Codes and Ciphers

UNIT 13 Semaphore
Lesson Plan 1

Activity 1

Introduction

T: Who can tell us anything about semaphore?
(Ps give ideas)

T: For this method of signalling we use two flags, one held in each hand. Each flag can be held in any of 8 positions – down, low, out, high and up, on the left or right hand side.

T: If the RH flag is in the up position, where can the LH flag be?
down, low, out, high, across high, across out, across low: Ps may suggest ‘up’ …)

... T: Can the LH flag be in the up position? If not, why not?
Because it would be in the same position as the RH flag and would give a confusing signal

T: So how many positions could the LH flag be in?
(7)

T: Come and put this on our grid.

T: Next – if the RH flag is in the high position, where can the LH flag be?
down, low, out, high, up, across out, across low

T: Well done, but just think about the last one – that is RH high, LH up. Have we had this position before?
Yes, LH high, RH across high would give the same signal

T: Yes, this is essentially the same signal so we will not count it again. How many different signals now?
(7 + 6 = 13)

T: I'll give you one minute to determine the total number of available signals.

T: Who has the answer? Come and show us your working.

P (on board):
\[7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 \]

T: Well done.

Notes

- Interactive discussion on the problems of sending messages before the advent of modern technology.
- T shows OS 13.1 on OHP or shows a drawing prepared previously on board. Even better, use real flags and get Ps to illustrate the positions (Ps could demonstrate by holding a book in each hand.)

OS 13.2 is shown on OHP. Ps complete the table on the OS.

These can be illustrated by two Ps holding flags (or e.g. books) to show these positions.

- Ps work in pairs for no longer than 1 minute. T monitors their work.
- Volunteer P writes answer on board. Other Ps agree/disagree. Discuss errors.
- T praises.

Ps work on in pairs on this activity with T monitoring and intervening as necessary. Ps have about 5 minutes to solve the problems.

T could ask class if they know a quick way to do this calculation, i.e. using
\[1 + 2 + \ldots + n = \frac{n(n-1)}{2} \]

Interactive discussion; could lead to working out angles needed for each position, e.g. (a) 120°, (b) 22 1/2°

Activity 2

Design

T: Work in pairs to calculate how many different signals there are with

- a) 6 positions
- b) 16 positions

for each flag.

T: Who can show us their solutions?

P₁ (on board):
\[5 + 4 + 3 + 2 + 1 = 15 \]

P₂ (on board):
\[15 + 14 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 120 \]

T: So why do we use 8 positions?
(Easy to see from a distance, patterns for letters)

Notes

- Interactive discussion on the problems of sending messages before the advent of modern technology.
- T shows OS 13.1 on OHP or shows a drawing prepared previously on board. Even better, use real flags and get Ps to illustrate the positions (Ps could demonstrate by holding a book in each hand.)

OS 13.2 is shown on OHP. Ps complete the table on the OS.

These can be illustrated by two Ps holding flags (or e.g. books) to show these positions.

- Ps work in pairs for no longer than 1 minute. T monitors their work.
- Volunteer P writes answer on board. Other Ps agree/disagree. Discuss errors.
- T praises.

Ps work on in pairs on this activity with T monitoring and intervening as necessary. Ps have about 5 minutes to solve the problems.

T could ask class if they know a quick way to do this calculation, i.e. using
\[1 + 2 + \ldots + n = \frac{n(n-1)}{2} \]

Interactive discussion; could lead to working out angles needed for each position, e.g. (a) 120°, (b) 22 1/2°
Codes and Ciphers

<table>
<thead>
<tr>
<th>UNIT 13 Semaphore</th>
<th>Lesson Plan 1</th>
</tr>
</thead>
</table>

Activity

Practice

- T: Here is the semaphore alphabet and numbers. What do you notice? *(Numbers and letters are coded)*
- T: How are signals for numbers sent? *(Numerical sign is sent first)*
- T: And then? *(Zero is K, 1 is A 2 is B, etc.)*
- T: And when the signaller wants to go back to sending letters ..? *(The signal for J indicates that letter signals will follow)*

- T: Now try Exercise 1.

- T: What are the problems with using this system? *(Need to know the code or have it available; receiver needs to be able to see signaller clearly, easy to make mistakes; messages can be easily intercepted, etc.)*

Homework

- Decipher the messages given on OS 13.4. *(Each P is given a copy.)*
- Find out about Morse Code for the next lesson (Unit 14).

Coding and Decoding

Notes

- T shows OS 13.3 and gives each P a copy of this or the Appendix.
- T should encourage discussion on the type of messages to be sent and whether numbers might be needed – yes, for directions and time, etc.
- Part a) could be done individually with T monitoring Ps’ work and then a review, and then part b) it could be tackled by the whole class.