Activities

6.1 Magic Circle

6.2 Decimal Arithmagons
6.3 Dominoes
6.4 Estimation
6.5 Russian Multiplication
6.6 Upper and Lower Bounds
6.7 Decimal Equivalents
$\begin{aligned} \text { 6.8 } & \text { Recurring Decimals } \\ & \text { Notes and Solutions (1 page) }\end{aligned}$

Activity 6.1

In this magic circle, there are two 'magic' totals.

(a) What are they?
(b) Explain how you found them.

Extension

Design another magic circle of your own and ask a friend to solve it.

Activity 6.2

Decimal Arithmagons

In these arithmagons, the number in each square is the sum of the numbers in the circles on either side of the square.

For example,

1. Find the numbers missing from the squares.
(a)

(b) 1.4

2. Find the numbers missing from the circles.
(a)

Extension

If the number in each square is the difference between the numbers each side of it, find the missing numbers
(a)

Activity 6.3

Dominoes

τ	$\varsigma L^{\circ} 0$
I	
N1－	
$\frac{1}{2}$	0.75

$\frac{t}{\mathrm{~L}}$ $1-$ $\frac{1}{4}$	

＋ 1ω	$S^{\circ} 0$
$\frac{1}{4}$	0.5

$\frac{\mathrm{S}}{\text { I }}$	80	
vi－		$\stackrel{\infty}{0}$
$\frac{1}{5}$	0.8	

U｜N $\frac{5}{2}$	$\varsigma \angle E \cdot 0$
2	
$\overline{5}$	0.375

s	SL．0
$\stackrel{\dagger}{\dagger}$	
uld	
	0.75

¢	¢79＊0
Uilt ${ }^{\text {t }}$	
$\frac{4}{5}$	
5	0.625

8	¢で0
¢	
$\frac{5}{8}$	0.25

$\frac{01}{\text { I }}$	¢LE゙0
히－	
$\frac{1}{10}$	0.375

$\frac{01}{\varepsilon}$	¢で0
ठ｜w	
	0.25

Activity 6.4

Do not use a calculator, except to check your answers.

For each of these sums, draw a circle around the number which you think is nearest the correct answer.
For example, $\quad \frac{7.1 \times 20.5}{3.5}$
is about
$\left\{\begin{array}{ll}4.2 \bigcirc & 42 \\ 84 & 420\end{array}\right\}$
1.
$\frac{5.5 \times 13}{7} \quad$ is about
$\left\{\begin{array}{lllll}0.1 & 1 & 10 & 100\end{array}\right\}$
2. $\begin{array}{llllll}16 & 42 \times 39 \\ \text { is about }\end{array} \quad\left\{\begin{array}{llll}1 & 10 & 100 & 1000\end{array}\right\}$
3. $\quad \frac{210 \times 37}{17} \quad$ is about $\quad\left\{\begin{array}{llll}4.5 & 45 & 450 & 4500\end{array}\right\}$
4.
$\frac{6.5 \times 4.2}{2.2} \quad$ is about
$\left\{\begin{array}{llll}1.2 & 12 & 120 & 1200\end{array}\right\}$
5. $\quad \frac{12.7 \times 2.9}{3.7} \quad$ is about $\quad\left\{\begin{array}{lllll}0.1 & 1 & 10 & 100\end{array}\right\}$
6. A drink costs 55 p .

About how many drinks could you buy for $£ 5$? $\quad\left\{\begin{array}{lll}90 & 9 & 19\end{array}\right\}$
7. At a fairground, rides cost 40 p each.

About how many rides can you go on for $£ 7 ? \quad\left\{\begin{array}{lll}7 & 17 & 70\end{array}\right\}$
8. Oranges cost 15 p each.

About how many oranges can you buy for £50? \{ $\left.\begin{array}{llll}33 & 330 & 3300\end{array}\right\}$
9. Stamps cost 24 p each.

About how many stamps can you buy for $£ 10$? $\quad\left\{\begin{array}{llll}4 & 40 & 400\end{array}\right\}$
10. Petrol costs $£ 2.40$ per gallon.

About how many gallons can you buy for £25? ($\left.\begin{array}{lll}10 & 25 & 100\end{array}\right\}$

Activity 6.5

Russian Multiplication

Once upon a time, so legend has it, Russian peasants could add, multiply and divide only by 2 , and so they developed a clever method of multiplying numbers together.

METHOD

1. Put the 1 st number in a left-hand column and the 2 nd number in a right-hand column.
2. Divide the number in the left-hand column by 2 , ignoring any remainder, and multiply the number in the right-hand colummn by 2.
3. Repeat Steps 2 until the number 1 is reached on the left-hand side.
4. Delete any row which has an even entry on the left-hand side.
5. Add the remaining right-hand side numbers. This final total is the answer.

Worked Example

To multiply 27 by 137 :

27	137
13	274
Even row deleted \rightarrow (6)	548
3	1096
1	2192
27×137	$=\underline{3699}$

1. Use the Russian method of multiplication to find:
(a) 13×250
(b) 16×135
(c) 25×49.

To see why the method works, it might become clearer if we write the multiplication sum in the Worked Example as

$$
\begin{aligned}
27 \times 137 & =(26+1) \times 137 \\
& =13 \times 274+1 \times 137 \\
& =(12+1) \times 274+1 \times 137 \\
& =6 \times 548+1 \times 274+1 \times 137 \\
& =3 \times 1098+1 \times 274+1 \times 137 \\
& =(2+1) \times 1098+1 \times 274+1 \times 137 \\
& =1 \times 2192+1 \times 1098+1 \times 274+1 \times 137 \\
& =3699
\end{aligned}
$$

2. Write out other multiplication sums in this way and use a calculator to check your answers.
3. Explain in your own words why the method works.

Activity 6.6

Upper and Lower Bounds

Use Ruler A and Ruler B in turn to measure the lengths of the objects.
Record your measurements, giving the largest possible error and the upper and lower bounds.

Object	Measurement	Unit of Measure	Largest possible error	Lower Bound	Upper Bound
	Ruler A				
	Ruler B				
	Ruler A				
	Ruler B				
Length of this book	Ruler A				
	Ruler B				
Breadth of this book	Ruler A				
	Ruler B				

Activity 6.6

Rulers for Measurement

Photocopy and cut out for use in measuring objects in Activity 6.4.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ruler A															

Activity 6.7

Decimal Equivalents

Use a computer, calculator, or long division, to find the decimals equivalent for all the fractions $\frac{1}{1}, \frac{1}{2}, \ldots, \frac{1}{20}$.

If the decimal equivalent is recurring, state the length of the cycle, i.e. the number of digits which repeat.
e.g. $\frac{3}{11}=0.27272727 \ldots$ has a cycle of length 2 , because 2 and 7 are repeated.

Be very careful with $\frac{1}{17}$ and $\frac{1}{19}$ - they may be longer than you expect!

Fraction	Decimal Equivalent	Recurring	Length of cycle
$\frac{1}{1}$	$1.000000 \ldots$	\times	
$\frac{1}{2}$			
$\frac{1}{3}$	$0.333333 \ldots$	\checkmark	1
$\frac{1}{4}$			
$\frac{1}{5}$			
$\frac{1}{6}$			
$\frac{1}{7}$			
$\frac{1}{8}$			
$\frac{1}{9}$			
$\frac{1}{10}$			
$\frac{1}{11}$			
$\frac{1}{12}$			
$\frac{1}{13}$			
$\frac{1}{14}$			
$\frac{1}{15}$			
$\frac{1}{16}$			
$\frac{1}{17}$			
$\frac{1}{18}$			
$\frac{1}{19}$			
$\frac{1}{20}$			

Activity 6.8

Recurring Decimals

Sometimes a calculator answer is more complicated than it needs to be. For example, the display of

$$
7.33333333333
$$

is almost certainly $7 \frac{1}{3}$. This is easy to recognise, but
what about

$$
0.09090909091 \text { ? }
$$

It should not take you too long to recognise this as $\frac{1}{11}$.

1. Rewrite the decimal numbers below as fractions.
(a) 0.6666666667
(b) 0.3636363636
(c) 0.5555555556
(d) 0.1428571429

The first three are all relatively straightforward, but (d) is a much more complicated recurring decimal. Its cycle consists of 6 recurrent numbers (142857).
2. Now consider

$$
0.0958904109589
$$

You have to be very familiar with decimal approximations to spot this one!
There is, though, a method for finding the fraction equivalent, as shown below.

Let

$$
x=0.0958904109589 \ldots
$$

so that

$$
10^{8} x=9589041.09589 \ldots
$$

Subtracting the first equation from the second gives

$$
\left(10^{8}-1\right) x=9589041 \quad \Rightarrow \quad x=\frac{9589041}{99999999}
$$

Cancel out the common factors in the expression for x to find its fraction value in lowest terms.
3. Use the same procedure to find the fraction equivalent of
(a) $0.5714285714 \ldots$
(b) $0.027027027 \ldots$
(c) $0.07692307692 \ldots$

