\begin{tabular}{|c|}
\hline 16 \& \[
\begin{array}{ll}
\text { R: } \& \mathrm{Ca} \\
\text { C: } \& \mathrm{Ha} \\
E: \& \operatorname{Pr}
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { Lesson Plan } \\
51
\end{gathered}
\]} \\
\hline \begin{tabular}{l}
Activity \\
1
\end{tabular} \& \multicolumn{16}{|l|}{\begin{tabular}{l}
Factorisation \\
Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. \\
Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: \\
- \(\underline{51}=3 \times 17\) \\
Factors: 1, 3, 17, 51 \\
- \(\underline{226}=2 \times 113 \quad\) Factors: 1, 2, 113, 226 \\
- 401 is a prime number Factors: 1, 401 \\
(as not exactly divisible by \(2,3,5,7,11,13,17,19\), and \(23 \times 23>401\)) \\
- \(\underline{1051}\) is a prime number Factors: 1, 1051 (as not exactly divisible by \(2,3,5,7,11,13,17,19,23,29,31\), and \(37 \times 37>1051\))
\end{tabular}} \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Notes \\
Individual work, monitored (or whole class activity) \\
BB: 51, 226, 401, 1051 \\
Calculators allowed. \\
Reasoning, agreement, selfcorrection, praising e.g.
\end{tabular}} \\
\hline \multirow[t]{2}{*}{2} \& \multicolumn{16}{|l|}{\begin{tabular}{l}
Collecting data \\
a) Let's collect data on the months in which you were born. \\
How could we do it? (List the months and keep a tally.) T draws table on BB, as dictated by Ps and Ps draw one in Ex. Bks. \\
Ps dictate their birthday month at speed in order round class and T keeps a tally on BB while rest of Ps do the same in Ex. Bks. \\
Ps count up the tally marks and write the numbers below. \\
BB: e.g. for 29 Ps: \\
T (Ps) think of questions to ask about the data. e.g: \\
- Which month had most (least) birthdays? (August, May) \\
- What is the difference between their data? \((5-0=5)\) \\
- Which number of birthdays is the most common? (3) etc. \\
b) i) Work out your age in months, then we will collect the data. \\
\(\mathrm{T}(\mathrm{P})\) demonstrates how to calculate on BB first if necessary: \\
e.g. Born on 12 April 1993; Today's date: 5 December 2003 \\
Age in months: \(10 \times 12+8=120+8=\underline{128}\) \\
T draws a table on BB and Ps do the same in Ex. Bks. Ps dictate ages in order round class. T (P) keeps a tally and Ps do the same in Ex. Bks. Ps count up the tally marks and write the numbers below. We say that these numbers are the frequency of the data. BB: e.g. for 29 Ps :
\end{tabular}} \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Whole class activity but individual drawing/recording (or T and slow Ps could use enlarged copy master) \\
At speed \\
Agreement, praising \\
Agreement, praising \\
Ps calculate on scrap paper or in Ex. Bks. \\
BB: 12 April 1993 \\
to 12 April 2003: 10 years \\
12 April to 5 December 2003: approx. 8 months \\
At a good pace \\
BB: frequency \\
(how often data occur) \\
Ps could write underlined words (above and following) and their meanings in Ex. Bks.
\end{tabular}}} \\
\hline \& \& 119 \& \begin{tabular}{c}
120 \\
1 \\
1 \\
of \\
\hline
\end{tabular} \& \begin{tabular}{|c|}
121 \\
II \\
2 \\
\hline
\end{tabular} \& 122 \& \begin{tabular}{c}
123 \\
\hline 1 \\
1 \\
1 \\
to a
\end{tabular} \& \begin{tabular}{c|c|}
124 \& 12 \\
\hline 11 \\
\hline 3 \& \\
\hline
\end{tabular} \& \begin{tabular}{|c|c|}
125 \& 12 \\
\hline 111 \& 11 \\
4 \& 2 \\
about
\end{tabular} \& 26
11
2

the \& 11 \& 128 \& 129 \& 130

0 \& 131 \& 132 \& | 133 |
| :--- |
| 1 |
| 1 | \& \& \& \& \\

\hline
\end{tabular}

		Lesson Plan 51
Activity 3	(Continued) b) Calculate the difference between the highest and the lowest heights. The range of the sample is $\underline{559 \mathrm{~m}}$. c) Calculate the average height of these 7 peaks. BB: $(945+1023+1311+996+1286+1504+1150) \div 7$ $=8215 \div 7 \approx \underline{1173.6}(\mathrm{~m})$ The mean of the sample is $\underline{1173.6 \mathrm{~m}}$. d) Find the middle value among the 7 heights. The median of the sample is $\underline{1150 \mathrm{~m}}$. 30 min	Notes BB: $1504 \mathrm{~m}-945 \mathrm{~m}=559 \mathrm{~m}$ [If possible, T checks the calculation of the mean, and shows a graph for the data, on a computer.] (4th in ordered list of data) Feedback for T
4	PbY6a, page 51 Q. 2 Read: These are the masses of 8 pumpkins. $8.3 \mathrm{~kg}, 9.7 \mathrm{~kg}, 7.9 \mathrm{~kg}, 9.1 \mathrm{~kg}, 9.0 \mathrm{~kg}, 7.6 \mathrm{~kg}, 9.0 \mathrm{~kg}, 7.9 \mathrm{~kg}$ Deal with one part at a time if class is not very able, otherwise set a time limit. Ps read questions themselves, do listing and calculations in Ex. Bks and write results in Pbs. Review with whole class. Ps could show answers to b) to d) on slates or scrap paper on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) Write the data in increasing order in your exercise book. $7.6 \mathrm{~kg}, 7.9 \mathrm{~kg}, 7.9 \mathrm{~kg}, 8.3 \mathrm{~kg}, 9.0 \mathrm{~kg}, 9.0 \mathrm{~kg}, 9.1 \mathrm{~kg}, 9.7 \mathrm{~kg}$ b) Calculate the difference between the heaviest and the lightest pumpkin. The range of the sample is $\underline{2.1} \mathrm{~kg}$. c) Which is the most frequent value? The mode of the sample is 7.9 kg and 9.0 kg . d) Calculate the average mass of the 8 pumpkins. BB: $(7.6+2 \times 7.9+8.3+2 \times 9.0+9.1+9.7) \div 8$ $=68.5 \div 8 \approx \underline{8.56}(\mathrm{~kg})$ The mean of the sample is 8.56 kg . e) Find the middle value among the masses. The median of the sample is the mean of the 4th and 5th values. BB: $=\frac{17.3}{2}=8.65(\mathrm{~kg})$ The median of the sample is $\underline{8.65 \mathrm{~kg} \text {. } \mathrm{F} \text {. } \mathrm{c}}$. Review the vocabulary. Ps explain in their own words what they understand by mean, mode, median, range, frequency.	Individual work, monitored, helped If possible, T has a real pumpkin to show to class and Ps say how and when they are used. (pumpkin pie or soup, lanterns at Hallowe'en, 'coach' for Cinderella, etc.) Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising Ps dictate to T. BB: $9.7 \mathrm{~kg}-7.6 \mathrm{~kg}=2.1 \mathrm{~kg}$ The mode consists of 2 masses as they each occur twice. [If possible, T checks the calculation of the mean and shows a graph for the data on a computer.] Feedback for T

	R: Calculation C: Solving problems by representing and interpreting data E: Tables, graphs, charts, diagrams in problem solving	$\begin{gathered} \text { Lesson Plan } \\ 52 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{52}=2 \times 2 \times 13=2^{2} \times 13 \quad$ Factors: $1,2,4,13,26,52$ - $\underline{227}$ is a prime number Factors: 1, 227 (as not exactly divisible by $2,3,5,7,11,13$, and $17 \times 17>227$) - $\underline{402}=2 \times 3 \times 67$ Factors: 1, 2, 3, 6, 67, 134, 201, 402 - $\underline{1052}=2 \times 2 \times 263=2^{2} \times 263$ Factors: 1, 2, 4, 263, 526, 1052	Notes Individual work, monitored (or whole class activity) BB: 52, 227, 402, 1052 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|lr\|l} 402 & 2 & \\ 201 & 3 & 1052 & 2 \\ 67 & 67 & 526 & 2 \\ 1 & & 263 & 263 \\ & & 1 & \end{array}$
2	Pie Chart Listen carefully and note the data in your Ex. Bks. In a school there are 720 pupils. There are 180 pupils in Year 3 216 pupils in Year 4, 198 pupils in Year 5 and the rest are in Year 6. a) What part of all the pupils in the school is each year group? Ps come to BB or dictate what T should write. Class agrees/disagrees. Year 3: $\frac{180}{720}=\frac{18}{72}=\frac{9}{36}=\frac{1}{4}$ Year 4: $\quad \frac{216}{720}=\frac{72}{240}=\frac{6}{20}=\frac{3}{10}$ Year 5: $\quad \frac{198}{720}=\frac{66}{240}=\frac{11}{40}$ Year 6: $\quad 720-(180+216+198)=720-594=126$ $\frac{126}{720}=\frac{42}{240}=\frac{7}{40}$ b) Let's complete this pie chart. BB: Ps come to BB to fill in the missing items, explaining reasoning. Class agrees/disagrees (Fill in items for 1 quarter first, then smallest part must be 7 fortieths, and the next smaller part must be 11 fortieths.) c) What is the ratio of the pupils in each year? $\mathrm{BB}: \mathrm{Y} 3: \mathrm{Y} 4: \mathrm{Y} 5: \mathrm{Y} 6 \rightarrow \frac{10}{40}: \frac{12}{40}: \frac{11}{40}: \frac{7}{40} \rightarrow 10: 12: 11: 7$	Whole class activity T repeats slowly, or has question written on BB or SB or OHT Reasoning, agreement, praising Elicit that dividing numerator and denominator of a fraction by the same number of times does not change its value. [T might suggest finding the greatest common factor so that the simplification can be done in 1 step. e.g. $\begin{aligned} & 180=2^{2} \times 3^{2} \times 5 \\ & 720=2^{4} \times 3^{2} \times 5 \end{aligned}$ HCF: $\left.2^{2} \times 3^{2} \times 5=180\right]$ Drawn on BB or use enlarged copy master or OHP Elicit that: $\frac{1}{4}=\frac{10}{40}, \quad \frac{3}{10}=\frac{12}{40}$ Discussion, reasoning, agreement, praising

		Lesson Plan 52
Activity 4	PbY6a, page 52 Q. 2 Read: In a survey about television programmes, a quarter of the people questioned preferred nature programmes, an eighth preferred science programmes, 3 eighths preferred romantic films, an eighth preferred sports events and 40 people preferred game shows. T asks several Ps what kind of television programmes they prefer. Read: a) Draw a pie chart to show the data. Ps say what to first and how to continue. T asks appropriate questions as necessary to direct Ps' thinking. e.g. Draw a circle with compasses and mark its centre. Divide the circle into $\underline{8}$ equal parts (as the question mentions eights and quarters and 1 quarter equals 2 eighths).by drawing vertical and horizontal diameters with rulers, then dividing 2 right angles into two 45° angles using a protractor.) Set a time limit. (Ps could shade each part in a different colour.) Review with whole class. Ps come to BB to draw the pie chart, explaining reasoning (or T has steps already prepared on SB or OHTs). Class agrees/disagrees. Mistakes corrected. Deal with the questions one at a time or set a time limit. Ps read questions themselves, do necessary calculations and write answers as sentences in Ex. Bks. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solutions: b) What part of the number of people questioned preferred game shows? Plan: $1-\left(\frac{1}{4}+\frac{1}{8}+\frac{3}{8}+\frac{1}{8}\right)=1-\left(\frac{2}{8}+\frac{5}{8}\right)=1-\frac{7}{8}=\frac{1}{8}$ Answer: One eighth of the number of people questioned preferred game shows. c) How many people were questioned in the survey? $\text { Plan: } \frac{1}{8} \rightarrow 40 \text { people } \frac{8}{8} \rightarrow 40 \times 8=\underline{320} \text { (people) }$ Answer: 320 people were questioned in the survey. d) How many people prefered each of the 4 types of programmes? Nature: $\frac{1}{4}$ of $320=320 \div 4=\underline{80}$ (people) Science/Sports: $\frac{1}{8}$ of $320=320 \div 8=\underline{40}$ (people) Romantic films: $\frac{3}{8}$ of $320=40 \times 3=\underline{120}$ (people)	Notes Ps have rulers, compasses and protractors on desks. Individual work, monitored, helped, drawing of pie chart also corrected Initial brief discussion involvig several Ps to set the scene. Discussion, agreement, praising. (If class is not very able, do one step at a time, with T demonstrating on BB and Ps following in Ex. Bks.) Make sure that Ps label each part with a fraction and type of programme. Reasoning, agreement, selfcorrection, praising Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T Answer: In the survey, 80 people preferred nature programmes, 40 people preferred science programmes, 120 people preferred romantic films and 40 people preferred sports events.

		Lesson Plan 52
Activity	(Continued) Deal with questions c) to e) one at a time. Ps read question, do calculation or listing and write the answer in Ex. Bks. Review with whole class. Ps show result on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Mistakes discussed and corrected. Solutions: c) Calculate the mean of the daylight hours. Plan: $(142 \mathrm{~h}+293 \mathrm{~min}) \div 12=146 \mathrm{~h} 53 \mathrm{~min} \div 12$ $\begin{aligned} & =144 \mathrm{~h} 173 \mathrm{~min} \div 12 \\ & =12 \mathrm{~h} 14 \mathrm{~min} 25 \mathrm{sec} \end{aligned}$ Answer: The mean of the daylight hours is 12 hours, 14 minutes and 35 seconds. d) Calculate the range of: i) the day-time hours: $\begin{aligned} & 15 \mathrm{~h} 59 \mathrm{~min}-8 \mathrm{~h} 26 \mathrm{~min} \\ & =\underline{7 \mathrm{~h} 33 \mathrm{~min}} \end{aligned}$ ii) the night-time hours: 15 h 34 min - 8 h 1 min $=7 \mathrm{~h} 33 \mathrm{~min}$ Answer: The range of the day-time hours is the same as the range of the night-time hours, 7 hours 33 minutes. e) Calculate the median of the daytime hours. Ordered listing: $8 ; 26,9 ; 05,9 ; 05,10 ; 35,10 ; 36,12 ; 11$, $12 ; 16,13 ; 56,14 ; 00,15 ; 19,15 ; 25,15 ; 59$ Plan: $\quad(12 \mathrm{~h} 11 \mathrm{~min}+12 \mathrm{~h} 16 \mathrm{~min}) \div 2$ $\begin{aligned} & =24 \mathrm{~h} 27 \mathrm{~min} \div 2 \\ & =12 \mathrm{~h} 13 \mathrm{~min} 30 \mathrm{sec} \end{aligned}$ Answer: The median of the daytime hours is 12 hours, 13 minutes and 30 seconds. What is the mode of the daylight hours? (9 hours 5 minutes) 45 min	Notes Individual work, monitored, helped Ps may use a calculator. Responses shown in unison. Reasoning, agreement, selfcoreection, praising $\begin{aligned} & (\text { as } 60 \times 4=240(\mathrm{~min}) \\ & 173 \mathrm{~min} \div 12 \\ & =14 \mathrm{~min}+(5 \mathrm{~min} \div 12) \\ & =14 \mathrm{~min}+(300 \mathrm{sec} \div 12) \\ & =14 \mathrm{~min}+25 \mathrm{sec}) \end{aligned}$ Even number of ordered data, so we calculate the mean of the 2 middle values (6th and 7th) to determine the median of all the data.
Homework	(Optional) Ps mark the night-time hours on their graph and join up the points in a different colour from the daytime hours.	Review before the start of Lesson 53 and compare the 2 graph lines.

16	R: Calculations C: Frequency tables and bar charts; continuous and discrete data E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 53 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{53}$ is a prime number Factors: 1,53 (as not exactly divisible by $2,3,5,7$, and $11 \times 11>53$) - $\underline{228}=2 \times 2 \times 3 \times 19=2^{2} \times 3 \times 19$ Factors: 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228 - $\underline{403}=13 \times 31 \quad$ Factors: 1, 13, 31, 403 - $\underline{1053}=3 \times 3 \times 3 \times 3 \times 13=3^{4} \times 13$ Factors: 1, 3, 9, 13, 27, 39, 81, 117, 351, 1053	Notes Individual work, monitored (or whole class activity) BB: 53, 228, 403, 1053 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Extracting data from a graph One winter's day in a city in Germany, the outside temperature was taken every 2 hours. This graph shows how the temperature changed. BB: Temperature $\left({ }^{\circ} \mathrm{C}\right)$ What does the graph tell us? (e.g. Day started off very cold, then gradually became warmer until it reached its highest temperature at 4 o'clock in the afternoon. Then it grew steadily colder and by midnight the temperature had fallen back almost to what it had been at the start. a) Let's write the data in a table. Ps suggest the form (e.g. time on top row and temperature on bottom row). When T has drawn the table, Ps come to BB in pairs, one to point to a marked dot and read out the corresponding values and the other to write the data in the table. BB: Is it correct to have joined up the dots when we only know exact the data for every 2 hours? (The points between the dots are not exact but are likely to be very close, as temperature during a day rises and falls gradually.)	Whole class activity Graph drawn on BB or use enlarged copy master or OHP If possible, Ps have a copy on desks too. Discussion involving several Ps. Accept and praise any valid piece of information shown by the graph. At a good pace Reasoning, agreement, praising T explains or elicits the difference between the data in the table (discrete data) which shows the temperature at only certain times of the day, and the data shown by the graph line (continuous data), which shows the temperature at all times throughout the day.

16		Lesson Plan 54
Activity 3 Extension	(Continued) d) Calculate the mean score for the country, taking the number of children in each school into consideration. Mean country score: $\begin{aligned} & (89 \times 58+94 \times 75+80 \times 32+107 \times 70+95 \times 93+ \\ & 117 \times 75+87 \times 34+77 \times 9+90 \times 10+85 \times 18) \div 474 \\ & =(5162+7050+2560+7490+8835+8775+2958+693 \\ & \quad+900+1530) \div 474=45953 \div 474 \approx \underline{96.9}(\text { marks }) \end{aligned}$ Answer: The mean country score is 96.9 marks. - Why is the average country score of 96.9 marks more than the average of the school mean scores, 92.1 marks? (Because the larger schools have higher mean scores than the smaller schools.) - When would the average country score be the same as the average of the school means?	Notes Whole class activity (or individual trial first if Ps wish) Ps dictate what T should write Class agrees/disagrees. (Let Ps use calculators.) Whole class discussion T gives hints if Ps have no ideas. Praising, encouragement only (If each school had the same number of Ps, or if each school had the same mean score)
4	PbY6a, page 54 Q. 2 Read: John spun this spinner several times. He wrote down the number it stopped at each time. This is what he wrote. BB: $0,2,-3,-1,2,1,-2,0,-2,0,2$, $\begin{equation*} 2,-3,-1,1,2,0,-3,-2,2,1 \tag{21} \end{equation*}$ How many times did John spin the spinner? Set a time limit. Ps read questions themselves and do any necessary calculations in Ex. Bks. Review with whole class. T chooses a P to read out the question. Ps dictate part a) to T. Class agrees/disagrees. Ps show results for b) to e) on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) Write the data in increasing order in your exercise book. $\mathrm{BB}:-3,-3,-3,-2,-2,-2,-1,-1,0,0,0,0,1,1,1$, $2,2,2,2,2,2$ b) Calculate the range of the data $\begin{equation*} [2-(-3)=\underline{5}] \tag{2} \end{equation*}$ c) What is the mode of the data? (The mode of the data is 2 , as 2 occurred most often.) d) Calculate the mean of the data. BB: Mean: $\begin{aligned} & (-3 \times 3+-2 \times 3+-1 \times 2+0 \times 4+1 \times 3+2 \times 6) \div 21 \\ & =[-9+(-6)+(-2)+0+3+12] \div 21=-2 \div 21=-\frac{2}{21} \end{aligned}$ The mean of the data is -0.095 (to nearest 1000th) e) What is the median of the data? (The median of the data is the 11th value in the ordered list.)	Individual work, monitored, helped Drawn/written/stuck on BB, or use enlarged copy master Ps shout out in unison. Differentiation by time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising (≈-0.095) Feedback for T

16		Lesson Plan 54
Activity 6	PbY6a, page 54, Q. 4 Read: Which two numbers are missing from this data sample if its median is 2.6 , its mode is 3.1 and its mean is 2.5 ? (The data are already in order.) Allow Ps 2 minutes to think about it, then Ps who have an answer show missing numbers on slates or scrap paper on command. Ps with different responses explain reasoning at BB . Who agrees? Who thought another way? Class decides who is correct. Ps write agreed numbers in Pbs. Solution: $\begin{array}{llllllll} 1.1 & 1.4 & 2.1 & 2.6 & 3.1 & 3.1 & 4.1 \end{array}$ Reasoning: e.g. As the data are in order, the 1 st missing number is the median, 2.6. As 3.1 is the mode, there must be another 3.1 in the list, so 2nd missing number is 3.1. Check using the mean. $\text { Mean: } \begin{aligned} (1.1+1.4+2.1+2.6+3.1+3.1+4.1) \div 7 & =17.5 \div 7 \\ & =\underline{2.5} \boldsymbol{\imath} \end{aligned}$	Notes Short individual trial first, then whole class review Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, checking, praising i.e. 4th value in an ordered set of 7 values.

	R: Calculation C: Using language associated with probability to discuss events E: Equally likely outcomes	$\begin{gathered} \text { Lesson Plan } \\ 56 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{56}=2 \times 2 \times 2 \times 7=2^{3} \times 7$ Factors: 1, 2, 4, 7, 8, 14, 28, 56 - $\underline{231}=3 \times 7 \times 11$ Factors: 1, 3, 7, 11, 21, 33, 77, 231 - $\underline{406}=2 \times 7 \times 29$ Factors: 1, 2, 7, 14, 29, 58, 203, 406 - $\underline{1056}=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 11=2^{5} \times 3 \times 11$ $\begin{array}{r} \text { Factors: 1, } \quad 2, \quad 3, \quad 4, \quad 6, \quad 8, \quad 11,12,16,22,24,32, \downarrow \\ 1056,528,352, \\ \downarrow \end{array}$ 8 min	Notes Individual work, monitored (or whole class activity) BB: 56, 231, 406, 1056 Calculators allowed. Reasoning, agreement, selfcorrection, praising Whole class listing of the factors of 1056 e.g.
2	Probability 1 a) Tell me outcomes or events which are certain to happen. Ps make suggestions and class agrees or disagrees. e.g. - If you pick a card from a pack of cards: - its number will be even or odd (Certain) - its colour will be black or red (Certain) - it will be a diamond, a club, a heart or a spade. (Certain) - This sentence has the letter 'e' in it. (Not a good example, as it is a fact, not an outcome.) - The sun will rise in the East tomorrow. (Not a good example: it is certain unless something happens to the Earth - not impossible but very, very unlikely.) etc. b) Tell me outcomes or events which are possible but not certain. Ps make suggestions and class decides how likely or unlikely they are. - If you pick a card from a pack of cards: - it will be black (Good example, as it has a 'fifty-fifty' or 'equal' chance of happening as of not happening.) - it will be a club (Possible but unlikely, as there are 4 different suites in a pack of cards) - it will be a number between 0 and 8. (Very likely) - When you roll a dice, the number facing up will be at least a 3 . (More likely than unlikely, as there are 6 possible numbers on a dice and 'at least a 3 ' will cover 4 of them.) etc. c) Tell me outcomes or events which are impossible. e.g. - If you roll a fair dice, you will score a number less than 1 . - The Sun will sink in the East this evening. - The bonus number in the next National Lottery will be 50. etc.	Whole class activity T should have a pack of cards, dice and coins in case demonstration is necessary. Involve majority of Ps. T gives hints if necessary, or makes suggestions (such as those given here) and Ps say what they think about them. T and Ps discuss whether the suggested event really does fit the relevant category. Discussion, agreement, praising In good humour! Extra praise for creativity Feedback for T

		Lesson Plan 56
Activity 6		Notes
6	Probability 2 T asks a question and Ps show the answer on scrap paper or slates on command. Ps with different responses explain reasoning at BB. Class decides on the correct answer. T shows the correct notation on BB. a) If you throw a fair dice 60 times how many times would you expect to get a '4'? (Reasoning: e.g. 6 possible outcomes: $1,2,3,4,5$, or 6 , only one outcome is ' 4 ', so on each throw the probability of getting a 4 is 1 sixth. BB: $\frac{1}{6}$ of $60=60 \div 6=\underline{10}$ so for 60 throws you would expect to get a '4' $\underline{10}$ times.) b) If you throw a fair dice 120 times how many times would you expect to get a number which is 'at most 4'? (Reasoning: e.g. 6 possible outcomes: $1,2,3,4,5$, or $6 ; 4$ of them are 'at most 4 ', so on each throw the probability of getting 'at most 4 ' is 4 out of 6 , or 4 sixths. BB: $\quad \frac{2}{3}$ of $120=120 \div 3 \times 2=40 \times 2=\underline{80}$ For 120 throws you would expect to get 'at least 4' $\underline{80}$ times.) c) If you drew a card from a pack of playing cards and replaced it in the pack 100 times, how many times would you expect the card to be a 'heart'? (Reasoning: 4 possible outcomes: heart, diamond, spade or club; only 1 of them is a 'heart', so each time, the probability of getting a 'heart' is 1 out of 4 , or 1 quarter. BB: $\quad \frac{1}{4}$ of $100=100 \div 4=\underline{25}$ For 100 times you would expect to get 'a heart' $\underline{25}$ times.) d) If you toss a fair coin 100 times, how many times would you: i) expect to get a 'head'? (Reasoning: 2 possible outcomes: head or tail, only 1 of them is a 'head', so for each toss, the probability of 'a head' is $\underline{1 \text { half. }}$ BB: $\frac{1}{2}$ of $100=100 \div 2=\underline{50}$ For 100 tosses you would expect to get 'a head' 50 times.) ii) expect to get a 'head or a tail'? (Reasoning: 2 possible outcomes: head or tail, each with a probability of 1 half, so probability of 'a head or a tail' is 2 halves or 1. i.e. it is certain to happen. For 100 tosses you would expect to get 'a head or a tail' $\underline{100}$ times. iii) expect to get a 'head and a tail'? (Reasoning: It is impossible - there is no chance of getting 'a head and a tail' at the same time!)	Whole class activity but
		individual calculation in $E x$. $B k s$. or on scrap paper or slates
		T repeats question slowly to give Ps time to think and calculate.
		Responses shown in unison.
		Reasoning, agreeement, praising
		BB: $p(4)=\frac{1}{6}(=0.1 \dot{6})$
		Elicit decimal form too.
		BB: $p($ at most 4$)=\frac{4}{6}=\frac{2}{3}$
		$(=0 . \dot{6})$
		BB: p (heart) $=\frac{1}{4}(=0.25)$
		BB: $p($ head $)=\frac{1}{2}(=0.5)$
		BB:
		$\begin{equation*} p(\text { head or tail })=\frac{2}{2}=\underline{1} \tag{100} \end{equation*}$
		BB:$\begin{equation*} p(\text { head } \underline{\text { and }} \text { tail })=\frac{0}{2}=\underline{0} \tag{0} \end{equation*}$

	R: Calculations C: Probability scale E: Predicting probabilities based on experiments	$\begin{gathered} \text { Lesson Plan } \\ 57 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{57}=3 \times 19$ Factors: 1, 3, 19, 57 - $\underline{232}=2 \times 2 \times 2 \times 29=2^{3} \times 29$ Factors: 1, 2, 4, 8, 29, 58, 116, 232 - $\underline{407}=11 \times 37$ Factors: 1, 11, 37, 407 - $\underline{1057}=7 \times 151$ Factors: 1, 7, 151, 1057 6 min	Notes Individual work, monitored (or whole class activity) BB: 57, 232, 407, 1057 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Relative Frequency a) Ps work in pairs to toss a coin 30 times and keep a tally of the outcomes in a table. Ps check that their totals sum to 30 . T chooses a pair to show their results on the BB . e.g. We say that the number of times an outcome happened is its frequency. What is the frequency of a Head (Tail)? $(13,17)$ What part of these 30 tosses were Heads (Tails)? (Ask for the decimal form too. (Ps use calculators and round result appropriately.) Ps dictate to T. Class agrees/disagrees. BB: Heads: $\frac{13}{30} \approx 0.43$ (43\%) Tails: $\frac{17}{30} \approx 0.57$ (57\%) When we compare the frequency with the total number of outcomes, we call it the relative frequency. We can give the relative frequency as a fraction or a decimal like this (T points to those on BB) or as a percentage. Elicit that 'percent' means 'out of 100'. Ps say the fractions as percentages (H: 43\%, T: 57%) and T writes on BB. What is the frequency of the outcome 'Head or Tail'? (30) What is the relative frequency of 'Head or Tail'? ($\frac{30}{30}=1 \rightarrow 100 \%$) Elicit that this is the outcome which is certain to happen. b) Let's collect all the frequency data for the class and write it in this table. Each P in a pair is responsible for Heads or Tails. Ps dictate their results and keep running totals on their calculators (or T projects 2 calculators from computers onto a screen). T writes class frequencies in table on BB and Ps write them in table on their sheets (or drawn in Ex. Bks). Elicit the relative frequencies in fraction, decimal and percentage form (using calculators and rounding result appropriately).	Paired (individual) experiment under a time limit Whole class collection and interpretation of the data Table drawn on BB or use enlarged copy master or OHP (Slower Ps could have copy of table on desks to save time.) BB: Frequency BB: Relative Frequency Discussion, agreement, praising BB: $13+17=\underline{30}$ Whole class activity At a good pace In good humour! Checking and agreeing results, praising Ps dictate to T. Reasoning, agreement, praising

16						Lesson Plan 57
Activity 2	BB: e.g. What is What is d) If you getti c) If po proj (th n Head Ps co then Show frequ	Outcome Head Tail the frequ the relati ous toss a ng a Head ance out each outc are the lf? (The ssible, sh ected on a umber of ds and Tail ould calcu T reveals w that as uencies ge	Class data Frequency 379 371 $n=750$ ncy of a 'Head e frequency of ir coin, what p (Tail)? Why? f 2 , or $\frac{1}{2}$ or 0. me has an equ lative frequenc ore experimen w a computer screen. Ps sug osses) and read ate the relative them on the co e number of to closer to the ex	Relative Fre $\frac{379}{750} \approx 0.505$ $\frac{371}{750} \approx 0.495$ r a Tail'? (750) 'Head or a Tair bability would , as there are 2 chance of hap es in our exper we do, the clo mulation of the est increasingly out the resultin frequencies us puter program ses increases, pected probab \qquad 17 min \qquad	$\text { '? (1 } \rightarrow \text { 100\%) }$ you give to possible outcomes ening) ment not exactly er they will get.) experiment large values for n frequencies for g calculators first e relative ity: a half.	Notes T and Ps talk about the connection between experimental data (i.e. relative frequency) and predicted data (i.e. probability)
3	PbY6a, pag Q. 1 a)	e 57 Read: Th out cal Set a time ally mark he relative T asks P fi BB: e.g. Outcome \square $\stackrel{\circ}{\circ}$: \because :	w a fair dice 6 omes. Write th ulate the relati limit of 5 minu before writing frequencies as ished first to	times. Keep a frequency in t frequency of s. Ps check th he frequencies fractions, decin how their result data	tally of the e table and ach outcome. they have 60 and calculating als and percentages on table on BB.	Individual (or paired, able with less able) work, closely monitored, helped, corrected Table drawn on BB or use enlarged copy master or OHP Ps use calculators to work out the decimal forms. (numerator divided by denominator) Class points out any errors in two RH columns of table. Ps with vastly different results from everyone else check their counting and calculations. If correct, ask class what it might show. (The dice of that P could be unfair or biased, i.e. weighted to make a certain number occur more often.)

		Lesson Plan 57
Activity 3 Extension	(Continued) b) Read: Collect the data for the class and calculate the relative frequencies in your exercise book. T chooses 6 able Ps to keep a running total for each of the outcomese on their calculators while rest of Ps dictate their results. The 6 Ps write the frequencies on BB and class calculates the relative frequencies in the three different forms. Ps write them in Ex. Bks. Read: Write a sentence about what you notice. Allow a minute or two for Ps to think and write their sentences, then T asks individual Ps to read what they wrote. Who wrote much the same? Who noticed something else? etc. Elicit that the frequencies are very similar and the relative frequencies are close to 1 sixth. c) What chance would you give of throwing a 6 ? Why? (1 chance out of 6 , or 1 sixth, as indicated by the data in the experiment; or there are 6 possible different outcomes, each with an equal chance of happening.)	Notes Whole class activity Table drawn on BB or use enlarged copy master or OHP At a good pace, in good humour! Reasoning, agreement, praising Individual work, monitored Agreement, praising only [If possible use a computer simulation (e.g. Probability Program 7) to show that the more times the experiment is done, the closer the actual data gets to what is expected.]
4	Probability scale Let's revise what we know about probability. Ps tell class what they have learned and help T to draw a probability scale on BB. Elicit or tell that halfway on the scale (i.e. probability of a half or 0.5 or 50%) is sometimes called 'Evens', especially when gambling! BB: (Evens)	Whole class discussion and revision Discuss the connection with frequency and relative frequency. Ps give examples of 'impossible', 'evens' and 'certain' events or outcomes. Class agrees/disagrees. Praising, encouragement only
5	PbY6a, age 57 Q. 2 Read: What chance do you think each of these outcomes has of happening? Write its letter at the appropriate place below the probability scale. Set a time limit. Ps read the statements theselves and write the letters below the scale. Review with whole class. Ps come to BB to write letters and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. T also asks Ps to give an exact probability if they can. (BB) Solution: A: If a card is picked at random from a full pack of playing cards, it will be a heart. (4 different suites: heart, diamond, club, spade, so 4 possible outcomes, each with an equal chance of happening)	Individual work, monitored, helped Drawn on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T BB: $p \text { (heart) }=\frac{1}{4}=0.25$

16		Lesson Plan 57
Activity 5	(Continued) B: When you throw a fair dice the score will not be less than 3. (6 possible outcomes, each with an equal chance of happening and the statement involves 4 of them: $3,4,5,6$) C: The next baby born in your local hospital will be a girl. (2 possible outcomes, each with an equal chance of happening) D: A card picked at random from a pack of playing cards will be black or red. (2 colours, red and black, in a pack of cards, and the statement involves both of them, so the outcome is certain.) E: The next Olympic Games will be held in 2007. (Impossible, as there is an Olympic Games being held in 2004 and they are held every 4 years.) BB: 35 min	Notes $\begin{aligned} & p(s \geq 3)=\frac{4}{6}=\frac{2}{3} \approx 0.67 \\ & p(\text { girl })=\frac{1}{2}=0.5 \\ & p(\text { black or red })=\frac{2}{2}=1 \\ & p(2007)=0 \end{aligned}$
6 Extension	PbY6a, page 57 Q. 3 Read: This probability scale shows the probabilities of 6 outcomes: A, B, C, D, E and F. BB: Set a time limit. Ps read questions themselves and write answers in Pbs. Review with whole class. T chooses a P to read out the question and Ps show letters on scrap paper or slates on command. Ps with correct responses explain reasoning at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) Which outcome is: i) certain to happen? (D) ii) impossible? iii) the most unlikely to happen but is not impossible? b) Which outcomes are more likley than C to happen? (EFBD) c) Which outcome is least likely to happen but is not impossible? Ps think of questions to ask for the outcomes not mentioned. e.g. 'Which outcome is as likely to happen as not to happen? (F)	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T Whole class activity Ps ask questions and class shows answers in unison.

		Lesson Plan 57
Activity		Notes
7	PbY6a, page 57, Q. 4	Whole class activity
	$\mathrm{T}(\mathrm{P})$ reads out the question.	(or T puts coloured marbles in
	Ps show probabilities on scrap paper or slates on command. Ps answering correctly explain reasoning to Ps who were wrong.	a bag, shakes it, then asks the question, amending the words appropriately).
	Read: In a bag there are 5 red, 2 green and 3 yellow marbles. If you take out 1 marble with your eyes closed, what is the probability that it will be:	Accept any correct form.
	a) red $\quad\left[p(r e d)=\frac{5}{10}=\frac{1}{2}=0.5 \rightarrow 50 \%\right]$ b) green $\quad\left[p(\right.$ green $\left.)=\frac{2}{10}=\frac{1}{5}=0.2 \rightarrow 20 \%\right]$	a) ' 10 marbles in the bag, each with an equal chance of being picked;
	c) yellow $\quad[p$ (yellow $\left.)=\frac{3}{10}=0.3 \rightarrow 30 \%\right]$	5 of them are red, so red has 5 chances out of 10. .'
	d) not red $\quad\left[p(\right.$ not $\left.r e d)=\frac{5}{10}=\frac{1}{2}=0.5 \rightarrow 50 \%\right]$	(i.e. green or yellow)
	e) not green $\quad[p$ (not green $\left.)=\frac{8}{10}=\frac{4}{5}=0.8 \rightarrow 80 \%\right]$ f) blue? $\quad\left[p(b l u e)=\frac{0}{10}=0\right] \quad$ (Impossible outcome)	(i.e. red or yellow)
Extension	- If you took a marble out of the bag and replaced it 200 times, how many times would you expect the marble to be: i) red (100) ii) green (40) iii) yellow? (60) - What is the ratio of the colours in the bag? ($r: g: y=5: 2: 3$)	Whole class activity Reasoning. e.g. i) Red: 5 out of $10(\times 20)$ or $\frac{1}{2}$ of $200=\underline{100}$

16	R: Calculations C: Experiments. Frequency, relative frequency, probability E: Equally likely outcomes (events)	$\begin{gathered} \text { Lesson Plan } \\ 58 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $58=2 \times 29$ Factors: 1, 2, 29, 58 - $\underline{233}$ is prime number Factors: 1, 233 (as not exactly divisible by $2,3,5,7,11,13$ and $17 \times 17>233$) - $\underline{408}=2 \times 2 \times 2 \times 3 \times 17=2^{3} \times 17$ Factors: 1, 2, 3, 4, 6, 8, 12, 17 $408,204,136,102,68,51,34,24$ - $\underline{1058}=2 \times 23 \times 23=2 \times 23^{2}$ Factors: 1, 2, 23, 46, 529, 1058	Notes Individual work, monitored (or whole class activity) BB: 58, 233, 408, 1058 Calculators allowed. Reasoning, agreement, selfcorrection, praising Whole class listing of factors of 408 e.g.
2	Review of probability scale a) T and Ps describe events or outcomes and class discusses whether their probabilities are rough (e.g. 'The Head Teacher will come into the classroom in the next minute' - unlikely but possible) or exact (e.g. 'If I throw a dice, I will score a '6' - 1 chance out of 6) and where their position would be on a probability scale (drawn vertically or horizontally on BB). b) Each of the letters on this probability scale represents a certain outcome or event. Let's think of an outcome to match each letter. BB: Ps make suggestions and give reasoning too. Who agrees? Who can think of another outcome for that letter? etc. e.g. A: If you roll a fair dice, your score will be less than 3 but more than 4. (A is 0 , so outcome is impossible.) B: If you take a card from a pack of cards, it will be a diamond. (B is 1 quarter, so outcome should have 1 chance in 4 of happening) F: If you roll a fair dice you will score '2'. (F is 1 sixth, so outcome should have 1 chance in 6 of happening) D: If you toss a fair coin, the side facing up will be a Head. (D is 1 half, so outcome should have 1 chance in 2 .) etc.	Whole class activity Involve several Ps. Extra praise for creativity Discussion, reasoning, agreement, praising Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Extra praise for creativity. (T could have outcomes already prepared for each letter in case Ps cannot think of any themselves.) Feedback for T [Note that on the probability scale, every twelfth is marked.]

		Lesson Plan 58
Activity 5	PbY6a, page 58 Q. 3 a) Read: If this spinner is spun, how often would you expect the pointer to come to rest on each of the numbers? Allow a minute for Ps to think write the answer in Pbs. A, what did you write? Why? Who agrees with A? Who wrote something else? etc. Elicit that the circle has been divided into 7 equal parts, so each of the 7 numbers has an equal chance of coming to rest at the pointer, i.e. 1 chance out of 7 (or a 1 in 7 chance). Mistakes corrected. b) Read: Calclate these probabilities. Set a short time limit. Review with whole class. Ps dictate probabilities to T , explaining reasoning. Class agrees or disagrees. Mistakes dicussed and corrected. Solution: i) p (even number) $=\frac{3}{7}$ ii) $p($ odd number $)=\frac{4}{7}$ iii) $p(x>5)=\frac{2}{7}$ iv) $p(x \leq 4)=\frac{4}{7}$ 38 min	Notes Individual work, monitored (helped) (If possible, demonstrate the experiment using a spinner made from enlarged copy master) BB: Reasoning, agreement, selfcorrection, praising Note that the probabilities of odd and even sum to 1 . Ps suggest certain and impossible outcomes.
6	PbY6a, page 58 Q. 4 Read: A fair spinner is spun twice. If possible, $\mathrm{T}(\mathrm{P})$ demonstrates the experiment first. a) Read: List the possible outcomes if their order is important. Ps list outcomes in Ex.Bks. Encourage a logical listing. Review with whole class. Ps come to BB or dictate to T. Class points out errors or omissions. Ps correct their mistakes. Solution: 1, 1; 1, 2; 1, 3; 1, 4; 2,$1 ; 2,2 ; 2,3 ; 2,4$; 3,$1 ; 3,2 ; 3,3 ; 3,4$; 4,$1 ; 4,2 ; 4,3 ; 4,4$ (16 possible outcomes) b) Read: If you repeated the experiment 160 times, how many times would you expect each of these outcomes to happen? Set a time limit. Ps write answers in Pbs. Review with whole class. Ps could show number of times on slates or scrap paper on command. Ps with different responses explain reasoning and class decides who is correct. Mistakes discussed and corrected. Solution: i) 2,2 1 chance out of 16 , so 10 out of 160 ii) 1,31 chance out of 16 , so 10 out of 160 iii) 4, 2 in any order 2 out of 16 , so $\underline{20}$ out of 160 What are the probabilities of these outcomes? $\begin{aligned} & p(2,2)=p(1,3)=\frac{1}{16}=0.0625 \\ & p(4,2 \text { or } 2,4)=\frac{2}{16}=\frac{1}{8}=0.125 \end{aligned}$ (Ps use calculators to give decimal form too.)	Individual work, monitored (helped) Use enlarged copy master (stuck or drawn on BB) BB: Agreement, self-correction, praising Responses shown in unison. Reasoning, agreement, selfcorrection, praising Whole class activity Ps could suggest other outcomes and ask class to give their probabilities.

16	R: Calculations C: Experiments. Probability problems E: Calculating probabilities	$\begin{gathered} \text { Lesson Plan } \\ 59 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 59 is a prime number Factors: 1,50 (as not exactly divisible by $2,3,5,7$ and $11 \times 11>59$) - $\underline{234}=2 \times 3 \times 3 \times 13=2 \times 3^{2} \times 13$ Factors: 1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234 - $\underline{409}$ is a prime number Factors: 1, 409 (as not exactly divisible by $2,3,5,7,11,13,17$ and 19 , and $23 \times 23>409$) - $1059=3 \times 353 \quad$ Factors: 1, 3, 353, 1059 (353 is not exactly divisible by $2,3,5,7,11,13,17$, and $19^{2}>353$) 8 min	Notes Individual work, monitored (or whole class activity) BB: 59, 234, 409, 1059 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|l} 1059 & 3 \\ 353 & 353 \\ 1 & \end{array}$
2	Probability a) Give me examples of outcomes which have these probabilites. $\frac{1}{7} \quad$ (e.g. scoring ' 3 ' on a 7 -number spinner) $\frac{1}{4} \quad$ (e.g. drawing a 'diamond' from a pack of cards) $\frac{1}{3} \quad$ (e.g. scoring ' 2 or 5 ' on a fair dice) 50% (e.g. getting a 'Tail' when tossing an unbiased coin) $\frac{2}{3} \quad$ (e.g. drawing a red marble from a bag containing 4 red and 2 white marbles) 0.75 (e.g. drawing a card which is 'not a diamond' from a pack of cards), etc. b) T and Ps suggest events or outcomes and class considers their probabilities (as fractions, decimals and perecentages when possible, or as 'likely' or 'unlikely' when an exact value is inappropriate).	Whole class activity Involve all Ps. At a good pace In good humour! Reasoning, agreement, praising Extra praise for creativity! Ps could suggest the probabilities too. Ps could also show approximate position on probability scale drawn on BB. e.g. T should have some outcomes already prepared to give Ps time to think of others.

		Lesson Plan 59
Activity 4	(Continued) ii) Neither card is a club. $\text { BB: } \begin{aligned} p(\operatorname{not} \mathrm{C}, \operatorname{not} \mathrm{C}) & =p(\operatorname{not} \mathrm{C}) \text { and } p(\operatorname{not} \mathrm{C}) \\ & =\frac{3}{4} \times \frac{3}{4}=\frac{9}{16} \end{aligned}$ iii) Exactly 1 card is a club. $\text { BB: } \begin{array}{rlrc} & p(\mathrm{C}, \operatorname{not} \mathrm{C}) & \underline{\text { or }} & p(\operatorname{not} \mathrm{C}, \mathrm{C}) \\ = & p(\mathrm{C}) \text { and } p(\operatorname{not} \mathrm{C}) & \underline{\text { or }} & p(\operatorname{not} \mathrm{C}) \\ \text { and } p(\mathrm{C}) \\ = & \frac{1}{4} \times \frac{3}{4}+ & +\frac{3}{4} \times \frac{1}{4} \\ = & \frac{3}{16}+\frac{3}{16}=\frac{6}{16}=\frac{3}{8} \end{array}$ iv) At least 1 card is a club. $\mathrm{BB}: p(\text { at least } 1 \mathrm{C})=1-\left(\frac{3}{4} \times \frac{3}{4}\right)=1-\frac{9}{16}=\frac{7}{16}$ If possible, use a computer program to simulate the experiment Check the probabilities against the relative frequencies for large n.	Notes (Probability of the 1 st card being a Club and the 2 nd card not being a Club, or of the 1 st card not being a club and the 2nd card being a club) This is the opposite or complement of ii), so subtract the probability of 'Neither card is a Club' from 1.
5	PbY6a, page 59 Q. 3 Read: This spinner is fairly divided into 6 equal sectors but the possible outcomes do not have equal chances. Why is that? (Numbers 1 and 2 occur twice but 6 and 3 occur only once.) a) Read: List the possible outcomes. Ps list them in Pbs, then dictate to T. Agree that there are 4 different outcomes: 1 (in 2 ways), 2 (in 2 ways), 3,6 b) Read: Calculate the probability of each outcome in your exercise book. Set a short time limit. Ps write probabilities as fractions. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning by referring to the spinner. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: $\begin{aligned} & p(\text { score of } 1)=\frac{2}{6}=\frac{1}{3} ; \quad p(\text { score of } 2)=\frac{2}{6}=\frac{1}{3} ; \\ & p(\text { score of } 3)=\frac{1}{6} ; \quad p(\text { score of } 6)=\frac{1}{6} \end{aligned}$	Individual work, monitored, helped Spinner stuck (drawn) on BB or use enlaged copy master BB: Reasoning, agreement, selfcorrection praising Feedback for T Extension If possible, use a computer simulation for large values of n to check that the relevant frequencies match the expected probabilities.

		Lesson Plan 59
Activity 6	PbY6a, page 59, Q. 4 Read: Imagine that the spinner in Question 3 is spun twice and the two numbers are added together. Calculate these probabilities in your exercise book and write them here. Ps discuss what to do first and how to continue. Thelps or gives hints where necessary. If Ps decide to list all the possible outcomes first, T might suggest labelling the two ' 1 's as 1 A and 1 B , and similarly the ' 2 's. BB : (Outcomes which match criteria for a) are underlined.) Then Ps come to BB to count the outcomes which match the given description. Class agrees/disagrees. Ps write agreed probabilities in Pbs. Solution: (By counting relevant outcomes in the list) a) The total score is 5. (see list) $p(\text { score } 5)=\frac{4}{36}=\frac{1}{9}$ b) The total score is less than 5 . $p(\text { score }<5)=\frac{20}{36}=\frac{5}{9}$ c) The total score is an odd number. $\quad p($ score odd $)=\frac{18}{36}=\frac{1}{2}$ d) The total score is a multiple of 3 . $p(\text { score a multiple of } 3)=\frac{12}{36}=\frac{1}{3}$ e) The total score is greater than 4. $\quad p($ score $>4)=\frac{16}{36}=\frac{4}{9}$	Notes Whole class activity Use enlarged copy master for Y6 LP 59/5 Discussion, reasoning, agreement, praising Involve several Ps. Ps list outcomes in Ex. Bks. too. Or by reasoning: For each of the 6 possible outcomes on the first spin, there are 6 possible outcomes on the 2 nd spin, i.e. $6 \times 6=\underline{36}$ (outcomes) Ask Ps to simplify fractions where possible. (Reducing the numerator and denominator by the same number of times does not change the value of the fraction)

16		Lesson Plan 60
Activity	Factorising 60, 235, 405 and 1060. Revision, activities, consolidation PbY6a, page 60 Solutions: Q. 1 a) The marble taken out is green. (Equally likely as unlikely) b) The marble taken out is red. (Unlikely) c) The marble taken out is either red or yellow. (Equally likely as unlikely) d) The marble taken out is not yellow. (Likely) e) The marble taken out is black. (Impossible) f) The marble taken out is not black. (Certain) Q. 2 a) once out of 8 times b) i) $p(x$ is even $)=\frac{4}{8}=\frac{1}{2} \quad[x$ can be $2,4,6$ or 8$]$ ii) $p(x>6)=\frac{2}{8}=\frac{1}{4} \quad[x$ can be 7 or 8$]$ iii) $p(x>8)=\frac{0}{8}=0($ impossible) iv) $p(x$ is prime $)=\frac{4}{8}=\frac{1}{2} \quad[x$ can be $2,3,5$ or 7$]$ v) $p(x \leq 6)=\frac{6}{8}=\frac{3}{4} \quad[x$ can be $1,2,3,4,5$ or 6$]$ vi) $p(x \leq 8)=\frac{8}{8}=1$ (certain) Q. 3 a) HHHH HHHT, HHTH, HTHH, THHH $\begin{equation*} (3 \mathrm{H}+1 \mathrm{~T}) \tag{4H} \end{equation*}$ HHTT, HTHT, THHT, THTH, TTHH, HTTH ($2 \mathrm{H}+2 \mathrm{~T}$) HTTT, THTT, TTHT, TTTH TTTT 16 different possible outcomes b) i) $p(4 \mathrm{H})=\frac{1}{16}$ ii) $p(3 \mathrm{H}+1 \mathrm{~T})=\frac{4}{16}=\frac{1}{4}$ iii) $p(2 \mathrm{H}+2 \mathrm{~T})=\frac{6}{16}=\frac{3}{8}$ iv) $p(1 \mathrm{H}+3 \mathrm{~T})=\frac{4}{16}=\frac{1}{4}$ v) $p(4 \mathrm{~T})=\frac{1}{16}$ vi) $p(3 \mathrm{H}+2 \mathrm{~T})=0$ (impossible!)	Notes $\begin{aligned} & \underline{60}= 2^{2} \times 3 \times 5 \\ & \text { Factors: } 1,2,3,4,5,6,10,12, \\ & 15,20,30,60 \\ & \underline{235}= 5 \times 47 \end{aligned}$ Factors: 1, 5, 47, 235 $\underline{410}=2 \times 5 \times 41$ Factors: 1, 2, 5, 10, 41, 82, 205, 410 $1060=2^{2} \times 5 \times 53$ Factors: 1, 2, 4, 5, 10, 20, 53, 106, 212, 265, 530, 1060 (or set factorising as homework at the end of Lesson 59 and review at the start of Lesson 60) (A prime number has only 2 different factors, itself and 1)

16		Lesson Plan 60
Activity	Q. 4 Possible outcomes: Or by reasoning: For each of the 8 possible outcomes on the first spin there are 8 possible outcomes on the 2 nd spin: $8 \times 8=\underline{64}$ a) The total score is 4 . Possible outcomes: 1,3;2,2;3,1 $p(\text { total score is } 4)=\frac{3}{64}$ T might show this calculation and ask Ps to explain it. 1st spin 2nd spin 1st 2nd 1st 2nd p (1) and p (3) or $p(2)$ and $p(2)$ or $p(3)$ and p (1) $\begin{aligned} & \left(\frac{1}{8} \times \frac{1}{8}\right)+\left(\frac{1}{8} \times \frac{1}{8}\right)+\left(\frac{1}{8} \times \frac{1}{8}\right) \\ = & \frac{1}{64}+\frac{1}{64}+\frac{1}{64} \\ = & \frac{3}{64} \end{aligned}$ b) The total score is 4 or less . Possible outcomes: 1,$1 ; 1,2 ; 1,3 ; 2,1 ; 2,2 ; 3,1$ $p(\text { total score } \leq 4)=\frac{6}{64}=\frac{3}{32}$ c) The total score is 16 . Only one possible outcome: 8,8 $p(\text { total score is } 16)=\frac{1}{64}$ d) The total score is more than 4. This is the opposite (or complement) of b). $p(\text { total score }>4)=1-\frac{3}{32}=\frac{29}{32}$	Notes To multiply a fraction by a fraction: - multiply the numerators to give the numerator of the product - multiply the denominators to give the denominator of the product i.e $\left(\frac{1}{8} \times \frac{1}{8}\right)+\ldots 6$ times $=\frac{1}{64} \times 6=\frac{6}{64}=\frac{3}{32}$

16	R: Multiplication and division of fractions and decimals by natural numbers C: Calculating fractional parts of a number or quantity E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 61 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 61 is a prime number Factors: 1, 61 (as not exactly divisible by $2,3,5,7$ and $11 \times 11>61$) - $\underline{236}=2 \times 2 \times 59=2^{2} \times 59$ Factors: 1, 2, 4, 59, 118, 236 - $411=3 \times 137$ Factors: 1, 3, 137, 411 - $\underline{1061}$ is a prime number Factors: 1, 1061 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37^{2}>1061$)	Notes Individual work, monitored (or whole class activity) BB: 61, 236, 411, 1061 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|ll\|l} 236 & 2 & & \\ 118 & 2 & & \\ 59 & 59 & & \\ 1 & & 411 & 3 \\ & & 137 & 137 \\ & & 1 & \end{array}$
2	Revision of multiplication a) Let's see how good you are at mulitplication! Ps come to BB to write products or dictate what T should write, explaining reasoning in detail. Class points out errors. What sign should we write in the circles? (=) Ps check that the quotients are equal to the products. Ps come to BB to continue the pattern for 2 or 3 more multiplications. BB: i) $\begin{array}{rlrl} 64 \times 4=(256) & & \\ 64 \times 2=(128) & \text { (Ps write missing signs.) } \\ 64 \times 1=(64) & \downarrow \\ 64 \times \frac{1}{2}=(32) & \Theta & 64 \div 2 \\ 64 \times \frac{1}{4}=(16) & \Theta & 64 \div 4 \\ 64 \times \frac{1}{8}=(8) & \Theta & 64 \div 8 \\ 64 \times \frac{1}{16}=(4) & \Theta & 64 \div 16 \end{array}$ etc. ii) $\begin{array}{ll} 43 \times 100=(4300) & \\ 43 \times 10=(430) & \\ 43 \times 1=(43) & \\ 43 \times 0.1=(4.3) & \Theta \\ 43 \div 10 \\ 43 \times 0.01=(0.43) & \Theta \end{array} 43 \div 100$ etc.	Whole class activity Written on BB or SB or OHT Involve as many Ps as possible. At a good pace Reasoning, agreement, praising Discuss how the products change and compare with the reverse operation, division. Elicit that: - if the multiplier is reduced by 1 half (1 tenth), the product is also reduced by 1 half (1 tenth) - multiplying by $\frac{1}{n}$ is the same as dividing by n - multiplying by 0.1 , is the same as dividing by 10 multiplying by 0.01 , is the same as dividing by 100 multiplying by 0.001 , is the same as dividing by 1000 .

		Lesson Plan 61
Activity 3	PbY6a, page 61 Q. 1 Read: Calculate the products. Set a time limit of 3 minutes. Ps write products in Pbs. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. If problems or disagreement, draw diagrams on BB or use models (e.g. multilink cubes). Mistakes discussed and corrected. Solution: a) $9 \times 2=\underline{18}$ b) $9 \times 1=\underline{9}$ $9 \times \frac{1}{2}=4 \frac{1}{2}$ $9 \times \frac{1}{4}=2 \frac{1}{4}$ $9 \times \frac{1}{8}=1 \frac{1}{8}$ $\begin{array}{ll} 6 \times 3=\underline{18} & \text { c) If } a \times b=c, \text { then } \\ 6 \times 1=\underline{6} & a \times \frac{b}{2}=\frac{c}{2} \\ 6 \times \frac{1}{3}=\underline{2} & a \times \frac{b}{3}=\frac{c}{3} \\ 6 \times \frac{2}{3}=\underline{4} & a \times \frac{b}{4}=\frac{c}{4} \\ 6 \times \frac{1}{6}=\underline{1} & a \times \frac{b}{5}=\frac{c}{5} \end{array}$ Show interim steps if necessary. e.g. $6 \times \frac{2}{3}=\frac{12}{3}=4$ What do you notice? Ps point out relationships and how the products are changing.	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, agreement, selfcorrection, praising Feedback for T $\begin{aligned} & \left(=\frac{a \times b}{2}\right) \\ & \left(=\frac{a \times b}{3}\right) \\ & \left(=\frac{a \times b}{4}\right) \\ & \left(=\frac{a \times b}{5}\right) \end{aligned}$ T might show: ${ }^{2} 6 \times \frac{2}{3_{1}}=4$ Praise all positive contributions.
Erension	PbY6a, page 61 Q. 2 Read: Calculate the products. Set a time limit of 3 minutes. Ps write products in Pbs . Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. If problems or disagreement, check with reverse operation, division. Mistakes discussed/corrected. Solution: a) $\begin{array}{llll} 25 \times 100=\underline{2500} & \text { b) } & 7 \times 2=\underline{14} & \text { c) } 41 \times 0.3=\underline{12.3} \\ 25 \times 10=\underline{250} & 7 \times 0.2=\underline{1.4} & 15 \times 0.3=\underline{4.5} \\ 25 \times 1=\underline{25} & 7 \times 0.6=\underline{4.2} & 10 \times 0.3=\underline{3} \\ 25 \times 0.1=\underline{2.5} & 7 \times 0.1=\underline{0.7} & 5 \times 0.3=\underline{1.5} \\ 25 \times 0.01=\underline{0.25} & 7 \times 0.05=\underline{0.35} & 0 \times 0.3=\underline{0} \\ 25 \times 0.001=\underline{0.025} & & \end{array}$ Who can explain what 25×0.01 means? (e.g. Adding 0.01 to itself 25 times, or $\frac{1}{100}$ of 25) Who can explain what 5×0.3 means? (e.g. $0.3+0.3+0.3+0.3+0.3$, or $\frac{3}{10}$ of $5=5 \div 10 \times 3=\frac{5}{10} \times 3=\frac{15}{10}=1.5$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, agreement, selfcorrection, praising Feedback for T Ps point out relationships and how the products change. Whole class discussion Ps make suggestions and class agree/disagrees. If no P has an idea, T shows one of those opposite and asks class if it is correct. Praising only

		Lesson Plan 61
Activity 5	PbY6a, page 61 Q. 3 Read: Calculate the quotients. Set a time limit. Ps calculate mentally and write quotients in Pbs . Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. If problems or disagreement, check with reverse operation, multiplication. Solution: a) $\frac{4}{5} \div 4=\frac{1}{5} ; \quad \frac{4}{5} \div 2=\frac{2}{5} ; \quad \frac{4}{5} \div 1=\frac{4}{5}$ b) $\frac{5}{9} \div 1=\frac{5}{9} ; \quad \frac{5}{9} \div 2=\frac{5}{18} ; \quad \frac{5}{9} \div 4=\frac{5}{36}$ c) $1 \frac{2}{3} \div 5=\frac{5}{3} \div 5=\frac{1}{3} ; \quad 1 \frac{2}{3} \div 2=\frac{5}{3} \div 2=\frac{5}{6}$; $2 \frac{2}{3} \div 2=1 \frac{1}{3}$ (Divide the integer first, then the numerator) d) $0.8 \div 4=\underline{0.2} ; \quad 2.4 \div 4=\underline{0.6} ; \quad 16.8 \div 8=\underline{2.1}$; $0.8 \div 40=\underline{0.02}$ Elicit the rule or law for dividing a fraction by an integer. 'To divide a fraction by an integer: - divide the numerator if it is a multiple of the integer, or - multiply the denominator by the integer.'	Notes Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Discussion, agreement, selfcorrection, praising Feedback for T Ps point out relationships and connections that they have noticed e.g. a) each divisor is half of the previous divisor, so the quotient is twice the previous quotient, d) 4th divisor is 10 times the first divisor, so the 4th quotient is 1 tenth of the first quotient, etc. Ps explain in their own words. T repeats more clearly if necessary. Praising only
6	PbY6a, page 61 Q. 4 Read: Calculate in your exercise book. Set a time limit. Ps write the whole operation and underline the result. Remind Ps to write the unit of measure too. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Who agrees? Who did it another way? Mistakes discussed and corrected. Solution: a) i) $\frac{1}{4}$ of $240 \mathrm{~kg}=240 \mathrm{~kg} \div 4=\underline{60} \mathrm{~kg}$ ii) $240 \mathrm{~kg} \times \frac{1}{4}=\underline{60} \mathrm{~kg}$ b) i) $\frac{1}{6}$ of $240 \mathrm{~kg}=240 \mathrm{~kg} \div 6=\underline{40} \mathrm{~kg}$ ii) $240 \mathrm{~kg} \times \frac{1}{6}=\underline{40} \mathrm{~kg}$ c) i) $\frac{3}{4}$ of $240 \mathrm{~kg}=\underset{60}{240 \mathrm{~kg}} \div 4 \times 3=60 \mathrm{~kg} \times 3=\underline{180} \mathrm{~kg}$ ii) $240 \mathrm{~kg} \times \frac{3}{4}=\frac{240 \times 3}{A_{1}} \mathrm{~kg}=\underline{180} \mathrm{~kg}$ or ${ }^{60} 240 \mathrm{~kg} \times{\frac{3}{A_{1}}}_{1}=\underline{180} \mathrm{~kg}$	Individual work, monitored Differentiation by time limit Responses shown in unison Reasoning, agreement, selfcorrection, praising Extra praise if Ps realised that in each case, i) $=$ ii) Extra praise if Ps show reduction of numerator and denominator by cancellation. If not, T shows it.

		Lesson Plan 61
Activity 6	(Continued) d) i) $\frac{5}{6}$ of $240 \mathrm{~kg}=240 \mathrm{~kg} \div 6 \times 5=40 \mathrm{~kg} \times 5=\underline{200} \mathrm{~kg}$ ii) $240 \mathrm{~kg} \times \frac{5}{6}=\frac{240 \times 5}{61} \mathrm{~kg}=\underline{200} \mathrm{~kg}$ e) i) $\frac{9}{4}$ of $240 \mathrm{~kg}=240 \mathrm{~kg} \div 4 \times 9=60 \mathrm{~kg} \times 9=\underline{540} \mathrm{~kg}$ ii) $240 \mathrm{~kg} \times \frac{9}{4}=\frac{640 \times 9}{A_{1}} \mathrm{~kg}=\underline{540} \mathrm{~kg}$ f) i) 0.4 of $240 \mathrm{~kg}=240 \mathrm{~kg} \div 10 \times 4=24 \mathrm{~kg} \times 4=\underline{96} \mathrm{~kg}$ ii) $\begin{aligned} 240 \mathrm{~kg} \times 0.4 & =96.0 \mathrm{~kg}=\underline{96} \mathrm{~kg} \\ (\text { or } & =24 \mathrm{~kg} \times 4=\underline{96} \mathrm{~kg}) \end{aligned}$ 40 min	Notes $\begin{aligned} & \text { or } 240 \mathrm{~kg} \times \frac{5}{6_{1}}=200 \mathrm{~kg} \\ & \text { or } 240 \mathrm{~kg} \times \frac{9}{A_{1}}=540 \mathrm{~kg} \\ & \text { (as } 0.4=\frac{4}{10} \text {) } \end{aligned}$
7	PbY6a, page 61 Q. 5 Deal with one question at a time. Ps read question themselves, write a plan, calculate and check the result, then write the answer in a sentence in Ex. Bks. Review with whole class. T chooses a P to read out the question. Ps show results on scrp paper or slates on command. P with correct answer explains reasoning on BB . Who did the same? Who did it a different way? etc. Mistakes discussed/corrected. T asks a P to say the answer in a sentence. Solution: a) In a certain year, 1 kg of sugar beet contained $\frac{9}{50} \mathrm{~kg}$ of sugar on average. How much sugar was in 1200 kg of sugar beet that year? Plan: $1200 \times \frac{9}{50}=\frac{24}{500 \times 9} \frac{216(\mathrm{~kg})}{50}$ $\text { or } \begin{aligned} \frac{9}{50} \text { of } 1200 \mathrm{~kg} & =1200 \mathrm{~kg} \div 50 \times 9 \\ & =120 \mathrm{~kg} \div 5 \times 9=\underline{216 \mathrm{~kg}} \end{aligned}$ Answer: There were 216 kg of sugar in 1200 kg of sugar beet. b) What is 3 sevenths of 5 and 3 fifths kilometres? Plan: $\frac{3}{7}$ of $5 \frac{3}{5} \mathrm{~km}=5 \frac{3}{5} \mathrm{~km} \div 7 \times 3=\frac{28}{5} \mathrm{~km} \div 7 \times 3$ $=\frac{4}{5} \mathrm{~km} \times 3=\frac{12}{5} \mathrm{~km}=2 \frac{2}{5} \mathrm{~km}$ Answer: 3 sevenths of 5 and 3 fifths kilometres is 2 and 2 fifths kilometres.	Individual work, monitored, helped If possible, T has a sample or picture of sugar beet and gives information about where it is grown and how sugar is extracted (or Ps could find out information for homework). Responses shown in unison. Reasoning, agreement, self-correction, praising Accept any valid method of solution. $\begin{aligned} & \text { or } \frac{9}{50}=\frac{18}{100}=0.18 \\ & 1200 \times 0.18=12 \times 18 \\ & =180+36=\underline{216}(\mathrm{~kg}) \\ & \text { or } 1 \text { hundredth } \rightarrow 12 \mathrm{~kg} \\ & \begin{aligned} 18 \text { hundredths } & \rightarrow 12 \times 18 \\ & =\underline{216}(\mathrm{~kg}) \end{aligned} \\ & \begin{aligned} \\ 120 \end{aligned} \\ & \hline \end{aligned}$ or $5 \frac{3}{5}=5 \frac{6}{10}=5.6(\mathrm{~km})$ $\begin{aligned} & \frac{1}{7} \rightarrow 5.6 \mathrm{~km} \div 7=0.8 \mathrm{~km} \\ & \frac{3}{7} \rightarrow 0.8 \mathrm{~km} \times 3=\underline{2.4 \mathrm{~km}} \end{aligned}$ Accept the answer in any correct form.

	R: Calculation C: Fractional parts of numbers and quantities. E: Recognise and understand reciprocal values	$\begin{gathered} \text { Lesson Plan } \\ 62 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{62}=2 \times 31 \quad$ Factors: $1,2,31,62$ - $\underline{237}=3 \times 79 \quad$ Factors: 1, 3, 79, 237 - $\underline{412}=2 \times 2 \times 103=2^{2} \times 103$ Factors: 1, 2, 4, 103, 206, 412 - $\underline{1062}=2 \times 3 \times 3 \times 59=2 \times 3^{2} \times 59$ Factors: 1, 2, 3, 6, 9, 18, 59, 118, 177, 354, 531, 1062	Notes Individual work, monitored (or whole class activity) BB: 62, 237, 412, 1062 Calculators allowed. Reasoning, agreement, selfcorrection, praising $\begin{array}{l\|l\|ll\|l} \text { e.g. } & 237 & 3 & \\ 79 & 79 & \\ & 1 & & \\ 412 & 2 & 1062 & 2 \\ 206 & 2 & 531 & 3 \\ 103 & 103 & 177 & 3 \\ 1 & & 59 & 59 \\ & & 1 & \end{array}$
2	Calculations with fractions a) Let's do these calculations in different ways. Ps come to BB or dictate what T should write. Class agrees/disagrees. Who can think of another way to do it? If no P does so, T shows one and ask class if it is correct. Ps say which method they prefer and why. Agree that cancelling where possible is simpler. BB: e.g. i) $\frac{16}{15} \times 5=\frac{16 \times 5}{15}=\frac{80}{15}=\frac{16}{3}=5 \frac{1}{3}$ or $\frac{16 \times 5}{15_{3}}=\frac{16}{3}$ ii) $8 \times 3 \frac{23}{24}=24+\frac{{ }^{1} 8 \times 23}{24_{3}}=24+\frac{23}{3}=24+7 \frac{2}{3}=\underline{31 \frac{2}{3}}$ $\text { or }=24+\frac{23}{24 \div 8}=24+\frac{23}{3}=24+7 \frac{2}{3}=31 \frac{2}{3}$ iii) $\frac{14}{23} \div 7=\frac{14 \div 7}{23}=\frac{2}{23} \quad$ or $\quad \frac{2}{23 \times 7_{1}}=\frac{2}{23}$ iv) $\begin{gathered} 5 \frac{2}{3} \div 4=4 \frac{5}{3} \div 4=1+\frac{5}{3} \div 4=1+\frac{5}{3 \times 4}=1 \frac{5}{12} \\ \text { or }=\frac{17}{3} \div 4=\frac{17}{3 \times 4}=\frac{17}{12}=1 \frac{5}{12} \end{gathered}$ b) Which number can be written instead of the letters so that the equation is true? Ps come to BB or dictate what T should write. Class checks result by substituting the number for the letter in the equation. BB: e.g. i) $\frac{a}{7} \times 2=8$ ii) $\begin{aligned} & \frac{a}{7}=8 \div 2=4 \\ & a=4 \times 7=\underline{28} \end{aligned}$ $\begin{aligned} & \frac{15}{a} \times 4=\frac{20}{3} \\ & \frac{15}{(a)}=\frac{20}{3} \div 4=\frac{5}{3}=\frac{15}{9} \\ & \underline{a}=9 \end{aligned}$ Check: $\frac{28}{7} \times 2=4 \times 2=8 \boldsymbol{\checkmark}$ Check: $\frac{15}{9} \times 4=\frac{60}{9}=\frac{20}{3} \boldsymbol{\nu}$	Whole class activity T writes operations on BB or SB or OHT as required At a good pace Discussion, reasoning, agreement, praising or $\frac{16}{15} \times 5=\frac{16}{15 \div 5}=\frac{16}{3}$ or $8 \times \frac{72+23}{24}=\frac{95}{24 \div 8}$ $=\frac{95}{3}=31 \frac{2}{3}$ Accept any valid method, including trial and error, but also elicit (or show and ask if they are correct) the logical solutions too. or i) $\begin{aligned} \frac{a}{7} \times 2 & =8 \\ a \times 2 & =56 \quad(\times 7) \\ a & =\underline{28} \quad(\div 2) \end{aligned}$ ii) $\frac{60}{a}=\frac{20}{3}=\frac{60}{9}, a=\underline{9}$

		Lesson Plan 62
Activity 2	(Continued) e.g. iii) $\begin{aligned} & \frac{6}{64} \times b=\frac{3}{8} \\ & \frac{3}{32} \times b=\frac{3}{8} \\ & \frac{3 \times b}{32}=\frac{3}{8}=\frac{12}{32} \\ & 3 \times b=12 \\ & b=12 \div 3=\underline{4} \end{aligned}$ iv) $\begin{aligned} & \frac{3}{4} \div c=\frac{3}{8} \\ & \frac{3}{4 \times c}=\frac{3}{8} \\ & 4 \times c=8 \\ & c=8 \div 4=\underline{2} \end{aligned}$ Check: $\frac{6}{64} \times 4=\frac{6}{16}=\frac{3}{8} \checkmark$ Check: $\frac{3}{4} \div 2=\frac{3}{4 \times 2}=\frac{3}{8} \downarrow$ v) $\frac{d}{5} \div 12=\frac{3}{10}$ vi) $\frac{15}{e} \div 3=\frac{1}{4}$ $\begin{aligned} & \frac{d}{5 \times 12}=\frac{3}{10} \\ & \frac{d}{60}=\frac{3}{10}=\frac{18}{60} \\ & d=\underline{18} \end{aligned}$ $\frac{5}{e}=\frac{1}{4}=\frac{5}{20}$ $e=\underline{20}$ Check: $\frac{18}{5} \div 12=\frac{18}{60}=\frac{3}{10} \boldsymbol{\checkmark}$ Check: $\frac{15}{20} \div 3=\frac{5}{20}=\frac{1}{4} \boldsymbol{\imath}$ 20 min	Notes or iii) $\begin{aligned} & \frac{3}{32} \text { of } b=\frac{3}{8} \\ & \frac{1}{32} \text { of } b=\frac{1}{8} \quad(\div 3) \\ & b=\frac{32}{8}=\underline{4} \quad(\times 32) \end{aligned}$ or v) $\begin{aligned} & \frac{d}{5}=\frac{3}{10} \times 6_{5}^{12}=\frac{18}{5} \\ & d=\underline{18} \end{aligned}$ vi) $\begin{aligned} & \frac{15}{e}=\frac{3}{4}=\frac{15}{20} \\ & e=\underline{20} \end{aligned}$
3	PbY6a, page 62 Q. 1 Read: Solve the problem in your exercise book in the 3 ways shown below. An express train is travelling at a steady speed of 105 km per hour. How far does it travel in: i) $\frac{4}{5}$ of an hour ii) $1 \frac{3}{4}$ hours? Set a time limit or deal with one method at a time. Review with whole class. Ps come to BB to explain their reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Which method did you like best? Why? Solution: a) Using proportion: i) $\frac{1}{5}$ hour $\rightarrow 105 \mathrm{~km} \div 5=21 \mathrm{~km}$ $\frac{4}{5} \text { hour } \rightarrow 21 \mathrm{~km} \times 4=\underline{84 \mathrm{~km}}$ ii) $\frac{1}{4}$ hour $\rightarrow 105 \mathrm{~km} \div 4=26 \frac{1}{4} \mathrm{~km}$ $\begin{aligned} \frac{7}{4} \text { hour } \rightarrow 26 \frac{1}{4} \mathrm{~km} \times 7 & =182 \mathrm{~km}+\frac{7}{4} \mathrm{~km} \\ & =183 \frac{3}{4} \mathrm{~km} \end{aligned}$	Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising Discuss the pros and cons of the different methods. What other method could we have used? Drawing diagrams e.g. i) ii)

		Lesson Plan 62
Activity 3	(Continued) b) Using 2 operations in one line i) $105 \mathrm{~km} \div 5 \times 4=21 \mathrm{~km} \times 4=\underline{84 \mathrm{~km}}$ ii) $105 \mathrm{~km} \div 4 \times 3=26.25 \mathrm{~km} \times 3=\underline{183.75 \mathrm{~km}}$ c) Using a single multiplication i) $\quad 105 \mathrm{~km} \times \frac{4}{5}=\underline{84 \mathrm{~km}} \quad$ (or $105 \mathrm{~km} \times 0.8=84 \mathrm{~km}$) Answer: The train travels 84 km in 4 fifths of an hour and 183 and 3 quarter km in 1 and 3 quarter hours. 25 min	Notes or c) $\text { ii) } \begin{aligned} & 105 \mathrm{~km} \times 1 \frac{3}{4} \\ = & 105 \mathrm{~km}+\frac{315}{4} \mathrm{~km} \\ = & 105 \mathrm{~km}+78 \frac{3}{4} \mathrm{~km} \\ = & 183 \frac{3}{4} \mathrm{~km} \end{aligned}$
4	PbY6a, page 62 Q. 2 Read: What is the whole quantity if: a) 1 quarter of it is 18 m b) 1 fifth of it is 253 litres c) 0.1 of it is 31 km d) 0.01 of it is 27.6 kg ? Calculate like this in your exercise book. a) If $\frac{1}{4}$ is 18 m , then $\frac{4}{4}$ is $\ldots \ldots$. . Set a time limit or deal with one at a time. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) If $\frac{1}{4}$ is 18 m , then $\frac{4}{4}$ is $18 \mathrm{~m} \times 4=\underline{72 \mathrm{~m}}$ b) If $\frac{1}{5}$ is 253 litres, then $\frac{5}{5}$ is 253 litres $\times 5=\underline{1265 \text { litres }}$ c) If 0.1 is 31 km , then the whole is $31 \mathrm{~km} \times 10=\underline{310 \mathrm{~km}}$ d) If 0.01 is 27.6 kg , then the whole is $27.6 \mathrm{~kg} \times 100=\underline{276 \mathrm{~kg}}$	Individual work, monitored (helped) Responses shown in unison. Reasoning, agreement, self-correction, praising Show on diagrams too. e.g. a) $\frac{1}{4} \longmapsto 18 \mathrm{~m}$ Feedback for T
5	PbY6a, page 62 Q. 3 a) Read: Three quarters of my money is $£ 660$. How much money do I have? T has BB already prepared with the method of solution example given in Pbs. Ps come to BB to fill in the missing amounts, explaining reasoning by referring to the diagrams. Class points out any erorrs or missed parts of explanation. After agreement, Ps write missing amounts in Pbs too. $\begin{array}{ll} \text { BB: If } \frac{3}{4} \rightarrow £ 660 & \frac{3}{4} \stackrel{£ 660}{\longmapsto} \\ \text { then } \frac{1}{4} \rightarrow £ 660 \div 3=£ 220 & \frac{1}{4} \stackrel{£ 220}{\longmapsto} \\ \text { and } \frac{4}{4} \rightarrow £ 220 \times 4=\underline{£ 880} & \frac{4}{4} \longmapsto ? \end{array}$	Whole class activity to start Written/drawn on BB or SB or OHT Discussion, reasoning, agreement, praising Who could write a plan for the solution on one line? BB: $£ 660 \div 3 \times 4$ Who could write the plan as a single operation? BB: $£ 660 \times \frac{4}{3}$

	R: Calculations. C: Calculating a part of a whole and the whole from a part E: Word problems. Identify and use appropriate operations	$\begin{gathered} \text { Lesson Plan } \\ 63 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{63}=7 \times 9$ Factors: 1, 7, 9, 63 - $\underline{238}=2 \times 7 \times 17$ Factors: 1, 2, 7, 14, 17, 34, 119, 238 - $\underline{413}=7 \times 59$ Factors: 1, 7, 59, 513 - $\underline{1063}$ is a prime number (Not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$, and $37^{2}>1063$)	Notes Individual work, monitored (or whole class activity) BB: 63, 238, 413, 1063 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g.
2	Multiplying and dividing by fractions a) i) What does $44 \times \frac{3}{4}$ actually mean? Ps come to BB or dictate what T should write. Class points out errors. BB: e.g. $\frac{3}{4}+\frac{3}{4}+\ldots+\frac{3}{4}$ or $\frac{3}{4}$ of $44=33$ (44 terms) ii) How can we do this multiplication? Who agrees? Who can do it a different way? Ps come to BB or dictate to T, explaining reasoning. BB: e.g. $13 \times \frac{7}{4}=\frac{13 \times 7}{4}=\frac{91}{4}=22 \frac{3}{4}$ or $\quad 13 \times \frac{7}{4}=13 \div 4 \times 7=\frac{13}{4} \times 7=\frac{91}{4}=22 \frac{3}{4}$ or $\quad 13 \times 1 \frac{3}{4}=13 \times 1.75=22.75$ iii) What does $120 \times \frac{a}{5}$ mean? Ps come to BB or dictate to T . BB: $\frac{a}{5}+\frac{a}{5}+\ldots+\frac{a}{5}$ or $\frac{a}{5}$ of 120 or $\frac{120 \times a}{5_{1}}=24 \times a$ - How would we write this calculation? BB: $120 \times \frac{a}{b}=\frac{120 \times a}{b}$ or $120 \times \frac{a}{b}=120 \div b \times a$ - How would we write this calculation? Elicit that: BB: $c \times \frac{a}{b}=\frac{c \times a}{b}=c \div b \times a=\frac{a}{b \div c}$ (if possible) b) Let's do these divisions. Ps come to BB or dictate to T . BB: i) $\frac{4}{9} \div 2=\frac{4 \div 2}{9}=\frac{2}{9}$ ii) $\frac{4}{9} \div 3=\frac{4}{9 \times 3}=\frac{4}{27}$	Whole class activity T writes each multiplication on BB as question is asked. Reasoning, agreement, praising Agree that: $44 \times \frac{3}{4}=\frac{3}{4} \times 44$ Reasoning, agreement, praising Accept any valid method. T asks 2 or 3 Ps which method they prefer and why BB: T points out or elicits that a, b and c are integers and $b \neq 0$. i.e. where b is a multiple of c iii) $\frac{a}{b} \div c=\frac{a \div c}{b}=\frac{a}{b \times c}$ (if possible)

16		Lesson Plan 63
Activity 2	(Continued) Let's put into words the rules for multiplying and dividing fractions by a positve integer. Ps say the rule in their own words. T repeats more clearly if necessary. - To multiply a fraction by an integer, multiply the numerator by the integer or, if possible, divide the denominator by the integer. - To divide a fraction by an integer, multiply the denominator by the integer or, if possible, divide the numerator by the integer. 13 min	Notes Elicit that when: multiplying, the fraction increases in value: i.e. either number of parts increases, or size of the parts increases; when dividing, the fraction decreases in value: i.e. either number of parts decreases, or size of parts decreases.
3	PbY6a, page 63 Q. 1 Read: Do the calculations in your exercise book. Deal with one part (a, b, c, d) at a time. Set a short time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees.disagrees. Mistakes discussed and corrected. Solution: a) i) $15 \mathrm{~m} \times \frac{3}{4}=\frac{45}{4} \mathrm{~m}=11 \frac{1}{4} \mathrm{~m}$ ii) $\begin{aligned} \frac{3}{4} \text { of } 15 \mathrm{~m}=15 \mathrm{~m} \div 4 \times 3 & =3 \frac{3}{4} \mathrm{~m} \times 3 \\ & =\left(9+\frac{9}{4}\right) \mathrm{m}=11 \frac{1}{4} \mathrm{~m} \end{aligned}$ b) i) 3 litres $\times 1 \frac{5}{6}=\left(3+\frac{15}{6}\right)$ litres $=\left(3+\frac{5}{2}\right)$ litres $=\left(3+2 \frac{1}{2}\right) \text { litres }=5 \frac{1}{2} \text { litres }$ ii) $1 \frac{5}{6}$ of 3 litres $\begin{aligned} =3 \text { litres } \div 6 \times 11 & =\frac{1}{2} \text { litre } \times 11 \\ & =5 \frac{1}{2} \text { litres } \end{aligned}$	Individual work, monitored, (helped) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps realised that i) $=$ ii), so there is no need to do the 2 nd calculation!
Erratum In $P b s$, 2nd c) i) should be c) (ii)	c) Do each multiplication as if both factors were whole numbers first, then write the decimal point in the correct place in the product. i) 5×0.75 ii) 37×0.285 iii) 16×23.8 ('0' written in units column) Elicit that when a decimal is multiplied by an integer, the product has the same number of decimal digits as the original decimal. (The integer has no decimal digits.) d) i) $\frac{2}{5} \div 3=\frac{2}{15}$ ii) $10 \frac{4}{5} \div 6=\frac{54}{5} \div 6=\frac{9}{5}=1 \frac{4}{5}$ iii) $23.8 \div 5=\underline{4.76}$	Ps estimate mentally first. e.g. i) $E: 0.8 \times 5=4.0$ ii) $E: 0.3 \times 40=12.0$ iii) $E: 20 \times 20=400$ then write each calculation as a multiplication of integers vertically in Ex. Bks, then write the decimal points in the correct places (and zero in the units column where required). Ps show details on BB and explain reasoning with place-value detail, then check final product against estimate. Feedback for T

		Lesson Plan 63
Activity 4	PbY6a page 63 Q. 2 Deal with one part at a time. Set a time limit. Ps read question themselves and do necessary calculations in Ex. Bks. or on scrap paper. Review with whole class. Ps show answer on scrap paper or slates on command. (S or M; Y or N) Ps with different responses explain reasoning on BB . Class decides which answer is correct. Incorrect plan is written again correctly. Solution:s a) Sally and Mandy calculated 4 fifths of 345 plums in different ways. Sally's plan: $345 \div 4 \times 5$ Mandy's plan: 345×0.8 Who was correct? Who was wrong? Write the incorrect plan again correctly. (M correct) S: $345 \div 4 \times 5 \times$ should be $345 \div 5 \times 4(=\underline{276})$ M: $345 \times 0.8 \quad \boldsymbol{\imath} \quad\left(\right.$ as $\left.\frac{4}{5}=\frac{8}{10}=0.8\right)$ b) Henry tried the same calculation but he wrote this plan. Was he correct? (Yes) $\mathrm{H}: \stackrel{69}{3}^{4} 45 \times \frac{4}{5} \downarrow \quad[=(70-1) \times 4=280-4=\underline{276}]$ c) Ronny tried it too and wrote another plan. Was he correct? (Y) $345 \times 4 \div 5 \boldsymbol{\downarrow} \quad(=1380 \div 5=\underline{276})$ 24 min	Notes Individual work, monitored, Responses shown in unison. Reasoning, agreement, selfcorrecting, praising Agree that 4 fifths of 345 plums is 276 plums Sally calculated 5 quarters of 345 plums.
5	PbY6a. page 63 Q. 3 Read: Write a plan, estimate, calculate, check your result and write the answer in a sentence. Tell class that a Linden Tree is what we call a Lime Tree. (If possible, T has a real branch with leaves and blossom to show to class, otherwise pictures will suffice.) Tell class that the blossom of a lime tree has a pleasant fragrance; in countries such as Germany and Hungary, people gather the blossom, hang it up to dry, then use it to perfume their homes. Why do you think the mass of the blossom decreases when it is dried? (The water in it evaporates.) Set a time limit. Ps read question themselves and solve in Ex. Bks. Review with whole class. T chooses a P to read each question and Ps show results on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Who agrees? Who did it a different way? Mistakes discussed and corrected. T chooses a P to say the answer in a sentence.	Individual work, monitored, (helped) Initial whole class introduction to set the scene. Ps (T) might know if there is a lime tree nearby. (T might have dried blossom for Ps to smell.) Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising

		Lesson Plan 63
Activity 5	(Continued) Solution: When the blossom of a Linden Tree is dried, it loses 74 hundredths of its mass. a) How much dried blossom can you get from 325 kg of fresh blossom? Plan: $\quad 325-\frac{74}{100}$ of $325=325-325 \div 100 \times 74$ $=325-3.25 \times 74$ $=325-240.5=\underline{84.5}(\mathrm{~kg})$ or \quad Mass left: $1-\frac{74}{100}=\frac{26}{100}$ $\begin{aligned} \frac{26}{100} \text { of } 325 \mathrm{~kg} & =325 \mathrm{~kg} \div 100 \times 26 \\ & =3.25 \mathrm{~kg} \times 26=\underline{84.5 \mathrm{~kg}} \end{aligned}$ Answer: You can get 84.5 kg of dried blossom from 325 kg of fresh blossom. b) How much fresh blossom is needed to produce 390 kg of dried blossom? Plan: $\frac{26}{100} \rightarrow 390 \mathrm{~kg}$$\begin{aligned} & \frac{1}{100} \rightarrow 390 \mathrm{~kg} \div 26=15 \mathrm{~kg} \\ & \frac{100}{100} \rightarrow 15 \mathrm{~kg} \times 100=1500 \mathrm{~kg} \end{aligned}$ 1 5 2 6 3 9 0 - 2 6 1 1 3 0 - 1 3 0 0 Answer: 1500 kg of fresh blossom is needed to produce 390 kg of dried blossom.	Notes Accept any valid method of solution which gives the correct answer. C : $C:$ 3.2 5 \times 2 6 1 9 5 0 6 5 0 0 8 4.5 0 1 or on one line: $\begin{aligned} & 390 \mathrm{~kg} \div 26 \times 100 \\ &= 15 \mathrm{~kg} \times 100 \\ &= 1500 \mathrm{~kg} \\ & \text { or } 390 \mathrm{~kg} \times \frac{100}{26} \\ &= 30 \\ &= 390 \mathrm{~kg} \times \frac{50}{\sqrt{3}}{ }_{1}=\underline{1500 \mathrm{~kg}} \end{aligned}$
6	PbY6a, page 63 Q. 4 Read: Alice and Ben are discussing a problem about which is the better buy. One shop reduces the original price of an item costing $£ 100$ by 0.3. Another shop cuts 2 tenths off the original price of $£ 100$ then cuts 0.1 off the reduced price. Alice thinks that the first shop has the better offer. Ben thinks that they are the same. Who do you agree with? Why? Write a sentence in your exercise book. Set a time limit of 3 minutes. Ps do calculations if necessary and write answer in Ex. Bks. Review with whole class. If you agree with Alice, stand up . . . now! T chooses Ps standing and Ps sitting to explain their reasoning. Class decides on the correct answer. Mistakes corrected.	Individual work, monitored Responses shown in unison. Reasoning, agreeement, selfcorrection, praising

		Lesson Plan 63
Activity		Notes
8	PbY6a, page 63, Q. 6 Read: The length of a room is 9 m . Its width is 2 thirds of its length and 1.5 of its height. Calculate: a) its width and height b) its surface area c) its capacity. Let's draw a diagram and write on the diagram what we know. Ps come to BB to draw a cuboid and label the edges. Class helps and corrects where necessary.	Whole class activity
		(or individual work if Ps wish, reviewed with whole class)
		Involve several Ps.
		At a good pace.
		Discussion, reasoning, agreement, praising BB:
	Other Ps come to BB to write and explain calculations for the values asked for in the questions. Class agrees/disagrees or suggests a better way to calculate. After agreement on the dimensions, Ps complete the diagram before doing parts b) and c). Solution: e.g.	
	a) Width: $\frac{2}{3}$ of $9 \mathrm{~m}=9 \mathrm{~m} \div 3 \times 2=3 \mathrm{~m} \times 2=\underline{6 \mathrm{~m}}$ $\underline{\text { Height: } \quad 1.5 \text { times }=\frac{3}{2} \rightarrow 6 \mathrm{~m}} \begin{aligned} \frac{1}{2} & \rightarrow 6 \mathrm{~m} \div 3=2 \mathrm{~m} \\ & \frac{2}{2} \rightarrow 2 \mathrm{~m} \times 2=\underline{4 \mathrm{~m}} \end{aligned}$	or on one line: $h=6 \mathrm{~m} \div 3 \times 2$ or $h=6 \mathrm{~m} \div 1.5$ $=12 \mathrm{~m} \div 3=4 \mathrm{~m}$
In $P b s$, c) should be b) and d) should be c)	The width of the room is 6 metres and its height is 4 metres. b) Surface area: $\text { a: } \begin{aligned} & 2 \times(9 \times 6+6 \times 4+9 \times 4) \mathrm{m}^{2} \\ = & 2 \times(54+24+36) \mathrm{m}^{2} \\ = & 2 \times 114 \mathrm{~m}^{2} \\ = & \underline{228 \mathrm{~m}^{2}} \end{aligned}$	Floor and ceiling: $9 \mathrm{~m} \times 6 \mathrm{~m}$ 2 small walls: $6 \mathrm{~m} \times 4 \mathrm{~m}$ 2 large walls: $9 \mathrm{~m} \times 4 \mathrm{~m}$
	c) Capacity: length \times width \times heigh $=9 \mathrm{~m} \times 6 \mathrm{~m} \times 4 \mathrm{~m}$ $\begin{aligned} & =54 \times 4\left(\mathrm{~m}^{3}\right) \\ & =\underline{216} \mathrm{~m}^{3} \end{aligned}$	Elicit that the capacity of a room is the volume of the space inside it.

	R: Calculation C: Multiplying by fractions and by decimals E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 64 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{64}=2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{6} \quad\left(=8^{2}=4^{3}\right)$ Factors: 1, 2, 4, 8, 16, 32, 64 - $\underline{239}$ s a prime number Factors: 1,239 (Not exactly divisible by $2,3,5,7,11,13$, and $17 \times 17>239$) - $\underline{414}=2 \times 3 \times 3 \times 23=2 \times 3^{2} \times 23$ Factors: 1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414 - $\underline{1064} 2 \times 2 \times 2 \times 7 \times 19=2^{3} \times 7 \times 19$ Factors: $1,2,4,7,8,14,19,28,38,56,76,133,152,266,532,1064$ 8 min	Notes Individual work, monitored (or whole class activity) BB: 64, 239, 414, 1064 Calculators allowed. Reasoning, agreement, selfcorrection, praising (2) (2) (2) (2)
2	Multiplication Let's calculate the products and look at how they change. Ps come to BB to write products and missing items, or dictate what T should write. Class points out errors. Ps tell class what they notice about relationships and connections. BB: a) $\begin{array}{ll} 7.6 \times 100=760 & \begin{array}{l} \text { loduct is } \\ \text { product } \end{array} \\ 7.6 \times 10=\square 76 \\ 7.6 \times 1=\boxed{7.6} & \begin{array}{l} \text { [Multiplyi } \\ \text { same effe } \end{array} \\ 7.6 \times 0.1=0.76=7.6 \div \square 10 \\ 7.6 \times 0.01=0.076=7.6 \div 100 \end{array}$ b) $\begin{array}{ll} 0.5 \times 4=\square 2 & \begin{array}{l} \text { [The result of mult } \\ \text { the same digits in } \\ \text { result of multiplyir } \end{array} \\ 0.5 \times 2=\square 1 & \text { is }(1+2=\underline{3}) \text { dec } \\ 0.5 \times 1=0.5 & 0.5 \div \square 2 \\ 0.5 \times 0.5=0.25=0.5 \\ 0.5 \times 0.25=0.125=0.5 \div \square \end{array}$ [The result of multiplying 0.5 by 0.25 has the same digits in the same order as the result of multiplying 5 by 25 , but each digit is $(1+2=\underline{3})$ decimal places to the right.] c) $\begin{aligned} & \frac{1}{2} \times 4=\square \\ & \frac{1}{2} \times 2=\square \\ & \frac{1}{2} \times 1=\frac{1}{2} \\ & \frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{1}{2} \div \square \\ & \text { [c) is the s } \\ & \text { fractions i } \end{aligned}$ [c) is the same as b) but written as fractions instead of decimals.]	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising [Possible points to notice are written in square brackets. T could give hints if Ps do not notice them.] [If multiplier is divided by 2, product is also divided by 2 .) [Multiplying by 0.5 is the same as dividing by 2.] [Multiplying by 0.25 is the same as dividing by 4.] [The result of multiplying 0.5 by 0.125 has the same digits in the same order as the result of multiplying 5 by 125 , but each digit is $(1+3=4)$ decimal places to the right.] [Multiplying by $\frac{1}{2}$ has the same result as dividing by 2.] [Multiplying by $\frac{1}{4}$ has the same result as dividing by 4.]

16		Lesson Plan 64
Activity 3	PbY6a, page 64 Q. 1 Read: Calculate the products in your exercise book. Notice how they change. Set a time limit. Ps write whole calculations in Ex. Bks and write sentences about what they notice. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. A, what did you notice? Who noticed something else? etc. T gives hints if necessary. Solution: a) i) $2.3 \times 50=23 \times 5=\underline{115}$ ii) $2.3 \times 5=\underline{11.5}$ iii) $2.3 \times 0.5=\underline{1.15}$ iv) $2.3 \times 0.005=\underline{0.0115}$ b) i) $\frac{4}{7} \times 4=\frac{16}{7}=2 \frac{2}{7}$ ii) $\frac{4}{7} \times 1=\frac{4}{7}$ iii) $\frac{4}{7} \times \frac{1}{4}=\frac{1}{7}$ [Multiplier divided by 10, so product is also divided by 10 , i.e. each digit is in the next smaller place value.] [Product has same number of decimal digits as multiplicand and multiplier combined.] iv) $\frac{4}{7} \times 2=\frac{8}{7}=1 \frac{1}{7}$ v) $\frac{4}{7} \times \frac{1}{2}=\frac{2}{7}$ vi) $\frac{4}{7} \times \frac{1}{8}=\frac{1}{14}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Points to notice are in brackets. a) [Multiplying by 0.5 is the same as dividing by 2.] [Line missing from pattern: $2.3 \times 0.05=0.115$ Same as dividing by 20.] [Multiplying by 0.005 is same as dividing by 200.] b) [Multiplier is divided by 4 , so product is divided by 4.] [Multiplying by 1 half (1 quarter, 1 eighth) is the same as dividing by $2(4,8)$.]
4	PbY6a, page 64 Q. 2 Read: Fill in the missing numbers. What can you tell me about this square? (Its sides are 1 unit long and its area is 1 unit square.) Set a time limit or deal with one part at a time. Ps read question themselves and fill in the missing numbers. Review with whole class. For a) and b), Ps could show answers on scrap paper or slates on command. For c) Ps come to BB or dictate to T , explaining reasoning by referring to the diagram. Class agrees/disagrees. Mistakes discussed/corrected Solution: a) One of the sides of this unit square is divided into 4 equal parts and the adjacent side is divided into 5 equal parts. b) Each grid rectangle is$\frac{1}{20}$ of the area of the square. c) Let's calculate the area of the shaded rectangle in 3 ways. i) $A=\frac{3}{5}$ of $\frac{3}{4}$ of $1=\frac{9}{20}$ ii) $A=\frac{3}{4}$ of $\frac{3}{5}$ of $1=\frac{9}{20}$ iii) $A=\frac{3}{4} \times \frac{3}{5}=\frac{9}{20}$ T: We can multiply two fractions by multiplying the 2 numerators and multiplying the 2 denominators.	Individual work, monitored, or whole class activity for c) Drawn on BB or use enlarged copy master or OHP BB: Differentiation by time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising What do you notice? Elicit that: - Multiplying by $\frac{3}{5}$ means 3 fifths of the value. - Multiplying by $\frac{3}{4}$ means 3 quarters of the value. $\begin{gathered} \text { - } \frac{3}{5} \text { of } \frac{3}{4}=\frac{3}{4} \text { of } \frac{3}{5} \\ =\frac{3}{5} \times \frac{3}{4}=\frac{9}{20} \end{gathered}$

16		Lesson Plan 64
Activity 6	PbY6a, page 64 Q. 4 Read: If Snail moves 4 fifths of a metre every minute, how far will he move in: a) 5 minutes b) 11 minutes c) $\frac{1}{4}$ minute d) $\frac{3}{4}$ minute e) $1 \frac{2}{3}$ minutes? Set a time limit. Ps do calculations in Ex. Bks. Review with whole class. Ps show answers on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Class agrees/disagrees Who worked it out another way? Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: a) $1 \mathrm{~min} \rightarrow \frac{4}{5} \mathrm{~m} ; 5 \mathrm{~min} \rightarrow \frac{4}{5} \mathrm{~m} \times 5_{1}=\underline{4 \mathrm{~m}}$ b) $11 \mathrm{~min} \rightarrow \frac{4}{5} \mathrm{~m} \times 11=\frac{44}{5} \mathrm{~m}=8 \frac{4}{5} \mathrm{~m}(=8 \mathrm{~m} 80 \mathrm{~cm})$ c) $\frac{1}{4} \min \rightarrow \frac{4}{5} \mathrm{~m} \div 4=\frac{1}{5} \mathrm{~m}$ or $\frac{1}{5} \mathrm{~m} \times \frac{1}{A_{1}}=\frac{1}{5} \mathrm{~m}$ d) $\frac{3}{4} \min \rightarrow \frac{1}{5} \mathrm{~m} \times 3=\frac{3}{5} \mathrm{~m}$ or $\frac{1}{5} \mathrm{~m} \times \frac{3}{4}=\frac{3}{5} \mathrm{~m}$ e) $1 \frac{2}{3} \min =\frac{5}{3} \min \rightarrow \frac{4}{5} \mathrm{~m} \div 3 \times 5=\frac{4}{3} \mathrm{~m} \times 5^{1}$ $=\frac{4}{3} \mathrm{~m}=1 \frac{1}{3} \mathrm{~m}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising Accept any correct method of solution. Feedback for T (or $2 \times 4 \mathrm{~m}+\frac{4}{5} \mathrm{~m}=8 \frac{4}{5} \mathrm{~m}$) T shows the muliplication and cancellation if no P used it. (as we get the distance by multiplying the distance Snail moved in 1 minute by the number of minutes.) or $\frac{4}{S_{1}} \mathrm{~m} \times \frac{5}{3}^{1}=\frac{4}{3} \mathrm{~m}=1 \frac{1}{3} \mathrm{~m}$
7	PbY6a, page 64 Q. 5 Read: Practise multiplication. How do we multiply fractions? (First cancel down any numerators or denominators which have a common factor to make the multiplication simpler, then multiply the numerators to get the numerator of the product, and multiply the denominators to get the denominator of the product.) Deal with one at a time or 1 row at a time. Set a time limit. Ps write multiplications and calculate in Ex. Bks. Review with whole class. Ps come to BB to do calculations and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $\frac{5}{7} \times \frac{2}{3}=\frac{10}{21}$; ii) $\frac{4}{5} \times \frac{5}{9}^{1}=\frac{4}{9}$ iii) $\frac{17}{14} \times \frac{5}{2}=\frac{5}{4}=1 \frac{1}{4}$ iv) $\frac{1}{25}_{5}^{35} \times \frac{16}{12}_{3_{1}}^{4}=\frac{4}{5}$	Individual work, monitored, helped (Revert to whole class activity if majority of Ps are struggling.) Written on BB or SB or OHT Discussion, reasoning, agreement self-correction, praising Do not worry if Ps miss an opportunity for simplification but ask other Ps to point it out if they can. or $\frac{15}{25} \times \frac{16}{12}=\frac{1}{5} \times \frac{4}{3}=\frac{4}{5}$

		Lesson Plan 64
Activity 7	(Continued) b) i) $-\frac{3}{4} \times \frac{10}{9} \times \frac{2}{5}=-{\frac{1}{\frac{3}{4} \times 1_{2}}{\frac{10}{2} \times 2_{1}}^{1} \times 5}_{1}^{1}=-\frac{1}{3}$ ii) $\frac{13}{25} \times\left(-\frac{5}{26}\right)=-\frac{13 \times 5^{1}}{25 \times 26_{2}}=-\frac{1}{10}$ iii) $-\frac{2}{5} \times\left(-\frac{5}{2}\right)=+\frac{1}{5_{1} \times 2_{1}}=1$ c) i) $1 \frac{2}{3} \times 4 \frac{1}{2}=\frac{5}{3}_{1} \times \frac{9}{2}^{3}=\frac{15}{2}=7 \frac{1}{2}$ ii) $2 \frac{1}{3} \times\left(-1 \frac{2}{3}\right)=-\frac{7}{3} \times \frac{5}{3}=-\frac{35}{9}=-3 \frac{8}{9}$ iii) $15.2 \times 4.3=\frac{152}{10} \times \frac{43}{10}=\frac{6536}{100}=\underline{65.36}$	Notes $\text { (Or for c) iii): } \begin{array}{\|c\|c\|c\|c\|} \hline & 5.2 \\ \hline & \times & 4.3 \\ \hline & 4 & 5 & 6 \\ \hline 6 & 0 & 8 & 0 \\ \hline 6 & 5 . & 6 \\ \hline 1 \end{array}$ Elicit or remind Ps that to multiply 2 decimals, do the multiplication as if they were 2 whole numbers, then write the decimal point in the product so that it has the same number of decimal digits as the total number in the multiplicand and multiplier.
8	Problem Listen carefully and note the data. Do the calcuations in your Ex.Bk and show me your result when I say. I will give you 2 minutes! Two sides of a rectangle are 2.3 cm and 5.4 cm . What is the area of the rectangle in centimetre squares? If you have an answer, show me . . now! ($12.42 \mathrm{~cm}^{2}$) P with correct answer explains reasoning on BB . Who agrees? Who did it another way? Mistakes discussed and corrected. If you were correct, stand up! Let's give them a clap! Solution: e.g. $\begin{aligned} A=2.3 \mathrm{~cm} \times 5.4 \mathrm{~cm} & =23 \mathrm{~mm} \times 54 \mathrm{~mm} \\ & =1242 \mathrm{~mm}^{2}=\underline{12.42 \mathrm{~cm}^{2}} \end{aligned}$ or$\begin{aligned} A=2.3 \mathrm{~cm} \times 5.4 \mathrm{~cm} & =\frac{23}{10} \times \frac{54}{10}\left(\mathrm{~cm}^{2}\right) \\ & =\frac{1242}{100} \mathrm{~cm}^{2}=\underline{12.42 \mathrm{~cm}^{2}} \end{aligned}$ 5$\|$ or $A=2.3 \mathrm{~cm} \times 5.4 \mathrm{~cm}=12.42 \mathrm{~cm}^{2}$ Answer: The area of the rectangle is $12.42 \mathrm{~cm}^{2}$. $\left.\begin{array}{\|r\|l\|l\|} \hline & 5.4 \\ \hline & x & 2.3 \\ \hline & 1 & 6.2 \\ +1 & 0 & 8 \end{array} \right\rvert\,$ 45 min	Individual work, monitored, helped (or whole class activity if time is short or Ps are tired) T repeats question slowly to give Ps time to think and calculate. Responses shown on scrap paper or slates in unison. Discussion, reasoning, agreement, praising Accept any method of solution which gives the correct answer. T chooses a P to say the answer in a sentence. Feedback for T [Or set problem as optional homework and review before the start of Lesson 65.]

16	R: Calculations C: Understanding multiplication by a fraction or a decimal E: Using models n reasoning. Word problems	Lesson Plan 66
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{66}=2 \times 3 \times 11$ Factors: 1, 2, 3, 6, 11, 22, 33, 66 - $\underline{241}$ is a prime number Factors: 1, 241 (Not exactly divisible by $2,3,5,7,11,13$, and $17 \times 17>239$) - $\underline{416}=2 \times 2 \times 2 \times 2 \times 2 \times 13=2^{5} \times 13$ Factors: 1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 416 - $\underline{1066}=2 \times 13 \times 41 \quad$ Factors: $1,2,13,26,41,82,533,1066$	Notes Individual work, monitored (or whole class activity) BB: 66, 241, 416, 1066 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Multiplying by fractions and decimals a) What does $\frac{2}{7} \times \frac{3}{5}$ mean? Ps come to BB or dictate to T. Class agrees/disagrees. Thelps Ps with ideas if necessary. (e.g. diagram) BB: e.g. $\frac{2}{7} \times \frac{3}{5}=\frac{2}{7}$ of $\frac{3}{5}=\frac{3}{5}$ of $\frac{2}{7}=\frac{2}{7} \div 5 \times 3$, etc. How can we do the calculation? P comes to BB to write and explain. Who agrees? Who would do it another way? BB: $\frac{2}{7} \times \frac{3}{5}=\frac{2 \times 3}{7 \times 5}=\frac{6}{35} \quad$ (No cancelling is possible.) Deal with the following in a similar way. b) What does $\frac{4}{5} \times 2 \frac{1}{3}$ mean? BB: e.g. $\frac{4}{5}$ of $2 \frac{1}{3}=2 \frac{1}{3}$ of $\frac{4}{5}=2 \frac{1}{3} \div 5 \times 4$, etc. Calculation: BB: $\frac{4}{5} \times 2 \frac{1}{3}=\frac{4}{5} \times \frac{7}{3}=\frac{4 \times 7}{5 \times 3}=\frac{28}{15}=1 \frac{13}{15}$ c) What does $\frac{3}{4} \times 5.2$ mean? $\left(\frac{3}{4}\right.$ of $5.2=5.2$ of $\frac{3}{4}$, etc. $)$ Calculation: $\mathrm{BB}: \frac{3}{4} \times 5.2=\frac{3}{4} \times \frac{13}{10}=\frac{39}{10}=3 \frac{9}{10}$ d) What does 1.2×4.1 mean? (1.2 of 4.1 , or 4.1 of 1.2 , etc.) Calculation: BB: $1.2 \times 4.1=\frac{6^{3}}{1 \sigma_{5}} \times \frac{41}{1 \sigma_{5}}=\frac{3 \times 41}{5 \times 5}=\frac{123}{25}=4 \frac{23}{25}$	Whole class activity Involve as many Ps as possible Reasoning, agreement, praising BB: e.g. 1 BB: e.g. $\left.\begin{array}{l}\text { or } \\ 0.75 \times 5.2 \\ =\underline{3.9} \\ \end{array} \quad \begin{array}{\|c\|c\|l\|}\hline & 0.7 & 5 \\ \hline & 5.2 & \\ \hline 3 & 7 & 5\end{array}\right)$ or 1.2×4.1

		Lesson Plan 66
Activity 2	(Continued) e) What does $0.36 \times 71.5 \mathrm{~m}$ mean? $\left(0.36\right.$ of 71.5 m , or $\frac{36}{100}$ of $\left.71 \frac{1}{2} \mathrm{~m}\right)$ Calculation: BB: $0.36 \times 71.5 \mathrm{~m}=\frac{36}{100} \times \frac{715}{10} \mathrm{~m}=\frac{25740}{1000} \mathrm{~m}=\underline{25.74 \mathrm{~m}}$ or $0.36 \times 71.5 \mathrm{~m}=71.5 \mathrm{~m} \div 100 \times 36=0.715 \mathrm{~m} \times 36$ $=\underline{25.74 \mathrm{~m}}$ 18 min	Notes (Accept any valid method, including changing 71.5 m to 7150 cm .) Draw a diagram if necessary.
3	PbY6a, page 66 Q. 1 Read: Complete the plans and do the calculations. Set a time limit. Ps write operations and results in Pbs. Review with whole class. Ps dictate results to T, explaining reasoning. Who agrees? Who did the calculation another way? Deal with all cases. Mistakes discussed and corrected. T starts to write the details on BB in a pattern, as below, and Ps gradually take over. Elicit that dividing by 2 is the same as multiplying by 1 half, dividing by 4 then multiplying by 3 is the same as multiplying by 3 quarters, etc. Who had all 5 correct? The person nearest them give them a pat on the back! Solution: If 1 m of material costs $£ \frac{4}{5}$, then: a) $3 \mathrm{~m} \rightarrow £ \frac{4}{5} \times 3=£ \frac{12}{5}=£ 2 \frac{2}{5}=\underline{£ 2.40}$ b) $\begin{aligned} \frac{1}{2} \mathrm{~m} \rightarrow & £ \frac{4}{5} \div 2=£ \frac{2}{5}=\underline{£ 0.40} \\ & =£ \frac{4}{5} \times \frac{1}{2}_{1}=£ \frac{2}{5} \end{aligned}$ c) $\frac{3}{4} \mathrm{~m} \rightarrow £ \frac{4}{5} \div 4 \times 3=£ \frac{1}{5} \times 3=£ \frac{3}{5}=\underline{£ 0.60}$ $=£^{\frac{1}{5}} \times \frac{3}{A_{1}}=£ \frac{3}{5}$ d) $4 \frac{2}{5} \mathrm{~m} \rightarrow \frac{22}{5}$ of $£ \frac{4}{5}=£ \frac{4}{5} \div 5 \times 22=£ \frac{4}{25} \times 22$ $=£ \frac{4}{5} \times 4 \frac{2}{5}=£ \frac{4}{5} \times \frac{22}{5}=£ \frac{88}{25}=£ 3 \frac{13}{25}$ e) $3.6 \mathrm{~m} \rightarrow \frac{36}{10}$ of $£ \frac{4}{5}=£ \frac{4}{5} \div 10 \times 36=£ \frac{4}{50} \times 36^{18}$ $=£ \frac{4}{5} \times 3.6=£ 0.8 \times 3.6=\underline{£ 2.88} \begin{array}{r} 25 \\ \hline \frac{3.6}{\frac{2.8}{4} 8} \\ \hline \end{array}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Accept and praise any correct calculation but T extends the discussion to show the details given in the solution opposite. Elicit that to calculate the price of a certain length of material, multiply the price of 1 m by that length. $\begin{aligned} =£ \frac{88}{25}=£ 3 \frac{13}{25} & =£ 3 \frac{52}{100} \\ & =\underline{£ 3.52} \\ =£ \frac{72}{25}=£ 2 \frac{22}{25} & =£ 2 \frac{88}{100} \\ & =£ \underline{£ 2.88} \end{aligned}$

		Lesson Plan 66
Activity 4	PbY6a, page 66 Q. 2 Read: Do the multiplications. Simplify the fractions first where possible. What does simplify mean? (Change to a simpler form. i.e reducing or cancelling down numerators and denominators which have a common factor.) $\mathrm{T}(\mathrm{Ps})$ shows examples on BB. Set a time limit or deal with one part at a time. Ps write the complete calculations in Ex. Bks. Review with whole class. Ps come to BB to show and explain details of their calculations. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $\frac{2}{5} \times \frac{4}{7}=\frac{8}{35}$ ii) $\frac{1}{5} \times \frac{7}{4_{2}}=\frac{7}{10}$ iii) $\frac{5}{2_{1}} \times \frac{4}{7}^{2}=\frac{10}{7}=1 \frac{3}{7}$ iv) $\frac{5}{2} \times \frac{7}{4}=\frac{35}{8}=4 \frac{3}{8}$ b) i) $\frac{{ }^{5}}{42} \times \frac{7^{1}}{15_{3}}=\frac{1}{18}$ ii) $\frac{5}{42_{14}} \times \frac{15^{5}}{7}=\frac{25}{98}$ iii) $\frac{14}{5} \times \frac{7}{15} 5=\frac{98}{25}=3 \frac{23}{25}$ iv) $\frac{6}{5_{1}} \times \frac{15}{7}^{3}=18$ c) i) $\frac{1}{A_{2}} \times \frac{2^{1}}{6_{1}} \times \frac{8^{1}}{15_{5}} \times \frac{60^{101}}{80_{10_{1}}}=\frac{1}{10}$ ii) $\frac{1}{2} \times \frac{2}{2}_{1}^{1} \times \frac{3}{A_{1}} \times \frac{4}{5}_{1}^{1} \times \frac{5}{6}^{1}=\frac{1}{6}$ d) i) $2 \frac{4}{5} \times \frac{1}{2}=\frac{7}{5} \times \frac{1}{2_{1}}=\frac{7}{5}=1 \frac{2}{5}$ ii) $\frac{11}{4} \times 2 \frac{5}{20}=\frac{11}{4} \times \frac{9}{20_{4}}=\frac{99}{16}=6 \frac{3}{16}$ iii) $2 \frac{1}{3} \times 1 \frac{2}{7}=\frac{1}{7}_{3_{1}}^{\gamma_{1}}{\frac{9}{7_{1}}}^{3}=\frac{3}{1}=3$ Who had all the multiplications correct or made just 1 mistake? Let's give them a round of applause!	Notes Individual work, monitored, helped BB: To simplify $\begin{aligned} & \text { e.g. } \frac{2}{1 \theta_{5}}=\frac{2}{5} \\ & \frac{4}{10} \times \frac{5}{8}=\frac{{ }^{1} \frac{4 \times 5^{1}}{10 \times 8}}{2}=\frac{1}{4} \end{aligned}$ or a shortcut: $\frac{{ }^{1}}{x_{2}} \times \frac{5^{1}}{8}=\frac{1}{4}$ Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Review the rules for multiplying a fraction (or a mixed number) by a fraction: - First change any mixed number to a fraction. - Simplify the fractions where possible. - Multiply the numerators to get the numerator of the product and multiply the denominators to get the denominator of the product. - Simplify the resulting fraction and change to a mixed number if necessary.
5	PbY6a, page 66 Q. 3 Read: Complete the plans and do the calculations. T : If this amount of gold (T holds up a 1 cm cube) weighs 19.32 g , let's see if you can work out the mass of these amounts of gold. Set a time limit. Ps can use Ex. Bks if they need more space. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Who did the same? Who did it another way? Mistakes discussed and corrected.	Individual work, monitored, helped Written on BB or SB or use enlarged copy master or OHP Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any correct method but extra praise for Ps who used a single multiplication.

		Lesson Plan 66
Activity 5	(Continued) Solution: a) $4 \mathrm{~cm}^{3} \rightarrow \quad 19.32 \mathrm{~g} \times 4=\underline{77.28 \mathrm{~g}}$ b) $15 \mathrm{~cm}^{3} \rightarrow 19.32 \mathrm{~g} \times 15=193.2 \mathrm{~g}+96.6 \mathrm{~g}=\underline{289.8 \mathrm{~g}}$ c) $0.1 \mathrm{~cm}^{3} \rightarrow 19.32 \mathrm{~g} \times 0.1=\underline{1.932 \mathrm{~g}}$ $\left(=19.32 \mathrm{~g} \div 10=\underline{1.932 \mathrm{~g})} \quad\right.$ (i.e. $\frac{1}{10}$ of 19.32 g) d) $0.7 \mathrm{~cm}^{3} \rightarrow 19.32 \mathrm{~g} \times 0.7=\underline{13.524 \mathrm{~g}}$ $(=19.32 \mathrm{~g} \div 10 \times 7=1.932 \mathrm{~g} \times 7=\underline{13.524 \mathrm{~g}})$ e) $1.6 \mathrm{~cm}^{3} \rightarrow$ $\begin{aligned} & 19.32 \mathrm{~g} \times 1.6=\underline{30.912} \\ & (=19.32 \mathrm{~g} \div 10 \times 16 \\ & =1.932 \mathrm{~g} \times 16 \\ & =\underline{30.912 \mathrm{~g})} \end{aligned}$ BB: f) $72.1 \mathrm{~cm}^{3} \rightarrow 19.32 \mathrm{~g} \times 72.1=\underline{1392.972 \mathrm{~g}}$ (or $19.32 \mathrm{~g} \div 10 \times 721=1.932 \mathrm{~g} \times 721$ $=\underline{1392.972 \mathrm{~g})}$ Elicit that to multiply a decimal by a decimal, do the muliplication as if the decimals were whole numbers, then write the decimal point so that the product has the same number of decimal digits as the total in the two original decimals.	Notes Ps point out relationships, e.g. multiplying by 0.1 is the same as dividing by 10 , etc. T might allow Ps to use a calculator but also show the long multiplications on BB or SB or an OHT and ask Ps to explain them. e.g. BB: f)
6	PbY6a, page 66 Q. 4 Allow 3 minutes for Ps to estimate menatlly first and do the calculations in Ex. Bks. Remind Ps to check the number of decimal digits in the product. Review with whole class. Ps come to BB to write calculations and explain reasoning. Who agrees? Who did it a different way? etc. Mistakes disussed and corrected. Solution: a) i)$\begin{aligned} & 43.6 \times 0.7=\underline{30.52} \\ & (\text { or } 43.6 \div 10 \times 7 \\ & =4.36 \times 7=\underline{30.52}) \end{aligned}$4 3.6 \times 0.7 3 0.5 2 4 ii) $\quad 43.6 \times 1=\underline{43.6}$ iii) $43.6 \times 1.3=\underline{56.68}$ $\begin{array}{\|c\|c\|c\|} \hline & 3 & 3.6 \\ \times & 1.3 \\ \hline 1 & 3 & 0 \\ \hline 4 & 3 & 8 \\ \hline 5 & 6.6 & 0 \\ \hline \end{array}$ b) i) $\quad 9 \frac{4}{5} \times 0.8=9.8 \times 0.8=\underline{7.84}$ ii) $2.5 \times 2.5=\underline{6.25}$ iii) $\quad 3.5 \times 3.5=\underline{12.25}$ $\begin{array}{\|r\|r\|} & 2.5 \\ \times & 2.5 \\ \hline 1 & 2.5 \\ +5 & 0.0 \\ \hline 6.2 & 5 \\ \hline \end{array}$	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T

176		Lesson Plan 66
Activity 7	PbY6a, page 66 Q. 5 Set a time limit. Ps read questions themselves, write a plan, estimate the result, do the calculations, check against estimate and write the answers as sentences in Ex. Bks. Review with whole class. Ps with answers show results on scrap paper or slates on command. Ps answering correctly explain reasoning at BB . Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. T chooses a P to say each answer in a sentence. Solution: e.g. A car has already covered $\frac{3}{5}$ of an $80 \frac{5}{8} \mathrm{~km}$ journey. a) How far has it travelled? Plan: $\begin{aligned} \frac{3}{5} \text { of } 80 \frac{5}{8} \mathrm{~km} & =\frac{3}{5} \times{ }^{16} 80 \mathrm{~km}+\frac{3}{5_{1}} \times \frac{5}{8} \mathrm{~km} \\ & =48 \mathrm{~km}+\frac{3}{8} \mathrm{~km}=\underline{48 \frac{3}{8} \mathrm{~km}} \end{aligned}$ Answer: The car has travelled 48 and 3 eighths kilometres. b) What part of the journey has still to be done? Plan: $1-\frac{3}{5}=\underline{\frac{2}{5}}$ Answer: Two fifths of the journey still has to be done. c) How far does it still have to go? Plan: $80 \frac{5}{8} \mathrm{~km}-48 \frac{3}{8} \mathrm{~km}=32 \frac{2}{8} \mathrm{~km}=32 \frac{1}{4} \mathrm{~km}$ Answer: The car still has 32 and a quarter kilometres to go. 45 min	Notes Individual work, monitored Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept longer plans than those given but show or elicit these short plans too! Draw a diagram if necessary. E: $\frac{1}{2}$ of $80 \mathrm{~km}=40 \mathrm{~km}$ BB: e.g. $80 \frac{5}{8} \mathrm{~km}$
Homework	A stick was 0.8 m long. First 3 quarters of its length was cut off, then half of the remaining length was cut off. What length was the piece of stick left over? Solution: e.g. Plan: $\frac{1}{2}$ of $\frac{1}{4}$ of $0.8 \mathrm{~m}=\frac{1}{2} \times \frac{1}{4} \times 0.8 \mathrm{~m}=\frac{1}{1} \times \frac{8^{1}}{10} \mathrm{~m}$ Check: $0.6+0.1+0.1=0.8(\mathrm{~m}) \boldsymbol{\sim} \quad=\frac{1}{10} \mathrm{~m}=\underline{0.1 \mathrm{~m}}$ Answer: The piece of stick left over was 0.1 m long.	Optional (or extra task for able Ps during the lesson) Review before the start of Lesson 67.

16	R: Calculations C: Addition, subtraction, multiplication, division of rational numbers E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 67 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{67}$ is a prime number Factors: 1, 67 (Not exactly divisible by $2,3,5,7$, and $11 \times 11>67$) - $\underline{242}=2 \times 11 \times 11=2 \times 11^{2}$ Factors: 1, 2, 11, 22, 121, 242 - $\underline{417}=3 \times 139$ Factors: 1, 3, 139, 417 - $\underline{1067}=11 \times 97$ Factors: 1, 11, 97, 1067	Notes Individual work, monitored (or whole class activity) BB: 67, 242, 417, 1067 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g.
2	Sequences T has first few terms of each sequence written on BB. Ps dictate the following terms until T decides when to stop. If a P makes a mistake, the next P corrects it. Final P also gives the rule. BB: a) $\frac{41}{50}, \frac{37}{50}, \frac{33}{50},\left(\frac{29}{50}, \frac{25}{50}, \frac{21}{50}, \frac{17}{50}, \ldots\right) \quad\left[\right.$ Rule: $\left.-\frac{4}{50}\right]$ b) $-\frac{7}{11},-\frac{9}{22},-\frac{2}{11},\left(\frac{1}{22}, \frac{3}{11}, \frac{11}{22}, \frac{8}{11}, \frac{21}{22}, \ldots\right)\left[\right.$ Rule: $\left.+\frac{5}{22}\right]$ c) $15,10, \frac{20}{3}, \frac{40}{9},\left(\frac{80}{27}, \frac{160}{81}, \frac{320}{243}, \ldots\right) \quad\left[\right.$ Rule: $\left.\times \frac{2}{3}\right]$ (or $6 \frac{2}{3}, 4 \frac{4}{9},\left(2 \frac{26}{27}, 1 \frac{79}{81}, 1 \frac{77}{245}, \ldots\right.$) d) $2,-5,12.5,(-31.25,78.125,-195.3125, \ldots)[$ Rule: $\times(-2.5)]$	Whole class activity Written on BB or SB or OHT At speed in order round class In good humour! Agreement, praising Discussion on the rule Feedback for T Ps may use a calculator for d).
3	PbY6a, page 67 Q. 1 Read: Do these calculations in your exercise book. Simplify where possible. Set a time limit. Ps write complete calculations in Ex. Bks. Review with whole class. Ps come to BB to write and explain reasoning. Class agrees/disagrees. Mistakes discussed/corrected. Solution: a) $\left(\frac{2}{3}+\frac{3}{4}\right) \times \frac{12}{19}=\frac{8+9}{12_{1}} \times \frac{12}{19}^{1}=\frac{17}{19}$ b) $\left(\frac{1}{3}+\frac{2}{9}-\frac{5}{18}\right) \times \frac{9}{5}=\frac{6+4-5}{18} \times \frac{9}{5}=\frac{5^{1}}{18} \times \frac{9_{2}^{1}}{5_{1}}=\frac{1}{2}$ c) $\begin{aligned} & \frac{1}{3} \times \frac{1}{2}+\frac{1}{2}-\frac{3}{4} \times \frac{4^{1}}{5}-\frac{3}{5_{1}} \times \frac{5^{1}}{4}=\frac{1}{6}+\frac{1}{2}-\frac{3}{5}-\frac{3}{4} \\ & =\frac{10+30-36-45}{60}=-\frac{41}{60} \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Feedback for T Revise the order of operations: operations in brackets first, then multiplication and division, then addition and subtraction

		Lesson Plan 67
Activity 3	(Continued) d) $\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{3}\right) \times\left(1-\frac{1}{4}\right)=\frac{1}{2}_{1} \times{\frac{2}{3_{1}}}^{1} \times \frac{3}{4}^{1}=\frac{1}{4}$ 19 min	Notes
Erratum In part b) in Pbs: $5 \frac{1}{4} \mathrm{~m}$ should be $5 \frac{1}{4} \mathrm{~km}$.	PbY6a, page 67 Q. 2 Read: Write a plan, do the calculation and write the answer in a sentence. Deal with one part at a time. Set a time limit. Ps solve the problems in Ex. Bks. Allow Ps to discuss it with their neighbours. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solutions: e.g. a) Three pieces of ribbon were cut from a $16 \frac{1}{5}$ length. The 1st piece was $\frac{4}{5}$, the 2nd piece was $1 \frac{1}{2} m$ and the 3 rd piece was 3 times as long as the 1 st and 2 nd pieces put together. i) What length of the ribbon was cut off altogether? $\text { Plan: } \quad \begin{aligned} & \frac{4}{5} \mathrm{~m}+1 \frac{1}{2} \mathrm{~m}+3 \times\left(\frac{4}{5} \mathrm{~m}+1 \frac{1}{2} \mathrm{~m}\right) \\ & =4 \times\left(\frac{4}{5} \mathrm{~m}+\frac{3}{2} \mathrm{~m}\right) \\ & =4 \times \frac{8+15}{10} \mathrm{~m} \\ & { }^{2} 4 \times \frac{23}{10}_{5} \mathrm{~m}=\frac{46}{5} \mathrm{~m}=9 \frac{1}{5} \mathrm{~m} \end{aligned}$ Answer: 9 and a fifth metres were cut off altogether. ii) What length of ribbon was left? Plan: $\quad 16 \frac{1}{5} \mathrm{~m}-9 \frac{1}{5} \mathrm{~m}=\underline{7 \mathrm{~m}}$ Answer: The piece of ribbon left was 7 metres long. b) Rabbit ran 5 and 3 quarter kilometres in an hour. In the next two hours, he ran 5 and a quarter kilometres less than 3 times the distance he ran in the first hour. How far did Rabbit run altogether? Plan: $5.75 \mathrm{~km}+3 \times 5.75 \mathrm{~km}-5.25 \mathrm{~km}$ $\begin{aligned} =4 \times 5.75 \mathrm{~km}-5.25 \mathrm{~km} & =23 \mathrm{~km}-5.25 \mathrm{~km} \\ & =\underline{17.75 \mathrm{~km}} \end{aligned}$ Answer: Rabbit ran 17 and 3 quarter kilometres altogether.	Individual work, monitored, helped Differentiation by time limit Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising Accept any valid method of solution using fractions or decimals or converting the given unit of measure to a smaller unit. T points out that amount cut off is actually $\underline{4}$ times the lengths of the 1st and 2nd pieces if no P notices. $\begin{aligned} & \text { or } 4 \times(0.8 \mathrm{~m}+1.5 \mathrm{~m}) \\ & \quad=4 \times 2.3 \mathrm{~m} \\ & =\underline{9.2 \mathrm{~m}} \end{aligned}$ $\begin{aligned} \text { Check: } & 7+0.8+1.5+6.9 \\ & =\underline{16.2}(\mathrm{~m}) \boldsymbol{\gamma} \end{aligned}$ or $4 \times 5 \frac{3}{4} \mathrm{~km}-5 \frac{1}{4} \mathrm{~km}$ $\begin{aligned} & =23 \mathrm{~km}-5 \frac{1}{4} \mathrm{~km} \\ & =18 \mathrm{~km}-\frac{1}{4} \mathrm{~km} \\ & =17 \frac{3}{4} \mathrm{~km} \end{aligned}$

		Lesson Plan 67
Activity 5	PbY6a, page 67 Q.3: Read: Write as many different plans as you can. Calculate one of them. Deal with one part at a time. Set a short time limit. Ps write plans in Ex Bks, and use one to calculate the answer. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain reasoning at BB. Who did the same? Who used a different plan? Come and explain what you did. Class agrees/disagrees. etc. Mistakes discussed and corrected. Who wrote a different plan but did not use it? Ps come to BB or dictate to T. Class decides whether or not it is valid. Solution: e.g. a) $\begin{aligned} \frac{3}{5} \text { of } 2 \frac{1}{4} \mathrm{~km}=\frac{3}{5} \times 2 \frac{1}{4} \mathrm{~km}=\frac{3}{5} \times \frac{9}{4} \mathrm{~km} & =\frac{27}{20} \mathrm{~km} \\ & =1 \frac{7}{20} \mathrm{~km} \end{aligned}$ (or $2 \frac{1}{4} \mathrm{~km} \div 5 \times 3$, or $2 \frac{1}{4} \mathrm{~km} \times 3 \div 5$, or $2.25 \mathrm{~km} \div 5 \times 3$, or $2.25 \mathrm{~km} \times 0.6$, etc.) b) $\begin{aligned} & 1 \frac{5}{8} \text { of } £ 132.50=1.625 \times £ 132.50=£ 215.3125 \\ & \approx \underline{£ 215.31} \\ &(\text { or } £ 132.50 \div 8 \times 13, \text { or } £ 132.50 \times 13 \div 5, \\ &\text { or } \left.£ 132.50+\frac{5}{8} \times £ 132.50 \text {, or } \frac{13}{8} \times £ \frac{265}{2}, \text { etc. }\right) \\ &\left(=£ \frac{3445}{16}=£ 215 \frac{5}{16}\right) \end{aligned}$ c) $\frac{4}{100}$ of $520 \frac{4}{5} \mathrm{~kg}=0.04 \times 520.8 \mathrm{~kg}=\underline{20.832 \mathrm{~kg}}$ (or $520 \frac{4}{5} \mathrm{~kg} \div 100 \times 4$, or $520 \frac{4}{5} \mathrm{~kg} \div 25$, or $\frac{4}{100} \times 520 \frac{4}{5} \mathrm{~kg}=\frac{1}{25} \times \frac{2604}{5} \mathrm{~kg}$, etc.	Notes Individual work, monitored, helped Differentiation by time limit (If class is not very able, Ps write only the plans and then, after review, the class chooses a plan and calculates the result together.) Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising In b) and c), allow Ps to use calculators. (In the review, discuss which keys should be pressed and in which order.) In b), extra praise if a P points out that $£ 215.3125$ is not possible in real life and should be rounded to the nearest 100th of a $£$, i.e. to the nearest penny. $\left(=\frac{2604}{125} \mathrm{~kg}=20 \frac{104}{125} \mathrm{~kg}\right)$
6	PbY6a, page 67 Q. 4 Read: Write as many different plans as you can. Calculate one of them. Deal with this in a similar way to Q .2 but allow calculators only to check Ps' calculations. Ask Ps to show and explain details of calculations on BB. Mistakes discussed and corrected. Solution: e.g. (but accept any valid plan) a) 0.85 of $2 \frac{1}{3}$ tonnes $=\frac{17}{\frac{85}{100}} \times \frac{7}{30} \mathrm{t}=\frac{119}{60} \mathrm{t}=\underset{1 \frac{59}{60} \mathrm{t}}{ }$ b) 1.2 of $£ 450.80=£ 450.80 \times 1.2=\underline{£ 540.96}$ (= $£ 450.80 \div 10 \times 12$, etc.)	Individual work, monitored, helped Deal with one at a time. Discussion, reasoning, agreement, self-correction, praising BB: b) e.g.

16		Lesson Plan 67
Activity 6	(Continued) c) $\begin{aligned} 0.09 \text { of } 72.6 \mathrm{~m} & =72.6 \mathrm{~m} \times 0.09=\underline{6.534 \mathrm{~m}} \\ & (=72.6 \mathrm{~m} \div 100 \times 9, \text { etc. }) \end{aligned}$ d) 0.1 of 0.1 of a litre $=0.1$ litre $\times 0.1=\underline{0.01 \text { litre }}$ $\left[=0.1 \div 10=\frac{1}{10} \times \frac{1}{10}=\frac{1}{100} \text { (litre) }\right]$	Notes BB: $\begin{array}{\|r\|r\|r\|} \hline 7 & 2.6 \\ \times \times 0.0 .9 \\ \hline 6.5: 3.4 \\ \hline 25 \end{array}(\mathrm{~m})$ Check that the result has the same number of decimal digits as the multiplicand and multiplier combined.
7	PbY6a, page 67 Q. 5 Read: Find a rule. Complete the table. Set a time limit. Ask Ps finished early to write other forms of the rule in Ex. Bks. or to think of data for additional columns. Review with whole class. Agree on one form of the rule for a and for b. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit other forms of the rule. T shows them if no P does so and asks Ps if they are correct. Ps suggest values for extra columns. Solution: Rule: $a=b \times 5 \div 2=b \times \frac{5}{2}=2.5 \times b(=2.5 b)$ $b=\frac{2}{5} \text { of } a=\frac{2}{5} \times a=a \times 2 \div 5=0.4 \times a(=0.4 a)$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit and by extra tasks Reasoning, agreement, selfcorrection, praisng T shows that: e.g. $2 \times a=2 a, \quad 5 \times b=5 b$ etc. Extra praise if a P suggests $a=b \div \frac{2}{5}$ but do not expect it yet!
8 Erratum In Pbs: '£38.50' should be '£38.40'	PbY6a, page 67, Q. 6 Deal with one question at a time. T (P) reads out the question, and Ps calculate in Ex. Bks, then show result on scrap paper or slates on command. (Allow Ps to use a calculator if time is short.) Ps with correct responses explain at BB to Ps who were wrong. Who did the same? Who calculated another way? etc. Ps who were wrong write the plan they understand best in Ex. Bks. Solution: a) If 0.75 tonnes of wheat costs $£ 38.40$, what is the cost of: i) 1 tonne $\rightarrow £ 38.40 \div 75 \times 100=£ 3840 \div 75=\underline{£ 51.20}$ ii) 6 tonnes $£ 51.20 \times 6=\underline{£ 307.20}$ (unit cost) iii) $\frac{7}{5}$ tonnes $£ 51.20 \div 5 \times 7=£ 10.24 \times 7=\underline{£ 71.68}$ iv) 32.5 tonnes $? \quad £ 51.20 \times 32.5=£(1664$ b) Solve this equation. $0.75 \times x=38.4$, $x=38.4 \div 75 \times 100=3840 \div 75=\underline{51.2}$ What does it have to do with the question in part a)? (It is the same calculation as finding the unit cost in a) i) but without the unit of measure. x could be the unit cost in $£$ s.)	Whole class activity but individual calculation Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T or $\begin{aligned} £ 38.40 \div 3 \times 4 & =£ 12.80 \times 4 \\ & =\underline{£ 51.20} \end{aligned}$ or $£ 51.20 \times 1.4=£(71.68$ or $0.75 \times x=\frac{3}{4} \times x$ $x=38.40 \div 3 \times 4=\underline{51.20}$ Extra praise if Ps realised this and did not calculate again.

	R: Calculations C: Understanding percentage as the number of parts in every 100 E: Expressing simple fractions as percentages	Lesson Plan 68
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{68}=2 \times 2 \times 17 \quad$ Factors: $1,2,4,17,34,68$ - $\underline{243}=3 \times 3 \times 3 \times 3 \times 3=3^{5}$ Factors: 1, 3, 9, 27, 81, 243 - $418=2 \times 11 \times 19 \quad$ Factors: $1,2,11,19,22,38,209,418$ - $\underline{1068}=2 \times 2 \times 267=2^{2} \times 267$ Factors: 1, 2, 4, 267, 534, 1068	Notes Individual work, monitored (or whole class activity) BB: 68, 243, 418, 1068 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Percentage What does 'per cent' mean? (out of 100) Who can write 1 unit as a percentage? (BB: 1 unit $=100 \%$) Let's see what you can remember about calculating with percentages. a) What do these percentages mean? i) 50% of $40 \mathrm{~m} \quad\left(\frac{50}{100}\right.$ or $\frac{1}{2}$ or 0.5 of $\left.40 \mathrm{~m}=\underline{20 \mathrm{~m}}\right)$ ii) 10% of $36 \mathrm{~kg} \quad\left(\frac{10}{100}\right.$ or $\frac{1}{10}$ or 0.1 of 36 kg $=36 \mathrm{~kg} \div 10=\underline{3.6 \mathrm{~kg})}$ iii) 70% of $£ 420 \quad\left(\frac{70}{100}\right.$ or $\frac{7}{10}$ or 0.7 of $£ 420$ $=£ 420 \div 10 \times 7=£ 42 \times 7=£ \underline{£ 294}$ iv) 1% of 440000 people $\quad\left(\frac{1}{100}\right.$ or 0.01 of 440000 people $=440000 \div 100=\underline{4400} \text { (people) }$ v) 100% of $53 \mathrm{~g} \quad\left(\frac{100}{100}\right.$ of 53 g or $1 \times 53 \mathrm{~g}=\underline{53 \mathrm{~g})}$ vi) 0% of 73 litres $\quad\left(\frac{0}{100}\right.$ of 73 litres $=\underline{0}$ litres) vii) 120% of $£ 350 \quad\left(\frac{120}{100}\right.$ or $1 \frac{20}{100}$ or 1.2 or $1 \frac{1}{5}$ of $£ 350$ $=£ 350+\frac{1}{5} \text { of } £ 350=£ 350+70=\underline{£ 420}$ viii) 300% of $51 \mathrm{~cm}^{2} \quad\left(\frac{300}{100}\right.$ of $\left.51 \mathrm{~cm}^{2}=3 \times 51 \mathrm{~cm}^{2}=\underline{153 \mathrm{~cm}^{2}}\right)$	Whole class activity At a good pace. Involve the majority of Ps Ps come to BB or dictate to T . Class points out errors. Reasoning, agreement, praising Ps can think of other examples too. Feedback for T Elicit that: 120% of $£ 350>£ 350$

		Lesson Plan 68
Activity 2	(Continued) b) Show the position of these percentages on the number line. Ps come to BB to mark and label them. Class agrees/disagrees. Ask for equivalent fractions too. c) i) What does 32% of a quantity mean? (the quantity $\div 100 \times 32$, or the quantity $\times \frac{32}{100}$ or the quantity $\times 0.32$) ii) What does 99% of x mean? $\left(x \div 100 \times 99=x \times \frac{99}{100}=x \times 0.99\right)$ iii) What does $p \%$ of 68 mean? $\left(68 \div 100 \times p=68 \times \frac{p}{100}\right)$ iv) What does $p \%$ of A mean? $\left(A \div 100 \times p=A \times p \div 100=A \times \frac{p}{100}\right)$ 17 min	Notes Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Equivalent fractions: $\begin{aligned} & 5 \% \rightarrow \frac{5}{100}=\frac{1}{20} \\ & 40 \% \rightarrow \frac{40}{100}=\frac{4}{10}=\frac{2}{5} \end{aligned}$ etc. Accept and praise any form of correct explanation, but T writes on BB as opposite If possible, T has newspaper cuttings or bank leaflets with examples of how percentages are used in real life (or T asks Ps to collect some from home and show them to class before the start of Lesson 69, or in Lesson 70).
3	PbY6a, page 68, Q. 1 T reads out each part. Ps calculate mentally if they can (or in Ex. Bks) and show result on scrap paper or slates on command. Ps responding correctly explain reasoning to Ps who were wrong. Who did the same? Who calculated in a different way? etc. Elicit other methods of calculation if Ps all did the same. Mistakes discussed and corrected. Elicit other equivalent forms of the fractions. (Decimals and percentages) Solution: e.g. a) i) $\frac{1}{100}$ of $£ 500=£ 500 \div 100=\underline{£ 5} \quad\left[\frac{1}{100}=0.01 \rightarrow 1 \%\right]$ ii) $\frac{9}{100}$ of $300 \mathrm{~m}=300 \mathrm{~m} \times \frac{9}{100_{1}}=\underline{27 \mathrm{~m}} \quad[0.09 \rightarrow 9 \%]$ ii) $\frac{17}{100}$ of 600 litres $=600$ litres $\times 0.17=\underline{102 \text { litres } \quad[17 \%]}$ b) If $\frac{1}{100}$ can be written as 1% (read as 'one per cent') what is 20% of 16 km ? 20% of $16 \mathrm{~km} \rightarrow \frac{20}{100}$ of $16 \mathrm{~km}=16 \mathrm{~km} \times 0.2=\underline{3.2 \mathrm{~km}}$	Whole class activity but individual calculation Responses shown in unison, Reasoning, agreement, selfcorrection, praising Accept any correct form of reasoning, e.g in a): $\begin{aligned} & \frac{1}{100} \text { of } £ 500=\frac{1}{100_{1}} \times £ 500 \\ & \text { or }=0.01 \times £ 500=\underline{£ 5} \\ & \text { etc. } \end{aligned}$ or $\begin{aligned} & \frac{20}{100} \text { of } 16 \mathrm{~km}=\frac{1}{5} \text { of } 16 \mathrm{~km} \\ & =16 \mathrm{~km} \div 5=\underline{3.2 \mathrm{~km}} \end{aligned}$

		Lesson Plan 68
Activity 4	PbY6a, page 68 Q. 2 Read: Express these parts of a whole unit in two ways. Follow the example. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Which of the fractions are not in their simplest form? Ps come to BB to point them out and simplify them. Solution: a) $\frac{1}{100}=0.01 \rightarrow 1 \%$ b) $\frac{125}{100}=\underline{1.25} \rightarrow \underline{125 \%}$ c) $\frac{8}{100}=\underline{0.08} \rightarrow \underline{8 \%}$ d) $\frac{2}{100}=\underline{0.02} \rightarrow \underline{2 \%}$ e) $\frac{67}{100}=\underline{0.67} \rightarrow \underline{67 \%}$ f) $\frac{100}{100}=\underline{1} \rightarrow \underline{100 \%}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T b) $\frac{125}{100}=1 \frac{1}{4}$ c) $\frac{8}{100}=\frac{2}{25}$ d) $\frac{2}{100}=\frac{1}{50}$
5	PbY6a, page 68 Q. 3 Read: Express these parts of a whole unit in two ways. Follow the example. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Extra praise if Ps give the fractions in their simplest form, otherwise elicit them. Solution: a) $0.68=\frac{68}{100} \rightarrow 68 \%$ b) $0.05=\frac{5}{100} \rightarrow \underline{5 \%}$ c) $0.01=\frac{1}{100} \rightarrow \underline{1 \%}$ d) $0.11=\frac{11}{100} \rightarrow \underline{11 \%}$ e) $2.42=\frac{242}{100} \rightarrow \underline{242 \%}$ f) $1.03=\frac{103}{100} \rightarrow \underline{103 \%}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T a) $\frac{68}{100}=\frac{17}{25}$, b) $\frac{5}{100}=\frac{1}{20}$ e) $\frac{242}{100}=2 \frac{21}{50}$ f) $\frac{103}{100}=1 \frac{3}{100}$
6	PbY6a, page 68 Q. 4 Read: Express these parts of a whole unit in two ways. Set a time limit of 2 minutes. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Extra praise if Ps give the fractions in their simplest form, otherwise elicit them. Solution: a) $47 \% \rightarrow \frac{47}{100}=\underline{0.47}$ b) $71 \% \rightarrow \frac{71}{100}=\underline{0.71}$ c) $6 \% \rightarrow \frac{6}{100}=\underline{0.06}$ d) $0 \% \rightarrow \frac{0}{100}=\underline{0}$ e) $193 \% \rightarrow \frac{193}{100}=\underline{1.93}$ f) $50 \% \rightarrow \frac{50}{100}=\underline{0.5}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T c) $\frac{6}{100}=\frac{2}{50}$ e) $\frac{193}{100}=1 \frac{93}{100}$ f) $\frac{50}{100}=\frac{1}{2}$

16	R: Calculations. Expressing fractions as a \% and vice versa C: Simple percentages and fractions of quantities E: Problems	Lesson Plan 69
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{69}=3 \times 23 \quad$ Factors: 1, 3, 23, 69 - $\underline{244}=2 \times 2 \times 61=2^{2} \times 61$ Factors: $1,2,4,61,122,244$ - 419 is a prime number Factors: 1,419 (As not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>419$) - $\underline{1069}$ is a prime number Factors: 1, 1069 (As not exactly divisible by $2,3,5,7,11,13,17,1923,29,31$, and $37^{2}>1069$)	Notes Individual work, monitored (or whole class activity) BB: 69, 244, 419, 1069 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g. 244 2 122 2 61 61 1
2	Fractions and percentages a) T says a fraction, P says it as a percentage, giving interim steps when necessary, and shows its position on the number line. (BB) BB: $\begin{aligned} & \frac{1}{100}(1 \%), \frac{5}{100}(5 \%), \frac{68}{100}(68 \%), \quad 1 \frac{32}{100}(132 \%), \\ & \frac{1}{50}\left(=\frac{2}{100} \rightarrow 2 \%\right), \frac{6}{50}\left(=\frac{12}{100} \rightarrow 12 \%\right), \frac{25}{50}\left(=\frac{1}{2} \rightarrow 50 \%\right), \\ & \frac{71}{50}\left(=\frac{142}{100} \rightarrow 142 \%\right), \text { etc. (Ps can think of some too!) } \end{aligned}$ b) How can we express a fraction as a decimal? (Change it to an eqivalent fraction with $10,(100,1000)$ as the denominator first.) T says a fraction. Ps say it as a decimal and as a percentage, giving interim steps where necessary. Class points out errors. $\begin{aligned} & \frac{1}{20}\left(=\frac{5}{100}=0.05 \rightarrow 5 \%\right), \quad \frac{7}{20}\left(=\frac{35}{100}=0.35 \rightarrow 35 \%\right), \\ & \frac{39}{20}\left(=\frac{195}{100}=1.95 \rightarrow 195 \%\right), \quad \frac{1}{10}(=0.1 \rightarrow 10 \%), \\ & \frac{3}{10}(=0.3 \rightarrow 30 \%), \quad \frac{11}{10}(=1.1 \rightarrow 110 \%), \\ & 3 \frac{6}{10}(=3.6 \rightarrow 360 \%), \quad \frac{1}{5}\left(=\frac{2}{10}=0.2 \rightarrow 20 \%\right), \\ & \frac{3}{5}\left(=\frac{6}{10}=0.6 \rightarrow 60 \%\right), \quad \frac{8}{5}\left(=1 \frac{6}{10}=1.6 \rightarrow 160 \%\right), \\ & \frac{1}{4}\left(=\frac{25}{100}=0.25 \rightarrow 25 \%\right), \quad \frac{3}{4}\left(=\frac{75}{100}=0.75 \rightarrow 75 \%\right), \\ & 2 \frac{1}{4}\left(=2 \frac{25}{100}=2.25 \rightarrow 225 \%\right) \end{aligned}$	Whole class activity Number line drawn on BB or use enlarged copy master or OHP At a good pace Ps mark approximate position with a cross or a dot and label as a \%. Reasoning, agreement, praising Feedback for T Or Ps mght remember about dividing the numerator by the denominator. If no P mentions it here, leave this method until part c). At a good pace Reasoning, agreement, praising Ps can write details on BB if they cannot keep the steps in their head.

		Lesson Plan 69
Activity 2	(Continued) c) Study these fractions. What do you notice about them? [Their denominators are not factors of a multiple of 10 (or they form recurring decimals - extra praise if a P notices this.)] How can we express them as decimals? (Divide the numerator by the denominator.) Let's express them as a decimal and as a percentage. Do i) on BB with Ps' help as an example for Ps to follow. If not mentioned earlier by Ps, elicit now that a decimal in which a digit (or group of digits) keeps repeating to infinity is called a recurring decimal and a dot is written above the recurring digit. Ps come to BB or dictate to T, with help from T and other Ps if necessary. BB: i) $\frac{1}{3}=[1 \div 3=0 . \dot{3} \rightarrow 33 . \dot{3} \% \approx 33.3 \%]$ ii) $\frac{2}{3}=[2 \div 3=0 . \dot{6} \rightarrow 66 . \dot{6} \% \approx 66.7 \%] \quad$ (or $0 . \dot{3} \times 2=0 . \dot{6}$) iii) $\frac{1}{9}=[1 \div 9=0 . \dot{1} \rightarrow 11 . \mathrm{i} \% \approx 11.1 \%]$ iv) $\frac{7}{9}=[7 \div 9=0 . \dot{7} \rightarrow 77 . \dot{7} \% \approx 77.8 \%] \quad($ or $0 . \dot{1} \times 7=0 . \dot{7})$ iii) $\frac{1}{6}=[1 \div 6=0.1 \dot{6} \rightarrow 16 . \dot{6} \% \approx 16.7 \%]$ iv) $\frac{5}{6}=[5 \div 6=0.8 \dot{3} \rightarrow 83.3 \% \approx 83.3 \%]$ 18 min	Notes Written on BB or SB or OHT Discussion, agreeent, praising T reminds class if Ps have forgotten. BB: recurring decimal $\text { e.g. } 3 . \dot{3}=3.33333333 \ldots$ Reasoning, agreement, (correcting) praising At a good pace Ps check divisions with calculators. Thelps with rounding to the nearest tenth of a percent Extension What other fractions form recurring decimals? (e.g. $\frac{2}{9}, \frac{4}{9}, \frac{1}{7}, \frac{2}{7}$, etc. BB: $\begin{aligned} \frac{1}{7}=1 \div 7 & =0.142857 \\ & \approx 14.3 \%\end{aligned}$ $\approx 14.3 \%$
3	PbY6a, page 69 Q. 1 Read: Express these percentages as fractions and decimals. Follow the example. What has been done to the percentage in the example? (Written as hundredths, then simplifed, then written as a decimal) Set a time limit. Ps work in Pbs or in Ex. Bks if they need more space. Note what Ps do with i) and j). Review with whole class. Ps come to BB to complete the statements, saying what they are doing loudly and clearly. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $8 \% \rightarrow \frac{8}{100}=\frac{2}{25}=0.08$ b) $3 \% \rightarrow \frac{3}{100}=\underline{0.03}$ c) $15 \% \rightarrow \frac{15}{100}=\frac{3}{20}=\underline{0.15}$ d) $50 \% \rightarrow \frac{50}{100}=\frac{1}{2}=\underline{0.5}$ e) $25 \% \rightarrow \frac{25}{100}=\frac{1}{4}=0.25$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Whole class discussion of example to start Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T

		Lesson Plan 69
Activity 3	(Continued) f) $80 \% \rightarrow \frac{80}{100}=\frac{4}{5}=\underline{0.8}$ g) $75 \% \rightarrow \frac{75}{100}=\frac{3}{4}=\underline{0.75}$ h) $150 \% \rightarrow \frac{150}{100}=\frac{3}{2}=1 \frac{1}{2}=\underline{1.5}$ i) $33 \frac{1}{3} \% \rightarrow \frac{33 . \dot{3}}{100}=0.333 \ldots=\underline{0.3}$ j) $16 . \dot{6} \% \rightarrow \frac{16 . \dot{6}}{100}=0.1666 \ldots=\underline{0.1 \dot{6}}$ 24 min	Notes Have no expectations for i) and j) yet. Thelps if necessary. Extra praise for Ps who were able to do it on their own.
4	PbY6a, page 69 Q. 2 Read: Express these fractions as decimals and percentages. Follow the example. Elicit the two ways of forming a decimal from a fraction. (Write as an equivalent fraction with denominator a multiple of 10 , or divide the numerator by the denominator.) (If Ps know what the decimal is, there is no need for them to write the equivalent fraction or do the division.) Set a time limit. Ps work in Pbs or in Ex. Bks. Review with whole class. Ps come to BB to complete the statements, saying what they are doing. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{1}{5}=0.2 \rightarrow 20 \%$ b) $\frac{3}{5}=0.6 \rightarrow 60 \%$ c) $\frac{1}{2}=0.5 \rightarrow 50 \%$ d) $\frac{3}{2}=1.5 \rightarrow 150 \%$ e) $\frac{1}{8}=0.125 \rightarrow 12.5 \%$ f) $\frac{5}{8}=0.725 \rightarrow 72.5 \%$ g) $\frac{7}{10}=0.7 \rightarrow 70 \%$ h) $\frac{6}{10}=0.6 \rightarrow 60 \%$ i) $\frac{1}{20}=\frac{5}{100}=0.05 \rightarrow 5 \%$ j) $\frac{15}{20}=\frac{75}{100}=0.75 \rightarrow 75 \%$ k) $\frac{1}{3}=1 \div 3=0 . \dot{3} \rightarrow 33 . \dot{3} \% \quad$ (Accept $33 \frac{1}{3} \%$ too.) 1) $\frac{2}{3}=2 \div 3=0 . \dot{6} \rightarrow 66 . \dot{6} \% \quad$ (Accept $66 \frac{2}{3} \%$ too.)	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T $\begin{array}{\|c\|c\|c\|c\|} \hline & 0.1 & 2 & 5 \\ \hline 8 & 1.0 & 0 & 0 \\ \hline & 2 & 4 \end{array}$ $\text { or } \frac{15}{20}=\frac{3}{4}=3 \div 4=0.75$

16		$\begin{gathered} \text { Lesson Plan } \\ 70 \end{gathered}$
Activity	Factorising 70, 245, 420 and 1070. Revision, activities, consolidation PbY6a, page 70 Solutions: Q. $1 \quad$ a) $0.15=\frac{15}{100}=\frac{3}{20} \rightarrow \underline{15 \%}$ b) $0.12=\frac{12}{100}=\frac{3}{25} \rightarrow \underline{12 \%}$ c) $0.25=\frac{25}{100}=\frac{1}{4} \rightarrow \underline{25 \%}$ d) $0.60=\frac{60}{100}=\frac{3}{5} \rightarrow \underline{60 \%}$ e) $0.20=\frac{20}{100}=\frac{1}{5} \rightarrow \underline{20 \%}$ f) $0.61=\frac{61}{100} \rightarrow \underline{61 \%}$ g) $1.10=\frac{110}{100}=\frac{11}{10}=1 \frac{1}{10} \rightarrow \underline{110 \%}$ h) $0.05=\frac{5}{100}=\frac{1}{20} \rightarrow \underline{5 \%}$ i) $0.375=\frac{375}{1000}=\frac{3}{8} \rightarrow \underline{37.5 \%}$ j) $0.19=\frac{19}{100} \rightarrow \underline{19 \%}$ k) $0.66=\frac{66}{100}=\frac{33}{50} \rightarrow \underline{66 \%}$ 1) $0.125=\frac{125}{1000}=\frac{1}{8} \rightarrow \underline{12.5 \%}$ Q. 2 Rule: $x=y \times\left(-\frac{3}{2}\right) ; \quad y=x \times\left(-\frac{2}{3}\right)$ or $x=y \div 2 \times(-3) ; y=x \div 3 \times(-2)$ Q. 3 a) i) 1% of $428 \mathrm{~m}=\underline{4.28 \mathrm{~m}}$ ii) 9% of $428 \mathrm{~m}=428 \mathrm{~m} \times 0.09==\underline{38.52 \mathrm{~m}}$ iii) 25% of $428 \mathrm{~m}=\frac{1}{4}$ of $428 \mathrm{~m}=\underline{107 \mathrm{~m}}$ b) i) 1% of $512 \mathrm{~kg}=\underline{5.12 \mathrm{~kg}}$ ii) 20% of $512 \mathrm{~kg}=512 \mathrm{~kg} \times 0.2==102.4 \mathrm{~kg}$ iii) 19% of $512 \mathrm{~kg}=102.4 \mathrm{~kg}-5.12 \mathrm{~kg}=\underline{97.28 \mathrm{~kg}}$	Notes $\underline{70}=2 \times 5 \times 7$ Factors: 1, 2, 5, 7, 10, 14, 35, 70 $\underline{245}=5 \times 7^{2}$ Factors: 1, 5, 7, 35, 49, 245 $\underline{420}=2^{2} \times 3 \times 5 \times 7$ Factors: 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, $42,60,70,84,105,140,210$, 420 $\underline{1070}=2 \times 5 \times 107$ Factors: 1, 2, 5, 10, 107, 214, 535, 1070 (or set factorising as homework at the end of Lesson 69 and review at the start of Lesson 70) $\text { i) } \begin{aligned} 375= & 5 \times 5 \times 5 \times 3 \\ 1000= & 2 \times 2 \times 2 \times \\ & 5 \times 5 \times 5 \end{aligned}$ HCF of 375 and 1000 is $5 \times 5 \times 5=\underline{125}$ or $\begin{aligned} 9 \% \text { of } 428 \mathrm{~m} & =4.28 \mathrm{~m} \times 9 \\ & =\underline{38.52 \mathrm{~m}} \end{aligned}$

16	R: Calculations C: Preparation for division by a fraction. Reasoning with models E: Problems. Relationships. Reciprocal value	$\begin{gathered} \text { Lesson Plan } \\ 71 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 71 is a prime number Factors: 1, 71 (As not exactly divisible by $2,3,5,7$, and $11^{2}>71$) - $\underline{246}=2 \times 3 \times 41 \quad$ Factors: $1,2,3,6,41,82,123,246$ - 421 is a prime number Factors: 1, 421 (As not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>421$) - $\underline{1071}=3 \times 3 \times 7 \times 17=3^{2} \times 7 \times 17$ Factors: 1, 3, 7, 9, 17, 21, 51, 63, 119, 153, 357, 1071 7 min	Notes Individual work, monitored (or whole class activity) BB: 71, 246, 421, 1071 Calculators allowed. Reasoning, agreement, selfcorrection, praising e.g.
2	Dividing by a fraction a) How could we work out what the whole quantity is if we know that 2 fifths of it is 3 quarters of a km? Ps make suggestions and class discusses them. T makes sure that the following is shown. BB: $\begin{aligned} & \frac{2}{5} \text { of the quantity } \rightarrow \frac{3}{4} \mathrm{~km} \\ & \frac{1}{5} \text { of the quantity } \rightarrow \frac{3}{4} \mathrm{~km} \div 2=\frac{3}{8} \mathrm{~km} \\ &\left.\begin{array}{rl} \frac{5}{5} \text { of the quantity } & \rightarrow \frac{3}{4} \mathrm{~km} \div 2 \times 5 \end{array}\right)=\frac{3}{4} \mathrm{~km} \times \frac{5}{2} \\ &=\frac{15}{8} \mathrm{~km}=1 \frac{7}{8} \mathrm{~km} \end{aligned}$ Check: $\frac{2}{5}$ of $1 \frac{7}{8} \mathrm{~km}=\frac{1}{5_{1}} \times \frac{15}{8_{4}^{3}} \mathrm{~km}=\frac{3}{4} \mathrm{~km}$ b) We could also work it out this way. Let the whole quantity be x. BB: $\quad \frac{2}{5}$ of x is $\frac{3}{4} \mathrm{~km}$, so $x \div 5 \times 2=\frac{3}{4} \mathrm{~km}$ $\begin{aligned} & \rightarrow x \div 5=\frac{3}{4} \mathrm{~km} \div 2 \\ & \rightarrow x=\frac{3}{4} \mathrm{~km} \div 2 \times 5 \text { or } x=\frac{3}{4} \mathrm{~km} \times \frac{5}{2} \end{aligned}$ We call $\frac{5}{2}$ the reciprocal value of $\frac{2}{5}$. What is a reciprocal value? (The numerator and denominator of the fraction are exchanged, or the number by which the fraction must be multiplied to make 1 .	Whole class activity Involve several Ps. Reasoning, agreement, praising T suggests the idea and encourages Ps to dictate what T should write. Again, involve several Ps. Agreement, praising BB: Reciprocal value $\frac{2}{5} \times \frac{5}{2}=1$

		Lesson Plan 71
Activity 2	(Continued) c) We could think of it this way too. BB: $\quad \frac{2}{5}$ of x is $\frac{3}{4} \mathrm{~km}$, so $x \times \frac{2}{5}=\frac{3}{4} \mathrm{~km}$ How can we work out the unkown factor if we know the other factor and the product? (Divide the product by the known factor.) Ps dictate what T should write. BB: $\quad x=\frac{3}{4} \mathrm{~km} \div \frac{2}{5}$ But we have seen in a) that: $x=\frac{3}{4} \mathrm{~km} \times \frac{5}{2}$ (T highlights it.) so $\mathrm{BB}: \frac{3}{4} \mathrm{~km} \div \frac{2}{5}=\frac{3}{4} \mathrm{~km} \times \frac{5}{2}=x$ Let's compare the two equations and think about what they actually mean. T directs Ps' thinking if necessary. Elicit that: - dividing by 2 fifths means calculating the whole $\left(\frac{5}{5}\right)$ amount from 2 fifths of it; - dividing by 2 fifths can be replaced by multiplying by $\frac{5}{2}$. 15 min	Notes Again, T starts the idea but involves Ps where possible throughout. Show simple example on BB if necessary. e.g. BB: $\begin{aligned} & y \times 3=15 \\ & y=15 \div 3(=5) \end{aligned}$ (e.g. by drawing a box around it , as on previous page) Discussion, agreement, praising
3	PbY6a, page 71 Q. 1 Read: Solve the problem in your exercise book. A shopkeeper has bought 40 kg of beans and want s to put them into equal-sized packs. How many packs could he make if each pack held: a) 5 kg b) 2 kg c) 1 kg d) $\frac{1}{2} \mathrm{~kg}$ e) $\frac{1}{3} \mathrm{~kg}$? Set a time limit Ps write operations and calculate results in Ex. Bks. Review with whole class. Ps could show results on slates or scrap paper on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Ps point out relationships. Solution: a) $40 \mathrm{~kg} \div 5 \mathrm{~kg}=\underline{8}$ (packs) b) $40 \mathrm{~kg} \div 2 \mathrm{~kg}=\underline{20}$ (packs) c) $40 \mathrm{~kg} \div 1 \mathrm{~kg}=\underline{40}$ (packs) (Each pack contains half the amount, so number of packs is twice as many.) (i.e. 40 packs $\times \underline{2}$, since $\underline{2} \times \frac{1}{2} \mathrm{~kg}=1 \mathrm{~kg}$) e) $40 \mathrm{~kg} \div \frac{1}{3} \mathrm{~kg}=120$ (packs) (i.e. 40 packs $\times \underline{3}$, since $3 \times \frac{1}{3} \mathrm{~kg}=1 \mathrm{~kg}$)	Individual work, monitored, helped Differentiation by time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Agree that dividing by $\frac{1}{2}\left(\frac{1}{3}\right)$ is the same as multiplying by 2 (3).

		Lesson Plan 71
Activity 4	PbY6a, page 71 Q. 2 Read: Calculate the quotients. Set a time limit or deal with one column at a time. Encourage Ps to calculate mentally if they can and just write results in Pbs. Review with whole class. Ps come to BB or dictate to T, explaining reasoning by giving the reverse operation and/or pointing out its relationship with a previous operation. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $32 \div 4=\underline{8}$ b) $36 \div 9=\underline{4}$ c) $32 \div 2=16$ $36 \div 3=\underline{12}$ $32 \div 1=\underline{32}$ $36 \div 1=\underline{36}$ $32 \div \frac{1}{2}=\underline{64}$ $36 \div \frac{1}{3}=\underline{108}$ $(=32 \times 2)$ $(=36 \times 3)$ $32 \div \frac{1}{4}=\underline{128}$ $36 \div \frac{1}{9}=\underline{324}$ $(=32 \times 4)$ $(=36 \times 9)$ $\begin{aligned} & \frac{4}{5} \div 4=\frac{1}{5} \\ & \frac{4}{5} \div 2=\frac{2}{5} \\ & \frac{4}{5} \div 1=\frac{4}{5} \\ & \frac{4}{5} \div \frac{1}{2}=\frac{8}{5} \\ & \left(=\frac{4}{5} \times 2\right) \\ & \frac{4}{5} \div \frac{1}{4}=\frac{16}{5} \\ & \left(=\frac{4}{5} \times 4\right) \end{aligned}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praisig Feedback for T Elicit that the reciprocal value of: $\frac{1}{2} \text { is } \frac{2}{1}=2 ; \frac{1}{3} \text { is } \frac{3}{1}=3$ etc.
5	PbY6a, page 71, Q. 3 Read: Solve the problems in your Ex Bks. Deal with one question at a time. T chooses a P to read out the question and Ps calculate mentally or in Ex. Bks and show the answer on slates or scrap paper on command. P answering correctly explains reasoning at BB. Who thought the same? Who worked it out in a different way? etc. Mistakes discussed. T chooses a P to say the answer in a sentence in context. Ps write correct solutions in Ex. Bks. Solution: a) Five metres of material cost $£ 4.50$. How much does 1 metre cost? Plan: $£ 4.50 \div 5=\underline{£ 0.90}$ Elicit that this amount of money is the unit cost and we get it by dividing the cost of 5 metres by 5 .) Answer: One metre of material costs 90 p . b) A car travelled 174 miles in 3 hours. How far did it travel in 1 hour? Plan: 174 miles $\div 3=58$ miles Elicit that this is the average speed at which the car was travelling. We get it by dividing the total distance travelled by the time taken. Answer: The car travelled 58 miles in 1 hour.	Whole class activity Responses shown in unison. Discussion, reasoning, agreement, praising BB: Speed $=$ distance \div time 58 miles in 1 hour means an average speed of 58 miles per hour 58 (mph).

		Lesson Plan 71
Activity 5	(Continued) c) A bee flies 30 metres in half a minute. How far does it fly in 1 minute? Plan: $30 \mathrm{~m} \times 2=\underline{60 \mathrm{~m}} \quad$ or $\quad 30 \mathrm{~m} \div \frac{1}{2}=\underline{60 \mathrm{~m}}$ (as there are $\underline{2}$ half minutes in every minute) Answer: The bee flies 60 m in 1 minute. d) What is the price of 1 kg of fruit if 1 quarter of a kg costs $£ 2$? $\text { Plan: } £ 2 \times 4=\underline{£ 8} \quad \text { or } \quad £ 2 \div \frac{1}{4}=\underline{£ 8}$ (as there are 4 quarter kg in every 1 kg) Answer: The price of 1 kg of fruit is $£ 8$. e) I bought 3 fifths of a kg of beeffor $£ 6$. What was the price per kilogram? Plan: $£ 6 \div 3 \times 5=£ 2 \times 5=\underline{£ 10}$ (Direct proportion) or $£^{2} \varnothing \times \frac{5}{3_{1}}=\underline{£ 10} \quad$ (as $\frac{5}{3}$ is the reciprocal of $\frac{3}{5}$) Elicit that this must be equal to $£ 6 \div \frac{3}{5}$, following the patterns in c) and d). $\text { BB: } £ 6 \div 3 \times 5=£ 6 \times \frac{5}{3}=£ 6 \div \frac{3}{5}=\underline{£ 10}$ Answer: The price of 1 kg of beef was $£ 10$. - What have we been calculating in these problems? (Finding the unit quantity when we know a part of it.) - How did we do it? (Divide by the part we know, or multiply by its reciprocal value.) T: To divide by a fraction, multiply by its reciprocal value.	Notes T shows the division by a fraction if no P suggests it and asks if it is correct and why. Elicit that its average speed is 60 m per minute. Elicit the division and explanation from Ps this time. T directs Ps' thinking if necessary. Discussion, agreement, praising T repeats clearly: To find the whole amount when we know the value of part of it, divide the value we know by the part we know.
6	PbY6a, page 71 Q. 4 Read: Do the divisions in any correct way. Check your result mentally with multiplication Deal with one row at a time or set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning and checking with reverse multiplication. Who agrees? Who thought in another way? Mistakes discussed and corrected. Solution: a) i) $3 \div \frac{1}{2}=\underline{6}$ ii) $5 \div \frac{1}{3}=\underline{15}$ iii) $10 \div \frac{1}{5}=\underline{50}$ b) i) $4 \div \frac{2}{3}={ }^{2} 4 \times \frac{3}{2_{1}}=\underline{6}$ ii) $9 \div \frac{3}{2}={ }^{3} 9 \times \frac{2}{3_{1}}=\underline{6}$ iii) $5 \div \frac{5}{8}={ }^{1} 5 \times \frac{8}{5}_{1}=\underline{8}$	Individual work, monitored, helped (or whole class activity if Ps are unsure) Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, priasing Reasoning: e.g. a) i): There are 2 halves in 1 , so there are 6 halves in 3 . or $3 \div \frac{1}{2}=3 \times \frac{2}{1}=\underline{6}$ (Multiply by the reciprocal.)

		Lesson Plan 71
Activity 6	(Continued) c) i) $\frac{4}{9} \div \frac{2}{9}=\frac{2}{9}_{1}^{2} \times{\frac{9}{\gamma_{1}}}^{1}=\underline{2} \quad$ (or since $4 \div 2=\underline{2}$) ii) $\frac{4}{9} \div \frac{2}{3}={ }^{2} \frac{4}{9_{3}} \times \frac{3}{2_{1}}=\frac{2}{3} \quad\left(\right.$ or since $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$) iii) $5 \div \frac{5}{8}={ }^{1} 5 \times \frac{8}{5_{1}}=\underline{8} \quad\left(\right.$ or $\left.5 \div \frac{5}{8}=\frac{40}{8} \div \frac{5}{8}=\underline{8}\right)$ d) i) $\frac{2}{5} \div \frac{1}{2}=\frac{2}{5} \times 2=\frac{4}{5}$ ii) $\frac{3}{4} \div \frac{2}{3}=\frac{3}{4} \times \frac{3}{2}=\frac{9}{8}=1 \frac{1}{8}$ iii) $\frac{8}{10} \div \frac{3}{10}=\frac{8}{10_{1}} \times{\frac{1 \theta^{-1}}{3}}^{=}=\frac{8}{3}=2 \frac{2}{3}$ What are the rules for dividing by a fraction? Elicit that: - dividing by a fraction can be replaced by multiplying by its reciprocal value; - when the dividend and divisor are fractions with the same denominator, ony the numerators need to be taken into account. 40 min	Notes (as $40 \div 5=\underline{8}$) Check: ${ }^{1} 8 \times \frac{5}{8}=5$ (or because $8 \div 3=\frac{8}{3}$) T suggests this if Ps do not, and asks Ps whether it is correct and why.
7	PbY6a, page 71, Q. 5 Read: Write different plans for each problem. Use one of them to solve the problem. Deal with one question at a time. Ps read problem themselves, write different plans and solve the problem in Ex Bks, writing the answer in a sentence. Review with whole class. Ps show results on scrap paper or slates on command. P answering correctly explains reasoning at BB. Who did the same? Who used a different plan? Deal with all cases. Mistakes discussed and corrected. Who wrote a different plan from those on the BB but did not use it? Ps come to BB or dictate to T. Class decidees whether the plan is valid. T chooses a P to say the answer in a sentence. Solution: a) In a class there are 15 girls, which is 6 tenths of the number of boys. How many pupils are in the class? $\begin{aligned} & \text { Plans: e.g. } \frac{6}{10} \rightarrow 15 \text { (boys) } \\ & \frac{1}{10} \rightarrow 15 \div 6=2.5 \text { (boys) } \\ & \frac{10}{10} \rightarrow 2.5 \times 10=\underline{25} \text { (boys) } \\ & \mathrm{G}+\mathrm{B}=15+25=\underline{40} \text { (children) } \end{aligned}$ or on one line: $15+\left(15 \div \frac{6}{10}\right)=15+\left(15 \times \frac{50}{6}\right)_{1}^{5}$ $=15+25=\underline{40} \text { (pupils) }$ Answer: There are 40 pupils in the class.	Individual work, monitored T notes which Ps use division. Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising Ps write the plan they like best in Ex. Bks. if they did not think of it themselves. or Number of boys: $\begin{aligned} 15 \div 6 \times 10 & =150 \div 6 \\ & =\underline{25} \text { (boys) } \\ \text { or } 15 \div \frac{6}{10} & =15 \div \frac{3}{5} \\ =15 \times \frac{5}{3_{1}} & =\underline{25} \text { (boys) } \\ \text { or } \frac{150}{10} \div \frac{6}{10} & =150 \div 6 \\ & =\underline{25} \text { (boys) } \end{aligned}$

16	R: Calculations Multipication by fractions and decimals C: Division by fractions. Understanding division by a decimal E: Problems. Equations	$\begin{gathered} \text { Lesson Plan } \\ 72 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{72}=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$ Factors: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 - $247=13 \times 19$ Factors: 1, 13, 19, 247 - $\underline{422}=2 \times 211$ Factors: 1, 2, 211, 422 - $\underline{1072}=2 \times 2 \times 2 \times 2 \times 67=2^{4} \times 67$ Factors: 1, 2, 4, 8, 16, 67, 134, 268, 536, 1072	Notes Individual work, monitored (or whole class activity) BB: 72, 247, 422, 1072 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Problem Listen carefully, note the data and think of different ways to solve this problem. A submarine went down to a depth of $-\frac{2}{5}$ km. Its depth was $\frac{2}{7}$ of the depth of the sea at that point. What was the depth of the sea? Allow Ps a minute to think about it and write plans in Ex. Bks. Then Ps come to BB or dictate what T should write. Who agrees? Who can think of another way to solve it? T gives hints or directs Ps thinking towards the methods below if Ps do not suggest them. e.g. a) $\begin{aligned} & \frac{2}{7} \text { of sea depth } \rightarrow-\frac{2}{5} \mathrm{~km} \quad \text { (using direct proportion) } \\ & \frac{1}{7} \text { of sea depth } \rightarrow-\frac{2}{5} \mathrm{~km} \div 2=-\frac{1}{5} \mathrm{~km} \\ & \frac{7}{7} \text { of sea depth } \rightarrow-\frac{1}{5} \mathrm{~km} \times 7=-\frac{7}{5} \mathrm{~km}=-1 \frac{2}{5} \mathrm{~km} \end{aligned}$ c) Let the depth of the sea be x. (Elicit that a depth of -2 fifths i) $\begin{aligned} & x \div 7 \times 2=-\frac{2}{5} \mathrm{~km} \quad \quad \quad \quad \text { of a km means } 2 \text { fifths of a } \mathrm{km} \\ & \text { below sea level.) } \end{aligned}$ ii) $\frac{2}{7}$ of $x=-\frac{2}{5} \mathrm{~km}$ (Elicit that to divide by a fraction, $\rightarrow x \times \frac{2}{7}=-\frac{2}{5} \mathrm{~km}$ multiply by its reciprocal value.) $x=-\frac{2}{5} \div \frac{2}{7}=-\frac{1}{5} \times \frac{7}{2_{1}}=-\frac{7}{5}=-1 \frac{2}{5}(\mathrm{~km})$ Check: $\frac{2}{7}$ of $-1 \frac{2}{5} \mathrm{~km}=\frac{2}{才_{1}} \times-\frac{7^{1}}{5} \mathrm{~km}=-\frac{2}{5} \mathrm{~km}$	Whole class activity T repeats slowly and asks a P to repeat in own words to give Ps time to think. Involve as many Ps as possible in the discussions. Reasoning, agreement, praising only b) Draw a diagram: d) To calculate the whole depth from part of the depth, divide the known depth by the part. So depth of the sea is: $\begin{aligned} & -\frac{2}{5} \mathrm{~km} \div \frac{2}{7} \\ = & -\frac{1}{5} \mathrm{~km} \times \frac{7}{2}_{1} \\ = & -\frac{7}{5} \mathrm{~km}=-1 \frac{2}{5} \mathrm{~km} \end{aligned}$

		Lesson Plan 72
Activity 3	Meaning of division by a fraction a) What does $2 \frac{2}{3} \div \frac{3}{5}$ really mean? (Calculating how many 3 fifths are in 2 and 2 thirds, or the whole amount from 3 fifths of it.) How can we do the calculation? P comes to BB or dictates to T, explaining reasoning. Class agrees/disagrees. e.g. BB: $2 \frac{2}{3} \div \frac{3}{5}=\frac{8}{3} \times \frac{5}{3}=\frac{40}{9}=4 \frac{4}{9}$ (the whole amount) b) What does $2 \frac{2}{3} \mathrm{~km} \div 0.6$ mean? (Calculating the whole length from 0.6 of it.) How can we do the calculation? Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. e.g. BB: $2 \frac{2}{3} \mathrm{~km} \div 0.6=\frac{8}{3} \mathrm{~km} \div \frac{6}{10}=\frac{8}{3} \mathrm{~km} \div \frac{3}{5}$ $=\frac{8}{3} \mathrm{~km} \times \frac{5}{3}=\frac{40}{9} \mathrm{~km}=4 \frac{4}{9} \mathrm{~km}$ Check: $4 \frac{4}{9} \mathrm{~km} \times 0.6=\frac{40}{9} \mathrm{~km} \times \frac{6}{10}=\frac{8}{3} \mathrm{~km}=2 \frac{2}{3} \mathrm{~km}$ c) Let's calculate $4.8 \mathrm{~m} \div 0.8 \mathrm{~m}$. Ps come to BB or dictate what T should write. Who can think of another way to do it? T shows any of those below not suggested by Ps and asks class if it is correct. e.g. BB: $\quad 4.8 \mathrm{~m} \div 0.8 \mathrm{~m}=480 \mathrm{~cm} \div 80 \mathrm{~cm}=\underline{6}$ (times) $\begin{aligned} & \text { or }=4.8 \mathrm{~m} \div \frac{8}{10} \mathrm{~m}=4.8 \times \frac{10}{8}=\frac{48}{8}=\underline{6} \\ & \text { or }=\frac{48}{10} \mathrm{~m} \div \frac{8}{10} \mathrm{~m}=\underline{6}(\text { as } 48 \div 8=6) \end{aligned}$ What about this method? Is it correct? BB: $4.8 \mathrm{~m} \div 0.8 \mathrm{~m}=48 \mathrm{~m} \div 8 \mathrm{~m}=\underline{6}$ (times) Agree that if the dividend and divisor are enlarged (or reduced) by the same number of times (i.e. by a non-zero number), the quotient does not change.	Notes Whole class activity T asks several Ps what they think. T repeats in a clear way if necessary. Reasoning, agreement, praising Check: $\begin{aligned} \frac{3}{5} \text { of } 4 \frac{4}{9} & =\frac{1}{5}_{5}^{5} \times \frac{40}{9}^{8} \\ & =\frac{8}{3}=2 \frac{2}{3} \end{aligned}$ Extra praise if Ps realise that the division in b) is the same as in a) but the divisor is written in decimal form and the result is a measure, not a number. Ask Ps to check each result with a multiplication. Checks: $\underline{6} \times 0.8 \mathrm{~m}=4.8 \mathrm{~m}$ [Elicit that the quotient cannot be $6 \underline{\text { metres }}$ as $6 \underline{\mathrm{~m}} \times 0.8 \underline{\mathrm{~m}}$ $\begin{aligned} & \left.=4.8 \mathrm{~m}^{2} \neq 4.8 \mathrm{~m}\right] \\ & \underline{6} \times \frac{8}{10} \mathrm{~m}=\frac{48}{10} \mathrm{~m}=4.8 \mathrm{~m} \boldsymbol{V} \end{aligned}$ Ask Ps for an example of a reduction too. e.g. $\text { BB: } 48 \div 8=12 \div 2=\underline{6}$
4	PbY6a, page 72 Q. 1 Read: Calculate the quotients. Notice how the quotient changes. Follow the pattern. Set a time limit or deal with one part at a time. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes discussed and corrected. What do you notice? Elicit that in: a) the dividend stays the same but the divisor is reduced by 1 tenth, so the quotient increases by 10 times; b) the dividend stays the same but the divisor is reduced by 1 half so the quotient increases by 2 times.	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Remind Ps to check their results with multiplication. Reasoning, agreement, checking, self-correction, praising

16		Lesson Plan 72
Activity 4	(Continued) Solution: a) $\begin{aligned} & 45 \div 100=\underline{0.45}) \times 10 \\ & 45 \div 10=\underline{4.5} \\ & 45 \div 1=\underline{45} \times 10 \\ & 45 \div 0.1=\underline{450} \cdots \\ & 45 \div 0.01=\underline{4500} \end{aligned}$ b) $\begin{aligned} & 2.4 \div 4=\underline{0.6}) \times 2 \\ & 2.4 \div 2=\underline{1.2} \\ & 2.4 \div 1=\underline{2.4} \times 2 \\ & 2.4 \div 0.5=\underline{4.8} \cdots \\ & 2.4 \div 0.25=\underline{9.6} \end{aligned}$ If we did not have the number pattern to help us, how could we have calculated $2.4 \div 0.25$? Ps and T suggests ways. e.g. BB: $\underbrace{2.4 \div 0.25=240 \div 25=48 \div 5}_{\times 100} \div \underline{\div 5}+5$ 18 min	Notes Review the meaning of the some of the divisions. e.g. $45 \div 0.1$ means that we are calculating the whole quantity from 1 tenth of it . or long division: $240 \div 25$ or $\begin{aligned} 2.4 \div 0.25 & =2.4 \div \frac{1}{4} \\ & =2.4 \times 4=\underline{9.6} \end{aligned}$
5	PbY6a, page 72 Q. 2 Read: Calculate the whole quantity in two ways in your exercise book. a) Use the given fraction. b) Convert the given fraction to a decimal and do the calculation again with decimals. Set a time limit or deal with one quantity at a time. Review with whole class. Ps show result on scrap paper or slates on command. Two Ps with correct answers come to BB to show calculation and explain reasoning, one using fractions and the other using decimals. Class agrees/disagrees. Who did the same? Who calculated a different way? Mistakes discussed and corrected. Accept any correct method but show those below. Solution: i) $\frac{4}{5}$ of a mass is 200 kg b) Mass: $200 \mathrm{~kg} \div 0.8=2000 \mathrm{~kg} \div 8=\underline{250 \mathrm{~kg}}$ ii) $\frac{7}{10}$ of an area is $3.5 \mathrm{~km}^{2}$ b) Area: $3.5 \mathrm{~km}^{2} \div 0.7=35 \mathrm{~km}^{2} \div 7=\underline{5 \mathrm{~km}^{2}}$ iii) $\frac{135}{100}$ of an amount of money is $£ 1012.50$ a) Amount: $£ 1012.50 \div \frac{135}{100}=£ 1012.50 \times \frac{100}{135}$ $=£ \frac{101250}{135}=£ \frac{20250}{27}=£ \frac{2250}{3}=\underline{£ 750}$ b) Amount: $£ 1012.50 \div 1.35=£ 101250 \div 135$ $=£ \not{ }^{7} 50$	Individual work, monitored, helped First discuss a good layout for Ps to use in Ex. Bks. (e.g. as given in the solution) Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising (T might show long divison in iii): $101250 \div 135$ as revision. Ps come to BB or dictate to T , explaining reasoning with place-value detail.) Feedback for T Extension Which words are missing from this sentence? BB: (already prepared) The quotient does not change if we multiply or divide both the dividend and the divisor by the same non-zero number. (Underlined words missing.) Ps read completed sentence in unison and/or write in Ex. Bks.

		Lesson Plan 73
Activity 4	PbY6a, page 73 Q. 1 Read: Do the multiplications and divisions. In each row use the 1st result to help with the rest. What must you check when multiplying a decimal by a decimal? (The product should have the same number of decimal digits as the multiplicand and multiplier combined.) Set a time limt. Ps work in Ex. Bks. Encourage Ps to check results by estimating first, or afterwards with reverse operations. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who has a different answer? etc. Show details on BB if problems or disagreement. Solution: a) i) $35.4 \times 0.1=\underline{3.54}$ ii) $35.4 \times 0.01=\underline{0.354}$ iii) $0.354 \times 0.1=\underline{0.0354}$ b) i) $63.5 \times 24=\underline{1524}$ ii) $63.5 \times 2.4=\underline{152.4}$ iii) $6.35 \times 2.4=\underline{1.524}$ c) i) $8.4 \div 6=\underline{1.4}$ ii) $8.4 \div 0.6=(84 \div 6)=\underline{14}$ iii) $0.84 \div 0.06=(84 \div 6)=\underline{14}$ 20 min	Notes Individual work, monitored, helped (Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Feedback for T BB: e.g. b)
5	PbY6a, page 73 Q. 2 Read: Fill in the missing numbers. Set a time limt. Ps do necessary calculations in Ex. Bks. and write results in Pbs. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who has a different answer? etc. Show details of calculations on BB if problems or disagreement. Solution: a) i) $63 \div \underline{7}=9$ ii) $\underline{6.3} \div 7=0.9$ iii) $\underline{63} \div 70=0.9$ b) i) $35 \div 7=5$ ii) $3.5 \div 7=0.5$ iii) $350 \div 70=5$ c) i) $1000 \div 4=250$ ii) $10 \div 4=2.5$ iii) $100 \div \underline{0.4}=250$ d) i) $\underline{18} \times 30=540$ ii) $\underline{180} \times 0.3=54$ iii) $\underline{0.18} \times 30=5.4$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Ps point out relationships. Elicit that, e.g. if the divisor increases by 10 times and the dividend stays the same, the quotient decreases by 10 times, etc.

176	R: Calculations C: Operations with fractions and decimals. Solving simple problems E: Advanced problems. Difficult calculations	$\begin{gathered} \text { Lesson Plan } \\ 74 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $74=2 \times 37 \quad$ Factors: $1,2,37,74$ - $\underline{249}=3 \times 83 \quad$ Factors: 1, 3, 83, 249 - $\underline{424}=2 \times 2 \times 2 \times 53=2^{3} \times 53$ Factors: 1, 2, 4, 8, 53, 106, 212, 424 - $1074=2 \times 3 \times 179$ Factors: 1, 2, 3, 6, 179, 358, 537, 1074	Notes Individual work, monitored (or whole class activity) BB: 74, 249, 424, 1074 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Creating problems Let's make up problems which can be solved by these plans. T writes the plan on BB, allows a minute for Ps to think about it, then Ps tell class their problems. Class chooses the context they like best and Ps come to BB do the calculation and say the answer in context. Class helps and corrects as necessary. e.g. a) BB: $£ 400 \div 5 \times 8 \quad[=£ 80 \times 8=\underline{£ 640}]$ e.g. If 5 eighths of my money is $£ 400$, how much money do I have? or Bill has saved 8 fifths of the amount that James has saved. If James has saved $£ 400$, how much has Bill saved? b) BB: $600 \mathrm{~m} \times 0.25 \quad[=6 \mathrm{~m} \times 25=150 \mathrm{~m}]$ e.g. I had run 0.25 of the 600 m race when I tripped and twisted my ankle. How far had I run? or There are traffic light a quarter of the way along the road between my house and my school. If the distance between my house and my school is 600 m , how far are the traffic lights from my house? c) $\mathrm{BB}: \quad 44 \mathrm{~kg} \div 0.4 \quad(=440 \mathrm{~kg} \div 4=\underline{110 \mathrm{~kg})}$ e.g. If 0.4 of the strawberries that the farmer picked weighed 44 kg what weight of strawberries did he pick altogether?	Whole class activity Involve many Ps. In good humour! T repeats Ps' problems in a clearer way if necessary or asks class what they think about it if the context is wrong. Praising, encouragement only Extra praise for clever questions!
3	PbY6a, page 74 Q. 1 Read: Solve the problems in your exercise book. Set a time limit or deal with one at a time. Ps read problems themselves, write plans, do the calculations, check them and write the answers in sentences. Review with whole class. Ps could show results on scrap paper or slates on command. Ps with different answers explain reasoning at BB . Class decides who is correct. Who worked out the correct answer in another way? etc. Mistakes discussed and corrected.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, checking, self-correction, praising Accept any valid method of calculation.

		Lesson Plan 74
Activity 5	PbY6a, page 74 Q. 3 Read: Write an operation to calculate the whole quantity if: a) $\frac{4}{5}$ of it is 48 kg b) $2 \frac{1}{2}$ of it is 120 m c) 1.6 of it is 50 tonnes d) 96% of it is 33.6 g Set a time limit. Ps write operations and results in Pbs . (Necessary calculations can done in Ex. Bks.) Review with whole class. Ps come to BB to write operations and do calculation, explaining reaosning. Class agrees/ disagrees. Who did the same? Who wrote a different operation? etc. Mistakes discussed and corrected. Solution: a) Whole quantity: $48 \mathrm{~kg} \div \frac{4}{5}=48 \mathrm{~kg} \times{\frac{5}{A_{1}}}_{1}=\underline{60 \mathrm{~kg}}$ b) Whole quantity: $120 \mathrm{~m} \div 2 \frac{1}{2}=120 \mathrm{~m} \div \frac{5}{2}=120 \mathrm{~m} \times \frac{2}{5_{1}}$ $=48 \mathrm{~m}$ c) Whole quantity: $50 \mathrm{t} \div 1.6=500 \mathrm{t} \div 16=125 \mathrm{t} \div 4$ $=\underline{31.25 \mathrm{t}}$ d) Whole quantity: $33.6 \mathrm{~g} \div 0.96=3360 \mathrm{~g} \div 96$ $=420 \mathrm{~g} \div 12=\underline{35 \mathrm{~g}}$ (as 96% means 96 out of 100 or $\frac{96}{100}$ or 0.96) Elicit again that: - to calculate the whole quantity when we know part of it, we divide the quantity we know by the part we know. - to divide by a fraction, multiply by its reciprocal value.	Notes Individual work, monitored, (helped) Differentiation by time limit Ask Ps to check their results (mentally or in Ex Bks.) Reasoning, agreement, selfcorrection, praising Feedback for T Checks: e.g. a) $\frac{4}{5}$ of $\underline{60 \mathrm{~kg}}=48 \mathrm{~kg}$ b) $2 \frac{1}{2}$ of $\underline{48 \mathrm{~m}}$ $\begin{aligned} & =96+24 \\ & =120(\mathrm{~m}) \boldsymbol{\nu} \end{aligned}$ $\begin{aligned} & \text { c) } \begin{aligned} & 1.6 \text { of } \underline{31.25 \mathrm{t}} \\ = & 31.25 \mathrm{t}+31.25 \mathrm{t} \times 0.6 \\ = & 31.25 \mathrm{t}+18.75 \mathrm{t}=50 \mathrm{t} \end{aligned} \end{aligned}$ $\text { d) } \begin{aligned} & 0.96 \text { of } 35 \mathrm{~g} \\ = & 35 \mathrm{~g}-0.04 \times 35 \mathrm{~g} \\ = & 35 \mathrm{~g}-1.4 \mathrm{~g}=33.6 \mathrm{~g} \boldsymbol{\imath} \end{aligned}$
6	PbY6a, page 74 Q. 4 Read: Solve the problems in your exercise book. Write an equation first. Deal with one at a time or set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps anwering correctly explain at BB to Pbs who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) A is $\frac{5}{6}$ of $12 \frac{2}{5} \mathrm{~kg}$. 2.5 of B is $25 \frac{5}{6} \mathrm{~kg}$. Which is more, A or B ? $\begin{aligned} A=\frac{5}{6} \times 12 \frac{2}{5} \mathrm{~kg}==^{1} \frac{5}{6} \times \frac{62}{5_{1}} \mathrm{~kg} & =\frac{31}{3} \mathrm{~kg}=10 \frac{1}{3} \mathrm{~kg} \\ B=25 \frac{5}{6} \mathrm{~kg} \div 2.5=\frac{155}{6} \mathrm{~kg} \div \frac{5}{2} & =\frac{155^{31}}{6_{3}} \mathrm{~kg} \times \frac{2}{5}_{1}^{1} \\ & =\frac{31}{3} \mathrm{~kg}=10 \frac{1}{3} \mathrm{~kg} \end{aligned}$ Answer: Neither A nor B is more, as $A=B$.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, checking, self-correction, praising

		Lesson Plan 74
Activity 6	(Continued) b) $\frac{3}{5}$ of x is $60, x=? \quad x=60 \div \frac{3}{5}=\frac{20}{60} \times \frac{5}{3_{1}}=\underline{100}$ c) 0.75 of y is $60, y=? \quad y=60 \div 0.75=60 \div \frac{3}{4}$ $=600 \times \frac{4}{3_{1}}=\underline{80}$ d) z is 0.4 of $60, z=? \quad z=60 \times 0.4=6 \times 4=\underline{24}$	Notes Check: $\frac{3}{5}$ of $\underline{100}$ $=\frac{3}{5_{1}} \times \stackrel{20}{100}^{20}=60$ Check: 0.75 of $\underline{80}=\frac{3}{4} \times 80$ $=60 \boldsymbol{V}$ Check: $\frac{24}{60}=\frac{4}{10}=0.4$
7	PbY6a, page 74 Q. 5 Read: Do the calculations in your exercise book. Set a time limit or deal with one at a time. (T might allow the use of calculators for one or two of them if time is short.) Review with whole class. T asks several Ps for their answers. Ps with different answers explain reasoning on BB. Class points out errors and decides who is correct. Who had the correct answer but did the calculation another way? Mistakes discussed and corrected. Solution: a) $\begin{aligned} \left(17 \frac{3}{4}+29 \frac{4}{5}\right) \div \frac{3}{7} & =\left(46+\frac{15+16}{20}\right) \times \frac{7}{3} \\ & =\left(46+\frac{31}{20}\right) \times \frac{7}{3}=47 \frac{11}{20} \times \frac{7}{3} \\ & =\frac{317}{20} \times \frac{951}{3_{1}}=\frac{2219}{20}=110 \frac{19}{20} \end{aligned}$ b) $(6.7+3.2) \div \frac{9}{11}=\stackrel{1.1}{9.9} \times \frac{11}{-9}=\underline{12.1}$ c) $\text { er } \begin{aligned} 35.22-4 \times 3.15+0.75 \div 3 & =35.22-12.6+0.25 \\ & =35.47-12.6=\underline{22.87} \end{aligned}$ d) $3.71+(10.29 \div 7-0.25)$ $\begin{aligned} \times 8 & =3.71+(1.47-0.25) \times 8 \\ & =3.71+1.22 \times 8 \\ & =3.71+9.76 \\ & =\underline{13.47} \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, agreement, praising or a) $\begin{aligned} & (17.75+29.8) \div 3 \times 7 \\ & =47.55 \div 3 \times 7 \\ & =15.85 \times 7=\underline{110.95} \end{aligned}$ b) $\begin{aligned} & \left(6 \frac{7}{10}+3 \frac{2}{10}\right) \div \frac{9}{11} \\ = & 9 \frac{9}{10} \times \frac{11}{9}=\frac{99}{10} \times \frac{11}{9} \\ = & \frac{121}{10}=12 \frac{1}{10} \end{aligned}$ Review order of operations: operations in brackets first, then multiplication or division, then addition or subtraction.

		Lesson Plan 74
Activity 8		Notes
8	PbY6a, page 74, Q. 6 Deal with one question at a time. T chooses a P to read out the question. Ps suggest what to do first and how to continue. Class helps, corrects or suggests an easier method of solution. T intervenes only if necessary. Ps could write solution in Ex. Bks too. Solution: a) The sum of two numbers is $18 \frac{1}{2}$. The first number is 4 times the second number. What are the two numbers? e.g. Let the 2 nd number be x, then the first number is $4 \times x$ 2nd number: $x+4 \times x=18 \frac{1}{2}, 5 \times x=18 \frac{1}{2}$, $x=18 \frac{1}{2} \div 5=\frac{37}{2} \div 5=\frac{37}{10}=3 \frac{7}{10}$ 1st number: $\quad x \times 4=3 \frac{7}{10} \times 4=12 \frac{28}{10}=14 \frac{8}{10}$ Check: $14 \frac{8}{10}+3 \frac{7}{10}=17 \frac{15}{10}=18 \frac{5}{10}=18 \frac{1}{2}$ Answer: The first number is 14.8 and the 2 nd number is 3.7 . b) The difference between two numbers is 18.5. The larger number is 6 times the smaller number. What are the two numbers? e.g. Let the smaller number be y, then the larger number is $6 \times y$ Smaller number: $\begin{aligned} & 6 \times y-y=10.5, \quad 5 \times y=10.5 \\ & y=10.5 \div 5=\underline{2.1} \end{aligned}$ Larger number: $\quad y \times 6=2.1 \times 6=\underline{12.6}$ Check: $12.6-2.1=10.5$ Answer: The two numbers are 12.6 and 2.1.	Whole class activity (or individual trial first if Ps wish)
		Discussion, reasoning, agreement, checking, praising
		If no P thinks of the method shown opposite, T gives hints or suggests it and asks Ps what they think about it.
		Extra praise if a P thinks of it without help from T.
		Or
		Let a be the first number and b be the 2 nd number. $\begin{aligned} & a+b=18 \frac{1}{2} \\ & \text { but } a=4 \times b \end{aligned}$
		$\begin{gathered} \text { so } 4 \times b+b=18 \frac{1}{2} \\ 5 \times b=18 \frac{1}{2}, \text { etc. } \end{gathered}$
		or let the two numbers be a and b,
		$a-b=18.5$
		$\begin{aligned} & \text { but } a=6 \times b \\ & \text { so } 6 \times b-b=18.5 \end{aligned}$
		$5 \times b=18.5, \text { etc. }$
		$5 \times b$ can be written as $5 b$,
		$6 \times y$ can be written as $6 y$, etc.]

16		$\begin{gathered} \text { Lesson Plan } \\ 75 \end{gathered}$
Activity		Notes
	Factorising 75, 250, 425 and 1075. Revision, activities, consolidation PbY6a, page 75	$\underline{75}=3 \times 5^{2}$
		Factors: $1,3,5,15,25,75$
	Solutions:	$\underline{250}=2 \times 5^{3}$
	Q. $1 \quad$ a) $24 \mathrm{~kg} \div 2 \mathrm{~kg}=\underline{12}$ (packs)	$\begin{aligned} \text { Factors: } & 1,2,5,10,25,50, \\ & 125,250 \end{aligned}$
	b) $24 \mathrm{~kg} \div 1 \mathrm{~kg}=\underline{24}$ (packs) c) $24 \mathrm{~kg} \div \frac{1}{2} \mathrm{~kg}=24 \times 2=\underline{24}$ (packs)	$\underline{425}=5^{2} \times 17$ Factors: 1, 5, 17, 25, 85, 425
	d) $24 \mathrm{~kg} \div \frac{1}{3} \mathrm{~kg}=24 \times 3=\underline{72}$ (packs)	$\underline{1075}=5^{2} \times 43$
	e) $24 \mathrm{~kg} \div \frac{1}{4} \mathrm{~kg}=24 \times 4=\underline{96}$ (packs) f) $24 \mathrm{~kg} \div \frac{1}{5} \mathrm{~kg}=24 \times 5=\underline{120}$ (packs)	Factors: 1, 5, 25, 43, 215, 1075 (or set factorising as homework at the end of Lesson 74 and review at the start of Lesson 75)
	Q. 2 a) $40 \div 4=\underline{10}$ b) $45 \div 9=\underline{5}$ c) $\frac{3}{5} \div 9=\frac{1}{15}$	
	$40 \div 2=\underline{20} \quad 45 \div 3=\underline{15} \quad \frac{3}{5} \div 3=\frac{1}{5}$	
	$40 \div 1=\underline{40} \quad 45 \div 1=\underline{45} \quad \frac{3}{5} \div 1=\frac{3}{5}$	
	$40 \div \frac{1}{2}=\underline{80} \quad 45 \div \frac{1}{3}=\underline{80} \quad \frac{3}{5} \div \frac{1}{3}=\frac{9}{5}$	$\left(=1 \frac{4}{5}\right)$
	Q. 3 a) $\div \frac{1}{2}$ b) $\div \frac{1}{6}$ c) $\div \frac{8}{6}\left(=\frac{4}{3}\right)$	
	Q. 4 a) $27.8 \times 0.1=\underline{2.78}, \quad 27.8 \times 0.001=\underline{0.0278}$, $2.78 \times 0.01=\underline{0.0278}$ b) $42.5 \times 12=\underline{510}, 4.25 \times 1.2=\underline{5.1}, 4.25 \times 0.12=\underline{0.51}$ c) $7.8 \div 6=\underline{1.3}, \quad 7.8 \div 0.6=\underline{13}, \quad 0.78 \div 0.06=\underline{13}$	

16		Lesson Plan 75
Activity	Solutions (Continued) Q. 5 a) $b=20.8 \mathrm{~cm}^{2} \div 6.5 \mathrm{~cm}=208 \mathrm{~cm}^{2} \div 65 \mathrm{~cm}=\underline{3.2 \mathrm{~cm}}$ Answer: the length of the adjacent side is 3.2 cm . b) $\begin{aligned} A & =6.5 \mathrm{~cm} \times(19.4 \mathrm{~cm} \div 2-6.5 \mathrm{~cm}) \\ & =6.5 \mathrm{~cm} \times(9.7 \mathrm{~cm}-6.5 \mathrm{~cm}) \\ & =6.5 \mathrm{~cm} \times 3.2 \mathrm{~cm}=\underline{20.8}\left(\mathrm{~cm}^{2}\right) \end{aligned}$ Answer: The area of the rectangle is $20.8 \mathrm{~cm}^{2}$. c) $\begin{aligned} a & =7.2 \mathrm{~m} \div 1.5=72 \mathrm{~m} \div 15=24 \mathrm{~m} \div 5=4.8 \mathrm{~m} \\ b & =3.3 \mathrm{~m} \div 0.6=33 \mathrm{~m} \div 6=5.5 \mathrm{~m} \\ A & =4.8 \mathrm{~m} \times 5.5 \mathrm{~m}=\underline{26.4 \mathrm{~m}^{2}} \end{aligned}$ Answer: The area of the lawn is $26.4 \mathrm{~m}^{2}$. Q. 6 Let the 1 st number be x, then the second number is $3 \times x$ (or $3 x$) $\begin{aligned} x+3 \times x & =12.8 & (\text { or } x+3 x=12.8 \\ 4 \times x & =12.8 & 4 x=12.8) \\ x=12.8 & \div 4=\underline{3.2} & \end{aligned}$ 1st number: 3.2 2nd number: $3.2 \times 3=\underline{9.6}$ Check: $3.2+9.6=12.8$ Answer: The two numbers are 3.2 and 9.6.	Notes $\left(\text { as } 60 \% \rightarrow \frac{60}{100}=0.6\right)$

	R: Calculations C: Understanding percentages. Calculating the whole from a part E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 76 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 4 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{76}=2 \times 2 \times 19=2^{2}$ Factors: 1, 2, 4, 19, 38, 76 - $\underline{251}$ is a prime number Factors: 1, 251 (as not exactly divisible by $2,3,5,7,11,13$ and $17^{2}<251$ - $\underline{426}=2 \times 3 \times 71 \quad$ Factors: $1,2,3,6,71,142,213,426$ - $\underline{1076}=2 \times 2 \times 269=2^{2} \times 269$ Factors: 1, 2, 4, 269, 538, 1076	Notes Individual work, monitored (or whole class activity) BB: 76, 251, 426, 1076 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Percentage a) How could we work out what 34% of $£ 750$ is? Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. (T shows any method not suggested by Ps and asks class if it is correct.) BB: e.g. i) $100 \% \rightarrow £ 750$ $\begin{aligned} 1 \% & \rightarrow £ 750 \div 100=£ 7.50 \\ 34 \% & \rightarrow £ 7.50 \times 34=£(255 \end{aligned}$ ii) 34% of $£ 750 \rightarrow £ 750 \div 100 \times 34=£ 7.50 \times 34=£ 255$ iii) $£ 750 \times \frac{34}{100}=£ \frac{15}{£ 750} \times \frac{17}{50}_{1}=£ 15 \times 17=\underline{£ 255}$ iv) $£ 750 \times 0.34=£ 75 \times 3.4=\underline{£ 255}$ b) What percentages are we calculating if we use these plans? Ps say the percentages then come to BB to complete the calculations, explaining reasoning. Class agrees/disagrees. BB: i) $450 \mathrm{~m} \div 4 \times 3(=112.5 \mathrm{~m} \times 3=\underline{237.5 \mathrm{~m})}$ [75% of 450 m , as we are calculating $\frac{3}{4}=\frac{75}{100} \rightarrow 75 \%$] ii) $20.8 \mathrm{~kg} \div 100 \times 61(=0.208 \mathrm{~kg} \times 61=12.688 \mathrm{~kg})$ [61% of 20.8 kg , as we are calculating $\frac{61}{100} \rightarrow 61 \%$] iii) $0.91 \mathrm{~km} \times \frac{7}{5}\left(=\frac{6.37}{5} \mathrm{~km}=\underline{1.274 \mathrm{~km})}\right.$ [140% of 0.91 km , as $\frac{7}{5}=1 \frac{2}{5}=1.4 \rightarrow 140 \%$] iv) $615 \mathrm{~cm}^{2} \times 0.11\left(=\underline{67.65 \mathrm{~cm}^{2}}\right)$ [11% of $615 \mathrm{~cm}^{2}$, as $0.11=\frac{11}{100} \rightarrow 11 \%$]	Whole class activity At a good pace Involve several Ps. Discussion, reasoning, agreement, praising Details: e.g. $\begin{array}{\|c\|c\|c\|c\|c\|} & & 7 & 5 & 0 \\ \hline & & \times & 3 & 4 \\ \hline & 3 & 0 & 0 & 0 \\ \hline 2 & 2 & 5 & 0 & 0 \\ \hline 2 & 5 & 5 & 0 & 0 \\ \hline \end{array}+\begin{array}{\|c\|c\|c\|} \hline 1 & 1 & 5 \\ \hline & & 0 \\ \hline 2 & 5 & 0 \\ \hline 2 & 5 & 5 \\ \hline \end{array}$ Written on BB or SB or OHT Ps do necessary calculations at side of BB if they cannot do them mentally. Involve several Ps. Reasoning, agreement, praising e.g. $\begin{array}{\|c\|c\|c\|c\|} \hline & 0.2 & 0 & 8 \\ \hline & \times & 6 & 1 \\ \hline & 2 & 0 & 8 \\ +1 & 2 & 4 & 8 \end{array} 0$ Feedback for T

		Lesson Plan 76
Activity 2	(Continued) c) Listen carefully and think about how you would solve this problem. 55% of a distance is 275 m . What is the whole distance? A, what do you think we should do? Who agrees? Who can think of another way to do it? etc. And another? (Elicit the 4 methods shown below.) Which method do you like best? Why? BB: e.g. i) $55 \% \rightarrow 275 \mathrm{~m}$ $\begin{aligned} 1 \% & \rightarrow 275 \mathrm{~m} \div 55=55 \mathrm{~m} \div 11=5 \mathrm{~m} \\ 100 \% & \rightarrow 5 \mathrm{~m} \times 100=500 \mathrm{~m} \end{aligned}$ ii) $275 \mathrm{~m} \div 55 \times 100=5 \mathrm{~m} \times 100=\underline{500 \mathrm{~m}}$ iii) $275 \mathrm{~m} \div \frac{55}{100}=275 \mathrm{~m} \div \frac{11}{20}=275 \mathrm{~m} \times \frac{20}{\mathrm{H1}_{1}}=\underline{500 \mathrm{~m}}$ iv) $275 \mathrm{~m} \div 0.55=27500 \mathrm{~m} \div 55=5500 \mathrm{~m} \div 11=\underline{500 \mathrm{~m}}$ 17 min	Notes Discussion, reasoning, agreement, praising Elicit that reducing or increasing the dividend and divisor by the same number of times does not change the quotient. T shows any method which Ps miss.
3	PbY6a, page 76 Q. 1 Read: Solve the problems in your exercise book. Set a time limit or deal with one at a time. Review with whole class. Ps show results on scrap paper or slates on command. Ps with different answers explain reasoning at BB. Class points out errors and decides who is correct. Who had the correct answer but used a different plan? Mistakes discussed and corrected. Solution: e.g. (accept any valid method) a) Calculate $\frac{4}{5}$ of 89.6 m Plan: $89.6 \mathrm{~m} \div 5 \times 4=17.92 \times 4=\underline{71.68 \mathrm{~m}}$ b) Calculate 80% of 89.6 m . Plan: $89.6 \mathrm{~m} \times 0.8=\underline{71.68 \mathrm{~m}}$ c) $\frac{3}{4}$ of a quantity is 720 kg . What is the whole quantity? Plan: $720 \mathrm{~kg} \div \frac{3}{4}=72020 \mathrm{~kg} \times \frac{4}{乃_{1}}=\underline{960 \mathrm{~kg}}$ Check: $\frac{3}{4}$ of $\underline{960 \mathrm{~kg}}=\frac{3}{4_{1}} \times 960 \mathrm{~kg}=720 \mathrm{~kg}$ Answer: The whole quantity is 960 kg . d) 75% of a quantity is 720 kg . What is the whole quantity? Plan: $720 \mathrm{~kg} \div 75 \times 100=9.6 \mathrm{~kg} \times 100=\underline{960 \mathrm{~kg}}$ Check: 75% of $960 \mathrm{~kg}=960 \mathrm{~kg} \times 0.75=720 \mathrm{~kg}$ Answer: The whole quantity is 960 kg .	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, self-correction, praising Feedback for T Extra praise if Ps notice that a) and b), and c) and d), are the same calculations: $\begin{aligned} & \frac{4}{5}=\frac{8}{10}=0.8 \rightarrow 80 \% \\ & \frac{3}{4}=\frac{75}{100}=0.75 \rightarrow 75 \% \end{aligned}$ e.g.

		Lesson Plan 76
Activity 8	(Continued) b) The population of a city has risen by 2% over the past year and there are now 3100 more people. What was the population of the city at this time last year? Plan: $3100 \div 0.02=310000 \div 2=\underline{155000}$ or $2 \% \rightarrow 3100$ (people) $1 \% \rightarrow 3100 \div 2=1550$ $100 \% \rightarrow 1550 \times 100=\underline{155000}$ Check: 2% of $155000=155000 \times 0.02=3100$ Answer: This time last year the population was 155000.	Notes E: e.g. $300 \mathrm{Th} \div 2=150 \mathrm{Th}$ Extension What is the population now? $(155000+3100=\underline{158100})$

16	R: Calculations C: Calculating percentage values and whole amounts in eontext E: Calculating simple percentage rates	$\begin{gathered} \text { Lesson Plan } \\ 77 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $77=7 \times 11 \quad$ Factors: $1,7,11,77$ - $\underline{252}=2 \times 2 \times 3 \times 3 \times 7=2^{2} \times 3^{2} \times 7$ Factors: $1,2,3,4,6,7,9,12,14$, $252,126,84,63,42,36,28,21,18$ - $\underline{427}=7 \times 61$ Factors: 1, 7, 61, 427 - $\underline{1077}=3 \times 359$ Factors: 1, 3, 359, 1077	Notes Individual work, monitored (or whole class activity) BB: 77, 252, 427, 1077 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Ratio and percentage a) What is the ratio of circles to squares? $\mathrm{BB}: \bigcirc \bigcirc \bigcirc \square \square \square \square$ (3 to 4 , or $3: 4$ or $\frac{3}{4}=0.75$) What part of 4 is 3 ? ($\frac{3}{4}$ or 0.75 or 75%) T: A fraction can mean a division (e.g. $3 \div 4$), it can be a quotient (e.g. $3 \div 4=\frac{3}{4}$), or it can be a ratio (e.g. $\bigcirc: \square=\frac{3}{4}$) What part of all the shapes are the circles? $\left(\frac{3}{7} \approx 0.429 \rightarrow 42.9 \%\right)$ What is the ratio of squares to circles? (4 to 3 or $4: 3$ or $\frac{4}{3}=1.3$) What part of 3 is 4 ? ($\frac{4}{3}$ or $1 . \dot{3}$ or $133 \frac{1}{3} \%$ or $133 . \dot{3} \%$) b) Let's express these fractions or ratios as percentages. Ps come to BB or dictate to T , explaining reasoning. Class agrees/ disagrees. BB: i) $\frac{2}{5}=\left(\frac{40}{100} \rightarrow \underline{40 \%}\right)$ ii) $6 \div 10=\left(\frac{6}{10}=\frac{60}{100} \rightarrow 60 \%\right)$ iii) $0.3=\left(\frac{30}{100} \rightarrow 30 \%\right)$ iv) $\frac{7}{4}=\left(1 \frac{3}{4}=1 \frac{75}{100} \rightarrow 175 \%\right)$ v) $4: 9=\left(\frac{4}{9}=0 . \dot{4} \rightarrow 44 . \dot{4}\right)$ vi) $10: 5=(2 \rightarrow 200 \%)$ c) What percentage is 26 kg of 43 kg ? Ps suggest how to work it out. Class agrees/disagrees. e.g. ratio is $26: 43$, so 26 kg is $\frac{26}{43}$ of 43 kg . $\frac{26}{43} \approx 0.605 \rightarrow 60.5 \% . \text { So } 26 \mathrm{~kg} \text { is about } 60.5 \% \text { of } 43 \mathrm{~kg} \text {. }$	Whole class activity Shapes drawn (stuck) on BB Ps come to BB or dictate what T should write. Class agrees/ disagrees. Involve many Ps. Praising, encouragement only Elicit that to change a fraction to a decimal: - if possible, change to an equivalent fraction with a denominator which is a multiple of 10 , or if this is not possible - divide the numerator by the denominator. Written on BB or SB or OHT Accept any valid reasoning. Agreement, praising T helps or gives hints if necessary. Allow the use of calculators: $26 \div 43=0.6046511627 \ldots$ Agree on an appropriate rounding (e.g. to 3 d.p.)

													Lesson Plan 77
Activity 5	Q. 3 Read: Complete the table to show the different percentages of a right angle, a straight angle and a whole angle (in ${ }^{\circ}$). Elicit that a whole angle $=360^{\circ}$, a straight angle $=180^{\circ}$ and a right angle $=90^{\circ}$. Ask Ps to draw them on BB or show the turns. T writes the unit of measure beside each type of angle in table on BB and Ps write it in Pbs too. Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning and showing details of calculations where necessary. Who agrees? Who worked it out another way? etc. Mistakes discussed and corrected. Solution:												Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Quick revision of angles Reasoning, agreement, selfcorrection, praising Extra praise if Ps noticed relationships which made completion of the table easier. e.g. $90 \%=100 \%-10 \%$ (Class could say both forms of the general rule in unison.) or 90% of 360° $=360^{\circ} \times 0.9=324^{\circ}$
\% ${ }^{6}$	Q. 4 Read: Write the whole length in the table if 3.5 m is the given percentage. What is different about this table compared with the previous tables? (In the previous tables we had to calculate the percentage values but in this table we have to calculate the whole amount.) Do one or two columns with the whole class first if necessary, otherwise set a time limit. Ps calculate mentally or in Ex. Bks. Review with whole class. Ps come to BB to fill in a value and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution:												Individual work, monitored, helped, (or whole class activity if Ps are unsure) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Accept both decimal and fraction forms. Reasoning: e.g. $\begin{aligned} 5 \% & \rightarrow 3.5 \mathrm{~m} \\ 1 \% & \rightarrow 3.5 \mathrm{~m} \div 5 \\ 100 \% & \rightarrow 3.5 \mathrm{~m} \div 5 \times 100 \\ & =0.7 \mathrm{~m} \times 100=70 \mathrm{~m} \end{aligned}$

		Lesson Plan 77
Activity 7	PbY6a, page 77 Q. 5 Read: Solve the problems in your exercise book. Estimate, calculate and check each result. First discuss what gross income and net income mean and what kind of taxes are normally deducted (taken out) before anyone receives their pay. Allow Ps to explain if they can, otherwise T explains (showing a real example of a pay slip if possible). Why does everyone who is earning money need to pay taxes to the Government? Ps make some suggestions. Deal with one question at a time. T chooses a P to read out the question. Ps write plans, estimate, calculate and check result then write the answer as a sentence in Ex. Bks. Review with whole class. Ps show results on scrap paper or slates on command. Ps with correct answers explain reasoning at BB. Mistakes discussed and corrected. Solution: e.g. a) How much does Mr. Smith earn per month if $£ 3599$ goes into his bank account after 41% has been deducted in taxes from his gross income? Plan: $100 \%-41 \%=59 \% \rightarrow £ 3599$ $\begin{aligned} 100 \% & \rightarrow £ 3599 \div 59 \times 100=£ 61 \times 100=\underline{£ 6100} \\ & \text { or } £ 3599 \div 0.59=£ 359900 \div 59=\underline{£ 6100} \end{aligned}$ Check: 41% of $£ 6100=£ 6100 \times 0.41=£ 2501$ $£ 6100-£ 2501=£ 3599$ Answer: Mr. Smith earns $£ 6100$ per month. b) Mr. Smith spends 60% of his net income on household bills and food. How much does he have left each month to spend on other things? Plan: Has left: $100 \%-60 \%=40 \%$ $\left.\begin{array}{rl} 40 \% \text { of } £ 3599 & =£ 3599 \div 100 \times 40 \\ = & £ 3599 \div 10 \times 4 \end{array}\right)=£ 359.90 \times 4 .$ Check: 40% of net income $=£ 1439.60$ $\begin{aligned} 100 \% \text { of net income } & =£ 1439.60 \div 0.4 \\ & =£ 14396 \div 4=£ 3599 \end{aligned}$ Answer: Mr. Smith has $£ 1439.60$ left each month.	Notes Individual work, monitored, helped, but class kept together on the questions. Initial whole class discussion to clarify the context. Involve several Ps. BB: gross income: amount earned net income: amount received Responses shown in unison. Reasoning, checking, agreement, self-correction, praising Ps could check results on calculators. $\begin{aligned} E: & £ 3600 \div 60 \times 100 \\ & =£ 60 \times 100=£ 6000 \end{aligned}$ C : $E: £ 4000 \div 10 \times 4=£ 1600$ or $£ 3599 \times 0.4=\underline{£ 1439.60}$

16		Lesson Plan 77
Activity 7	(Continued) c) Mr. Smith saves 25% of the money he has left each month (after paying his household bills and food) for his family's yearly holiday. How much does he save each year for the family holiday? Plan: Amount saved each month: 25% of $£ 1439.60$ $\begin{aligned} \text { Amount saved each year: } & 25 \% \text { of } £ 1439.60 \times 12 \\ & =£ 1439.60 \div 4 \times 12 \\ & =£ 1439.60 \times 3 \\ & =\underline{£ 4318.80} \end{aligned}$ Check: $£ 4318.80 \div 12 \times 4=£ 4318.80 \div 3$ $=£ 1439.60$ Answer: Mr. Smith saves $£ 4318.80$ each year for the family holiday. d) The original price of a holiday was increased by 25% and its new price is $£ 960$. What was the original price of the holiday? Plan: New price: 125% of original price $\begin{aligned} 125 \% & \rightarrow £ 960 \\ 1 \% & \rightarrow £ 960 \div 125 \\ 100 \% & \rightarrow £ 960 \div 125 \times 100 \\ & =£ 7.68 \times 100 \\ & =£ 768 \end{aligned}$ or $100 \% \rightarrow £ 960 \div 1.25=£ 96000 \div 125=£ 768$ Check: $£ 768+£ 768 \div 4=£ 768+£ 192=£ 960$ Answer: The original price of the holiday was $£ 768$.	Notes Accept and praise any correct method of solution. $\text { E: } \begin{aligned} & 25 \% \text { of } £ 1600 \\ & \quad=£ 1600 \div 4=£ 400 \\ & 12 \times £ 400=£ 4800 \end{aligned}$ $\left(\text { as } 25 \% \rightarrow \frac{25}{100}=\frac{1}{4}\right)$ (as dividing by 4 then multiplying by 12 is the same as multiplying by 3) $\begin{aligned} E: & £ 1000 \div 125 \times £ 100 \\ & =£ 8 \times 100=£ 800 \end{aligned}$ or Let original price be x. $\begin{aligned} & 1 \frac{1}{4} \times x=£ 960 \\ & x=£ 960 \div 1 \frac{1}{4} \\ & \quad=£ 960 \div \frac{5}{4} \\ & \quad=£ 960 \times \frac{4}{5_{1}}=\underline{£ 768} \end{aligned}$

	R: Calculations C: Real-life problems involving fractions, decimals, percentages E: Advanced problems	$\begin{gathered} \text { Lesson Plan } \\ 78 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{78}=2 \times 3 \times 13 \quad$ Factors: $1,2,3,6,13,26,39,78$ - $\underline{253}=11 \times 23 \quad$ Factors: $1,11,23,253$ 253 11 - $\underline{428}=2 \times 2 \times 107=2^{2} \times 107$ 23 23 l Factors: 1, 2, 4, 107, 214, 428 - $\underline{1078}=2 \times 7 \times 7 \times 11=2 \times 7^{2} \times 11$ Factors: 1, 2, 7, 11, 14, 22, 49, 77, 98, 154, 539, 1078	Notes Individual work, monitored (or whole class activity) BB: 78, 253, 428, 1078 Calculators allowed. Reasoning, agreement, selfcorrection, praising
2	Problems Listen to this problem and think how you would solve it. a) How much would 7 metres of material be if 4 metres cost $£ 6.40$? Ps make suggestions then T leads Ps through the methods below. $\begin{array}{lll} \text { BB: } & \text { If } 4 \mathrm{~m} & \rightarrow £ 6.40, \\ & \text { then } 1 \mathrm{~m} & \rightarrow £ 6.40 \div 4=£ 1.60 \\ & \text { so } & 7 \mathrm{~m} \end{array} \rightarrow £ 6.40 \div 4 \times 7=£ 1.60 \times 7=\underline{£ 11.20}$ In this method we have used 2 operations (T draws a box around them). Who can write a plan using just one operation? BB: $\quad \stackrel{1.60}{£ 6.40} \times \frac{7}{4_{1}}=£ 11.20$ What percentage of the cost of 4 metres is the cost of 7 metres? Ps tell their ideas. If not suggested by Ps, T shows how ratio can be used to simplify the calculation. Cost of 7 m : cost of $4 \mathrm{~m}=7: 4=\frac{7}{4}=1 \frac{3}{4}=1.75 \rightarrow \underline{175 \%}$ (assuming that the costs are in direct proportion, i.e. there is no discount for buying more material) b) Five eigths of a number is 4 and a half. What is 1 quarter of that same number? Ps come to BB or dictate to T. Who agrees? Who can think of another way to do it? e.g. Let the number be x. BB: $\frac{5}{8}$ of $x=4 \frac{1}{2}, x \times \frac{5}{8}=\frac{9}{2}$, $\begin{aligned} & x=\frac{9}{2} \div \frac{5}{8}=\frac{9}{2} \times \frac{8^{4}}{5}=\frac{36}{5}=7 \frac{1}{5} \\ & \frac{1}{4} \text { of } 7 \frac{1}{5}=\frac{36}{5} \div 4=\frac{9}{5}=1 \frac{4}{5} \end{aligned}$ or using ratio: $\frac{1}{4}: \frac{5}{8}=\frac{2}{8}: \frac{5}{8}=2: 5, \quad \frac{2}{5} \text { of } 4 \frac{1}{2}=\frac{2}{5}^{1} \times \frac{9}{2_{1}}=\frac{9}{5}=1 \frac{4}{5}$	Whole class activity Involve many Ps. At a good pace Reasoning, agreement, praising Feedback for T P comes to BB or dictates what T should write. Class agrees/ disagrees. T gives the idea and Ps come to BB to write the calculation, with T's help where necessary. Extra praise if a P thinks of this. Discussion, reasoning, agreement, praising $\begin{aligned} & \text { or } \frac{5}{8} \text { of it } \rightarrow 4 \frac{1}{2} \\ & \frac{1}{8} \text { of it } \rightarrow \frac{9}{2} \div 5=\frac{9}{10} \\ & \begin{array}{r} \frac{1}{4}=\frac{2}{8} \text { of it } \end{array} \frac{\frac{9}{10} \times z_{1}}{}=\frac{9}{5}=1 \frac{4}{5} \end{aligned}$ If no P suggests it, T mentions using ratio and helps Ps to write it as shown.

		Lesson Plan 78
Activity 3 Erratum: In $P b s$, there should be an 'a' before 'sentence'.	PbY6a, page 78	Notes Individual work, monitored, helped
		Individual work, monitored, helped
	Read: Write a plan. Estimate, calculate and check the result. Write the answer as a sentence. Set a time limit of 4 minutes. Ps read questions themselves and solve them in Ex. Bks. Review with whole class. Ps could show results on scrap paper or slates on command. Ps with different answers explain reasoning at BB . Class points out errors and agrees on correct answer. Who had the correct answer but worked it out in a different way? Mistakes discussed and corrected. T chooses Ps to say the answers as sentences. Solution: a) 10% of an amount is $£ 142.80$. What is 93% of the same amount? E: $£ 143 \times 10=£ 1430$ (as $93 \% \approx 100 \%$) Plan: $£ 142.80 \div 10 \times 93=£ 14.28 \times 93=£ 1328.04$ or Let the amount be x. $\begin{aligned} & \quad x \times 0.1=£ 142.80, x=£ 142.80 \div 0.1=£ 1428, \\ & 93 \% \text { of } £ 1428=£ 1428 \times 0.93=\underline{£ 1328.04} \\ & \text { or } £ 1428.80 \times \frac{93}{10_{1}}=£ 14.28 \times 93=\underline{£ 1328.04} \\ & \text { or } 93: 10=\frac{93}{10}=9.3, \quad £ 142.80 \times 9.3=\underline{£ 1328.04} \end{aligned}$ Answer: 93% of the amount is $£ 1328.04$. b) I am thinking of a number. $1 \frac{3}{5}$ of my number is $15 \frac{7}{15}$. What is $2 \frac{1}{4}$ times my number? $E: \frac{8}{5} \rightarrow 16, \frac{1}{5} \rightarrow 2, \frac{5}{5} \rightarrow 10,2 \times 10=20$ Plan: Let the number be x. $\begin{aligned} & x \times \frac{8}{5}=15 \frac{7}{15}=\frac{232}{15} \\ & x=\frac{232}{15} \div \frac{8}{5}=\frac{232}{153} \times \frac{5}{8}_{1}^{1}=\frac{29}{3}=9 \frac{2}{3} \\ & 2 \frac{1}{4} \text { of } 9 \frac{2}{3}=\frac{29}{3} \times \frac{3}{4}=\frac{87}{4}=21 \frac{3}{4} \end{aligned}$ or using ratio: $2 \frac{1}{4}: 1 \frac{3}{5}=\frac{9}{4}: \frac{8}{5}=\frac{45}{20}: \frac{32}{20}=45: 32$ $\frac{45}{32}$ of $15 \frac{7}{15}=\frac{232}{151} \times \frac{3}{32_{4}}=\frac{87}{4}=21 \frac{3}{4}$ Answer: Two and a quarter times my number is 21 and 3 quarters.	
		Differentiation by time limit. [Only a) is expected from the majority of the class in the 4 minutes allowed; b) is an advanced problem for the more able Ps.] Responses shown in unison. Reasoning, agreeement, self-correction, praising Accept any valid method, but if Ps prefer any of the methods shown to their own method, they can write it in Ex. Bks. If no P used ratio, T shows it and asks class if it is correct. BB: $\text { or } \begin{aligned} & \frac{8}{5} \rightarrow 15 \frac{7}{15}=\frac{232}{15} \\ & \frac{1}{5} \rightarrow \frac{232}{15} \div 8=\frac{29}{15} \\ & \frac{5}{5} \rightarrow \frac{29}{15} \times 5=\frac{29}{3} \\ & \frac{1}{4} \rightarrow \frac{29}{3} \div 4=\frac{29}{12} \\ & \frac{9}{4} \rightarrow \frac{29}{12} \times \frac{3}{4}=\frac{87}{4} \\ &=21 \frac{3}{4} \end{aligned}$

		Lesson Plan 78
Activity 6		Notes
	PbY6a, page 78, Q. 4 Who knows what teletext is? (T explains if necessary or even better, shows it on a television or projects it onto a screen.)	Ps have calculators on desks.
		Whole class activity but Ps work in Pbs at same time.
	What are exchange rates? When do we use them? Relate to holidays abroad, football transfers between foreign teams, buying and selling goods from other countries, etc.	Written on BB or use enlarged copy master or OHP
	Ps say what they know about the countries mentioned in the table and show where they are on a world map. Read: On the 1st of September 2003, these exchange rates were shown on teletext. Fill in the missing rates. Use a calculator.	Discussion about context and meaning of table. Involve several Ps. Ps tell of their own experiences of different currencies.
	Which column in the table shows the exchange rates? (LH column) What do they mean? (e.g. If you changed $£ 1$ into Euros on that day, you would have got 1.429 Euros in exchange.) Elicit/tell that the type of money used in a certain country at a certain time is called its currency.	BB: currency current type of money in use
	What do we have to calculate in the middle column? (How much money you would get for 1 American dollar if you changed it into other currencies)	Discussion, agreement on which operation to use.
	How can we work them out? Ps make suggestions but if no P is correct T explains. Ps do calculation on calculator and agree on an appropriate	Reasoning, agreement, praising
	```BB: 1.567 $ = £1 1$=£1 \div1.567 \approx£0.638 (correct to 3 decimal places)```	to $£ \mathrm{~s}, \mathrm{~T}$ might show and explain how to use the $1 / x$ button on the calculator.
	$\begin{aligned} & 1.567 \$=£ 1=1.429 € \\ & 1 \$=1.429 € \div 1.567 \approx \underline{0.912} € \text { (to } 3 \text { d.p.) } \end{aligned}$	$\left.\mathrm{BB}: 1 / x \rightarrow \frac{\text { reciprocal }}{\text { value }}\right]$
	Ps do calculations on calculators and come to BB to write results in the table, saying the whole operation. Class agrees/disagrees. Ps write amounts in tables in Pbs too.	At a good pace.   Reasoning, agreement, praising
	When middle column is completed, ask Ps how to calculate RH column.	
	$\begin{array}{ll} \mathrm{BB}: & 182.695 \mathrm{JPY}=£ 1 \\ & 1 \mathrm{JPY}=£ 1 \div 182.695 \approx £ \underline{0.00547} \text { (e.g. to } 5 \text { d.p.) } \\ & 182.695 \mathrm{JPY}=£ 1=1.429 € \\ & 1 \mathrm{JPY}=1.429 € \div 182.695 \approx \underline{0.00782} € \text { (to } 5 \text { d.p.) etc. } \end{array}$	Ps might have calculators which do not show a sufficient number of decimal digits and might give the result as, e.g. $7.8217795 \mathrm{E}-\underline{3}$
	Solution:	which means that each digit should be moved $\underline{3}$ decimal places to the right, i.e.$0.0078217795(\approx 0.00782)$
	$\begin{aligned} & \text { Key: } £=\text { GBP (British Pound), } £=\text { Euro, } \$=\text { USD ( Dollar), } \\ & \text { JPY }=\text { Japanese Yen, CHF }=\text { Swiss Franc, SEK }=\text { Swedish Krona } \end{aligned}$	
	$£ 1=1.429 € 1 \$=£ \underline{0.638} \quad 1 \mathrm{JPY}=£ \underline{0.00547}$	
	$£ 1=1.567 \$ \quad 1 \$=\underline{0.912} € \quad 1 \mathrm{JPY}=\underline{0.00782} €$	(rounding to 5 decimal places is given here but any suitable rounding is acceptable.)
	$\mathfrak{£ 1 = 2 . 1 9 6 \mathrm { CHF } \quad 1 \$ = \underline { 1 . 4 0 1 } \mathrm { CHF } \quad 1 \mathrm { JPY } = \underline { 0 . 0 0 8 5 8 } \$ 1 .}$	
	$\begin{array}{lll} £ 1=13.111 \text { SEK } & 1 \$=\frac{8.367}{} \text { SEK } & 1 \mathrm{JPY}=\underline{0.01202} \mathrm{CHF} \\ £ 1=182.695 \mathrm{JPY} & 1 \$=\underline{116.589} \mathrm{JPY} & 1 \mathrm{JPY}=\underline{0.07176} \text { SEK } \end{array}$	Practice for Ps in using calculators accurately and in rounding results appropriately
	[ 37 min	




$176$		Lesson Plan 79
Activity   3	(Continued)   iv) $3 \frac{2}{11}-1 \frac{5}{11}=2+\frac{2-5}{11}=2-\frac{3}{11}=1 \frac{8}{11}$ $\text { or }=2 \frac{13}{11}-1 \frac{5}{11}=1 \frac{8}{11}$   (show both methods)   b) i) $\frac{3}{4}+\frac{2}{3}=\frac{9+8}{12}=\frac{17}{12}=1 \frac{5}{12}$   ii) $\frac{5}{6}-\frac{3}{4}=\frac{10-9}{12}=\frac{1}{12}$   iii) $2 \frac{7}{9}+3 \frac{1}{2}=5+\frac{14+9}{18}=5+\frac{23}{18}=6 \frac{5}{18}$   iv) $4 \frac{3}{8}-2 \frac{1}{4}=2+\frac{3-2}{8}=2 \frac{1}{8}$   c) i) $0.5+0.2=\underline{0.7}$   ii) $1.8-0.7=\underline{1.1}$   iii) $12.3+5.86=\underline{18.16}$   iv) $4.23-1.6=\underline{2.63}$	Notes   Elicit that:   - when adding or subtracting fractions with unequal denominators, change them to equivalent fractions which have the lowest common denominator (i.e. the denominator is the lowest common multiple of the two original denominators);   - when adding or subtracting mixed numbers, add or subtract the whole numbers first, then add or subtract the fractions;   - when adding or subtracting decimals, it is easier to write the calculation veritcally, with equal place-values lined up.
4	PbY6a, page 79   Q. 2 Read: Practise multiplication and division.   Set a time limit or deal with one row at a time. Ps write results in Pbs if they can calculate mentally, or do calculations in Ex. $B k s$ if they need more space.   Review with whole class. Ps come to BB or dictate to T, explaining reasoning where necessary. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations if problems or disagreement. Review the 'rules'.   Solution:   a) i) $\frac{4}{3} \times 5=\frac{20}{3}=6 \frac{2}{3}$   ii) $\stackrel{2}{14} \times \frac{2}{7_{1}}=4$   iii) $\frac{4}{3} \div 5=\frac{4}{15}$   iv) $\frac{8}{9} \div 4=\frac{2}{9}$   b) i) $\begin{gathered} 1 \frac{3}{4} \times 3=3+\frac{9}{4}=3+2 \frac{1}{4}=5 \frac{1}{4} \\ \left(\text { or }=\frac{7}{4} \times 3=\frac{21}{4}=5 \frac{1}{4}\right) \end{gathered}$   ii) $12 \times 4 \frac{2}{5}=48+\frac{24}{5}=48+4 \frac{4}{5}=52 \frac{4}{5}$   iii) $1 \frac{1}{8} \div 3=\frac{9}{8} \div 3=\frac{3}{8}$   iv) $2 \frac{5}{8} \div 5=\frac{21}{8} \div 5=\frac{21}{40}$   c) i) $0.6 \times 4=\underline{2.4}$   ii) $0.6 \div 4=\underline{0.15}$   iii) $2.7 \div 3=\underline{0.9}$   iv) $2.7 \times 3=\underline{8.1}$   d) i) $\frac{2}{5} \times \frac{1}{2_{1}}=\frac{2}{5}$   ii) $\frac{4}{5} \div \frac{1}{2}=\frac{4}{5} \times 2=\frac{8}{5}=1 \frac{3}{5}$   iii) $\frac{{ }^{3}}{5_{1}} \times \frac{{ }^{1}}{8_{4}}=\frac{3}{4}$   iv) $\frac{6}{5} \div \frac{5}{8}=\frac{6}{5} \times \frac{8}{5}=\frac{48}{25}=1 \frac{23}{25}$	Individual work, monitored (helped)   Written on BB or use enlarged copy master or OHP   Differentiation by time limit   Reasoning, agreeemnt, selfcorrection, praising   Deal with alternative methods as in b) i).   Elicit that:   - to multiply a fraction by a whole number, multiply the nominator or, where possible, divide the denominator;   - to divide a fraction by a whole number, divide the numerator where possible, or multiply the denominator;   - to multiply a mixed number by a whole number, multiply the whole number first, then multiply the fraction, or first write as a single fraction;   - to multiply a fraction by a fraction, first simplify where possible, then multiply the numerators and multiply the denominators   - to divide a fraction by a fraction, multiply by the divisor's reciprocal value.


		Lesson Plan 79
Activity   4   Extension	(Continued)   e) i) $3 \div \frac{4}{5}=3 \times \frac{5}{4}=\frac{15}{4}=3 \frac{3}{4}$   ii) $2 \frac{1}{5} \times 5 \frac{1}{2}=\frac{11}{5} \times \frac{11}{2}=\frac{121}{10}=12 \frac{1}{10}$   iii) $9 \div 3 \frac{2}{3}=9 \div \frac{11}{3}=9 \times \frac{3}{11}=\frac{27}{11}=2 \frac{5}{11}$   iv) $5 \frac{1}{7} \div 3 \frac{5}{14}=\frac{36}{7} \div \frac{47}{14}=\frac{36}{7_{1}} \times \frac{14^{2}}{47}=\frac{72}{47}=1 \frac{25}{47}$   f) i) $0.8 \times 0.3=\underline{0.24}$   ii) $2.4 \div 0.3=24 \div 3=\underline{8}$   iii) $11.4 \times 0.7=\underline{7.98}$   iv) $0.84 \div 1.2=8.4 \div 12=\underline{0.7}$   T : We call a fraction which can be written as a mixed number (i.e. it is greater than 1 , so its numerator > its denominator) a vulgar or an improper fraction. Either name can be used. Ps give own examples.	Notes   - to multiply or divide by a mixed number, first change it to a single fraction, then multiply or divide as normal;   - to multiply a decimal by a decimal, do the multiplication as if they were both whole numbers, then write the decimal point in the product so that it has the same number of decimal digits as the two factors combined;   - to divide by a decimal, increase the dividend and divisor by the same number of times so that the divisor is a whole number.
5	PbY6a, page 79   Q. 3 Deal with one question at a time. Set a short time limit.   Ps read question themselves, solve it in Ex. Bks, then show result on scrap paper or slates on command.   Ps with different answers explain reasoning at BB. Class points out mistakes and agrees on the correct answer. Who thought the same? Who worked it out in another way? etc. Mistakes discussed and corrected.   Solution: e.g.   a) Calculate: $\begin{aligned} \left(14 \frac{3}{4}-9 \frac{4}{5}\right) \div 1 \frac{1}{7} & =\left(5+\frac{15-16}{20}\right) \div \frac{8}{7} \\ & =\left(5-\frac{1}{20}\right) \times \frac{7}{8} \\ & =4 \frac{19}{20} \times \frac{7}{8} \\ & =\frac{99}{20} \times \frac{7}{8}=\frac{693}{160}=4 \frac{53}{160} \end{aligned}$   b) Which decimal is an equal distance from both $-2 \frac{1}{2}$ and $\frac{1}{2}$ on the number line?   By calculation: $\left[\frac{1}{2}+\left(-2 \frac{1}{2}\right)\right] \div 2=-2 \div 2=-1$   The only possible number is -1 , which is a whole number but it can be written in decimal form as -1.0 .   c) What is the price of 1 kg of apples if the price of $2 \frac{1}{2} \mathrm{~g}$ is $£ 3.20$ ? $\begin{aligned} & \text { Plan: } £ 3.20 \div 2.5=£ 32 \div 25=£ 1.28 \\ & \quad \text { or } £ 3.20 \div 5 \times 2=£ 0.64 \times 2=\underline{£ 1.28} \end{aligned}$   Answer: The price of 1 kg of apples is $£ 1.28$.	Individual work, monitored, helped   Results shown in unison.   Discussion, reasoning, agreement, self-correction, praising   Accept any valid method of solution with the correct reasoning. $\begin{aligned} \text { or } & =5 \times \frac{7}{8}-\frac{1}{20} \times \frac{7}{8} \\ & =\frac{35}{8}-\frac{7}{160}=\frac{700-7}{160} \\ & =\frac{693}{160}=4 \frac{53}{160} \end{aligned}$   or by drawing a diagram:   BB:   or $\begin{aligned} & £ 3.20 \div 2 \frac{1}{2}=£ 3.20 \div \frac{5}{2} \\ & =£ 3.20 \times \frac{2}{5_{1}}=\underline{£ 1.28} \end{aligned}$






