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5  Binary Codes
You have already seen how check digits for bar codes (in Unit 3) and ISBN numbers
(Unit 4) are used to detect errors.  Here you will look at codes relevant for data
transmission, for example, for transmission of pictures from Mars to the Earth, and see
how such codes are designed.

5.1 Noise: Error Detection
To take an example, in TV broadcasting the message for transmission is a picture in the
studio.  The camera converts this into a 625-row array of packages of information, each
package denoting a particular colour.  This array, in the form of an electrical signal, is
broadcast via antennae and the atmosphere, and is finally interpreted by the receiving set
in the living room.  The picture seen there differs somewhat from the original, errors
having corrupted the information at various stages in the channel of communication.
These errors may result in effects varying from subtle changes of colour tone to what
looks like a violent snowstorm.  Technically, the errors are all classified as noise. What
form does 'noise' take in telephone calls?

A model of data transmission is shown below.

Normally, the message is encoded, the signal transmitted to the receiver, and then
decoded with a received message.  It is in the transmission that noise can affect the signal.

The Mariner 9 spacecraft in 1971 sent television pictures of the planet Mars across a
distance of 84 million miles.  Despite a very low power transmitter, the space-probe
managed to send data which eventually resulted in very high quality pictures being shown
on our screens.  This was in part largely due to the sophisticated coding system used.

As a very simple example, consider a code which has just four codewords:

C = ( ) ( ) ( ) ( ){ }0 0 01 10 11, , ,

Each codeword has length 2, and all digits are either 0 or 1.  Such codes are called Binary
Codes.

Activity 1
Could you detect an error in the transmission of any of these codewords?
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One way to detect an error, would be to repeat each codeword, giving a new code

C1 0 0 0 0 0101 1010 1111= ( ) ( ) ( ) ( ){ }, , ,

Here each pair of digits is repeated.

Example 1

Can Code C1 detect a single error?

Solution
For example, if the codeword  (0 1 0 1)  was corrupted to  (1 1 0 1) it is clear that an error
can be detected, as  (1 1 0 1)  is not one of the codewords.  So, yes, C2 can detect a single
error.

Example 2

Can a single error in a codeword be corrected?

Solution
This is not so straightforward to answer since, for example, (1 1 0 1)  could have also
been  (1 1 1 1)  with one error, as well as  (0 1 0 1).  So this code can detect a single error
but cannot correct it.

It should also be added that the efficiency (or rate) of this code is given by

number of original message bits

length of codeword
= =2

4

1

2

since each codeword in the original message had only two digits (called bits).

Activity 2
Consider a code designed to specify one of four possible directions:

up down left right

(0 0 0) (1 1 0) (0 1 1) (1 0 1)

Can this code detect any single error made during the transmission of a codeword?  Can it
correct the error?

Often codes include a parity check so that, for example, the code C is transformed to C2

as shown below.

C C2

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0
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The extra last digit in C2 is 0 if the sum of the digits modulo 2 is zero or even, or 1 if odd.

(Modulo 2 means  0 0 0 0 1 1+ = + =, ,  but  1 1 0+ = ,  etc.)

Example 3

Can Code C2 detect errors now?

Solution
Yes it can, as any single error in a codeword is no longer a codeword.  For example, if

0 0 1  is received instead of   0 0 0,  then there is clearly an error.

Using the previous definition, the efficiency of Code C2  is  
2
3

.

None of the codes considered so far can correct errors.

Activity 3
Design a code containing 4 codewords, each of length 5, which can detect and correct a
single error.

5.2 Error Correction
It is clear that codes which can not only detect, but also correct errors are of far greater
use than those that can only detect – but the efficiency will decrease, since extra
essentially redundant information will have to be transmitted.

For example, here is a code that can be used to identify four directions:

up down left right

(0 0 0 0 0 0) (1 1 1 0 0 0) (0 0 1 1 1 0) (1 1 0 0 1 1)

The length of each codeword is 6, but since the number of message bits is essentially 2,
i.e. the code could consist of

(0 0),  (1 1),  (0 1),  (1 0)

 its efficiency is  
2
6

1
3

= .  But, as you see, it can now correct single errors.

Activity 4
The following codewords have been received using the code above.  Assuming that only
one error has been made in the transmission of each codeword, determine, if possible, the
actual codeword transmitted:

(a) (1 0 0 0 0 0) (b) (1 1 0 0 0 0) (c)     (0 1 0 0 1 1)
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Example 4

Can the code above detect if 2 errors have been made in the transmission of a codeword?

Solution
If two errors are made, for example  1 1 0 0 0 0  is transmitted instead of  0 0 0 0 0 0,  this
is not identifiable.  Indeed, you would assume that only one error had been made and that
the actual codeword was  1 1 1 0 0 0.

Activity 5 Codes
Consider Code 5 given in the Appendix.  Find out how many errors this code can detect
and correct by considering, for example, codewords such as

(a) (1 1 0 0 0 0 0)  (b) (0 1 1 1 1 1 1)     (c)     (1 0 0 0 1 0 0)

which are in error.

By now you should be beginning to get a feel for what is the important characteristic of a
code for the determination of the number of errors that can be detected and corrected.
The crucial concept is that of distance between codewords.

The distance (d) between any two codewords in a code is defined as the sum of the
number of actual differences between the digits in the codewords; for example

d 1 1 1 0 1 0( ) ( )( ), = 2

whilst d 0 1 0 1 1 0 1 1( ) ( )( ), = 3

The Hamming distance is defined for a BINARY CODE  (in which the digits are either
0 or 1) as the minimum distance between any two codewords in the code and is usually

denoted by δ  (the letter 'delta' from the Greek alphabet).

Example 5

Determine the Hamming distance for the code with codewords

(1 1 0 0 0),  (0 0 1 0 1),  (1 0 1 0 1),  (1 1 1 1 1)

Solution
You must first find distances between all the codewords.

d 110 0 0 0 0101 4( ) ( )( ) =,

d 110 0 0 10101 3( ) ( )( ) =,

d 110 0 0 11111 4( ) ( )( ) =,

d 0 0101 10101 1( ) ( )( ) = ←,  Hamming distance δ = 1

d 0 0101 11111 3( ) ( )( ) =,

d 10101 11111 2( ) ( )( ) =,

(minimum of 1, 2, 3 and 4)
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Why is the Hamming distance crucial for error detection and correction?

Activity 6 Hamming distance
Determine the Hamming distance for

Codes  1, 2, 3, 4 and 5

given in the Appendix.

To try to see the connection between the Hamming distance, δ , and the number of errors
that can be detected or corrected, in the next Activity you will consider Codes 1 to 5 from
the Appendix.

Activity 7
Copy and complete this table.

Errors
Code Hamming distance  corrected detected

1 2 0 1

2 3 1 1

3 ... ... ...

4 ... ... ...

5 ... ... ...

Also add on to the table any other codes considered so far.  Can you see a pattern?

The first thing that you probably noticed about the data in the table is that the results are
different depending on whether n is even or odd.   It looks as if, for

δ = 2 , you can detect 1 error but correct 0 errors,

δ = 3,  you can detect 1 error and correct 1 error.

Example 6

How do you think the pattern continues for  δ = 4  and  δ = 5?

Solution

For δ = 4 , you can detect 2 errors but are only able to correct 1 error; for δ = 5, you can
both detect and correct 2 errors.
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Activity 8

Construct a code for which  δ = 4 .  How many errors can it detect or correct?  Similarly,

construct a code for which  δ = 5  and again determine how many errors it can detect or
correct.  Can you suggest a generalisation of the results?

As can be seen from Activities 6 and 7,  there is a distinct pattern emerging.  For

     δ   odd, the code can correct and detect up to  1
2 1δ −( ) errors.

     δ   even, the code can correct up to 1
2 2δ −( ) errors, and detect up to 1

2 δ  errors.

Activity 9 Validating the results
Check that the above result holds for Code 9 in the Appendix.

Exercise 1

1. The '2 out of 5' code consists of all possible words of length 5 which have exactly
two 1s; for example,  (1 0 1 0 0)  belongs to the code but  (1 1 0 1 0)  does not.

List all possible codewords and explain why this code is particularly useful for the
transmission of numeric data.  What is the Hamming distance for this code?

2. Analyse the '3 out of 7' code, defined in a similar way to the '2 out of 5' code in
question 1.  Determine its Hamming distance and hence find out how many words
it can detect and correct.

3. Determine the Hamming distance for Code 7 in the Appendix.  Hence find out how
many errors this code can detect and correct.
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Appendix        Codes

Code 5

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 1 0

1 1 0 1 1 0 0

1 1 1 0 0 0 1

Code 2

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

0 1 1 0 1 1

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

Code 3

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

Code 9

0 1 0 1 0 1 0

1 0 0 1 1 0 0

0 0 1 1 0 0 1

1 1 1 0 0 0 0

0 1 0 0 1 0 1

1 0 0 0 0 1 1

0 0 1 0 1 1 0

Code 4

0 0 0 0

1 1 0 0

0 0 1 1

1 1 1 1

Code 6

0 0 0 0 0 0 0

1 1 0 1 0 0 1

0 1 0 1 0 1 0

1 0 0 0 0 1 1

1 0 0 1 1 0 0

0 1 0 0 1 0 1

1 1 0 0 1 1 0

0 0 0 1 1 1 1

1 1 1 0 0 0 0

0 0 1 1 0 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1

0 0 1 0 1 1 0

1 1 1 1 1 1 1

Code 1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Code 8

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 1 1 0

0 1 1 0 0 0 1

1 0 0 0 1 0 1

1 0 1 0 0 1 0

1 1 0 0 0 1 1

1 1 1 0 1 0 0

0 0 0 1 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 1

0 1 1 1 0 1 0

1 0 0 1 1 1 0

1 0 1 1 0 0 1

1 1 0 1 0 0 0

1 1 1 1 1 1 1

Code 7

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 0 0 1 0 1 1 0


