multiples of $15: 15,30,45.4$ multiples of 45: 45, $90, \ldots$ $\text { or } 45=3 \times \underline{15}$ so smallest common multiple of 15 and 45 is 15 . 45 min	Whole clas activity Responses shown in unison. Reasoning, agreement, praising Ps could write agreed answers in Pbs. as a future reminder. Feedback for T [To Ts only 8 and 15 have one common factor: 1 , so they are relative primes (or are coprime) and their smallest common multiple is: $8 \times 15=\underline{120}]$ Elicit that natural numbers are the positive whole numbers.

	R: Calculation C: Natural numbers and their properties E: Problems	Lesson Plan 19
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 19 is a prime number - $\underline{194}=2 \times 97$ (nice) (and 97 is not exactly divisible by $2,3,5$ or 7 and $11 \times 11>97$) - $\underline{369}=3 \times 3 \times 41=3^{2} \times 41$ Factors: 1, 3, 9, 41, 123, 369 - $\underline{1019}$ is a prime number Factors: 1, 1019 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37 \times 37>1019$)	Notes Individual work, monitored, (helped) (or whole class activity) BB: 19, 194, 369, 1019 Calculators allowed Reasoning, agreement, selfcorrection, praising Feedback for T $\begin{array}{rr\|lr\|c} & 194 & 2 & 369 & 3 \\ \text { e.g. } & 97 & 97 & 123 & 3 \\ & 1 & & 41 & 41 \end{array}$
2	PbY6a, page 19 Q. 1 Read: Write T if the statement is true and F if it is false. Write examples or counter examples in your exercise book. Set a time limit of 5 minutes. Review with whole class. T chooses a P to read out the statement and Ps show T or F on scrap paper or slates on command. Ps with different responses give examples or counter examples and class decides who is correct. Mistakes corrected in Pbs. Solution: a) If a natural number is a multiple of 10 , it is also a multiple of 5 . (e.g. 20, 70, 100, and there are no counter examples) b) If a natural number is exactly divisible by 5 , it is a multiple of 10 . (e.g. 15 is exactly divisible by 5 , but is not a multiple of 10) c) If a natural number is exactly divisible by 5 and by 2 , it is a multiple of 10 . (e.g. 10, 40, divisible by 5, 2 and 10 ; no counter examples) d) If a natural number is a multiple of 9 , it is also a multiple of 3 . (e.g. 18 is a multiple of 9 and of 3 ; no counter examples) e) If a natural number is a multiple of 3 , it is also a multiple of 9 . (e.g. 12 is a multiple of 3 , but not of 9) f) If a natural number is exactly divisible by 3 and by 5, it is also a multiple of 15 . (e.g. 30 is divisible by 3,5 and 15 ; no counter examples) g) If a natural number is a multiple of 4 and of 6 , it is also a multiple of 24. (e.g. 36 is a multiple of 4 and of 6 , but not of 24)	Individual work, monitored, helped (or whole class activity) Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising Elicit that only one counter example is needed to prove that a statement is false.

		Lesson Plan 19
Activity 3	(Continued) d) Complete the numbers so that each number is divisible by 5 and by 4. Elicit that the numbers will also be divisible by $4 \times 5=20$. 72 \square 43 \square 6 \square $\underline{5}$ $\underline{33}$ 1 000 40 None None Any digit, but possible the thousand 80 possible digit $\neq 0$.	Notes [4 and 5 are relative primes, i.e. they have only one common factor, 1 so their smallest common multiple is $4 \times 5=20$] Elicit that any whole 100 is divisible by 4 and by 5 .
4	PbY6a, page 19 Q. 3 Read: Below each number, write the remainder when it is divided by 6 . Ps dictate the remainders and T writes on BB, Ps in Pbs . BB: $24 \begin{array}{lllllll}24 & 26 & 27 & 28 & 29 & 30\end{array}$ (0) (1) (2) (3) (4) (5) (0) Deal with one question at a time or set a time limit. Ps read the questions themselves and write the missing numbers in Pbs . (Ps can check their answers in their Ex. Bks.) Review with the whole class. Ps dictate their numbers. Who agrees? Who found different numbers? Are any other numbers possible? Agree on the necessary criteria. Ps dictate other possible numbers and T writes on BB . Class agrees/disagrees. Mistakes discussed and corrected. Solution: Select from these 2-digit numbers: a) two numbers so that their sum is divisible by 6 Choose numbers with remainders which sum to a multiple of 6 . $\begin{array}{lll} \text { e.g. } 24+30=54 & \text { or } \quad 25+29=54 & \text { or } \quad 26+28=54 \\ (0)+(0) \rightarrow(0) & (1)+(5) \rightarrow(0) & (2)+(4) \rightarrow(0) \end{array}$ b) two numbers so that their difference is divisible by 6 Choose numbers with remainders which are 0 . (as 0 is the only possible difference in remainders which is a multiple of 6) $\begin{aligned} & 24-30=6 \\ & (0)-(0) \rightarrow(0) \end{aligned}$ c) two numbers so that their product is divisible by 6 Choose numbers with remainders whose product is a multiple of 6 , including zero. e.g. $24 \times$ any of the numbers or $30 \times$ any of the numbers $(0) \times$? $\rightarrow(0)$ $(0) \times$? $\rightarrow(0)$ or $26 \times 27=702$ or $\quad 27 \times 28=756$ $(2) \times(3) \rightarrow(0)$ (3) $\times(4) \rightarrow(0)$	Individual work, monitored, helped Numbers written on BB or SB or OHT Agreement, praising If done under a time limit, ask more able Ps to find as many numbers as they can in their Ex. Bks. Encourage a logical listing. Agreement, self-correction, priasing Extra praise for Ps who found all the possible numbers without help.

		Lesson Plan 19
Activity 4	(Continued) d) three numbers so that their sum is divisible by 6 Choose numbers with remainders which sum to a multiple of 6 . e) three numbers so that their sum is not divisible by 6 Choose numbers with remainders which do not add up to a multiple of 6 . f) three numbers so that their product is divisible by 6 Choose numbers with remainders whose product is a multiple of 6 . e.g. $24 \times$ any other two or $30 \times$ any other two $(0) \times$? \times ? $\rightarrow(0)$ $(0) \times ? \times ? \rightarrow(0)$ or $25 \times 26 \times 27 \quad$ or $25 \times 27 \times 28$ (1) $\times(2) \times(3) \rightarrow(0)$ (1) $\times(3) \times(4) \rightarrow(0)$ or $26 \times 27 \times 28 \quad$ or $26 \times 27 \times 29$ $(2) \times(3) \times(4) \rightarrow(0)$ (2) $\times(3) \times(5) \rightarrow(0)$ g) three numbers so that their product is not divisible by 6 Choose numbers with remainders whose product is not a multiple of 6 . $\begin{array}{lll} \text { e.g. } \begin{array}{l} 25 \times 26 \times 28 \\ (1) \times(2) \times(4) \rightarrow(2) \end{array} \text { or } & \begin{array}{l} 25 \times 26 \times 29 \\ (1) \times(2) \times(5) \rightarrow(4) \end{array} \\ \text { or } \quad \begin{array}{l} 25 \times 27 \times 29 \\ \\ (1) \times(3) \times(5) \rightarrow(3) \end{array} \text { or } & \begin{array}{l} 25 \times 28 \times 29 \\ (1) \times(4) \times(5) \rightarrow(2) \end{array} \end{array}$	Notes or $26+28+30=84$ $(2)+(4)+(0) \rightarrow(0)$ or $27+28+29=84$ $(3)+(4)+(5) \rightarrow(0)$ (There are 28 different combinations. Interested Ps might like to find them all for homework.) or $27 \times 28 \times 29$ (3) $\times(4) \times(5) \rightarrow(0)$ or $\begin{aligned} & 26 \times 28 \times 29 \\ & (2) \times(4) \times(5) \rightarrow(4) \end{aligned}$

		Lesson Plan 19
Activity 5	PbY6a, page 19 Q. 4 Read: Complete the numbers so that the result of each operation is eactly divisible by 7. Set a time limit of 6 minutes. Remind Ps about using remainders to work out the digits, as in previous question. Ps can write necessary calculations and check their results in Ex. Bks. Review with whole class. Ps could show missing digits on scrap paper or slates on command. Ps with different numbers explain reasoning at BB. Class decides who is correct. Mistakes discussed and corrected. Solution: a) $1237+73 \underline{7}(=1974)$ $(5)+(\underline{2}) \rightarrow(0)$ or $1237=700+490+42+5$ b) $1237-73 \underline{3}$ (= 504) c) $1237 \times 1 \underline{4}(=17318)$ (5) $-(\underline{5}) \rightarrow(0)$ $(5) \times(\underline{0}) \rightarrow(0)$ d) $1237+4 \underline{0}+\underline{46}(=1323)$ or $1237+4 \underline{1}+\underline{6} 6(=1344)$ $(5)+(\underline{5})+(\underline{4}) \rightarrow(0)$ $(5)+(\underline{6})+(\underline{3}) \rightarrow(0)$ or $1237+4 \underline{2}+\underline{16}(=1295)$ or $1237+4 \underline{4}+\underline{56}(=1337)$ $(5)+(\underline{0})+(\underline{2}) \rightarrow(0)$ $(5)+(\underline{2})+(\underline{0}) \rightarrow(0)$, etc. 39 min	Notes Individual trial first, monitored, helped (revert to whole class activity if Ps are struggling, or start as whole class activity if Ps are not very able, with T directing Ps' thinking) Numbers written on BB or SB or OHT Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising In d) there are 13 different solutions - accept any correct one but deal with all cases found by Ps. (Interested Ps could find all 13 for homework.)
6	PbY6a, page 19. Q. 5 Read: Decide on the answers by trials or by reasoning but without doing a calculation. Deal with one part at a time. T reads out each question, gives Ps a minute to think about it and try it in Ex. Bks. then Ps write Y or N (or a number for e)) on scrap paper or slates on command. Ps with different responses explain their reasoning with examples or counter examples. Class decides who is correct. Ps write agreed Yes or No beside questions in Pbs. Solution: a) Could the product of 2 successive natural numbers be 999?(No) (The product of an even and an odd number is even.) b) Could the sum of 2 successive natural numbers be 2000? (No) (The sum of an even and an odd number is odd.) c) Could the sum of 3 successive natural numbers be 2001? (Yes) (The sum is exactly divisible by 3 , and $3 x=(x-1)+(x)+(x+1)$ d) Could the products of the digits of a natural number be: i) $26(\mathrm{No})$ (As $26=2 \times \underline{13}$, and 13 is a 2-digit number) ii) 35? (Yes) (As $35=7 \times 5$) e) How many zeros are there at the end of the result of: $\begin{equation*} 20 \times 21 \times 22 \times 23 \times 24 \times 25 ? \tag{3} \end{equation*}$ (e.g. factor 10 is in 20 , factor 4 is in 24 , and $10 \times 4 \times 100 \times 25=1 \underline{000}$ but none of the factors left can make another 10.) f) Can 4 natural numbers have different remainders when divided by 3? (No) (The only possible remainders after division by 3 are 0,1 or 2)	Whole class activity Or use pre-agreed actions for Yes and No. In good humour! Responses shown in unison. Discussion, reasoning, agreement, praising $\begin{aligned} & \text { e.g. } 7 \times 8=56 \\ & \text { e.g. } 15+16=31 \\ & 2001 \div 3=667 \\ & 666+667+668=2001 \end{aligned}$ ii) $75,57,175,571,715$, 751, 1175, 11157 , etc. So product must be a whole thousand. (127512 000) At least 2 of the 4 numbers would have the same remainder.

	R: Mental calculation C: Pencil and paper methods. Miscellaneous problems E: Problems. Equations	$\begin{gathered} \text { Lesson Plan } \\ 21 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{21}=3 \times 7$ (nice) Factors: 1, 3 7, 21 - $\underline{196}=2 \times 2 \times 7 \times 7=2^{2} \times 7^{2}$ $=2 \times 7 \times 2 \times 7=14 \times 14=14^{2} \text { (It is a square number.) }$ Factors: 1, 2, 4, 7, 14, 28, 49, 98, 196 - $\underline{371}=7 \times 53$ (nice) Factors: 1, 7, 53, 371 - $\underline{1021}$ is a prime number Factors: 1, 1021 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37 \times 37>1021$) 8 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 21, 196, 371, 1021 Calculators allowed Reasoning, agreement, selfcorrection, praising Whole class listing of the factors of 196. Ps could join up the factor pairs. Feedback for T 196 2 e.g. 98 2 371 7 49 7 53 53 7 7 1 1
2	Sequences a) The first term of a sequence is 7100 and it is decreasing by 340 . Let's list the numbers in the sequence. Ps dictate what T should write. Class points out errors. BB: $7100,(6760,6420,6080,5740,5400,5060,4720, \ldots)$ T has many terms prepared and decides when Ps should stop. b) Let's have a competition! This time when I describe the sequence, let's see who can write the most terms in your Ex. Bks in 1 minute. The first term is 240 and it is increasing by 170. Start . . . now! . . . Stop! Everyone stand up! Ps read out the terms in order round class. Ps check their own terms against those of other Ps. If a P made a mistake or missed out a term or reaches the end of their terms, they sit down. $\mathrm{P}(\mathrm{s})$ left standing are the winners. Let's give them a clap! BB: $240,(410,580,750,920,1090,1260,1430,1600,1770$, 1940, 2110, 2280, 2450, 2620, 2790, 2960, 3130, ...) Winner explains how they wrote so many terms correctly. (e.g. it is easier to add 200 and subtract 30 than add 170) 14 min	Whole class activity T chooses Ps at random. Ps calculate mentally if possible. Praising, encouragement only Individual work, monitored In good humour! At speed in order round class. If a P saying the next term makes a mistake the next P must correct it and the first P sits down. Praising, encouragement only
3	PbY6a, page 21 Q. 1 Read: Practise addition and subtraction. Check your results. How can you check your additions and subtractions? (Calculate additions in opposite direction; add difference to subtrahend or subtract difference from reductant, or use a calculator.) Set a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Who had all 6 correct? The person nearest them give them a pat on the back!	Individual work, monitored Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Ps who made several mistakes could do them again as homework.

		Lesson Plan 21
Activity 5	(Continued) b) Which quantity is 2684 kg more than 15 tonnes 46 kg ? Plan: $\begin{aligned} 15 \mathrm{t} 46 \mathrm{~kg}+2684 \mathrm{~kg} & =15046 \mathrm{~kg}+2684 \mathrm{~kg} \\ & =17730 \mathrm{~kg}=\underline{17 \mathrm{t} 730 \mathrm{~kg}} \end{aligned}$ Answer: The quantity is 17 tonnes 730 kg . c) A 324 mm length was cut from an iron bar and 3 m 28 cm was left. What was the length of the bar before it was cut? Plan: $\begin{aligned} 3 \mathrm{~m} \mathrm{28} \mathrm{~cm}+324 \mathrm{~mm} & =3 \mathrm{~m} 28 \mathrm{~cm}+32 \mathrm{~cm} 4 \mathrm{~mm} \\ & =3 \mathrm{~m} 60 \mathrm{~cm} 4 \mathrm{~mm} \end{aligned}$ Answer: The length of the iron bar was 3 m 60 cm 4 mm before it was cut. d) Which quantity is 24 times as much as 36 litres 50 cl ? Plan: 36 litres $50 \mathrm{cl} \times 24=3650 \mathrm{cl} \times 24=87600 \mathrm{cl}$ $\begin{equation*} =\underline{876} \text { litres } \tag{cl} \end{equation*}$ Answer: The quantity is 876 litres. e) Which quantity is one 24 th of 8 km 400 m ? Plan: $8 \mathrm{~km} 400 \mathrm{~m} \div 24=8400 \mathrm{~m} \div 24=2100 \mathrm{~m} \div 6$ $=350 \mathrm{~m}$ Answer: The quantity is 350 m .	Notes C : $\begin{array}{\|c\|c\|c\|c\|c\|} \hline 1 & 5 & 0 & 4 & 6 \\ \hline & 2 & 6 & 8 & 4 \\ \hline 1 & 7 & 7 & 3 & 0 \\ \hline & 1 & 1 \end{array}(\mathrm{~kg})$ $\begin{aligned} & \text { or } 3 \mathrm{~m} 28 \mathrm{~cm}=3280 \mathrm{~mm} \\ & \begin{aligned} 3280+324 & =3604(\mathrm{~mm}) \\ & =3 \mathrm{~m} 604 \mathrm{~mm} \end{aligned} \end{aligned}$ C. $\left.\quad \begin{array}{\|c\|c\|c\|c\|}\hline & 3 & 6 & 5\end{array}\right)$
6	PbY56a, page 21 Q. 4 Read: Solve these problems in your exercise book. Deal with one question at a time. T chooses a P to read out the question and Ps solve it in $E x . B k$ s if they can under a short time limit. Ps with answers show results on scrap paper or slates on command. Ps with correct answers explain their solutions. Who did the same? Who did it a different way? etc. (If no P has the right answer, T gves starting hint and class solves it together.) Mistakes discussed and corrected (or Ps write correct solutions in Ex. Bks.) Solutions: a) A natural number ends in zero. If we leave off the zero we get another number. The sum of these two numbers is 5445 . What was the original number? e.g. Let the 2 nd number be x, then the 1 st number is $10 x$. $\begin{aligned} x+10 x=11 x & =5445 \\ x & =5445 \div 11=495 \\ \text { and } 10 x & =495 \times 10=\underline{4950} \end{aligned}$ Check: $\begin{aligned} & \qquad x=5445 \div 11=495 \\ & \text { and } 10 x=495 \times 10=4950 \\ & \text { Answer: The original number was 4950. } \end{aligned} \quad+\begin{array}{rrr\|r\|} \hline 4 & 9 & 5 & 0 \\ \hline & 4 & 9 & 5 \\ \hline 5 & 4 & 4 & 5 \\ \hline \end{array}$ b) The difference between a number ending in zero and a second number, formed by leaving off the zero of the first number, is 5445 . What was the first number? e.g. Let the 2 nd number be x, then the 1 st number is $10 x$. $\begin{aligned} & 10 x-x=9 x=5445 \rightarrow x=5445 \div 9=605 \\ & \text { So } 10 x=605 \times 10=\underline{6050} \end{aligned}$ Answer: The first number was 6050 .	Individual trial first if Ps wish, monitored, helped (or whole class activity, with Ps suggesting what to do first and how to continue) Responses shown in unison. Discussion, reasoning, agreeement, self-correcting, praising or 1st number: x 2nd number: $\frac{1}{10}$ of x $\begin{aligned} & x+\frac{1}{10} x=\frac{11}{10} x=5445 \\ & x=5445 \div 11 \times 10=\underline{4950} \end{aligned}$ Check:6 0 10 6 0 0 6 0 5 5 4 4 5

16	R: Decimal notation C: Pencil/paper calculations with natural numbers and decimals E: Relationships between units of measure	$\begin{gathered} \text { Lesson Plan } \\ 22 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{22}=2 \times 11$ (nice) Factors: 1, 2, 11, 22 - $\underline{197}$ is a prime number Factors: 1, 197 (as not exactly divisible by $2,3,5,7,11,13$, and $17 \times 17>197$) - $\underline{372}=2 \times 2 \times 3 \times 31=2^{2} \times 3 \times 31$ Factors: 1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372 - $\underline{1022}=2 \times 7 \times 73$ Factors: 1, 2, 7, 14, 73, 146, 511, 1022 7 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 22, 197, 372, 1022 Calculators allowed Reasoning, agreement, selfcorrection, praising Whole class lising of the factors of 372. Ps could join up the factor pairs.
2	Quantities Let's put these quantities in increasing order. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Elicit what the decimal point means (separates the whole units from the parts of a unit) and discuss the relationships among the units of measure. e.g. $\begin{aligned} & \text { a) } \begin{aligned} \text { BB: } & £ 3475 \mathrm{p} \quad £ 347.5 \\ & £ 34770 \mathrm{p} \quad £ 34.75 \quad £ 34 \mathrm{p} \\ & £ 347.40 \end{aligned} \\ & \text { Ps: } \\ & £ 3475 \mathrm{p}=£ 34.75<£ 34.8=£ 3480 \mathrm{p}<£ 347.40<£ 347.5 \\ &=£ 34750 \mathrm{p}<£ 34770 \mathrm{p} \end{aligned}$ $\underline{\text { Relationships: e.g. } £ 3475 \mathrm{p}=£ 34.75=£\left(34+\frac{75}{100}\right)}$ $£ 34.8=£ 34.80=£ 3480 \mathrm{p}=£\left(34+\frac{80}{100}\right)$ b) BB: $1543 \mathrm{~mm} \quad 230 \mathrm{~cm} \quad 12.65 \mathrm{~m} \quad 1.5 \mathrm{~m} \quad 2200 \mathrm{~mm} \quad 1.641 \mathrm{~m}$ Ps: $1.5 \mathrm{~m}<\underset{(1.543 \mathrm{~m})}{1543 \mathrm{~mm}<1.641 \mathrm{~m}<2200 \mathrm{~mm}<230 \mathrm{~cm}<12.65 \mathrm{~m}}$	Whole class activity Quantities written (stuck) on BB or SB or OHT At a good pace Discussion, reasoning, agreement, praising Write inequalities in one line on BB if possible. Feedback for T Relationships: e.g. BB: $\begin{aligned} & 1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm} \\ & 1 \mathrm{~cm}=10 \mathrm{~mm}=0.01 \mathrm{~m} \\ & 1 \mathrm{~mm}=0.1 \mathrm{~cm}=0.001 \mathrm{~m} \end{aligned}$

		Lesson Plan 22
Activity 3 Extension	PbY6a, pge 22 Q. 1 Read: Do the addition and subtraction in millimetres, centimetres and metres. Set a time limit of 4 minutes. Remind Ps to check their results. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value detail and pointing out the relationships among the units of measure. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: What is the sum (difference) rounded to the nearest km? Elicit that $1 \mathrm{~km}=1000 \mathrm{~m}=100000 \mathrm{~cm}=1000000 \mathrm{~mm}$, so both results are approximately equal to to 2 km , but the sum rounds up and the difference rounds down.	Notes Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Feedback for T Whole class activity Ps could show km on slates. Discussion, reasoning, agreement, praising
4	PbY6a, pge 22 Q. 2 Read: Do the addition and subtraction in metres and kilometres. Set a time limit of 4 minutes. Remind Ps to check their results. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value detail and measuring units. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Elicit that to add or subtract decimal numbers, calculate in the same way as natural numbers, keeping digits with the same placevalue and the decimal points lined up. Which zeros are not really needed? (Those at end of digits after the decimal point. e.g. $802.600=802.6,0.710=0.71$, $35.000=35$) Ps might think that it is easier to line up the digits correctly if we write zeros in the 'gaps'.	Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, praising Feedback for T T reminds Ps that if a decimal is less than 1 unit, zero must be written in the units column (e.g. $\underline{0.710)}$ T points to certain place-value columns and Ps say their values.

		Lesson Plan 22
Activity 5	PbY6a, page 22 Q. 3 Read: Do the multiplication and division in millimetres, centimetres and metres. Deal with one part at a time. Set a time limit for row a). Review with whole classs. Ps come to BB or dictate to T , explaining reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corected. Elicit that to multiply a decimal by a natural number, do the calculation in the same way as multiplying a natural number, then write the decimal point in the answer so that there are the same number of decimal digits after the decimal point as there are in the multiplicand. Set a time limit for row b) and review as for a). Elicit that to divide a decimal by a natural number, do the division in the normal way but write a decimal point in the quotient when we reach the decimal point in the dividend. Solution: a) b) 8 4 9 6 5 0 9 8 4 9 6 5 0 9 4 6.8 4 2 \times 4 7.8 9 4 5 2 1 0. 8 4 9 6 5 0 9 4	Notes Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Feedback for T Discuss the case of $5094 \div 6$ (The sum of the digits is $5+9+4=18$, so it is exactly divisible by 3 , and as 5094 is even and there is no remainder after division by 3 , the number is also divisible by 2×3, i.e. divisible by 6 .)
6	PbY6a, page 22 Q. 4 Read: Do the multiplications in your exercise book. Check your results with a calculator. Set a time limit or deal with one at a time or do part a) with the whole class first as a model for Ps to follow. Encourage Ps to estimate the result first by rounding appropriately. Review at BB with whole class. Ps come to BB to estimate, then write the calculation, explaining reasoning with placevalue detail. Who did the same? Who did it a different way? etc. Check against estimate and with a calculator. Mistakes discussed and corrected. Solution: Who can tell us the rule for multiplying a decimal by a 2-digit natural number? (Do the multiplication in the same way as multiplying a natural number by a 2 -digit number, then write the decimal point in the answer so that there is the same number of decimal digits after (i.e. on RHS of) the decimal point as there is in the multiplicand.)	Individual work, monitored, helped (or whole class activity for a)) Ps have squared Ex. Bks or grid sheets or less able Ps have copies of copy master. Reasoning, agreement, checking on a calculator, selfcorrection, praising (Accept any valid method of multiplication, including exchanging the units: e.g. $405.3 \mathrm{~cm}=4053 \mathrm{~mm}$ but make sure that the result is changed back to the original unit of measure.) T helps Ps to put the rule into words.

		Lesson Plan 22
Activity 7	PbY6a, page 22 Q. 5 Read: Do the divisions in your exercise book. Check your results with a calculator. Set a time limit or deal with one at a time or do part a) with the whole class first as a model for Ps to follow. Review at BB with whole class. Ps come to BB to write the calculation, explaining reasoning with place-value detail. Class agrees/disagrees. Check result with a calculator. Mistakes discussed and corrected. Solution: a) b) c) Who can tell us the rule for dividing a decimal by a 2 -digit natural number? (Do the division in the same way as dividing a natural number by a 2 -digit number, but write a decimal point in the quotient when we come to the decimal point in the dividend.	Notes Individual work, monitored, helped (or whole class activity for a)) Ps have squared Ex. Bks or grid sheets or less able Ps have copies of copy master. Reasoning, agreement, checking on a calculator, selfcorrection, praising Accept divison by exchanging the units. (e.g. $3932.5 \mathrm{~cm}=39325 \mathrm{~mm}$ but make sure that the result is changed back to the original unit of measure) T helps Ps to put the rule into words.
8	PbY6a, page 22, Q. 6 Read: Do the division in millimetres here, then in centimetres and metres in your exercise book. 3 Ps come to BB, one to do the division in mm , one to do it in cm and one to do it in metres. Ps estimate first, then do the divisions, explaining reasoning with place-value details and check their results against their estimates. Class points out errors. Ps write the divisions in Pbs and Ex. Bks. at the same time. Solution: E: $5000 \div 25=200$ E: $500 \div 25=20$ E: $5 \div 25=0.2$ a) c)	Whole class activity but Ps work in Ex. Bks. too Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising $\left(5 \div 25=1 \div 5=\frac{1}{5}=0.2\right)$ In a), accept: $4586 \mathrm{~mm} \div 25=183 \mathrm{~mm}$, and 11 mm will be left over. (If time is short, do division in mm with the whole class and set divisions in cm and m for homework, then review before start of Lesson 23.)

	R: Decimal notation C: Pencil/paper methods. Natural numbers and decimals E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 23 \end{gathered}$
Activity 1	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 23 is a prime number Factors: 1, 23 - $\underline{198}=2 \times 3 \times 3 \times 11=2 \times 3^{2} \times 11$ Factors: 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198 - $\quad 373$ is a prime number Factors: 1, 373 (as not exactly divisible by $2,3,5,7,9,11,13,17,19$ and $23 \times 23>373$) - $\underline{1023}=3 \times 11 \times 31$ Factors: 1, 3, 11, 31, 33, 93, 341, 1023 7 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 23, 198, 373, 1023 Calculators allowed Reasoning, agreement, selfcorrection, praising Whole class listing of the factors of 198. Ps could join up the factor pairs. Feedback for T $\begin{array}{rr\|lr\|l} 198 & 2 & 1023 & 3 \\ \text { e.g. } & 99 & 3 & 341 & 11 \\ 33 & 3 & 31 & 31 \\ 11 & 11 & 1 & \end{array}$
2	Adding and subtracting decimals Listen carefully and write these decimal numbers in your Ex. Bk. one below the other, keeping digits with the same place values lined up. T dictates the numbers, saying each number twice.	Individual work, monitored but Ps kept together on tasks. Ps should have squared Ex.Bks or grid sheets. Encourage Ps to check additions mentally by adding in opposite direction and to check subtractions with reverse addition or another subtraction. Responses shown in unison on scrap paper or slates. Reasoning, agreement, selfcorrection, praising (Ps might find it easier to write zeros in the gaps in the place-value columns on RHS of decimal point.)

		Lesson Plan 23
Activity 3	PbY6a, page 23 Q. 1 Read: Practise addition in your exercise book. Check your results. Deal with one at a time or set a time limit. Advise Ps to estimate result first by rounding the terms appropriately to give them an idea of whether their answer could be correct. Ps write vertical additions, keeping digits with the same placevalue and the decimal points lined up, then Ps check their results by adding in the opposite direction. Review with whole class. Ps come to BB to write vertical additions and explain reasoning with place-value details. Class points out errors. Mistakes discussed and corrected. Solution: a)3 8 6 +8 5 1 9 1 2 3 4 1 1 d) b) 3 8 2 6 $+\quad 8$ 5 1 9 1 2 3 4 e) $608.7(0)$ $+$ \qquad 18 min \qquad	Notes Individual work, monitored, (helped) Less able Ps could use copy master. Differentiation by time limit T could have grids already prepared on BB or SB or OHT to make it easier for Ps to show their solutions (or use enlarged copy master). (Ps might ifnd it easier to write zeros in the gaps in the place-value columns on RHS of decimal point.) Reasoning, agreement, checking, self-correction, praising Feedback for T
4	PbY6a, page 23 Q. 2 Read: Practise subtraction in your exercise book. Check your results. Deal with one at a time or set a time limit. Ps estimate result first by rounding dividend and subtrahend to the whole numbers. Ps check their results with reverse addition, or by another subtraction. Review with whole class. Ps come to BB to write vertical subtractions and explain reasoning with place-value details. Class points out errors. Mistakes discussed and corrected. Solution: b) $\left.\begin{array}{\|c\|c\|c\|c\|} & 10 & 10 \\ \hline 6 & 0 & 5 & 3\end{array}\right) 2$ c)8 2 5 (0) 10 (0) 1 $3_{1}:$ 9 4 4 1 1 0 6 d) 1 0 3 (0) -1 3_{1} 9 2_{1} 8 7 7 1 0 2 e) 10 10 - 5 3 0 4 2 $4_{1} .3_{1}$ 3 (0) 0.9 7 4 	Individual work, monitored, (helped) Less able Ps could use copy master. Differentiation by time limit T could have grids already prepared on BB or SB to save time (or use enlarged copy master) (Ps could write zeros in the gaps in the decimal placevalue columns.) Reasoning, agreement, checking, self-correction, praising Feedback for T

		Lesson Plan 23
Activity 5	PbY6a, page 23 Q. 3 Read: Write a plan, calculate, check and write the answer as a sentence in your exercise book. Deal with one at a time. Ps read question themselves and solve it. Review with whole class. T chooses a P to read out the question and Ps show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Who did the same? Who did it a different way? Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solutions: e.g. a) A joiner fits together a 24 mm wide piece of wood and a 1.8 cm wide piece of wood to make a plank. How wide is the plank? Plan: $1.8 \mathrm{~cm}=18 \mathrm{~mm}, 24 \mathrm{~mm}+18 \mathrm{~mm}=42 \mathrm{~mm}=\underline{4.2 \mathrm{~cm}}$ or $24 \mathrm{~mm}=2.4 \mathrm{~cm}, \quad 1.8 \mathrm{~cm}+2.4 \mathrm{~cm}=4.2 \mathrm{~cm}$ Answer: The plank is 4.2 cm wide. b) A lorry without a load weighs 3 tonnes 780 kg . If 1000 bricks with a total mass of 3.25 tonnes are loaded on the lorry and the lorry is driven over a weighbridge, what would the scale on the weighbridge read? Plan: $3 \mathrm{t} 780 \mathrm{~kg}=3.780 \mathrm{t}=3.78 \mathrm{t}, \quad 3.78 \mathrm{t}+3.25 \mathrm{t}=\underline{7.03 \mathrm{t}}$ or $\quad 3780 \mathrm{~kg}+3250 \mathrm{~kg}=7030 \mathrm{~kg}=7 \mathrm{t} 30 \mathrm{~kg}$ Answer: The scale on the weighbridge would read 7.03 tonnes. c) A farmer gathered 17.2 tonnes of wheat from three fields. He gathered 6.54 tonnes from the first field and 2 tonnes 870 kg from the second field. How much wheat did he gather from the third field? Plan: $2 \mathrm{t} 870 \mathrm{~kg}=2.870 \mathrm{t}=2.87 \mathrm{t}$ $17.2 \mathrm{t}-(6.54 \mathrm{t}+2.87 \mathrm{t})=17.2 \mathrm{t}-9.41 \mathrm{t}=\underline{7.79 \mathrm{t}}$ Answer: He gathered 7.79 tonnes of wheat from the 3rd field.	Notes Individual work, monitored (helped) Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any correct form of the answer. Feedback for T e.g. C:$\frac{2.4}{1.8}$ $+\frac{4.2}{1}(\mathrm{~cm})$
6	PbY6a, page 23 Q. 4 Read: Practise multiplication and division. Deal with one row at a time. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that only the first result in each row needs to be calculated, as the next result in the row can be obtained by moving the digits to the next smaller place value. Solution: a) $125 \times 8=\underline{1000}$ $12.5 \times 8=\underline{100}$ $1.25 \times 8=\underline{10}$ $0.125 \times 8=\underline{1}$ b) $87 \times 52=4524$ $8.7 \times 52=\underline{452.4}$ $0.87 \times 52=\underline{45.24}$ $0.087 \times 52=4.524$ c) $154 \times 16=\underline{2464}$ $15.4 \times 16=\underline{246.4}$ $1.54 \times 16=\underline{24.64}$ $0.154 \times 16=2.464$ d) $75 \div 3=\underline{25}$ $7.5 \div 3=2.5$ $0.75 \div 3=\underline{0.25}$ $0.075 \div 3=\underline{0.025}$ e) $673 \div 5=134.6$ $67.3 \div 5=\underline{13.46}$ $6.73 \div 5=\underline{1.346}$ $0.673 \div 5=\underline{0.1346}$ f) $720 \div 12=\underline{60}$ $72 \div 12=\underline{6}$ $7.2 \div 12=\underline{0.6}$ $0.72 \div 12=\underline{0.06}$	Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising

		Lesson Plan 23
Activity 7	PbY5a, page 23 Q. 5 Read: Write a plan, calculate, check and write the answer as a sentence in your exercise book. Deal with one at a time or set a time limit. Ps read question themselves and solve it in Ex. Bks. Remind Ps to estimate the result first by rounding appropriately. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Solutions: e.g. a) 0.42 kg of prunes can be made from 1 kg of plums. What amount of prunes can be made from 78 kg of plums? Plan: $1 \mathrm{~kg} \rightarrow 0.42 \mathrm{~kg}$ C: E: $0.4 \times 80=32$ $\begin{aligned} 78 \mathrm{~kg} \rightarrow & 0.42 \mathrm{~kg} \times 78 \\ & =\underline{32.76 \mathrm{~kg} \text { (prunes) }} \begin{array}{\|r\|r\|r\|} \hline 0.4 & 2 \\ \hline & 7 & 8 \\ \hline 3 & 3 & 6 \\ \hline 2 & 9 & 4 \\ \hline 3 & 2.7 & 0 \\ \hline 1 & & \\ \hline \end{array} \end{aligned}$ Answer: 32.76 kg of prunes can be made from 78 kg of plums. b) How long is each side of a regular octagon if its perimeter is 341.8 cm ? Plan: $\quad P=8 \times a$, so $a=P \div 8$ BB: (As a regular octagon $\quad=341.8 \mathrm{~cm} \div 8$ has 8 equal sides.) $\quad=\underline{42.725 \mathrm{~cm}}$ Answer: Each side of the octagon is 42.725 cm long. c) The area of a rectangle is $63.6 \mathrm{~cm}^{2}$. The length of one of its sides is 12 cm . What is the length of the adjacent side? Plan: $\begin{aligned} A=a \times b, \text { so } a & =A \div b \\ & =63.6 \div 12 \\ & =\underline{5.3}(\mathrm{~cm}) \end{aligned}$ BB: Answer: The length of the adjacent side is 5.3 cm .	Notes Individual work, monitored, (helped) Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising T could have real plums and prunes to show to class. Why do the plums produce a smaller amount of prunes? (They are dried so lose much of their water.) (Extend the division to next smaller place-values until there is no remainder.) C: $E: 60 \div 12=5$
8	PbY6a, page 23, Q. 6 Read: Do the divisions in your exercise book and continue them until there is no remainder. T chooses 3 Ps to do the divisions on BB, estimating result first with T's help, then explaining reasoning with place-value detail. Class points out errors. Rest of Ps could write divisions in Ex. Bks at the same time. Class checks results against the estimates (and also with a calculator). Solution: E: $24 \div 24=1$ E: $840 \div 70=12$ E: $0.036 \div 12=0.003$ a) \qquad b) c)	Whole class activity (or individual work, monitored, helped if Ps wish and there is time) Squared grids drawn on BB or use enlarged copy master Discussion, reasoning, agreement, (self-correction), praising If time is very short, do part a) in class and set b) and c) for homework. Review before the start of Lesson 24.

16	R: Calculations. Comparisons C: Recognise and extend number sequences E: Equations	$\begin{gathered} \text { Lesson Plan } \\ 24 \end{gathered}$
Activity	Factorising Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: e.g. - $\underline{24}=2 \times 2 \times 2 \times 3=2^{3} \times 3$ Factors: $1,2,3,4,6,8,12,24$ - 199 is a prime number Factors: 1, 199 (as not divisible by $2,3,5,7,11,13$ and $17 \times 17>199$) - $\quad 374=2 \times 11 \times 17$ Factors: 1, 2, 11, 17, 22, 34, 187, 374 $\begin{aligned} 1024 & =\underbrace{2 \times 2 \times 2 \times 2 \times 2}_{32} \times \\ & =1 \end{aligned}$ $\text { Factors: } 1,2,4,8,16,32,64,128,256,512,1024$	Notes Individual work, monitored, (helped) (or whole class activity) BB: 24, 199, 374, 1024 Calculators allowed Reasoning, agreement, selfcorrection, praising Whole class listing of the factors of 1024. Ps could join up the factor pairs. Feedback for T $\begin{array}{rr\|l} 374 & 2 \\ \text { e.g. } & 187 & 11 \\ 17 & 17 \\ & 1 & \end{array}$ 1024 is a square number.
2	Sequences a) Let's list the next 5 odd numbers after 999 996. Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: 999 997, 999 999, 1000 001, 1000 003, 1000005 Do the numbers form a sequence? (Yes) Who can describe this sequence? (The first term is 999997 and it is increasing by 2.) b) Let's list the 5 even numbers before 100005 . Ps dictate to T. BB: 1000 004, $100002,100000,99$ 998, 99996 Who can describe this sequence? (The first term is 1000004 and it is decreasing by 2 .) c) T describes a sequence and gives Ps 1 minute to write as many terms as they can in their Ex. Bks. Review with whole class. Ps stand up and say the terms in order round the class. If a P makes a mistake or misses a term or comes to the end of their terms, they sit down. Ps left standing are given a clap or 3 cheers or a pat on the back. i) The first term is 0 and it is increasing by 3.5 . BB: $0,3.5,7,10.5,14,17.5,21,24.5,28,31.5,35, \ldots$ ii) The first term is 85.2 and it is decreasing by 2.7 . BB: 85.2, 82.5, 79.8, 77.1, 74.4, 71.7, 69, 66.3, 63.6, ..	Whole class activity At a good pace Reasoning, agreement, praising Feedback for T Individual work, monitored At a fast pace In good humour! Agreement, self-correction, praising

		Lesson Plan 24
Activity 3	PbY6a, page 24 Q. 1 Read: Write the first term and the next 5 terms of each sequence in your exercise book. Deal with one at a time. T chooses a P to read out the description, then allows Ps a minute to write the terms. Encourage mental calculation where possible. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Its first term is 8346 and it is increasing by 520 . 8346, 8866, 9386, 9906, $10426,10946, \ldots$ b) Its first term is 24080 and it is decreasing by 5200 . $24080,18880,13680,8480,3280,-1920, \ldots$ c) Its first term is 13.3 and it is decreasing by 3.2. $13.3,10.1,6.9,3.7,0.5,-2.7, \ldots$	Notes Individual work, monitored, (helped) Reasoning, agreement, self-correction, praising Feedback for T
4	PbY6a, page 24 Q. 2 Read: Work out a rule and continue each sequence for 5 more terms. Write the rule you used. Deal with one at a time. Set a time limit of 1 minute each. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning and stating the rule that they used. Who agrees? Who used a different rule? Class decides whether or not it is valid. Mistakes discussed and corrected. Solution: a) $10638,10794,10950,(11106,11262,11418$, $11574,11730, \ldots) \quad$ [Rule: +156$]$ b) $410.7,390.1,369.5,(348.9,328.3,307.7,287.1,266.5$, . . .) [Rule: - 20.6] c) $0.2,0.3,0.5,0.8,1.2,(1.7,2.3,3.0,3.8,4.7, \ldots)$ $\begin{array}{llllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & \ldots\end{array}$ [Rule: Difference between terms is increasing by 0.1] d) $1.2,2.4,3.6,4.8,(6.0,7.2,8.4,9.6,10.8, \ldots)$ [Rule: +1.2 , or $n \times 1.2$, where n is the position of the term in the sequence, i.e. its ordinal number] What would the 100th term be? Ps show on slates. (120) e) $10.24,5.12,2.56,(1.28,0.64,0.32,0.16,0.08, \ldots)$ [Rule: Each following term is half of the previous term, or $\div 2$]	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Accept any valid rule. (or increasing by 156) (or decreasing by 20.6) (or rule for difference sequence is +0.1) e.g. 3rd term: $n=3$, so term is $3 \times 1.2=\underline{3.6}$ 8th term: $n=8$, so term is $8 \times 1.2=\underline{9.6}$

		Lesson Plan 24
Activity 5	PbY6a, page 24, Q. 3 Deal with one part at a time. T chooses a P to read out the description. Ps write the smallest number on one side of their slates and the greatest number on the other side, then show to T on command. Ps with differentt responses explain their reasoning to class and class decides who is correct. Ps write agreed numbers in Ex. Bks. or Pbs. Solution: In your exercise book, write the smallest and the greatest: a) whole number which can be rounded to: b) number which can be rounded to: i) 7 as the nearest unit $6.5 \leq d<7.5$ Agree that there is no greatest number as decimal place values can go on and on to infinity: 7.499999999999999... ii) 0.8 as the the nearest tenth. $0.75 \leq e<0.85$ Again, there is no greatest number. e.g. 0.849999999999 . . . Another digit 9 can be written in the next smaller place-value column, and in the next and in the next . . . to infinity.	Notes Whole class activity (or individual work under a time limit, monitored and reviewed as usual) Responses shown in unison Discussion, reasoning, agreement, praising If problems show on relevant segments of the number line drawn on BB. Extra praise for Ps who answered with an inequality or realised that there is no 'greatest' number. If nobody realised, choose the greatest number shown by Ps. Can you think of a greater one \ldots. and a greater one . . . and a greater one ...?
6	PbY6a, page 24 Q. 4 Read: Write the name of the operation in the box and complete the equations. Set a time limit. (If Ps are unsure what to do, complete part a) with the whole class first.) Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $6.7+10.8=(17.5)$ $a+b=c, \quad a=(c-b) \quad b=(c-a)$ Addition b) $8.25-4.6=(3.65)$ $a-b=c, \quad a=(c+b) \quad b=(a-c)$ Subtraction c) $14.3 \times 5=(71.5)$ $a \times b=c, \quad a=(c \div b) \quad b=(c \div a)$ Multiplication d) $42.6 \div 3=(14.2)$ $a \div b=c, \quad a=(c \times b) \quad b=(a \div c)$ Division Ask Ps to point to and name the components of the operations. Addition: term $a+$ term $b=$ sum Subtraction: reductant - subtrahend $=$ difference Multiplication: factor $a \times$ factor $b=$ product or multiplicand \times multiplier $=$ product Division: dividend \div divisor $=$ quotient What other component of a division is not shown here? (Remainder, when a division is not exact.)	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Feedback for T Missing parts of equations are shown in brackets Whole class revision T points to various equations and Ps say it using the names of the components, e.g. a) term $b=\operatorname{sum}-\operatorname{term} a$ b) reductant $=$ difference + subtrahend c) factor $a=$ product \div factor b, etc.

Y6		$\begin{gathered} \text { Lesson Plan } \\ 25 \end{gathered}$
Activity	Factorising 25, 200, 375 and 1025. Revision, activities, consolidation PbY6a, page 25 Solutions: d) $\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline & 1 & 2 & 6 & 9 & 8 & 4 \\ \hline 7 & 8 & 8 & 8 & 8 & 8 & 8 \\ \hline 1 & 4 & 6 & 5 & 2 \end{array}$ b) b) Q. 3 a) $8.096<65.725$ $72.94<150.3$ b) ii)1 5 0 3 0 0 - 1 8 0 0 1 8 0_{1} 9_{1} 6 1 4 2 2 2 0$\|$ d) i) to nearest 10 : ii) to nearest 1 iii) to nearest tenth $8.096 \approx 10$ $8.096 \approx 8$ $8.096 \approx 8.1$ $65.725 \approx 70$ $65.725 \approx 66$ $65.725 \approx 65.7$ $72.94 \approx 70$ $72.94 \approx 73$ $72.94 \approx 72.9$ $150.3 \approx 150$ $150.3 \approx 150$ $150.3=150.3$ e) Mean of the 4 numbers is 74.26525 .	Notes $\underline{25}=5 \times 5=5^{2}$ (square no.) Factors: 1, 5, 25 $\underline{200}=2^{3} \times 5^{2}$ Factors: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200 $\underline{375}=3 \times 5^{3}$ Factors: 1, 3, 5, 15, 25, 75, 125, 375 $\underline{1025}=5^{2} \times 41$ Factors: 1, 5, 25, 41, 205, 1025 (or set factorising as homework at the end of Lesson 24 and review at the start of Lesson 25)

16		Lesson Plan 25
Activity	(Continued) Q. 4 a) $x=(100-15) \div 2 \div 5=85 \div 10=\underline{8.5}$ Answer: I am thinking of the number 8.5. b) $x=(1+0.15)$ $\begin{aligned} \times 2 \div 100 & =1.15 \times 2 \div 100 \\ & =2.3 \div 100=\underline{0.023} \end{aligned}$ Answer: I am thinking of the number 0.023 . Q. 5 a) $0.332+a=10, a=10-0.332=\underline{9.668}$ b) $\begin{aligned} 5 \times b-4.07 & =5 \\ 5 \times b & =5+4.07=9.07 \\ b & =9.07 \div 5=\underline{1.814} \end{aligned}$ c) $c-92.7=3.8, c=3.8+92.7=\underline{96.5}$ d) $d \div 100=0.054, d=0.054 \times 100=5.4$ e) $8 \times(e \div 10)=2.5$ $\begin{aligned} e \div 10 & =2.5 \div 8=0.3125 \\ e & =0.3125 \times 10=\underline{3.125} \end{aligned}$ f) $\begin{aligned} (76.4-f)+5 & =80 \\ 76.4-f & =80-5=75 \\ f & =76.4-75=\underline{1.4} \end{aligned}$ g) $\begin{gathered} 0.1 \times 100<g \leq 1.5 \times 10 \\ \underline{10}<\underline{g} \leq \underline{15} \end{gathered}$ h) $h \div 10<2.2-h$ Multiply each side by 10 : $\begin{aligned} & h<(2.2-h) \times 10 \\ & h<22-10 h \end{aligned}$ Add $10 h$ to each side: $\begin{aligned} h+10 h & <22 \\ 11 h & <22 \\ h & <2 \end{aligned}$	Notes

16	R: Calculations. The number line C: Positive and negative integers: ordering, in context E: Negative decimals	$\begin{gathered} \text { Lesson Plan } \\ 26 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{26}=2 \times 13$ Factors: 1, 2, 13, 26 - $\underline{201}=3 \times 67$ - $\underline{376}=2 \times 2 \times 2 \times 47=2^{3} \times 47$ Factors: 1, 2, 4, 8, 47, 94, 188, 376 - $\underline{1026}=2 \times 3 \times 3 \times 3 \times 19=2 \times 3^{3} \times 19$ $\begin{array}{rrrrrrrrrr}\text { Factors: } & 1, & 2, & 3, & 6, & 9, & 18, & 19, & 27, & 171 \\ 57 & 3 \\ 1026, & 513, & 342, & 171, & 114, & 57, & 54, & 38 & 19 & 19 \\ & & 1 & \end{array}$ 8 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 26, 201, 376, 1026 Calculators allowed. Reasoning, agreement, selfcorrection, praising Whole class listing of the factors for 1026. Feedback for T
2	Negative numbers Thas first 3 rows of each column below written on BB. What are the results of these operations? Ps come to BB or dictate what T should write. Class points out errors. Let's continue the sequences. Ps come to BB or dictate what T should write, reasoning with reverse operations. Class agrees/disagrees. BB: What do you notice? Ps or T points out operations which give the same results or which are reverse operations.	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Show on class number line if problems or disagreement. Discuss the relationships between the operations. Elicit that: - every positive number has an opposite negative number - adding a negative number is the same as subtracting the opposite positive number; - subtracting a negative number is the same as adding the opposite positive number.
3	PbY6a, page 26 Q. 1 Read: Join up each number to the corresponding point on the number line. Set a time limit. Review with whole class. Ps come to BB to draw lines, explaining why they chose the points. Class agrees/ disagrees. Mistakes discussed and corrected. - Let's list the numbers in increasing order. - Let's compare pairs of numbers. Ps suggest the pairs. e.g. -4.3 with - 2.5 : BB: $-4.3 \underset{1.8}{<}-2.5 \quad$ etc. - Let's write operations about it. e.g. BB: $-2.5-(-4.3)=1.8$	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Advise Ps to draw their lines from the correct point on the number line to the relevant number. Agreement, self-correction, praising Whole class activity Ps dictate what T should write. Praising, encouragement only or $-4.3+1.8=-2.5$, etc.

16		Lesson Plan 26
Activity 6	PbY6a, page 26 Q. 4 Read: Practise subtraction in your exercise book. Set a time limit or deal with one part at a time. Ps write the whole operations in Ex. Bks. and underline the results. Review with whole class. Ps come to BB or dictate to T, explaining reasoning with the cash and debt model [especially for a), c), g and h)], or using comparison (e.g. of temperatures), or showing steps along a number line. Class agrees/disagrees. Mistakes discussed and corrected. Check each result with reverse addition, demonstrating on a roughly drawn segment of the number link where necessary. Solution: a) $(+18)-(+5)=18-5=\underline{13} \quad(+1.8)-(+0.5)=\underline{1.3}$ b) $(+7)-(+32)=7-32=-25$ $(+0.7)-(+3.2)=-2.5$ c) $(-43)-(-15)=-28$ $(-4.3)-(-1.5)=-2.8$ d) $(-6)-(-21)=-6+21=\underline{15}$ $(-0.6)-(-2.1)=\underline{1.5}$ e) $(+65)-(-20)=65+20=\underline{85}$ $6.5-(-2.0)=\underline{8.5}$ f) $(-40)-(+32)=-72$ $-4-(+3.2)=-7.2$ g) $(-33)-0=-33$ $-3.3-0=-3.3$ h) $0-(+81)=-81$ $0-(+8.1)=-8.1$ i) $0-(-16)=\underline{16}$ $0-(-1.6)=\underline{1.6}$ j) $+75-(+75)=\underline{0}$ $-7.5-(-7.5)=\underline{0}$ T points to various numbers and asks Ps for their absolute values.	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Reasoning: e.g. a) I was given 18 p but then I lost 5 p of it and had only 13 p left. or 18 is greater than 5 by 13 . Check: $13+(+5)=18$ b) $+7-(+32)=-25$, because if we start at 7 and move 32 units in a negative direction, we land on -25 , or $7^{\circ} \mathrm{C}$ is lower than $32^{\circ} \mathrm{C}$ by $25^{\circ} \mathrm{C}$. Check: $-25+32=+7 \boldsymbol{V}$ etc. Elicit that in 2nd part of each question, the numbers are 1 tenth of those in the first part
7	PbY6a, page 26 Q. 5 Read: Write each subtraction as an addition in your exercise book. Calculate and check the sum. How can you write a subtraction as a sum? (By changing the subtrahend to its opposite number then adding it instead of subtracting it.) Do part a) with the whole the class as an example. Set a time limit of 3 minutes. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes discussed and corrected. If problems or disagreement, show on relevant segment of the number line, or put the operation into a meaningful context. Solution: a) $(+80)-(+30)=80+(-30)=\underline{50}$ b) $(+4.5)-(+10)=4.5+(-10)=-5.5$ c) $-70-(-25)=-70+(+25)=-45$ d) $-2.5-(-6)=-2.5+(+6)=\underline{3.5}$ e) $6-(-3)=6+(+3)=\underline{9}$ f) $3.2-(-6)=3.2+(+6)=\underline{9.2}$ g) $-44-(+22)=-44+(-22)=\underline{-66}$ h) $-2.2-(+4.4)=-2.2+(-4.4)=-6.6$ Check: $50+30=80$ $-5.5+10=4.5$ $-45+(-25)=-70$ $3.5+(-6)=-2.5$ $9+(-3)=6$ $9.2+(-6)=3.2$ $-66+22=-44$ $-6.6+4.4=-2.2$	Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Checks done with reverse addition for the original subtraction!

		Lesson Plan 26
Activity 7	$\begin{array}{lll} \text { (Continued) } & \text { Check: } \\ \text { i) } 0-(+53)=0+(-53)=-\underline{53} & -53+0=-53 \\ \text { j) } 0-(-5.3)=0+(+5.3)=\underline{5.3} & 5.3+(-5.3)=0 \\ \text { k) }-72-(-8)=-72+(+8)=-64 & -64+(-8)=-72 \\ \text { l) } 12.6-(+40.8)=12.6+(-40.8)=-28.2 & -28.2+40.8=12.6 \end{array}$ Who can put what we have done into words? Ps suggests 'rules' and T repeats in a clearer way if necessary. e.g. - Instead of subtracting a positive number, we can add its opposite negative number. - Instead of subtracting a negative number, we can add its opposite positive number. or - Instead of subtracting a number, we can add its opposite number.	Notes Whole class discussion T promps if necessary. Praising, encouragement only (which combines the two rules)

16	R: Calculations C: Addition/subtraction of integers. Coordinate system: 4 quadrants E: Decimals. Understanding multiplication of integers	$\begin{gathered} \text { Lesson Plan } \\ 27 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{27}=3 \times 3 \times 3=3^{3}$ (cubic number) Factors: 1, 3, 9, 27 Who could write the factors as powers of 3 ? Ps come to BB or T reminds Ps what 'power' means. (The number of times a number is multiplied by itself) BB: $\quad 3^{0}, 3^{1}, 3^{2}, 3^{3}$ - $\underline{202}=2 \times 101$ (nice) Factors: 1, 2, 101, 202 - $\underline{377}=13 \times 29$ (nice) Factors: 1, 13, 29, 377 - $\underline{1027}=13 \times 79$ (nice) Factors: 1, 13, 79, 1027 What do you notice about these numbers? (They all have 4 factors.) T tells Ps that a number which has exactly 4 factors is either a 'nice' number (i.e. it has only 2 factors other than itself and 1) or a cubic number (i.e. it has 3 equal factors which could be the edge lengths of a cube).	Notes Individual work, monitored, (helped) (or whole class activity) BB: 27, 202, 377, 1027 Calculators allowed. Reasoning, agreement, selfcorrection, praising Discuss powers, 'nice' numbers and cubic numbers. Extra praise if Ps remember what 'power' means in a mathematical context. BB: e.g.
2	Operations with integers T has operations written on BB. Let's write the addition or subtraction in a simpler way before we do the calculations. Ps come to BB or dictate what T should write and say the result too. Class agrees/disagrees. BB: a) $(+6)-(-5)=[6+5=\underline{11}] \quad$ (Addition instead of subtraction) b) $(-4)-(+5)=[-4-5=-9] \quad$ (Omitting the positive sign) c) $(-8)+(-3)=[-8-3=-11]$ (Subtraction instead of addition) d) $(+80)+(-30)=[80-30=\underline{50}]$ etc. e) $(+8.8)-(+3.3)=[8.8-3.3=\underline{5.5}]$ f) $(-50)-(+22)=[-50-22=-72]$ $10 \min$	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Elicit that, eg. $(+6)=6$ (sign can be omitted) $\begin{aligned} & -(-5)=+5, \quad-(+5)=-5, \\ & +(+5)=+5, \quad+(-5)=-5 \end{aligned}$ Feedback for T
3	PbY6a, page 27 Q. 1 Read: Write each addition and subtraction in a simpler form before doing the calculation. Set a time limit or deal with 2 or 3 rows at a time. Ask Ps to check their results mentally with reverse operations. Review with whole class. Ps come to BB or dicate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $(+83)+(+36)=83+36=\underline{119}$ ii) $(+8.3)-(-3.6)=8.3+3.6=\underline{11.9}$ Elicit the relationship b) i) $(+100)+(-70)=100-70=\underline{30}$ between the ii) $(+1)-(+0.7)=1-0.7=\underline{0.3}$ numbers in i) c) i) $(+26)+(-82)=26-82=-56$ and ii). ii) $(+2.6)-(+8.2)=2.6-8.2=-\underline{5.6}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning (with cash and debt model or using comparison, or showing on a number line or with the reverse operation, or with the rule), agreement, self-correction, praising Who had them all correct? Who made just 1 mistake? Let's give them a round of applause!

16		Lesson Plan 27
Activity 5	(Continued) b) Rule: $y=$ the opposite of x, or $y=-x$ T might also suggest: $y=(-1) \times x$ or $y=-1 \times x$	Notes Extension If this line was reflected in the y axis, what equation would its image show? $(y=x)$
6	PbY6a page 27 Q. 4 Read: Write each multiplication as an addition in your exercise book and calculate the sum. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) $(+7) \times 3=7+7+7=\underline{21}$ b) $(-7) \times 3=-7+(-7)+(-7)=-21$ c) $(+3) \times 6=3+3+3+3+3+3=\underline{18}$ d) $(-3) \times 6=-3+(-3)+(-3)+(-3)+(-3)+(-3)=-18$ Which number is the multiplicand? (1st factor) Which number is the multiplier? (2nd factor) What would happen if we made the negative number the multiplier? (The results would be the same, as in multiplication the factors can be exchanged.) What is 3 multiplied by -7 ? What is 6 multiplied by -3 ? What does multiplying by -7 really mean? (7 times the opposite of the multiplicand) Agree that: $\text { BB: } \begin{aligned} 3 \times(-7) & =(-3) \times 7=-(3 \times 7)=-21 \\ & 6 \times(-3)=(-6) \times 3=-(6 \times 3)==-18 \end{aligned}$	Individual work, monitored, (helped) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Whole class discussion on how to multiply a positive number by a negative number BB: $\begin{aligned} & 3 \times(-7)=-21 \\ & 6 \times(-3)=-18 \end{aligned}$

		Lesson Plan 27
Activity		Notes
7	PbY56a, page 27	
	Q. 5 Read: Look at how the product changes. Continue the pattern in your exercise book.	Individual work, monitored, helped
	Set a time limit of 3 minutes. Ps write products in Pbs , then	Written on BB or SB or OHT
	continue the pattern of multplications in Ex. Bks if they have time.	Differentiation by time limit
	Review with whole class. Ps dictate the results, explaining reasoning with the rule of the pattern. Class agrees/disagrees. Ps	Reasoning, agreement, self-correction, praising
	who had time to write extra multiplications in Ex. Bks read them out and T writes them on BB . Class points out any errors.	Extra praise for Ps who wrote more multiplications correctly!
	Solution:	c) $(-25) \times(-3)=75$
	a) $(+8) \times(+3)=24 \quad$ b) $(-8) \times(+3)=-24$	$(-25) \times(-2)=50$
	$(+8) \times(+2)=16 \quad(-8) \times(+2)=-16$	$(-25) \times(-1)=25$
	$(+8) \times(+1)=8 \quad(-8) \times(+1)=-8$	$(-25) \times 0=0$
	$(+8) \times(0)=0 \quad(-8) \times(0)=0$	$(-25) \times(+1)=-25$
	$(+8) \times(-1)=-8 \quad(-8) \times(-1)=8$	$(-25) \times(+2)=-50$
	$[\quad(+8) \times(-2)=-16 \quad(-8) \times(-2)=16$	$(-25) \times(+3)=-75$
	$(+8) \times(-3)=-24 \quad(-8) \times(-3)=24$	$(-25) \times(+4)=-100$
	$(+8) \times(-4)=-32 \quad(-8) \times(-4)=32$]
	etc.	
	Who can tell me the rules for multiplying by negative numbers? Ps suggest rules in their own words and T repeats more clearly	Whole class discussion
	or concisely if necessary. e.g.	Praising, encouragement only
	- The product of a positive and a negative number is negative. - The product of 2 negative numbers is positive.	Ps repeat the rules in unison.
	- Multiplying by a negative number means multiplying the opposite of the multiplicand by the absolute value of the multiplier.	(General rule which combines the 2 rules above it.)

176	R: Calculations C: Understanding multiplication and division of integers E: Multiplying by a decimal	$\begin{gathered} \text { Lesson Plan } \\ 28 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{28}=2 \times 2 \times 7=2^{2} \times 7 \quad$ Factors: $1,2,4,7,14,28$ - $\underline{203}=7 \times 29$ (nice) Factors: 1, 7, 29, 203 - $\underline{378}=2 \times 3 \times 3 \times 3 \times 7=2 \times 3^{3} \times 7$ $\begin{array}{r}\text { Factors: } \\ 378, \\ 378,\end{array} 189,126,63,54,42,27,21$ - $\underline{1028}=2 \times 2 \times 257=2^{2} \times 7$ Factors: $1,2,4,257,514,1028$ (and 257 is not divisible by $2,3,5,7,11$ or 13 and $17 \times 17>257$) 8 min	Notes Individual work, monitored, (helped) (or whole class activity) BB: 28, 203, 378, 1028 Calculators allowed Reasoning, agreement, selfcorrection, praising Whole class listing of of the factors of 378
2	PbY6a, page 28 Q. 1 Read: Work out a rule and complete the table. Set at time limit of 3 minutes. Remind Ps to check their rule using values from the table. Review with whole class. Ps come to BB or dictate to T, giving the rule that they used. Who agrees? Who used a different rule? etc. Mistakes discussed and corrected. Who can write the rule in a different way? Ps (and T) suggest some and class decides whether or not they are valid by substituting values from the table. Solution: Rule: $a=$ the opposite of $b \div 4, b=4 \times$ the opposite of a $\begin{aligned} \text { or } \quad b & =4 \times(-a), b=-(4 \times a), b=(-4) \times a, \\ b & =-4 \times a, b=-4 a \\ \text { or } \quad a & =(-b) \div 4, a=-(b \div 4), a=b \div(-4), \\ a & =-b \div 4, \quad\left[a=\frac{-b}{4}, a=-\frac{b}{4}\right] \end{aligned}$ or Let's look at the form of the rule where the divisor is a negative number. Let's write it using the values from the 2nd column. Ps dictate what T should write. BB: $a=b \div(-4) \rightarrow 8=(-32) \div(-4)$ What does dividing by -4 mean? Ps say what they think and T repeats in a clear way if necessary. Elicit that: dividing by -4 means dividing the opposite of the dividend by 4 .	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Bold numbers are issing. Not all forms need to be shown. Whole class discussion Involve several Ps. Praise all contributions. Ps repeat the rule in unison.

		Lesson Plan 28
Activity 4	PbY6a, page 28 Q. 3 Read: Note how the quotient changes. Check with reverse multiplication. Set a time limit or deal with one column at a time. Review with whole class. Ps come to BB or dictate to T, explaining reasoning by pointing out the pattern or with reverse multiplication. Class agrees/disagrees. Mistakes discussed and corrected. Ps might notice relationships among the divisions. Solution: a) $\begin{aligned} & (+27) \div(+3)=\underline{9} \downarrow-3 \\ & (+18) \div(+3)=\underline{6} \\ & (+9) \div(+3)=\underline{3} \\ & 0 \div(+3)=\underline{0} \\ & (-9) \div(+3)=\underline{-3} \\ & (-18) \div(+3)=\underline{-6} \\ & (-27) \div(+3)=\underline{-9} \end{aligned}$ b) $\begin{aligned} & (+27) \div(-3)=\underline{-9} \downarrow+3 \\ & (+18) \div(-3)=\underline{-6} \\ & (+9) \div(-3)=\underline{-3} \\ & (0) \div(-3)==\underline{0} \\ & (-9) \div(-3)=\underline{3} \\ & (-18) \div(-3)=\underline{6} \\ & (-27) \div(-3)=\underline{9} \end{aligned}$ What are the rules or laws for dividing by an integer? Ps say the rules in their own words and T writes on BB . Elicit that: BB: - positive \div positive \rightarrow positive - positive \div negative \rightarrow negative [Similar to the - negative \div positive \rightarrow negative rules for 2-factor - negative \div negative \rightarrow positive multiplication]	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, e.g. $(-18) \div(+3)=-6$, because $-6 \times 3=-18$, etc. Agreement, self-correction, praising $\text { c) } \begin{aligned} & 8 \div(-2)=\underline{-4} \\ & 4 \div(-2)=\underline{-2} \leftarrow 2 \\ & 2 \div(-2)=\underline{-1} \leftarrow \div \div 2 \\ & 0 \div(-2)=\underline{0} \\ & -2 \div(-2)=\underline{1} \\ & -4 \div(-2)=\underline{2} \\ & -8 \div(-2)=\underline{4} \end{aligned} \leftarrow \times 2$ Whole class discussion Agreement, praising Ps could write rules in Ex Bks. too.
5	PbY6a, page 28 Q. 4 Read: Fill in the missing numbers. Set a time limit. Remind Ps to check their solutions. Review with whole class. Ps come to BB or dictate to T, explaining reasoning using the correct names of the components. e.g. multiplicand $=$ product \div multiplier dividend $=$ quotient \times divisor divisor $=$ dividend \div quotient, etc. Class agrees/disagrees. Mistakes discussed and corrected. Solutions: a) $\mathbf{- 9} \times(-5)=45,-2.5 \times \mathbf{5}=-12.5,-\mathbf{3 . 2} \times 3=-9.6, \square \times(-7)=-28$ b) $200 \div 40=\mathbf{5},-36 \div(+4)=\mathbf{- 9},-60 \div(-12)=\mathbf{5}, 48 \div(-8)=\mathbf{- 6}$ c) $-\mathbf{2 8} \div(+7)=-4,-\mathbf{6 6} \div(-6)=11,6 \div 5=1.2, \mathbf{1 2 0} \div(-3)=-40$ d) $(-75) \div \mathbf{3}=-25,(-39) \div \mathbf{- 3}=13,4.2 \div \mathbf{3}=1.4,150 \div \mathbf{- 3}=-50$	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Feedback for T

		Lesson Plan 28
Activity 6	PbY6a, page 28 Q. 5 Read: Calculate the result in 2 different ways where possible in your exercise book. Set a time limit or deal with one row at a time (or do first 2 rows in class and set the 3rd row for homework). (If necessary do part a) with the whole class first as a model for Ps to follow.) Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Ps say which method they think is easier. Solutions: a) $(-8+5) \times 7=-3 \times 7=-56+35=-21$ b) $(-15-8) \times 4=-23 \times 4=-60-32=-\underline{92}$ c) $(-7+5) \times(-9)=-2 \times(-9)=63-45=\underline{18}$ d) $(-28+14) \div 7=-14 \div 7=-4+2=-2$ e) $(-18-12) \div 3=-30 \div 3=-6-4=-10$ f) $(-8+20) \div(-4)=12 \div(-4)=2-5=-3$ g) $(-21+21) \div 13=0 \div 13=\underline{0}$ h) $(-12+5) \div 0 \neq$ anything (as it does not make sense to divide by zero) i) $(15-30) \div(-1)=-15 \div(-1)=-15+30=\underline{15}$ j) $-66 \div(24-18)=-66 \div 6=-11$ k) $-80 \div(-6+16)=-80 \div 10=\underline{-8}$ l) $13 \div(-7+8)=13 \div 1=\underline{13}$	Notes Individual work, monitored helped (or whole class activity if time is short, with Ps coming to BB or dictating to T) Written on BB or use enlarged copy master or oHP Discussion, reasoning, agreement, self-correction, praising g) or $(-21+21) \div 13$ $=-\frac{21}{13}+\frac{21}{13}=0$ In j), k) and l), only one way of calculating is possible.

16	R: Calculations C: Mental calculations with integers (with or without models) E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 29 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{29}$ is a prime number Factors: 1,29 - $\underline{204}=2 \times 2 \times 3 \times 17=2^{2} \times 3 \times 17$ Factors: 1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204 - $\quad \underline{379}$ is a prime number Factors: 1, 379 (As not exactly divisible by $2,3,5,7,11,13,17$ or 19 , and $23 \times 23>379$) - $\underline{1029}=3 \times 7 \times 7 \times 7=3 \times 7^{3}$ Factors: 1, 3, 7, 21, 49, 147, 343, 1029	Notes Individual work, monitored, (helped) (or whole class activity) BB: 29, 204, 379, 1029 Calculators allowed Reasoning, agreement, selfcorrection, praising Ps join up the factor pairs for 204 and 1028. e.g.
2 Erratum In e) in Pbs: 'number' should be 'numbers'	PbY6a, page 29, Q. 1 Read: Complete the sentences so that they are well-known laws. Deal with one sentence at a time. T chooses a P to read out the sentence, saying 'something' at each missing word. Allow Ps a minute to think about it ad discuss with their neighbours if they wish, then Ps come to BB to write missing words and read out the completed sentence. Who agrees? Who thinks it should be something else? Ps write examples of operation on BB as a check. Class agrees on wording and Ps write missing words in sentence in Pbs. Class reads completed sentence in unison. Solution: a) The sum of two (or more) negative numbers is negative and its absolute value is the sum of the numbers' absolute values. b) To add a positive and a negative number, calculate the difference of the absolute values and take the sign of the number which has the greater absolute value. c) To multiply by a negative number, multiply the opposite number of the multiplicand by the opposite positive number. d) The product of a negative and a positive number is negative and its absolute value is equal to the product of their absolute values. e) The product or quotient of two negative numbers is positive. What additional information could be written at the end of this sentence? T asks 2 or 3 Ps what they think. e.g. (. . . and its absolute value is the product or quotient of the two numbers' absolute values.)	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace In good humour! Discussion, reasoning, checking, agreement, praising Missing words underlined. $\begin{aligned} & \text { e.g. }-3+(-5)=-8 \\ & \text { e.g. } 10+(-12)=-2 \end{aligned}$ $\begin{aligned} & \text { e.g. } 8 \times(-6)=\underline{-48} \\ & -7 \times(-5)=\underline{35} \\ & -9 \times 3=9 \times(-3)=-\underline{27} \\ & -100 \times(-10)=\underline{1000} \\ & -100 \div(-10)=\underline{10} \end{aligned}$

16		Lesson Plan 29
Activity 5	PbY6a, page 29 Q. 3 Read: Fill in the tables according to the given rules. Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Rule: $y=(-2) \times x$ b) Rule: $y=(-2) \times x+3$ Read: In your exercise book, draw a coordinate grid. On it plot the (x, y) points for both tables. Use a different colour for each table. Agree on the range necessary for each axis, then Ps draw axes and plot points in Ex. Bks, while Ps come out one after the other to plot a point on the grid on the BB. Is it correct to join up the points? (Yes, because x and y could be any value between the dots too, i.e. they could be fractions or decimals.) Ps use rulers to join up dots of the same colour. What do you notice? (The two lines are parallel; the graph line for a) passes through the origin; the graph line for b) is 3 units higher on the y-axis). Solution:	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising T shows that the equations can be written in a simpler way. BB: $y=(-2) \times x=-2 x$ $y=(-2) \times x+3=-2 x+3$ Grid drawn on BB or use enlarged copy master or OHP (Slow Ps could have copy of copy master to save time; other Ps have squared grid sheets or Ex. Bks.) Ps work at BB while rest of class work in Ex. Bks. Discussion, aagreement, praising Elicit the short form of each equation, then a P writes it beside the relevant line. T points to each line in turn and class says its equation in unison.

