STRAND G: Relations, Functions and Graphs

G4 Functions

Text

Contents

Section

* G4.1	Functions, Mappings and Domains
* G4.2	Composite Functions
* G4.3	Inverse Functions
* G4.4	Transformations of Graphs of Functions

G4 Functions

G4.1 Functions, Mappings and Domains

You are already familiar with the idea of a function. Here we make the concept more formal with a number of definitions that we will introduce. We illustrate the definitions using examples, including the formula that relates pressure to volume:

$$
p=\frac{k}{v}
$$

Here p is the pressure of a gas, v is its volume and k is a constant.

Worked Example 1

If $p=\frac{10}{v}$, use the mapping diagram opposite to show how v maps to p for $1 \leq v \leq 10$.

Solution

Clearly if $\quad v=1, \quad p=\frac{10}{1}=10$
$v=2, \quad p=\frac{10}{2}=5$
$v=5, \quad p=\frac{10}{5}=2$
$v=10, \quad p=\frac{10}{10}=1$
We can illustrate this mapping.
In fact, for any value $1 \leq v \leq 10$, we can map v to p.
For example,

$$
v=4, p=\frac{10}{4}=\frac{5}{2}, \text { etc. }
$$

Notes

1. The set of values of v, defined here as $1 \leq v \leq 10$, is called the DOMAIN of the mapping.
2. The set of values of p that v maps onto is known as the RANGE; here the range is also $1 \leq p \leq 10$.
3. For every value of v in its domain, there is a unique value of p. This is called a 1:1 mapping

Worked Example 2

For the function $y=f(x)=x^{2},-5 \leq x \leq 5$, complete a similar mapping diagram.

Solution

Here, notice that

$$
\begin{aligned}
& f(-5)=(-5)^{2}=25 \\
& f(-2)=(-2)^{2}=4 \\
& f(0)=0 \\
& f(5)=25
\end{aligned}
$$

etc.
We can complete the mapping opposite for some of the values.

Notes

1. In this example, apart from 0 (which maps to 0), there are two values which both map to the same value. For example, +2 and -2 both map to 4 .
This is NOT a $1: 1$ mapping.
2. As well as the notation $y=f(x)$ for a function, we can also use the mapping notation

$$
f: x \rightarrow x^{2}
$$

Worked Example 3
If f is defined by

$$
f: x \rightarrow x^{3}-x
$$

what are the values of
(a) $\quad f(-1)$
(b) $\quad f(0)$
(c) $f(1)$
(d) $\quad f(5)$?

Solution

(a) $f(-1)=(-1)^{3}-(-1)=-1+1=0$
(b) $\quad f(0)=0^{3}-0=0$
(c) $f(1)=1^{3}-1=1-1=0$
(d) $f(5)=5^{3}-5=125-5=120$

Note

This is not a $1: 1$ mapping as $f(-1)=f(0)=f(1)$.
This can be seen in a sketch of the function, as below.

Exercises

1.

$$
f: x \rightarrow 2 x-1,1 \leq x \leq 6
$$

(a) Complete a mapping diagram for integer values in the domain.
(b) What is the range of this function?
(c) Is this a $1: 1$ mapping?
2. $f: x \rightarrow \frac{1}{2} x^{2}-1,-3 \leq x \leq 3$
(a) Complete a mapping diagram for integer values in the domain.
(b) What is the range?
(c) Is this a $1: 1$ mapping?
3. (a) If f is defined by

$$
f: x \rightarrow \frac{x+1}{x-1} \quad(x \neq 1)
$$

what are the values of
(i) $\quad f(-2)$
(ii) $\quad f(-1)$
(iii) $f(0)$
(iv) $f(2)$
(v) $\quad f(3)$?
(b) Why is the domain restricted by $x \neq 1$?
4. Given that $h(x)=\frac{x^{2}-16}{x-2}$,
calculate
(a) $h(-2)$
(b) the values of x for which $h(x)=0$.
5. $f: x \rightarrow \frac{3-x}{1-x}$
(a) What is the value of
(i) $\quad f(-2)$
(ii) $\quad f(0)$
(iii) $f(2)$?
(b) Find the value of x for which $f(x)=4$.
6. f is a function defined by the equation

$$
f: x \rightarrow x^{2}+2
$$

Find the value of
(a) $\quad f(2)$
(b) $\quad f(-1)$
(c) $\quad f(0)$
(d) $f\left(a^{2}\right)$
(e) $f(1-a)$
(where a is a constant real number).
7. g is defined by the equation

$$
g: x \rightarrow \frac{1}{x} \quad(x \neq 0)
$$

Find the value of
(a) $g(1)$
(b) $g(-1)$
(c) $g(0.01)$
(d) $g\left(a^{2}\right)$
(e) $g(1-a)$
(where a is a constant real number).
8. $f: x \rightarrow 1-x^{2}$
(a) What are the values of
(i) $\quad f(-2)$
(ii) $\quad f(-1)$
(iii) $\quad f(0)$
(iv) $f(1)$
(v) $\quad f(2)$
(b) Find the value of x for which $f(x)=-8$.
9. Given that $m * 1=m^{2}-l m$,
(a) evaluate $5 * 3$
(b) solve for g given that $g * 4=-3$.

G4.2 Composite Functions

The next concept to cover is that of the composite function, that is, a 'function of a function'.

Worked Example 1

The two functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow 4 x-3 \\
& g: x \rightarrow 2 x-1
\end{aligned}
$$

(a) Find $f(g(x))$ and $g(f(x))$,
(b) What are the values of $f(g(0))$ and $g(f(0))$?
(c) Are there any solutions of $f(g(x))=g(f(x))$?

Solution

(a) $\quad f(g(x))=4(g(x))-3 \quad$ since, for example, $f(a)=4 a-3$, etc.

$$
\begin{aligned}
& =4(2 x-1)-3 \\
& =8 x-4-3 \\
& =8 x-7 \\
& =2(f(x))-1 \\
& =2(4 x-3)-1 \\
& =8 x-6-1 \\
& =8 x-7
\end{aligned}
$$

$$
g(f(x))=2(f(x))-1
$$

(b) $\quad f(g(0))=8 \times 0-7=-7$

$$
g(f(0))=8 \times 0-7=-7
$$

(c) As $f(g(x))=g(f(x))$, then this is satisfied by all values of x.

Note

The result $f(g(x))=g f(x)$ is not generally true, but depends on the values of the coefficients in the functions (see Question 6 in Exercises).

Note

We usually write, for short,

$$
f(g(x))=f g(x)
$$

and

$$
g(f(x))=g f(x)
$$

but you must remember what this notation means.

Worked Example 2

The functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow x^{2}+1 \\
& g: x \rightarrow x-1
\end{aligned}
$$

Will $f g(x)=g f(x)$ for any value of x ?

Solution

$$
\begin{aligned}
f g(x)=f(g(x)) & =(g(x))^{2}+1 \\
& =(x-1)^{2}+1 \\
& =x^{2}-2 x+1+1 \\
& =x^{2}-2 x+2 \\
g f(x)=g(f(x)) & =f(x)-1 \\
& =x^{2}+1-1 \\
& =x^{2}
\end{aligned}
$$

If $f g(x)=g f(x)$, then

$$
\begin{aligned}
x^{2}-2 x+2 & =x^{2} \\
-2 x+2 & =0 \\
2 x & =2 \\
x & =1
\end{aligned}
$$

So $f g(x)=g f(x)$ when $x=1$.

Exercises

1. The functions f and g are defined as

$$
f: x \rightarrow \frac{2 x-1}{x+3} \quad g: x \rightarrow 2 x-1
$$

What is the value of
(a) $g(2)$
(b) $\quad f(-2)$
(c) $\quad f g(2)$
(d) $\quad g f(-2)$?
2. If $f(x)=x-1$ and $g(x)=x^{3}$,
(a) find (i) $f g(x)$
(ii) $g f(x)$
(b) Does $f g(x)=g f(x)$ have any solutions?
3. The functions f and g are defined by

$$
f: x \rightarrow \frac{1}{x} \quad g: x \rightarrow x+1
$$

What is
(a) $f g(x)$
(b) $\quad g f(x)$?
4. Find the composite function $f g(x)$ and $g f(x)$ if

$$
f(x)=1+\frac{1}{x}, \quad g(x)=x^{2}
$$

The function $h(x)=g f(x)-f g(x)$.
Determine $h(1)$ and $h(-1)$.
5.

$$
f: x \rightarrow x+3 \quad g: x \rightarrow x-3
$$

What is
(a) $f g(x)$
(b) $\quad g f(x)$?
6. If

$$
f(x)=a x+b, \quad g(x)=c x+d
$$

where a, b, c, d are constants, show that $f g(x)=g f(x)$ only when $a d+b=c b+d$.

G4.3 Inverse Functions

You have probably already met the formula for changing temperatures in degrees Celsius, ${ }^{\circ} \mathrm{C}$, to degrees Fahrenheit, ${ }^{\circ} \mathrm{F}$. It is

$$
\begin{equation*}
F=\frac{9}{5} C+32 \tag{1}
\end{equation*}
$$

You can regard this as a $1: 1$ mapping and it can be transformed to give C in terms of F, as follows:

$$
\begin{array}{ll}
& F-32=\frac{9}{5} C \\
\frac{5}{9}(F-32)=C & \text { (taking -32 from each side) } \\
\text { That is, } & C=\frac{5}{9}(F-32)
\end{array}
$$

If we write equations (1) and (2) in our functions notation, writing C for x in (1) and F for x in (2),
we have

$$
\begin{aligned}
& f: x \rightarrow \frac{9}{5} x+32 \\
& g: x \rightarrow \frac{5}{9}(x-32)
\end{aligned}
$$

Worked Example 1

Show that $f g(x)=g f(x)=x$ for the functions above.

Solution

$$
\begin{aligned}
f g(x)=f(g(x)) & =\frac{9}{5} g(x)+32 \\
& =\frac{9}{5}\left\{\frac{5}{9}(x-32)\right\}+32 \\
& =x-32+32 \\
& =x
\end{aligned}
$$

and

$$
\begin{aligned}
g f(x)=g(f(x)) & =\frac{5}{9}(f(x)-32) \\
& =\frac{5}{9}\left(\frac{9}{5} x+32-32\right) \\
& =\frac{5}{9} \times \frac{9}{5} x \\
& =x
\end{aligned}
$$

Note

If functions f and g are such that

$$
f g(x)=x=g f(x)
$$

we say that g is the inverse of f and denote this by

$$
f^{-1}(x)=g(x) \text { or } f^{-1}=g
$$

Similarly, f is the inverse of g, so

$$
g^{-1}(x)=f(x) \text { or } g^{-1}=f
$$

We can see how to find inverse functions in the next Worked Example.

Worked Example 2

If $f(x)=\frac{1}{1-x}+2 \quad(x \neq 1)$, find its inverse function and state its domain.

Solution

We write $y=\frac{1}{1-x}+2$ and, as with the temperature conversion above, use algebraic manipulation to write x as a function of y.

Starting with $\quad y=\frac{1}{1-x}+2, \quad$ take -2 from each side to give

$$
\begin{aligned}
y-2 & =\frac{1}{1-x}+2-2 \\
& =\frac{1}{1-x}
\end{aligned}
$$

Multiply both sides by $(1-x)$ to give

$$
\begin{aligned}
& (1-x)(y-2)=(1-x) \times \frac{1}{(1-x)} \\
& (1-x)(y-2)=1
\end{aligned}
$$

Now divide both sides by $(y-2)$ to give

$$
\begin{aligned}
\frac{(1-x)(y-2)}{(y-2)} & =\frac{1}{(y-2)} \\
1-x & =\frac{1}{y-2}
\end{aligned}
$$

or, multiplying throughout by -1 ,

$$
x-1=\frac{1}{2-y}
$$

and adding 1 to both sides, gives

$$
x-1+1=\frac{1}{2-y}+1
$$

or

$$
x=1+\frac{1}{2-y}
$$

This is the inverse function, which we could write as

$$
f^{-1}(y): y \rightarrow 1+\frac{1}{2-y}
$$

Interchanging y and x (it is just a variable) gives

$$
f^{-1}(x)=x \rightarrow 1+\frac{1}{2-x}
$$

or

$$
f^{-1}(x)=1+\frac{1}{2-x}
$$

The domain of $f^{-1}(x)$ is $x \neq 2$ (as the function is not defined at $x=2$).

Note

1. We can check values of

$$
f(x)=\frac{1}{1-x}+2 \text { and } f^{-1}(x)=1+\frac{1}{2-x}
$$

For example,

$$
f(2)=\frac{1}{1-2}+2=\frac{1}{-1}+2=-1+2=1
$$

and

$$
f^{-1}(1)=1+\frac{1}{2-1}=1+\frac{1}{1}=1+1=2
$$

Similarly,

$$
f(4)=\frac{1}{1-4}+2=-\frac{1}{3}+2=\frac{5}{3}
$$

whilst

$$
f^{-1}\left(\frac{5}{3}\right)=1+\frac{1}{\left(2-\frac{5}{3}\right)}=1+\frac{1}{\left(\frac{1}{3}\right)}=1+3=4
$$

So we see that, for these values,

$$
f^{-1} f(x)=x
$$

2. In general,

$$
\begin{aligned}
f^{-1} f(x)=f^{-1}(f(x)) & =f^{-1}\left(\frac{1}{1-x}+2\right), \text { using the } f \text { formula } \\
& =f^{-1}\left(\frac{1+2(1-x)}{(1-x)}\right) \\
& =f^{-1}\left(\frac{1+2-2 x}{1-x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f^{-1}\left(\frac{3-2 x}{1-x}\right), \text { and using the } f^{-1} \text { formula } \\
& =1+\frac{1}{2-\left(\frac{3-2 x}{1-x}\right)} \\
& =1+\frac{1}{\frac{2(1-x)-(3-2 x)}{1-x}} \\
& =1+\frac{(1-x)}{(2-2 x-3+2 x)} \\
& =1+\frac{(1-x)}{-1} \\
& =1-1+x \\
& =x
\end{aligned}
$$

So this proves that f and f^{-1} are inverse functions.

Worked Example 3

Two functions, g and h, are defined as
$g: x \rightarrow \frac{2 x+3}{x-4}$ and
$h: x \rightarrow \frac{1}{x}$.
Calculate
(a) the value of $g(7)$
(b) the value of x for which $g(x)=6$.

Write expressions for
(c) $\quad h g(x)$
(d) $g^{-1}(x)$

Solution

(a) $g(7)=\frac{2 \times 7+3}{7-4}=\frac{17}{3}$
(b) $6=\frac{2 x+3}{x-4} \Rightarrow 6(x-4)=2 x+3$

$$
6 x-24=2 x+3
$$

$$
4 x=27
$$

$$
x=\frac{27}{4}
$$

Check $g\left(\frac{27}{4}\right)=\frac{2 \times \frac{27}{4}+3}{\frac{27}{4}-4}$
$=\frac{54+12}{27-16}$
$=\frac{66}{11}$
$=6$
(c) $\quad h g(x)=h(g(x))$

$$
\begin{aligned}
& =\frac{1}{g(x)} \\
& =\frac{1}{\left(\frac{2 x+3}{x-4}\right)} \\
& =\frac{x-4}{2 x+3}
\end{aligned}
$$

(d) To find $g^{-1}(x)$, we write

$$
y=\frac{2 x+3}{x-4}
$$

and find x as a function of y; that is

$$
\begin{aligned}
& y(x-4)=2 x+3 \\
& y x-4 y=2 x+3 \\
& y x-2 x=3+4 y \\
& x(y-2)=3+4 y
\end{aligned}
$$

$$
x=\frac{3+4 y}{y-2} \Rightarrow g^{-1}(y)=\frac{3+4 y}{y-2}
$$

So

$$
g^{-1}(x)=\frac{3+4 x}{x-2} \quad(\text { replacing } y \text { by } x)
$$

Exercises

1. Find the inverse function for each of these functions. In each case, state the domain of the inverse.
(a) $\quad f(x)=x+2$
(b) $\quad f(x)=4 x-2$
(c) $f(x)=x$
(d) $f(x)=\frac{3}{x} \quad(x \neq 0)$
(e) $\quad f(x)=\frac{1}{x+2} \quad(x \neq-2)$
2. If $f: x \rightarrow 4 x-3$, find $f^{-1}(x)$ and check that

$$
f f^{-1}(x)=f^{-1} f(x)=x
$$

3. The functions f and g are defined by
$f(x)=\frac{1}{2} x+5 \quad g(x)=x^{2}$
Evaluate
(a) $g(3)+g(-3)$
(b) $f^{-1}(6)$
(c) $\quad f g(2)$
4. The functions f and g are defined as:
$f(x)=\frac{2 x-1}{x+3}$
$g(x)=4 x-5$
Determine:
(a) $g(3)$
(b) $f g(2)$
(c) $f^{-1}(x)$
5. The function f is defined by

$$
f: x \rightarrow \frac{1}{x}-4
$$

and has domain all $x \quad(x \neq 0)$.
(a) Find
(i) $\quad f\left(\frac{1}{4}\right)$
(ii) $\quad f(1)$
(iii) $f^{-1}(0)$
(b) Determine the inverse function $f^{-1}(x)$ and use it to calculate
(i) $f^{-1}(0)$
(ii) $f^{-1}(-3)$
(c) Show that $f f^{-1}(x)=x$.

G4.4 Transformations of Graphs of Functions

There are 4 basic transformations of the graph of a function that are considered in this section. These are explored in the following worked examples and then summarised.

Worked Example 1

The function f is defined as $f(x)=x^{2}$. Plot graphs of each of the following and describe how they are related to the graph of $y=f(x)$:
(a) $y=f(x)+2$
(b) $y=f(x+1)$
(c) $y=f(2 x)$
(d) $y=2 f(x)$

Solution

The table below gives the values needed to plot these graphs.

x	-2	-1	0	1	2
$f(x)$	4	1	0	1	4
$f(x)+2$	6	3	2	3	6
$f(x+1)$	1	0	1	4	9
$f(2 x)$	16	4	0	4	16
$2 f(x)$	8	2	0	2	8

The graphs below show how each graph relates to $f(x)$.

The graph of $y=f(x)$ is mapped onto the graph of $y=f(x)+2$ by translating it up 2 units.

In general $f(x)+a$ moves a curve up a units and $f(x)-a$ moves it down a units, where a is a positive number.

The graph of $y=f(x)$ is mapped onto $f(x+1)$ by a translation of 1 unit to the left.

In general $f(x+a)$ translates a curve a units to the left and $f(x-a)$ translates a curve a units to the right, where a is a positive number.

The curve for $f(2 x)$ is much steeper than for $f(x)$. This is because the curve has been compressed by a factor of 2 in the x-direction. Compare the rectangles ABCD and EFGH.

In general the curve of $y=f(k x)$ will be compressed by a factor of k in the x-direction where $k>1$.

Here the curve $y=f(x)$ has been stretched by a factor of 2 in the vertical or y-direction to obtain the curve $y=2 f(x)$. Compare the rectangles ABCD and CDFE.

In general the curve of $y=k f(x)$ stretches the graph of $y=f(x)$ by a factor of k in the y-direction, where $k>1$.

Note that if k is negative and $k<-1$ the curve will be stretched and reflected in the x-axis while if $-1<k<1$, it is compressed.

Worked Example 2

The graph below shows $y=g(x)$.

On separate diagrams show:
(a) $y=g(x)$ and $y=g(x-1)$
(b) $y=g(x)$ and $y=g(2 x)$
(c) $y=g(x)$ and $y=3 g(x)$

Solution

(a) To obtain $y=g(x-1)$ translate $y=g(x) 1$ unit to the right.

(b) To obtain $y=g(2 x)$ compress $y=g(x)$ by a factor of 2 horizontally.

(c) To obtain the graph of $y=3 g(x)$ stretch the graph by a factor of 3 vertically.

Exercises

1. The graph below shows $y=f(x)$ by a dashed curve.

Write down the equation of each other curve.

2. The graph below shows $y=h(x)$

On separate diagrams show:
(a) $y=h(x), y=h(x)+1$ and $y=h(x)-2$
(b) $y=h(x)$ and $y=2 h(x)$
(c) $y=h(x)$ and $y=3 h(x)$
(d) $y=h(x)$ and $y=h(2 x)$
3. On the same set of axes sketch the curves;

$$
y=x^{2}, y=(x+3)^{2}, y=(x-4)^{2} \text { and } y=(x+1)^{2} .
$$

4. The graph below shows $y=f(x)$ and $y=f(x-2)+2$.

(a) Describe how to obtain the curve for $y=f(x-2)+2$ from the curve for

$$
y=f(x) .
$$

(b) On a set of axes sketch $y=f(x), y=f(x-2)-1$ and $y=f(x-1)+1$.
5. On the same set of axes sketch

$$
y=x^{2}, y=(x-2)^{2}+1, y=(x-3)^{2}-1 \text { and } y=(x+3)^{2}-2 .
$$

6. Draw the graphs of $y=x^{2}, y=3 x^{2}, y=-x^{2}$ and $y=-3 x^{2}$. Describe how they compare.
7. The graph below shows $y=g(x)$.

On separate sets of axes plot:
(a) $y=g(x)$ and $y=-g(x)$
(b) $\quad y=g(x)$ and $y=-2 g(x)$
(c) $y=g(x)$ and $y=-\frac{1}{2} g(x)$
8. The function $f(x)$ is such that the graph of $y=f(x)$ produces a graph as shown below, in the shape of a semi-circle.

List the pairs of functions that should be plotted to produce the circles below.
(a)

(b)

9. (a) Draw the graphs of $y=f(x)$ and $y=f(-x)$ if $f(x)=x^{3}$, and describe how the graphs are related.
(b) The graph below shows $y=g(x)$.

Sketch graphs of $y=g(-x), y=g(-2 x), y=g\left(\frac{1}{2} x\right)$ and $y=g\left(-\frac{1}{2} x\right)$.
10. Use each graph below to sketch a graph of $y=f(x)$.
(a)

(b)

(c)
(d)
11. The function $y=f(x)$ is defined for $0 \leq x \leq 2$.

The function is sketched opposite.

(a) Sketch $y=f(x)+1$ on axes like the ones below.

(b) Sketch $y=f(x-1)$ on axes like the ones below.

(c) Sketch $y=f\left(\frac{x}{2}\right)$ on axes like the ones below.

12. The graph of $y=f(x)$ where $f(x)=\frac{x}{x+1}$ is sketched below.

Hence, or otherwise, sketch on an axis like the one below
(a) $y=f(x-1)$

(b) $y=f(2 x)$

