9 Area, Perimeter and Volume

9.1 2-D Shapes

The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes.

Example 1

Draw the lines of symmetry of an equilateral triangle.

Solution

There are 3 lines of symmetry, as shown in the diagram. They join each vertex (corner) to the midpoint of the opposite side.

Example 2

Name each of the following shapes:

Solution

- (a) This is a *rhombus* because all the sides have the *same* lengths.
- (b) This is an *isosceles triangle* because two of the angles are the same size.

Example 3

State the order of rotational symmetry of:

- (a) a trapezium,
- (b) a parallelogram.

Solution

(a) 1

(b) 2 (unless the parallelogram happens to be a square, in which case the order of rotational symmetry would be 4).

Exercises

Name each of the following shapes:

(a)

(b)

(c)

(d)

(e)

(f)

- 2. Draw diagrams to show the lines of symmetry of:
 - (a) a kite,
- (b) a square,
- a rectangle, (c)
- (d) an isosceles triangle.
- 3. How many lines of symmetry are there for:
 - a parallelogram,
- a rhombus? (b)
- State whether each of the following statements is true or false. 4.
 - (a) A square is also a rhombus.
 - (b) A square is also a kite.
 - A rectangle is also a kite. (c)
 - (d) A parallelogram is also a kite.
 - A rectangle is also a parallelogram.
- Write down the order of rotational symmetry of: 5.
 - a rhombus,
- (b) a square,
- (c) an isosceles triangle,
- an equilateral triangle, (d)
- a kite. (e)

- 6. A triangle has *one* line of symmetry. What type of triangle is it?
- 7. Draw a trapezium that has:
 - (a) one line of symmetry,
- (b) *no* lines of symmetry.
- 8. A right-angled triangle is also an *isosceles* triangle. What sizes are the other angles in this triangle?
- 9. For a semicircle:
 - (a) draw a diagram to show its lines of symmetry,
 - (b) state its order of rotational symmetry.
- 10. (a) Draw a diagram to show the lines of symmetry of a regular pentagon.
 - (b) State the order of rotational symmetry of a *regular octagon*.
- 11. Rosemary drew these rectangles using a computer:

Rectangle A has width 3 and length 5: $\frac{5}{3}$

The computer repeated these instructions to draw the other rectangles:

new $width = previous width \times 2$ new length = previous length + previous width

Copy and complete this table.

copy and complete t	width	length
rectangle A	3	5
rectangle B		
rectangle C		
rectangle D		

(KS3/94/Ma/3-5/P1)

9.2 Area of Special Shapes

In this section we calculate the area of various shapes.

Area of a circle

$$= \pi r^2$$

Area of a triangle

$$=\frac{1}{2}bh$$

(*h* is perpendicular height)

Area of a parallelogram = bh

Example 1

Calculate the *area* of the triangle shown.

Solution

Area =
$$\frac{1}{2} \times 4 \times 6$$

$$= 12 \text{ cm}^2$$

Example 2

Calculate the area of a circle with diameter 10 m.

Solution

Radius =
$$10 \div 2 = 5 \text{ m}$$

Area =
$$\pi \times 5^2$$
 = 78.53981634 m²

=
$$78.5 \text{ m}^2$$
 (to 3 significant figures)

Example 3

Calculate the area of the shape shown:

Solution

Area of rectangle =
$$4 \times 8$$

= 32 m^2

Radius of semicircle =
$$4 \div 2 = 2 \text{ m}$$

Area of semicircle =
$$\frac{1}{2} \times \pi \times 2^2$$

= 6.283185307 m²

Total area =
$$32 + 6.283185307 = 38.283185307 \text{ m}^2$$

= 38.3 m^2 (to 3 significant figures)

Example 4

The diagram shows a piece of card in the shape of a parallelogram, that has had a circular hole cut in it.

Calculate the area of the shaded part.

Solution

Area of parallelogram =
$$11 \times 6$$

= 66 c m^2

Radius of circle =
$$4 \div 2 = 2$$
 cm

Area of circle =
$$\pi \times 2^2$$

= 12.56637061 c m²

Area of shape =
$$66 - 12.56637061 = 53.43362939 \text{ cm}^2$$

= 53.4 c m^2 (to 3 significant figures)

Exercises

1. Calculate the area of each of the following shapes:

- 2. Calculate, giving your answers correct to 3 significant figures, the *area* of a circle with:
 - (a) radius 6 m,
- (b) diameter 20 cm,
- (c) diameter 9 cm.
- 3. Calculate the *area* of each of the following shapes, giving your answers correct to 3 significant figures:

- 4. Calculate, giving your answers correct to 3 significant figures, the *area* of the semicircle with:
 - (a) radius 30 cm,
- (b) diameter 14 mm.
- 5. A circle of radius 8 cm is cut into 6 parts of equal size, as shown in the diagram.Calculate the *area* of each part, giving your answer correct to 2 decimal places.

6. Giving your answers correct to 3 significant figures, calculate the *area* of each of the following shapes. Each of the curved parts is a semicircle.

7. A rectangular metal plate is shown in the diagram. Four holes of diameter 8 mm are drilled in the plate.

Calculate the *area* of the remaining metal, giving your answer correct to 2 decimal places.

8. Calculate the *area* of the shape shown, giving your answer correct to 1 decimal place.

9. The area that has been shaded in the diagram has an area of 21.8 cm². Calculate the *diameter* of the semi-circular hole, giving your answer to the nearest millimetre.

10. The diagram shows the lid of a child's shape-sorter box. Calculate the *area* of the lid, giving your answer correct to 1 decimal place.

- 11. Each shape in this question has an *area* of 10 cm². No diagram is drawn to scale.
 - (a) Calculate the height of the parallelogram.

(b) Calculate the length of the base of the triangle.

(c) What might be the values of *h*, *a* and *b* in this trapezium?

What else might be the values of h, a and b?

(d) Look at this rectangle:

Calculate the value of x and use it to find the length and width of the rectangle.

Show your working.

(KS3/98/Ma/Tier 5-7/P1)

12. This shape is designed using 3 semi-circles.

The radii of the semi-circles are 3a, 2a and a.

- (a) Find the area of each semi-circle, in terms of a and π , and show that the *total* area of the shape is $6\pi a^2$.
- (b) The area, $6\pi a^2$, of the shape is 12 cm².

Write an equation in the form a =, leaving your answer in terms of π .

Show your working and simplify your equation.

(KS3/98/Ma/Tier 6-8/P1)

13. Calculate the area of this triangle.

Show your working.

(KS3/97/Ma/Tier 5-7/P2)

14. A box for coffee is in the shape of a hexagonal prism.

One end of the box is shown below.

Each of the 6 triangles in the hexagon has the same dimensions.

- (a) Calculate the total *area* of the hexagon. Show your working.
- (b) The box is 10 cm long.After packing, the coffee fills 80% of the box.

How many grams of coffee are in the box?

(The mass of 1 cm³ of coffee is 0.5 grams.)

Show your working.

(c) A 227 g packet of the same coffee costs £2.19. How much per 100 g of coffee is this? Show your working

(KS3/98/Ma/Tier 5-7/P2)

9.3 Perimeter of Special Shapes

In this section we calculate the perimeters of various shapes. The perimeter of a circle is referred to as the 'circumference'.

The circumference, C, of a circle = $2\pi r$ or πd where r is the radius and d is the diameter of the circle.

Example 1

Calculate the circumference of a circle with radius 8 cm.

Solution

Using the formula, $C = 2\pi r$, gives

$$C = 2 \times \pi \times 8 = 50.26548246 \text{ cm}$$

= 50.3 cm (to 3 significant figures)

Example 2

The diagram shows a semicircle of diameter 12 cm.

Calculate the perimeter of the semicircle.

Solution

Length of curve = $\pi \times 12 \div 2$

= 18.84955592 cm

Straight edge = 12 cm

Total perimeter = 12 + 18.84955592

= 30.84955592 cm

= 30.8 cm (to 3 significant figures.)

Example 3

The diagram shows a shape that is made up of a rectangle, a triangle and a semicircle.

Calculate its perimeter.

Solution

Length of curve = $\pi \times 7 \div 2$

= 10.99557429 cm

Total perimeter = 8 + 5 + 8 + 7 + 10.99557429= 38.99557429 cm = 39.0 cm (to 3 significant figures)

Exercises

- Giving your answers correct to 3 significant figures, calculate the 1. circumference of a circle with:
 - radius 6 m, (a)
- diameter 15 cm,
- radius 8 mm. (c)
- Calculate the *perimeter* of each of the following shapes: 2.

(b)

(c)

(d)

Giving your answer correct to 3 significant figures, calculate the perimeter of 3. the semicircle shown.

- 4. A circle of radius 8 cm is cut into four equal parts as shown in the diagram:
 - (a) Calculate the *circumference* of the original circle, giving your answer correct to 2 decimal places.
 - (b) Calculate the *perimeter* of each of the 4 parts, giving your answers correct to 2 decimal places.

5. Calculate the *perimeter* of each of the following shapes, giving your answers correct to 1 decimal place. The circular parts are either semicircles or quarters of circles.

8 cm 4 cm 4 cm

6. Calculate the *perimeter* of each of the following shapes:

(a) 9 cm

8 cm

- 7. A square has an area of 36 m². Calculate its *perimeter*.
- 8. Calculate the *perimeter* of this shape, giving your answer correct to the nearest centimetre:

9. A circle of radius 32 cm is cut into 8 equal parts, as shown in the diagram.

Calculate the *perimeter* of each part, giving your answer correct to the nearest millimetre.

10. The total perimeter of a semicircle is 37 cm. Calculate the *radius* of the semicircle, giving your answer correct to the nearest millimetre.

11.

The perimeter of this shape is 3t + 2s.

$$\boldsymbol{p}=3\,t+2\,\boldsymbol{s}$$

Write an expression for the perimeters of each of these shapes.

Write each expression in its simplest form.

(a)

(c) **d d**

(b)

(KS3/95/Ma/3-5/P1)

12. Each side of this hexagon is 1 cm long.

(a) The shaded shape below is made from 7 hexagon tiles. Write down the perimeter of the shaded shape.

(b) On a copy of the following diagram, shade a shape made with 7 tiles which has a *smaller* perimeter.

- (c) Explain what made its perimeter less than the perimeter of the first shape.
- (d) On a copy of the following diagram, shade a shape made with 7 tiles which has the *biggest* possible perimeter.
- (e) Explain what made your shape have the biggest possible perimeter.

(KS3/94/Ma/3-5/P2)

- 13. Wyn and Jay are using their wheelchairs to measure distances.
 - (a) The large wheel on Wyn's wheelchair has a diameter of 60 cm.Wyn pushes the wheel round exactly once.Calculate how far Wyn has moved.Show your working.
 - (b) The large wheel on Jay's wheelchair has a diameter of 52 cm.Jay moves her wheelchair forward 950 cm.Calculate how many times the large wheel goes round.Show your working.

(KS3/96/Ma/Tier 5-7/P2)

14. (a) A circle has a radius of 15 cm.Calculate the *area* of the circle.Show your working.

(b) A different circle has a *circumference* of 120 cm.What is the radius of the circle?Show your working.

(KS3/99/Ma/Tier 5-7/P2)

9.4 Surface Area and Volume of 3-D Shapes

In this section we calculate the volume and surface area of 3-D shapes such as *cubes, cuboids, prisms* and *cylinders*.

Cube

Volume = x^3

Surface area = $6x^2$

Cuboid

Volume = x y z

Surface area = 2xy + 2xz + 2yz

Cylinder

Volume = $\pi r^2 h$

Area of curved surface $= 2\pi rh$

Area of each end = πr^2

Total surface area = $2\pi rh + 2\pi r^2$

Prism

A prism has a uniform cross-section

Volume = area of cross-section \times length

= A l

Example 1

- (a) Calculate the *volume* of the cuboid shown.
- (b) Calculate the *surface area* of the cuboid shown.

Solution

(a) Volume =
$$4 \times 18 \times 5$$

= 360 m^3

(b) Surface area =
$$(2 \times 4 \times 18) + (2 \times 4 \times 5) + (2 \times 5 \times 18)$$

= $144 + 40 + 180$
= 364 m^2

Example 2

Calculate the *volume* and total *surface area* of the cylinder shown.

Solution

Volume =
$$\pi r^2 h$$
 = $\pi \times 4^2 \times 6$ = 96 π
= 301.5928947 cm³
= 302 cm³ (to 3 significant figures)

Area of each end =
$$\pi r^2 = \pi \times 4^2$$

= 16π
= 50.26548246 cm^2

Total surface area =
$$150.7964474 + (2 \times 50.26548246)$$

= 251.3274123 cm²
= 251 cm² (to 3 significant figures)

Note: From the working we can see that the area of the curved surface is 48π , and that the area of each end is 16π . The total surface area is therefore

$$48\pi + (2 \times 16\pi) = 80\pi = 251.3274123 \text{ cm}^2$$

= 251 cm² (to 3 significant figures)

Example 3

Calculate the *volume* of this prism.

Solution

Area of end of prism =
$$\frac{1}{2} \times 8 \times 6$$

$$= 24 \text{ cm}^2$$

Volume of prism =
$$24 \times 10$$

$$= 240 \text{ cm}^3$$

Exercises

1. Calculate the *volume* and *surface area* of each of the following cuboids:

2. Giving your answers correct to 3 significant figures, calculate the *volume* and *total surface area* of each of the following cylinders:

3. Calculate the *volume* of each of the following prisms:

4. Calculate the *volume* and *surface area* of the following prism:

5. The diagram shows a wooden block that has had a hole drilled in it. The diameter of the hole is 2 cm.

Calculate the *volume* of this solid, giving your answer correct to 2 decimal places.

6. A concrete beam is to rest on two concrete pillars. The beam is a cuboid with sides of length 0.5 m, 3 m and 0.4 m.

The pillars have diameter 0.4 m and height 2 m.

Calculate the *total volume* of concrete needed to make the beam and the pillars. Round your answer to a sensible level of accuracy.

7. The diagram shows the cross-section of a pipe of length 50 cm. The inner diameter of the pipe is 20 cm and the outer diameter is 30 cm.

- (a) Calculate the *volume* of metal needed to make the pipe. Round your answer to a sensible level of accuracy.
- (b) Calculate the *total surface area* of the pipe, including the inside surface. Round your answer to a sensible level of accuracy.
- 8. The diagram shows a prism.

 The cross-section of the prism consists of a rectangle and a semicircle.

- (a) Calculate the *volume* of the prism. Give your answer to the nearest cm³.
- (b) Calculate the *total surface*area of the prism. Give your answer to the nearest cm².
- 9. The volume of the prism shown is 720 mm³.

- (a) Determine the *length* of the prism.
- (b) Calculate the *surface area* of the prism.

- 10. A cylinder has a diameter of 12 cm and a curved surface area of 132π or 415 cm² (to 3 significant figures).
 - (a) Determine the *height* of the cylinder.
 - (b) Calculate the *volume* of the cylinder, giving your answer to the nearest cm³.
- 11. (a) These cuboids are made from small cubes.

 Write *how many small cubes* there are in each cuboid.

The first is done for you.

Cube (i) is made from 12 small cubes.

(b) This shape is made with two cuboids.Write *how many cubes* there are in this shape.

(KS3/98/Ma/Tier 3-5/P1)

What is the volume of this standard size box of salt? 12. (a)

(b) What is the volume of this *special offer* box of salt, which is 20% bigger?

The standard size box contains enough salt to fill up 10 salt pots.

(c) How many salt pots may be filled up from the special offer box of salt?

(KS3/96/Ma/Tier 5-7/P2)

Look at this triangle. 13. (a)

> Show working to explain why angle x must be a right angle.

What is the volume of this prism? (b)

> You must show each step in your working.

NOT TO **SCALE** (c) Prisms A and B have the same cross-sectional area.

Copy and complete the table:

	Prism A	Prism B
height	5 cm	3 cm
volume	200 cm ³	cm ³

(KS3/99/Ma/Tier 5-7/P1)

14. TJ's Cat Food is sold in tins shaped like this. Each tin has an internal height of 5 cm.

- (a) The area of the lid of the tin is 35 cm². Work out the volume of cat food that the tin contains.
- (b) The label that goes round the tin overlaps by 1 cm.

The area of the label is 134 cm².

Work out the distance around the tin.

Show your working.

TJ's Cat Food plans to use tins that are the shape of cylinders.

The internal measurements of a tin are shown.

(c) Work out the volume of cat food that the tin contains. Show your working.

(KS3/95/Ma/Levels 5-7/P2)