BK3	R: Addition and subtraction (mental and written work) C: Revision: numbers to 100 E: Roman numerals. Puzzles	$\begin{gathered} \text { Lesson Plan } \\ 1 \end{gathered}$
Activity 1	Mental counting Listen carefully, do the calculations in your head and show me the final answer with number cards when I say. Nod your heads when you have done each step. a) $\mathrm{T}: ~ ' 3+6^{\prime} \ldots{ }^{\prime}-2^{\prime} \ldots$ ' $+3^{\prime} \ldots{ }^{\prime}-5^{\prime}$ Show me the answer with number cards . . . now! Similarly for: b) $50-10+30-50+70$ Show me ... now! c) $25-4+9+8-18 \quad$ Show me ... now! d) $6+7+7-4-9 \quad$ Show me \ldots now! e) $28+8-12+19$ Show me ... now! [N.B. Parts a) to c): without crossing tens; parts d) and e): crossing tens] \qquad 5 min \qquad	Notes Whole class activiry T waits until most of class nod their heads before moving on Cards shown in unison Ps who answered correctly explain to those who did not. T asks what kind of mistakes were made. If problems, write details on BB Praising, encouragement only
2	Secret numbers I am thinking of a number. You must ask me questions to find out what it is. I can answer only 'Yes' or 'No'. (e.g. 67: 'Does it have 2 digits?' (Y) 'Is it more than 50? (Y); 'Is it even?' (N) 'Is it less than 75?' (Y), etc.) Ps may use their number lines to help them if necessary. Ps can think of a number and answer questions about it too! \qquad 10 min \qquad	Whole class activity Involve several Ps Encourage Ps to ask logical questions, keeping in mind the clues already given. Praise clever questions Class applauds correct answer
3	Book 3, page 1 Q. 1 a) Read: Complete the table. Review with whole class. Let's read out the 3rd row (6th column, etc.) Mistakes corrected. b) Read: Colour red the 2-digit numbers in the 2 nd row. A, come and point to the 2 nd row and tell us the numbers you coloured red. (All of them) Who agrees/disagrees? c) Read: Colour blue the 2-digit even numbers in the 5th column from the left. B, come and point to the column and tell us the numbers you coloured blue. $(14,24,34)$ Who agrees/disagrees? d) Read: Colour yellow the 1-digit odd numbers in the 4th column from the right. \mathbf{C}, come and point to the column and tell us the numbers you coloured yellow. (None) Why? (6 is the only 1-digit number but it is even.) e) Read: Colour green the numbers not less than 36. D, tell us the numbers you coloured green. $(36,37,38,39)$ Who agrees? Who thinks something else?	Individual work, monitored Deal with one part at a time. Table drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, self-correcting T deals with all mistakes Praising
Extension	Who can tell us something else about the numbers in the table? e.g. - Only the number 14 is coloured red and blue (i.e. violet). - The numbers in each column have the same units digit and are increasing by 10 . - The numbers in the 4 th row are 20 more than in the 2 nd row.	Give Ps time to think. T gives hints if Ps cannot think of anything Discussion, agreement, praising

B		Lesson Plan 1
Activity 4	Writing numbers Look at these pictures. What numbers are they showing? BB: (36) b) c) Ps come out to write the numbers on the BB, explaining their reasoning. Who agrees? Who thinks something else? Why? Discuss how many tens and units are in each number. This can be shown in a place -value table. T explains what each column stands for. BB: $\begin{aligned} 36 & =3 \times 10+6 \\ 43 & =4 \times 10+3 \\ 70 & =7 \times 10 \end{aligned}$ What is the total of these 3 numbers? (149) Let's check. Who can come and write the total in the table? Who agrees/disagrees?	Notes Whole class activity Already prepared on small board or use enlarged copy master or OHP (Or Ps can show with number cards on command.) Ps come to BB to count the elements as a check. Drawn on BB or use enlarged copy master or OHP Ps come out to write the numbers in the table and point to them on the class number line. Discussion, reasoning, agreement, checking, praising By counting the elements, or BB: $36+43=79$, $70+79=70+30+40+9$ $=\underline{149}$
5	Book 3, page 1 Q. 2 Read: Write the number of circles in the place-value table. (All Ps should be asked to fill in the numbers but only the more able Ps need to write the total.) Review at BB with whole class. Ps come out to write in the numbers, explaining reasoning. Who made a mistake? What kind of mistake? Deal with all cases. Ps show position of numbers on class number line too. Who can write in the total of the 3 numbers? Who agrees? Who thinks something else? Let's check. (Accept 8 tens and 17 units but T (or P) then explains that there is enough for another whole ten, i.e. 9 tens and 7 units) 27 min	Individual work, monitored, (helped) Discussion, reasoning, agreement, checking, praising BB: [Preparation for vertical addition]
6	Roman numerals How did the ancient Romans write numbers? Elicit that: BB: $\quad I=1, V=5, X=10, L=50, C=100$ Let's fill in the numbers missing from this table. BB: Ps come out one at a time to fill in a number and explain reasoning (with T's help if necessary). Who agrees? Who thinks something else?	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, checking, praising $\begin{array}{r} \text { BB: e.g. } V I=V+I=6 \\ I V=V-I=4 \\ X I V=X+(V-I)=14 \\ L V=L+V=55, \text { etc. } \end{array}$

BKT3		Lesson Plan 1
Activity 7	Book 3, page 1 Q. 3 Read: The same shape means the same number. Fill in the missing whole tens. How could we solve it? Ps suggest methods of solution. (trial and error, or comparison of rows: e.g. in the 1st equation, we add a triangle and in the 2nd we subtract a triangle. Therefore $100-60=40$, which equals 2 triangles, so 1 triangle $=20$, etc.) Logical solution (by getting rid of two of the unknowns): e.g. 1. Add rows 1 and 4 together: 2 rectangles $=100$, so 1 rectangle $=\underline{50}$ 2. Subtract row 2 from row 1: 2 triangles $=40$, so 1 triangle $=\underline{20}$ 3. Then in row 1: $50+$ semicircle $+20=100$, so semicircle $=\underline{30}$ Whatever method is used, check that the solution is true in all equations. (Or as individual work if Ps wish, followed by whole class discussion.) 36 min	Notes Whole class activity Use enlarged copy master/OHP Give Ps time to think and to suggest methods of solution If Ps reach correct solution by trial and error, praise them but also demonstrate logical solution Discussion, reasoning, agreement, praising BB: $\begin{aligned} 50+30+20 & =100 \\ 50+30-20 & =60 \\ 50-30+20 & =40 \\ 50-30-20 & =0 \end{aligned}$
8	Book 3, page 1 Q. 4 Read: The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers. Revise meaning of adjacent. Review at BB with whole class. Ps come out to fill in each pair of numbers, explaining reasoning. Class agrees/disagrees. Solution: a) b) 41 min	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, self-correction Write additions on BB if there are problems. Praising, encouragement only
9	Sequences T says first few terms in a squence and Ps continue it . T asks for the rule in each case. a) $0,20,40, \ldots$ $(+20)$ b) $0,5,10,15, \ldots \quad(+5)$ c) $100,90,80, \ldots \quad(-10)$ d) $1,11,21, \ldots \quad(+10)$ e) $99,89,79, \ldots \quad(-10)$ f) $4,9,14,19, \ldots(+5)$, etc.	Whole class activity T chooses Ps at random Done at speed Class points out errors Ps can make up own sequences too for class to continue. Praising only

BK3		Lesson Plan 2
Activity 5	Money investigation Ps work in pairs. A has to pay $£ 67$ to \mathbf{B}. Then \mathbf{B} pays $£ 67$ to \mathbf{A} in a different way. Change may be given if needed. Both Ps write the different ways as additions or subtractions in their Ex. Bks. (Heading: Lesson number and date) Review at BB with the whole class. A, show us one way to pay $£ 67$. Who did the same as \mathbf{A} ? Who did it a different way? Deal with as many cases as possible in the time. e.g. A gives B $£ 10+£ 10+£ 10+£ 10+£ 10+£ 10+£ 5+£ 1+£ 1$ B gives A $£ 20+£ 20+£ 20+£ 2+£ 2+£ 2+£ 1$ \mathbf{C} gives $\mathbf{D} \quad £ 50+£ 50 ; \mathbf{D}$ gives \mathbf{C} back $£ 20+£ 10+£ 2+£ 1$ (Or done as whole class activity with pairs of Ps at front of class choosing from model coins and notes on T's desk and sticking to BB so that whole class can see. Class agrees/disagrees. T (or P) writes additions or subtractions on BB if needed. 22 min	Notes Paired work, monitored, helped Ps have model money on desks: $£ 1$ and $£ 2$ coins, $£ 5, £ 10, £ 20$ and $£ 50$ notes Reasoning, agreement, checking, praising Extra praise for creativity! [Practice in addition and subtraction and familiarisation with money]
6	Book 3, page 2 Q. 2 Read: Draw and write down how you could pay $£ 76$ from these notes and coins: $£ 50, £ 20, £ 10, £ 5, £ 2, £ 1$ a) with the exact amount b) with change needed. Review at BB with whole class. A, what did you write? Who did the same as \mathbf{A} ? Who did it a different way? etc. e.g. BB: a) $£ 50$ £20 \square (£1) $50+20+5+1=76$ b) \square $£ 50$ £20 £10 and change of (£2) £1 (11 $(50+20+10)-(2+1+1)=80-4=76$ Who made a mistake? What kind of mistake? \qquad 27 min \qquad	Individual work, monitored, helped Ps may use model money Discussion with whole class T uses large model money stuck to BB (Possible answers could be prepared beforehand on small board (SB) or OHP) Reasoning, agreement, selfcorrection, praising
7	Book 3, page 2 Q. 3 Read: Fill in the amounts. Compare them by drawing arrows towards the amount which is more. Review at BB with whole class. Mistakes corrected. How much more is one than the other? Ps come out to write the differences on the arrows. Let's check by writing equations. BB: e.g $29+\underline{16}=45$ or $45-29=45-20-5-4=\underline{16}$ Solution: What do you notice about the arrows? (6 arrows in all; '52' has only incoming arrows, because it is the biggest; '29' has only outgoing arrows, because it is the smallest)	Invidual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising. Show the 2 kinds of equation (completion and subtraction) Elicit or point out that: $\begin{aligned} & 31+14+7=31+21=52 \\ & 29+2+14=29+16=45 \\ & 29+16+7=29+23=52 \end{aligned}$ If nobody notices anything, T gives hints. Praising

$B K$		Lesson Plan 2
Activity 8	Sequences Let's continue the sequences. T has SB or OHP already prepared. Ps come out to write next 5 terms and give the rule. (Or T writes what Ps dictate.) a) $99,94,89, \ldots \quad[84,79,64,59,64, \ldots]$ b) $24,19,14, \ldots \quad[9,4,-1,-6,-11, \ldots]$ c) $\mathrm{I}, \mathrm{VI}, \mathrm{XI}, \mathrm{XVI}, \ldots[\mathrm{XXI}, \mathrm{XXVI}, \mathrm{XXXI}, \mathrm{XXXVI}, \mathrm{XLI}, \ldots](+5)$ d) $\mathrm{C}, \mathrm{XC}, \mathrm{LXXX}, \ldots[[\mathrm{XXX}, \mathrm{LX}, \mathrm{L}, \mathrm{XL}, \mathrm{XXX}, \ldots]$ (-10) e) II, 4, VI, 8, X $12, \ldots$ XXIV, 16, XVIII, 20, XXII, ...] (+2)	Notes Whole class activity Involve several Ps Done at a good pace Reasoning, agreement With T's help if necessary for negative and Roman numbers Praising, encouragement only Extra praise for Ps who can continue the sequences further
9	Book 3, page 2 Q. 4 Read: Draw a line 8 cm long. Divide it up into quarters. T revises how to draw a certain length of line accurately. Ps draw 8 cm line first. Discuss how to divide it into quarters. (4 equal parts, each part is 1 quarter) BB: 4 quarters (1 whole): $8 \mathrm{~cm}, 1$ quarter: $8 \mathrm{~cm} \mid 4=\underline{2 \mathrm{~cm}}$ Ps mark with short, vertical lines every 2 cm starting from LHS. 45 min	Ps have rulers on desks Individual work, monitored, helped BB: Discussion, agreement, checking, praising accuracy Check: $4 \cdot 2 \mathrm{~cm}=8 \mathrm{~cm}$

BKT3		Lesson Plan 3
Activity 4	Book 3, page 3 Q. 2 Read: Practise subtraction. How many subtractions are there? $(3 \times 6=18)$ Let's see if you can increase your score this time! Do as many as you can in 4 minutes. Use your number lines if you need to. Sit up with your arms folded when you have finished. Start . . . now! Stop! Review orally round class. If problems write details on BB. e.g. $26-9=26-6-3=17,25-17=25-10-5-2=8$ Ps mark own (or neighbour's) work and count how many correct out of 18 . Who had 18 correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Who did the same? etc. Who scored more than before? How many more?	Notes Individual work, monitored T notes Ps who need to refer to their number lines Keep to the time limit Agreement, checking, self-correcting, evaluation Praising, encouragement only T awards most improved work (e.g. stars, stickers, badges)
5	Number puzzle T has BB (or SB or OHP) already prepared: BB : a) b) Ps come out one at a time to fill in the missing numbers, saying how they did the calculation. Class checks that they are correct. \qquad 25 min \qquad	Whole class activity Written on BB or use enlarged copy master or OHP Involve several Ps At a good pace Reasoning, agreement, checking, praising
6	Inequalitites Let's fill in the missing numbers so that the inequalities are correct. BB: a) $27-\begin{array}{cc}10 \\ 19+2<2 & { }^{12}+8-\end{array}$ \square b) $28-9+3<1 \quad 19+6-2$ c) $24-{ }_{15}^{15}+\square \quad 3>6+5-4$ d) $37-{ }_{28}^{28}+4 \quad 4>7+9-4$ Ps come out to BB to write value above completed side, then to write value above incomplete side, then to fill in the missing number. Class checks that the inequality is correct. If problems, write calculations out in full on BB.	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Ps say how they do each calculation, (e.g. $27-9=28-10$, or $27-9=27-7-2$) Reasoning, agreement, checking, praising Refer to class number line if necessary.

B		Lesson Plan 3
Activity 7	Addition and subtraction Look carefully at these diagrams. What do they show? (Additions or subtractions done in one or two steps). Follow the arrows and fill in the missing numbers. BB: a) b) d) Ps come out to BB to fill in the missing numbers, explaining reasoning. Class points out errors.	Notes Whole class activity Drawn on BB or SB or use enlarged copy master or OHP Deal with one part at a time At a good pace Reasoning, agreement, checking, praising Show the calculations as jumps along the class number line
8	Book 3, page 3 Q. 3 Read: Do the additions in different ways. Fill in the missing numbers. Complete the diagrams. Elicit that this is similar to previous exercise. Make sure that your numbers match the jumps shown along the number line. Think about which jumps are missing from the diagrams. Ps do one part at a time. Review at BB with whole class. Ps come out to fill in their numbers, explaining reasoning and to draw the missing jumps. Class agrees/disagrees. BB: 40 min	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, self-correction, praising Involve several Ps Discuss which method Ps think is easier. Elicit that it does not matter whether units or tens are added or subtracted first personal preference.
9	Book 3, page 3 Q. 4 Read: Ann has 35 picture cards, 18 more than Lisa. How many picture cards do the two girls have altogether? Write a plan and do the calculation in your Pbs. Show me the answer with number cards when I say Show me now! (52) \mathbf{X}, come and explain to us how you worked out the solution. Who agrees with \mathbf{X} ? Who did it a different way? BB: Ann: $35 \quad$ Lisa: $35-18=17$ $\text { Ann + Lisa: } 35+17=35+10+5+2=\underline{52}$ Answer: They have 52 cards altogether.	Individual work, monitored, (helped) (Or written on scrap paper) In unison Reasoning, agreement, checking, correcting, praising Demonstrate with 2 Ps at front of class and real cards if there is a problem

B		Lesson Plan 4
Activity 4	Book 3, page 4 Q. 1 Read: Jane has £64. How many pounds could she spend and how many pounds would she have left? Complete the table. Ps complete the table first. Review at BB with whole class. Ask Ps for other cases not shown on the table. (e.g. $4+60$) How could we write the general rule? C, come and try. Who agrees? Who can write it a different way? etc. [N.B. Time limit differentiation - only the fastest Ps should be expected to complete the whole table; the rule can still be seen with only some of the table completed.] 17 min	Notes Individual work, monitored Table drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, self-correction Class agrees/disagrees. $\text { Rule: } \begin{aligned} 64 & =S+H \\ S & =64-H \\ H & =64-\mathrm{S} \end{aligned}$ Praising, encouragement only
5	2-digit numbers a) Let's list all the 2-digit numbers which are greater than 7 and smaller than 16 . T writes on BB as dictated by Ps. BB: $10,11,12,13,14,15$ Write inequalities about it in your Ex. Bks. (Heading: Lesson number and date) Review at BB with whole class. BB: $7<$ \square and \square <16 and \square is 2-digit; or $7<$ \square <16 and \square is 2 -digit; or $\quad 9<\square<16 ;$ or $10 \leq \square \leq 15$ b) Let's list all the 2-digit numbers which are odd, not more than 65 and more than 51. T writes on BB as dictated by Ps. BB: 53, 55, 57, 59, 61, 63, 65 Write inequalities about it in your Ex. Bks. Review at BB with whole class. BB: $65 \geq$ and \square >51 and \square is odd; or $51<$ \square ≤ 65 and \square is odd; c) Let's list all the 2 -digit numbers which have the tens digit not less than 7 and the units digit less than 3 . T writes on BB as dictated by Ps. BB: 70,71, 72, 80, 81, 82, 90, 91,92 22 min \qquad	Whole class activity Involve several Ps Class agrees/disagrees Reasoning, agreement, checking, praising Discuss the possibilities and show on class number line. Involve several Ps Class agrees/disagrees Reasoning, agreement, checking, praising Discuss the possibilities and show on class number line. Involve several Ps. Class agrees/disagrees. Praising.
6	Book 3, page 4 Q. 2 Read: Andrew has $£ 46$ more than Brian has. How much money could they each have? Complete the table. Ps complete the table first. Review at BB with whole class. Let's compare some of the columns. e.g. $80+34$ and $81+35$; $73+27$ and $83+37$, etc. (Elicit that if number in top row increases by a certain number, number in bottom row increases by the same amount.) How could we write the general rule? D, come and try. Who agrees? Who can write it a different way? etc. [N.B. Time limit differentiation as in Activity 4]	Individual work, monitored Table drawn on BB or use enlarged copy master or OHP Discussion, agreement, checking, self-correction Encourage Ps to find other such columns. Rule: $\begin{gathered} A=B+46 \\ B=A-46 \\ 46=A-B \end{gathered}$ Praising

BK3		Lesson Plan 4
Activity 7	Book 3, page 4 Q. 3 Read: A book case has 3 shelves. On the middle shelf there are 32 books, 9 less than there are on the top shelf and 9 more than there are on the bottom shelf. a) How many books are on the top shelf? b) How many books are on the bottom shelf? c) How many books are in the book case? Try to picture it in your head. You can draw a diagram to help you. Think about one shelf at a time. Write each answer as an addition or subtraction in your Pbs. Review at BB with whole class. Ps explain solution to class. Who did the same? Who did it a different way? etc. If no P has already done so, T shows a 'great idea' for part c)! BB: $32 \times 3=96$ Why have I written this? $(32+9)+32+(32-9)=32+32+32=32 \times 3)$ 33 min	Notes Individual work, monitored, helped T might need to relate to a real book case in the classroom Discussion, reasoning, agreement, checking, selfcorrecting, praising BB: a) $32+9=\underline{41}$ b) $32-9=\underline{23}$ c) $41+32+23=\underline{96}$
8	Book 3, page 4 Q. 4 Read: Fill in the missing numbers. How many additions/subtractions are there?.$(4 \times 6=24)$ Let's see how many you can do in 4 minutes! Use your number lines if you need to. Sit up with your arms folded when you have finished. Start . . . now! Stop! Review orally round class. If problems write details on BB. Ps mark own (or neighbour's) work and count how many correct out of 24 . Who had all correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Who did the same? etc. - How do we get the unknown number in an addition if we know the other number and the sum? (Subtract the known number from the sum) T (or P) gives examples. - How do we get the unknown number in a subtraction if we know the number being subtracted from and the difference? (Subtract the difference from the known number.) T (or P) gives examples. - How do we get the unknown number in a subtraction if we know the number being subtracted and the difference? (Add the known number and the difference.) T (or P) gives examples. 40 min	Individual work, monitored Keep to time limit Agreement, self-correction. If problems, write details on BB. Praising. Awards given for perfect work. (Stars, etc.) BB: $\begin{array}{r} \text { e.g. } 40+?=60 \\ 60-40=\underline{20} \\ \text { e.g. } 60-?=20 \\ 60-20=\underline{40} \end{array}$ $\begin{aligned} \text { e.g. ? }-40 & =20 \\ 40+20 & =\underline{60} \end{aligned}$
9	Calculation practice Let's find the easiest way to do these calculations. What do you notice? (Can use answer in part i) to deduce the others.) Ps dictate the answers, T writes them in. (Or T has answers already written but covered up. T uncovers one answer at a time and Ps agree/disagree, giving reasoning.) Answers: a) i) 83 , ii) $88(83+5)$, iii) 88 , iv) $93(83+10)$, (v) $78(83-5)$, vi) 78 , vii) $73(83-10)$, viii) 83 , ix) 83 b) i) 41 , ii) $46(41+5)$, iii) $36(41-5)$, iv) 41 (v) $36(41-5)$, vi) $46(41+5)$, vii) 41 , viii) $51(41+10)$, ix) $31(41-10)$	Whole class activity Prepared beforehand on SB or use enlarged copy master or OHP At a good pace round class Reasoning, agreement, checking, praising (Ps could have copy of sheet on desks too.)

BK?	R: Addition, subtraction C: Revision of multiplication. Tables for 2,5 and 10 E: Extension of multiplication. Multiples.	$\begin{gathered} \text { Lesson Plan } \\ 5 \end{gathered}$
Activity 1	Sequences (verbal) a) The first term of a sequence is 20 . Each following term is 5 more than the previous one. Let's continue the sequence: Ps: $20,25,30,35,40,45, \ldots$, What else can you say about the numbers in this sequence? (Divisible by 5; multiples of 5) b) T : Here is another number sequence. $100,90,80, \ldots$ What could the rule be? (Decreasing by 10) Let's continue the sequence: . . . $70,60,50,40,30,20,10,0$, $(-10,-20, \ldots) \quad$ (or as far as Ps are able) What else can you say about the numbers in theis sequence? (Divisible by 10 ; multiples of 10)	Notes Whole class activity T chooses Ps at random Class points out errors. (Develops calculation skills) Agreement, praising Ask several Ps what they think. In chorus Agreement, praising T notes Ps having difficulty
2	Sequences (written) Write this sequence in your Ex. Bks. and continue it for the next 8 terms. T: 50, 55, 53, ..., Review with whole class. A, what did you write? (e.g. 58, 56, 61, $59,64,62,67,65, \ldots$) What rule did you use? (I added 5 then took away 2 , added 5 then took away 2 , and so on.) Who used the same rule? Who used a different rule? Who agrees? e.g. B: $50,55,53,50,55,53,50,55, \ldots$ (Repeat 1 st 3 terms) C: $53,55,50,50,55,53,53,55, \ldots$ (inverse order, original order) 8 min	Individual work, monitored (Heading: Lesson number and date) Discussion at BB. Reasoning, agreement, praising Deal with all cases Class agrees whether each is valid
3	Products Let's help Mr. Mouse to match up the mouseholes to the houses. What kind of operations are in the mouseholes? (multiplications) BB: $4 \times 5 \quad 6 \times 10 \quad 9 \times 2 \quad 7 \times 5 \quad 4 \times 10 \quad 6 \times 2$ Ps come out one after the other to choose a multiplication and stick it in the correct house, saying the complete operation. Class agrees or disagrees. What other multiplication could go in this house? Who remembers the name for the result of a multiplication? (product) Let's write these products on the number line. (Ps come out to mark numbers (with a dot or cross) and label them. BB: Write in your Ex. Bks.: a) the smallest of these numbers; b) the number which has only odd digits.; c) the greatest of these numbers. (60) Review orally with whole class. Who had them all correct? Who made a mistake? What kind of mistake? Who does not undertand?	Whole class activity Use copy master, enlarged, coloured, cut out and stuck to BB as in diagram. (Or drawn on BB or OHP and Ps join up matching pairs) Agreement, praising (e.g. $20=2 \times 10$, etc.) BB : product Stick dots on class number line or use enlarged copy master or OHP Individual work Agreement, self-correction (Or whole class activity with number cards/scrap paper) (Feedback for T) Praising, encouragement only

B		Lesson Plan 5
Activity 4	Multiples of 2 Which of these numbers are multiples of 2? Let's draw a circle around each one. Ps come out one at a time to choose, explaining reasoning (e.g.' 6 is a multiple of 2 because it is exactly divisible by 2^{\prime} (because $2 \times 3=6$, because it is even). Revise even and odd numbers if necessary. Class points out errors. $(6,8,12,16)$ Let's join up the multiples of 2 in increasing order. BB: What shape have we drawn? (plane shape, quadrilateral, polygon, rectangle) T uses all these words and explains meaning if necessary. 16 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising T (or P) joins up numbers as dictated by Ps Discussion, agreement Write words on BB if Ps do not remember them Praising
5	Book 3, page 5 Q. 1 Read: Write an addition and a multiplication about each picture. Talk about each picture first. (e.g. pairs of cherries; groups of 5 lines as in a tally chart, piles or pyramids of 10 marbles, etc.) Review at BB with whole class. Mistakes corrected. BB: a) $2+2+2+2+2+2+2=7 \times 2=\underline{14}$ b) $5+5+5+5+5+5+5+5+5=9 \times 5=\underline{45}$ c) $10+10+10=3 \times 10=\underline{30}$ T uses the words 'product', 'factor', 'sum', 'total'. 21 min	Individual work, monitored, (helped) Use enlarged copy master or OHP Reasoning, agreement, self-correction, praising (Feedback for T) Encourage Ps to use them too.
6	Book 3, page 5 Q. 2 Read: The animals start at 0 and make jumps of equal length along the number line. Draw their jumps and write the numbers they land on below the number line. Talk about the animals first. (Sparrow, Frog, Rabbit). Review at BB with whole class. A, what numbers did you write for Sparrow? Who agrees? Who wrote something else? etc. BB: Sparrow: $0,2,4,6,8,10, \ldots, 48,50$ Frog: $\quad 0,5,10,15,20,25,30,35,40,45,50$ Rabbit: $\quad 0,10,20,30,40,50$ What can you say about each animal's numbers? (e.g. S : multiples of 2 ; even numbers; divisible by 2 ; twice $0,1,2,3, \ldots$ F : multiples of 5 ; divisible by $5 ; 5$ times $0,1,2,3$, etc. R : multiples of 10 ; divisible by 10 ; whole tens; 10 times $0,1,2$, etc.)	Individual work, monitored, (helped) Use enlarged copy master or OHP or refer to class number line. Reasoning, agreement, selfcorrection, praising Continue each set orally to 100 in unison Ask several Ps With T's help if necessary (Expressing common properties in different ways)
7	Review of 2, 5, 10 times tables B, come and point to the multiples of 2 on this multiplication table (vertically and horizontally). Let's say the 2 times table together. (2 times 0 equals 0,2 times 1 equals 2,2 times 2 equals $4, \ldots$ How else could we say it? (0 times $2=0,1$ times $2=2, \ldots$) Repeat for the $5(10)$ times tables. T points to the 2 factors when necessary.	Whole class activity Use OHT 14 with coloured cross strips In unison, at speed T notes Ps having difficulty Praising, encouragement only

BKB		Lesson Plan 5
Activity 8	Oral practice T says multiplications involving 2,5 or 10 . Ps give products. 35 min	Notes Whole class activity T chooses Ps at random. At speed. Praising only
9	Book 3, page 5 Q. 3 Read: Fill in the rows and columns for 2, 5 and 10. Make sure you know these multiplication facts by heart. Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected. Let's try to extend the sequences! (e.g. 11 times 2 equals 22, 12 times 2 equals $24, \ldots$ 11 times 5 equals 55 , 12 times 5 equals $60, \ldots$ 11 times 10 equals 110,12 times 10 equals $120, \ldots$ 40 min	Individual work, monitored Use OHT 14 or enlarged copy master or OHP Agreement, self-correcting Whole class in unison With T's help Praising
10	Tables practice T says a product, Ps say multiplications involving 2,5 or 10 , e.g. T: '30', P_{1} : '5 times 6', P_{2} : '10 times 3', P_{3} : '2 times 15 '; T: '50', P_{4} : '5 times 10', P_{5} : '10 times 5', P_{6} : '2 times 25 ', etc. Class points out errors. Ps can say the products too. (Extend to products beyond 100 if Ps are able.)	Whole class activity T chooses Ps at random At speed Agreement, praising Expectation only of products up to 100 . Extra praise for products beyond 100 .

BK3	R : Understanding of multiplication C: Multiplication tables for 4 and 8, and for 3, 6 and 9 E: Multiples	$\begin{gathered} \text { Lesson Plan } \\ 6 \end{gathered}$
Activity 1	Oral work Let's play Boom! Everyone stand up! We will start counting from 1 but instead of saying every third number you must say 'boom'. If you make a mistake you have to sit down. T: '1', P_{1} : '2', P_{2} : 'boom', P_{3} : '4', P_{4} : '5', P_{6} : 'boom', etc. What can you say about the 'boom' numbers? (multiples of 3, exactly divisible by 3) (Feedback for T) 3 min	Notes Whole class activity T chooses Ps at random. If P makes a mistake and sits down, T points to another P to say it correctly (Develops concentration, memory and calculation skills) Praising only
2	Secret Code I have written some multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the letters and the products of the multiplications. (Heading: Lesson number and date) $\begin{array}{lllllll} \text { BB: } & 6 \times 5 & \mathrm{E} & (30) & & 4 \times 4 & \mathrm{~L} \\ & (16) \\ & 4 \times 10 & \mathrm{R} & (40) & & 5 \times 3 & \mathrm{C} \\ (15) \tag{18}\\ & 9 \times 2 & \mathrm{E} & (18) & & 7 \times 4 & \mathrm{~V} \\ & (28) \end{array}$ Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB . Who had all 6 correct? Who had $5(4,3,2,1,0)$? Write the products out again in increasing order and write the letters underneath. What word have you written? Class shout, 'CLEVER' BB: $\begin{array}{llllll} 15, & 16, & 18, & 28, & 30, & 40 \\ \mathrm{C} & \mathrm{~L} & \mathrm{E} & \mathrm{~V} & \mathrm{E} & \mathrm{R} \end{array}$	Whole class activity but Ps write results individually T has BB or SB already prepared Discussion, agreement, selfcorrecting, praising (Feedback for T) In unison P comes to BB to show it. Mistakes corrected
3	Additions and multiplications 1 Study the pictures and write an addition and a multiplication about each part in your Ex. Bks. $\begin{array}{llllllll}\mathrm{BB}: & \text { a) } & \circ \circ & \circ \circ & \circ \bigcirc & \circ & \circ \circ & \circ \circ \\ \circ & 4+4+4+4+4+4=24 \\ & \circ \circ & \circ \circ & \circ \circ & \circ & \circ \circ & 6 \times 4=24\end{array}$ b) $\begin{array}{r} 8+8+8+8+8+8+8=56 \\ 7 \times 8=56 \end{array}$ Review at BB with whole class. A, what did you write for part a)? Why? Who agrees? Who wrote something else? Similarly for b).	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction Praising. (Feedback)
4	Additions and multiplications 2 Talk about the pictures first. Elicit the names of the the shapes (triangle, hexagon, square). Write an addition and a multiplication about each part in your Ex. Bks. Review at BB with whole class. B, what did you write for a)? Why? Who agrees? Who wrote something else? Similarly for b) and c).	Individual work, monitored Drawn on BB or use enlarged copy master or OHP BB: a) $\begin{aligned} & 3+3+3+3+3+3 \\ & =6 \times 3=\underline{18} \end{aligned}$ b) $\begin{aligned} 6+6+6+6 & =4 \times 6 \\ & =\underline{24} \end{aligned}$ c) $\begin{aligned} 9+9+9 & =3 \times 9 \\ & =\underline{27} \end{aligned}$ Reasoning, agreement, selfcorrection, praising.

BK3		Lesson Plan 6
Activity 5	Book 3, page 6 Q. 1 Read: Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line. Review at BB with whole class. D, what numbers did you write for part a)? Who agrees? Who wrote something else? etc. BB: a) $0,4,8,12,16,20,24,28,32,36,40,44,48,(52, \ldots)$ b) $0,8,16,24,32,40,48,(54, \ldots)$ c) $0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,(51, \ldots)$ d) $0,6,12,18,24,30,36,42,48,(54, \ldots)$ e) $0,9,18,27,36,45,(54, \ldots)$ What can you say about the numbers? (e.g. a) multiples of 4 ; divisible by $4 ; 4$ times $0,1,2,3, \ldots$ b) multiples of 8 ; divisible by $8 ; 8$ times $0,1,2,3$, etc. 25 min	Notes Individual work, monitored, (helped) Use enlarged copy master or OHP or refer to class number line. Do part a) with whole class first if Ps do not understand Reasoning, agreement, selfcorrection, praising Continue each set orally to 100 in unison (with T's help if needed) Ask several Ps (Expressing common properties in different ways)
6	Review of $4(8,3,6,9)$ times tables C, come and point to the multiples of 4 on this multiplication table. (vertically and horizontally) Let's say the 4 times table together. (4 times 0 equals 0,4 times 1 equals 4,4 times 2 equals $8, \ldots$ How else could we say it? (0 times $4=0,1$ times $4=4, \ldots$) Repeat for the 8,3,6 and 9 times tables. T points to the two factors when necessary.	Whole class activirty Use OHT 14 with coloured cross strips In unison, at speed T notes Ps having difficulty Praising, encouragement only
7	Book 3, page 6 Q. 2 Read: Complete the table. Multiply the numbers in the top row by 3, 6 and 9 . T explains task. (Only the more able Ps should be expected to complete the last 5 columns.) Review at BB with whole class. Mistakes corrected. Write details on BB if necessary, e.g. $9 \times 15=9 \times 10+9 \times 5=90+45=90+10+35=\underline{135}$ Compare the rows. (e.g. 3rd row is 3 times 1 st row, etc.) \qquad 36 min \qquad	Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising Extend by adding rows for multiplying by 2,4 and 8
8	Book 3, page 6 Q. 3 Read: Fill in the rows and columns for 3, 4, 6, 8 and 9. Make sure you know these multiplication facts by heart. Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected. Let's try to extend the sequences! (e.g. 11 times 3 equals 33, 12 times 3 equals 36, ... 11 times 4 equals 44 , 12 times 4 equals $48, \ldots$, etc. 42 min	Individual work, monitored Use OHT 14 or enlarged copy master or OHP Agreement, self-correcting Whole class in unison With T's help if needed Praising, encouragement only
9	Tables practice T says a multiplication, Ps give answer. Class points out errors. Mistakes corrected at multiplication square. (Use all numbers, including 7×7, as several Ps might know it).	Whole class activity T chooses Ps at random. At speed. Praising only

$3 K 2$	R: Mental calculation C: Revision of multiplication: 7, 0,1 E: Multiples	$\begin{gathered} \text { Lesson Plan } \\ 7 \end{gathered}$
Activity 1	Oral work Let's play Boom! Everyone stand up! We will start counting from 1 but instead of saying every 7th number you must say 'boom'. If you make a mistake you have to sit down. T: '1', P_{1} : '2', P_{2} : '3', P_{3} : '4', P_{4} : '5', P_{5} : '6', P_{6} : 'boom', etc. What can you say about the 'boom' numbers? (multiples of 7, exactly divisible by 7) (Feedback for T)	Notes Whole class activity T chooses Ps at random. If P makes a mistake and sits down, T points to another P to say it correctly (Develops concentration, memory and calculation skills) Praising only
2	Secret Code I have written some multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the letters and the products of the multiplications. (Heading: Lesson number and date) $\begin{array}{llllll} \text { BB: } & 8 \times 5 & \mathrm{~L}(40) & 4 \times 4+10 \div 5 & \mathrm{E} \quad(18) \\ & 4 \times 10-6 & \mathrm{O} & (34) & 5 \times 3+6 \times 4 & \mathrm{D} \quad(39) \\ & 9 \times 2+3 \times 3 & \mathrm{~N} & (27) & 9 \times 9-6 & \mathrm{E} \quad(75) \\ & 8 \times 8-2 \times 4 & \mathrm{~L}(56) & 7 \times 4+52 & \mathrm{~W} \quad(80) \end{array}$ Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB. Who had all 8 correct? Who had $7(6,5$, less than 5$)$? Write the products out again in decreasing order and write the letters underneath. What have you written? Class shouts: 'WELL DONE' BB: $\quad 80, \quad 75, \quad 56,40,39,34,37,18$ W E L L D O N E	Whole class activity but Ps write results individually T has BB or SB already prepared Revise order of operations if necessary Discussion, agreement, selfcorrecting, praising (Feedback for T) In unison P comes to BB to show it. Mistakes corrected
3	Cross-number puzzle Robin Rabbit has a number puzzle for us! He wonders if we can solve it! Read the clues, discuss it with your partner and fill in the missing numbers. Check that the puzzle is correct vertically and horizontally! BB: Across a) The greatest 1 -digit odd number (9) b) Take away half of 20 from 6 times 10. (50) c) Two less than the smallest 3-digit number. (98) Down b) Take away 14 from 8 times 9. (58) d) Add 7 times 7 to the smallest 1 -digit odd number. (50) Review at BB with whole class. Ps come out to fill in missing numbers, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Write details on BB if necessary.	Paired work, monitored Ps have copies of puzzle on desks. Use enlarged copy master Ps discuss, solve and check in pairs. T listens and observes. Develops problem-solving ability and cooperation Feedback for T Discussion, reasoning, selfcorrection, praising $\begin{aligned} \text { e.g. } & 6 \times 10-20 \div 2 \\ = & 60-10=\underline{50} \end{aligned}$

BK3		Lesson Plan 7
Activity 4	Book 3, page 7 Q. 1 Read: Starting from 0, draw jumps of equal length along the number line. Write the numbers landed on below the number line. Review at BB with whole class. A, what numbers did you write? Who agrees? Who wrote something else? etc. BB: $0,7,14,21,28,35,42,49,56,(63,70,77,84,91,98,105, \ldots)$ What can you say about these numbers? (e.g. multiples of 7 ; divisible by $7 ; 7$ times $0,1,2,3, \ldots ; 0,1,2,3, \ldots$ times 7) \qquad 17 min \qquad	Notes Individual work, monitored, (helped) Use enlarged copy master/OHP Reasoning, agreement, selfcorrection, praising Continue orally to (beyond) 100 in unison (with T's help) (Expressing common properties in different ways)
5	Book 3, page 7 Q. 2 Read: Write an addition and a multiplication about the picture. Review at BB with whole class. Mistakes corrected. BB: $7+7+7+7+7+7+7=7 \cdot 7=\underline{49}$ T uses the words 'product', 'factor', 'sum', 'total'. Elicit that there are 7 terms in the addition, and each term is 7. 20 min	Individual work, monitored, (helped) Use enlarged copy master/ OHP Discussion, agreement, self-correction, praising Ps encouraged to use these words too. (Feedback for T)
6	Additions and multiplications Let's write an addition and a BB: a) (1) (1) multiplication about each part. B, what should we write for part a)? Why? Who agrees? Who thinks something else? Similarly for b) and c). What do you notice from these results? Elicit that: - 1 multiplied by any number is that number. - 1 times any number is that number. (e.g. $2 \cdot 1=1 \cdot 2=2$) T consolidates with other examples orally. What is 47 • 1 (1 times 29, etc.)? (47, 29, etc.) Let's find the row and column for ' 1 ' on the multiplication table.	Whole class activity Drawn or stuck on BB or use enlarged copy master or OHP Ps dictate what T should write BB: a) $1+1=2 \cdot 1=\underline{2}$ b) $\begin{aligned} & 1+1+1+1 \\ & =4 \cdot 1=4 \end{aligned}$ c) $\begin{aligned} & 1+1+1+1+1+1+1+1 \\ & \quad=8 \cdot 1=\underline{8} \end{aligned}$ Agreement, praising.
7	Book 3, page 7 Q. 3 Read: Complete the table. Write the rule in different ways. Review orally with whole class. C, which numbers did you write in the 2 nd row? Why? Each snake has 1 head, so numbers are the same as in top row.) Who agrees/disagrees? D, which numbers did you write in the 3rd row? Why? (A snake has no legs, so however many snakes there are, there will still be no legs.) Who agrees/disagrees? Let's compare the rows in the table. Who could write the rule? Who agrees? Who could write it another way? What do you notice from the results in the table? Elicit that: - zero multiplied by any number is zero. - zero times any number is zero. T consolidates with other examples orally. (e.g. $49 \cdot 0,0 \cdot 93$) Let's find the row and column for ' 0 ' on the multiplication table.	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Agreement, checking, selfcorrecting, praising BB: $\begin{aligned} & S=H, \quad H=S \\ & L=0 \end{aligned}$ Class recites in unison Ps chosen at random. At speed

BK3		Lesson Plan 7
Activity 8	Tables practice T says a multiplication, Ps give product. Class points out errors. Mistakes corrected at multiplication square. (Use all numbers.) 30 min	Notes Whole class activity At speed round class Praise if • table not used
9	Book 3, page 7 Q. 4 Read: Practise multiplication. How many multiplications are there? $(3 \cdot 3=9)$ Try to do them without using your multiplication table. Sit up with your arms folded when you have finished. Start . . . now! Stop! (No more than 3 minutes!) Review orally round class. Ps change their pencil to (red), mark own work and count how many correct out of 9 . Who had 9 correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Refer to multiplication table if problems. 34 min	Individual work, monitored T notes Ps who need to refer to their - table Keep to the time limit Agreement, checking, self-correcting, evaluation Praising, encouragement only T awards good work (e.g. stars, stickers, badges)
10	Book 3, page 7 Q. 5 Read: Complete the multiplication table for 0, 1 and 7. Make sure you know all the multiplication facts by heart. Review at BB with whole class. Ps come out to fill in a row or column. Mistakes corrected. Let's try to extend the sequence for 7 . (e.g. 11 times 7 equals 77, 12 times 7 equals $84, \ldots$, 39 min	Individual work, monitored Use OHP or enlarged copy master. Agreement, self-correcting Whole class in unison, with T's help if needed Praising, encouragement only
11	Money T has 6 purses already prepared with real or model coins. 6 Ps are each given a purse and come to BB to write a multiplication about its contents. Class has to say what coins are in the purse. Purse A: four 5 p coins BB: $4 \cdot 5=\underline{20}$ Purse B: four 50 p coins BB: $4 \cdot 50=\underline{200}$ Purse C: three 10 p coins BB: $3 \cdot 10=\underline{30}$ Purse D: three $£ 1$ coins BB: $3 \cdot 100=\underline{300}$ Purse E: six 2 p coins BB: $6 \cdot 2=\underline{12}$ Purse F: six 20 p coins BB: $6 \cdot 20=\underline{120}$ T (or P) points out the similarity between the amounts in each pair. 45 min \qquad	Whole class activity Agreement, checking, praising At a good pace Consolidate with other examples orally.

BK?	R: Mental calculation: addition, subtraction, multiplication C: Review of multiplication tables. Practice E: Contextual problems. Equations.	$\begin{gathered} \text { Lesson Plan } \\ 7 \end{gathered}$
Activity 1	Odd one out A, which card do you think is the odd one out? Why? Who thinks the same as A? Who thinks another one? Why? etc. Let's check them. (e.g. $3 \cdot 9$, as it has value 27 and all the others have value 18.)	Notes Whole class activity Drawn on BB or use copy master, enlarged, cut out and stuck to BB Reasoning, agreement, praising Accept other valid reasoning
2	Chain calculations Listen carefully, do each calculation in your head and write the final result in your Ex. Bks. (Heading: Lesson number and date.) Nod your heads when you have done each step. a) T : 'Multiply 5 by $3^{\prime} \ldots$ 'add $5^{\prime} \ldots$ ' divide into 4 equal parts', . . . 'multiply by 8 ', . . 'add 8 '. Write down the final result. (48) B, what did you write? Who agrees? Who thinks something else? P who answered correctly comes out to BB to explain to those who did not. BB: $5 \cdot 3=15,15+5=20,20 \quad \mid 4=5,5 \cdot 8=40,40+8=\underline{48}$ b) T : 'One tenth of $30^{\prime} \ldots$. . multiply by $9{ }^{\prime} \ldots$. . add $16 ', \ldots$ 'take away 35 '. Write down the final result (8) C, what did you write? Who agrees? Who thinks something else? P who answered correctly comes out to BB to explain to those who did not. BB: $30 \mid 10=3,3 \cdot 9=27,27+16=43,43-35=\underline{8}$ c) T : 'Write down the sum and the difference of the results in a) and b).' D, what did you write? Who agrees? Who thinks something else? P who answered correctly comes out to BB to explain to those who did not. Who did not understand sum and difference? BB: $48+8=\underline{56}, 48-8=\underline{40}$ d) T : 'How many 8 s are in 48?' (Class shouts out: '6') Who can write the operation on the BB? Who agrees? etc. BB: $48 \mid 8=\underline{6}$ Who had all 4 parts correct? Who made a mistake? etc.	Whole class activity (Develops calculation skills and memory) T waits until majority of Ps nod their heads before moving to next step T repeats each step slowly while P writes on BB Reasoning, agreement, praising T repeats each step slowly while P writes on BB Reasoning, agreement, praising Reasoning, agreement, praising In unison. (or show $\mathrm{n} / \mathrm{cards}$) Agreement, praising Evaluation. Feedback for T
 3	Sets T has BB or SB already prepared with cards stuck to side of BB. Daffy Duck is collecting all the cards which have value 24 and Piggy is collecting cards which have value 36. Let's help them. Ps come to BB to choose a card and stick in the appropriate set, explaining reasoning. Class agrees/disagrees. BB: Who can tell me other calculations which would go in Daffy Duck's (Piggy's) set?	Whole class activiry Use copy master, enlarged, coloured, cut out and stuck to BB At a good pace Reasoning, agreement, praising Orally, or written in Ex. Bks. Praise creativity

BK3		Lesson Plan
Activity 8	Book 3, page 8 Q. 3 Read: Fill in the missing numbers. Elicit that there are $3 \times 6=18$ calculations (12 multiplications and 6 divisions). Let's see how many you can do in 5 minutes! Try to do them without using your multiplication table. You can write details in your Ex. Bks if it will help you. Sit up with your arms folded when you have finished. Start . . . now! Stop! Review orally round class. If problems write details on BB . e.g. $15 \times 6=10 \times 6+5 \times 6=60+30=\underline{90}$ Ps change to coloured pencil, mark own (or neighbour's) work and count how many correct out of 18 . Who had all correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Who did the same? etc. 38 min	Notes Individual work, monitored (helped) Time-limit differentiation Ps check work if they finish early Agreement, self-correction, evaluation, praising Award stars, stickers, badges, etc. for good work
9	Book 3, page 8 Q. 4 Read: Do the calculation in each part and colour it according to the result. T explains task. Revise order of operations. Ps do calculations first and write the results above (or beside) the operations. Review at BB with whole class. Mistakes corrected. Then Ps colour the picture according to the key. (This could be done, or finished off, at home.) Solution: $\begin{aligned} & \text { KEY } \\ & 25 \rightarrow \text { dark blue } \\ & 12 \rightarrow \text { red } \\ & 10 \rightarrow \text { yellow } \\ & 16 \longrightarrow \text { brown } \\ & 64 \longrightarrow \text { green } \\ & 24 \rightarrow \text { white } \\ & 45 \rightarrow \text { light blue } \end{aligned}$	Individual work, monitored (helped) Use enlarged copy master or OHP Write details on BB if there are problems Reasoning,agreement, selfcorrection, praising Ps could draw their own patterns or simple pictures and make up their own keys and operations for other Ps to solve.

BK3	R: Mental calculation C: Revision: division tables $(2,5,10)$ E: Factors	$\begin{gathered} \text { Lesson Plan } \\ 9 \end{gathered}$
Activity 1	Secret numbers I am thinking of a number. You must find out what it is by asking me questions but I can answer only 'yes' or 'no'. e.g. 51: it is 1-digit? (No) Is it 2-digit? (Yes) Is it less than 50 ? (No) Is it more than 60? (No) Is it even? (No) Is it more than 55? (No) Is the difference between its digits 2 ? (No) It is 51 . (Yes) (Ps can think of numbers and answer questions about it too.)	Notes Whole class activity Encourage Ps to ask logical questions and keep in mind clues already given Develops memory and concentration Praise creative questions
\| 2	Book 3, page 9 Q. 1 Read: Answer the questions with divisions. Check with multiplications. a) For how many $2 p$ coins can you exchange these 201 p coins? b) For how many 5 p coins can you exchange these 201 p coins? c) For how many $10 p$ coins can you exchange these 201 p coins? Deal with one part at a time. Ps can have model money on desks if necessary, or can circle the coins in relevant groups. Review at BB with whole class. A, what division did you write and how did you check it? Who agrees? Who wrote some thing else? etc. Similarly for parts b) and c). T uses the words 'dividend', 'divisor', 'quotient' and shows what they are on the BB.	Individual work, monitored, helped T could have model coins stuck to BB or 3 copies of enlarged copy master or OHP Discussion at BB (SB, OHP) Agreement, checking, selfcorrection, praising BB: a) $20 \div 2=\underline{10}, \underline{10} \times 2=20$ b) $20 \div 5=\underline{4}, 4 \times 5=20$ c) $20 \div 10=\underline{2}, \quad \underline{2} \times 10=20$ BB: $20 \div 10=2$ dividend divisor quotient
3	Jumps along the number line a) Frog is jumping 10 units at a time back along the number line. How many jumps will he need to reach 0 if he starts at 40 ? B, come and show us Frog's jumps while we keep count. '1, 2, 3, 4' BB: Who can write it on the BB . Who agrees? Who thinks something else? etc. Let's check. BB: $40 \div 10=\underline{4}$ Check: $4 \times 10=40$ Let's think of it in another way. (subtraction) Repeat for starts at 100 and 170. b) Sparrow is jumping 5 units at a time back along the number line. How many jumps will he need to reach 0 if he starts at 35 ? C, come and show us Sparrow's jumps while we keep count. BB: Who can write it on the BB. Who agrees? Who thinks something else? etc. Let's check. BB: $35 \div 5=\underline{7}$ Check: $\underline{7} \times 5=35$ Let's think of it in another way. (subtraction) Repeat for starts at 65 and 100.	Whole class activity Use enlarged copy master or OHP or show jumps on class number line. At a good pace Reasoning, agreement, checking, praising BB: $40-10-10-10-10=0$ (10 is contained in 404 times) In unison: '1, 2, 3, .., 6, 7 ' Reasoning, agreement, checking, praising BB: $35-5-5-5-5-5-5-5=0$ (5 is contained in 357 times)

$B<3$	
Activity	
4	PBY3a.page 9
	Q. 2 Read: Answer the questions with divisions. Check with multiplications. How many marbles would each child get if these marbles were shared equally among:
	a) 2 children b) 5 children c) 10 children d) 20 children e) 1 child?

How many marbles are there? (20)
Deal with one part at a time. Ps can have counters, etc. on desks if necessary, or can circle the marbles in relevant groups.
Review at BB with whole class. D, how many marbles would 2 children get? (10) Who agrees? Who thinks something else? What division did you write? etc. Similarly for parts b) to e).

T uses the words 'divisible by' and 'factor'. e.g. 20 is divisible by 5 (i.e. with no remainder); 5 is a factor of 20.

Also $4+4+4+4+4=20$. There are 5 groups of 4 in 20 . 20 divided by 5 is 4 . 1 fifth of 20 is 4 .

Lesson Plan 9

Notes

Individual work, monitored, helped
T could have counters stuck to BB or 5 copies of enlarged copy master or OHP

Discussion at BB (SB, OHP)
Agreement, checking, selfcorrection, praising

BB:
a) $20 \div 2=\underline{10}, \underline{10} \times 2=20$
b) $20 \div 5=\underline{4}, 4 \times 5=20$
c) $20 \div 10=\underline{2}, \underline{2} \times 10=20$
d) $20 \div 20=1, \quad 1 \times 20=20$
e) $20 \div 1=\underline{20}, \underline{20} \times 1=20$

Use these words with other parts too. Feedback for T.

5 Money 1

I want to exchange 1 p coins for 10 p coins. How many 10 p coins would I get and how many would remain if I had:
a) 201 p coins
BB: $20 \div 10=\underline{2}$ Check: $\underline{2} \times 10=20$
b) 401 p coins
BB: $40 \div 10=4$ Check: $4 \times 10=40$
c) 271 p coins
BB: $27 \div 10=\underline{2}$, remainder 7 Check: $\underline{2} \times 10+7=20+7=27$
d) 461 p coins
BB: $46 \div 10=4$, remainder 6 Check: $4 \times 10+6=40+6=46$
e) 1001 p coins?
BB: $100 \div 10=\underline{10}$
Check: $10 \times 10=100$

T revises 'factors' and 'multiples'. e.g. 10 is a factor of 40,40 is a multiple of 10. (Similarly for all whole tens.)

Money 2

This time I want to exchange 1 p coins for 5 p coins. How many 5 p coins would I get and how many would remain if I had: BB:
a) 101 p coins
$(10 \div 5=\underline{2}$
Check: $\underline{2} \times 5=10$)
b) 301 p coins
$(30 \div 5=\underline{6}$
Check: $\underline{6} \times 5=30$)
c) 701 p coins
$(70 \div 5=\underline{14}$
Check: $14 \times 5=70$)
d) 1001 p coins
$(100 \div 5=\underline{20}$
Check: $\underline{20} \times 5=100$)
e) 251 p coins
$(25 \div 5=\underline{5}$
Check: $5 \times 5=25$)
f) $55 \quad 1 \mathrm{p}$ coins
(55 $\div 5=\underline{11}$
Check: $11 \times 5=55$)
g) 461 p coins
($46 \div 5=\underline{9}$, remainder 1 ,
Check: $\underline{9} \times 5+1=45+1=46$)
h) 741 p coins? $\quad(74 \div 5=\underline{14}$, remainder 4
Check: $14 \times 5+4=70+4=74)$

Elicit that, e.g., 5 is a factor of 30,30 is a multiple of 5 . (Similarly for all numbers greater than 0 which have 0 or 5 as the units digit.)

Whole class activity
Ps come out to write a division on BB and check it with a multiplication.

Class agrees/disagrees
Reasoning, agreement, checking, praising
If problems, demonstrate with model money
(Or done as individual work in Ex.Bks.)
Ps give other examples

Individual work in Ex. Bks, monitored, helped

Ps have model money on desks if needed

T has SB or BB already prepared

Review at BB with whole class Agreement, checking, self-
correcting, praising
Write details on BB if problems, e.g.

$$
55 \div 5=50 \div 5+5 \div 5
$$

$$
=10+1=11
$$

Ps give other examples too.

BK3		Lesson Plan 9
Activity 7 Extension	Fractions Study these diagrams. What part of each shape is shaded? BB: b) c) d) 1 half $(16 \div \underline{2}=8)$ $(25 \div 5=5)$ $(10 \div 5=2)$ $(10 \div \underline{2}=5)$ Ps come out to count the total number of inner rectangles, then the number shaded, and write the fraction, explaining reasoning. Who agrees? Who thinks something else? etc. Who can write it as a division? What part of each shape is not shaded? (1 half, 4 fifths, 4 fifths, 1 half)	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Deal with one part at a time a) 8 shaded out of 16 b) 5 shaded out of 25 c) 2 shaded out of 10 d) 5 shaded out of 10 Reasoning, agreement, checking, praising Discussion, agreement
8	Dolphins In the water park show, the balls of the dolphins have been mixed up. Let's help the dolphins to find their own balls! Ps come out to choose a dolphin and put the correct ball beneath it, saying the complete division. Class points out errors. What numbers would be on the balls belonging to these dolphins? T says a division (involving 2,5 or 10). Ps say the quotient. e.g. $22 \div 2$ (11); $40 \div 10(4) ; 25 \div 5(5) ; 15 \div 5(3), 24 \div 2$ (12); etc.	Whole class activity Use copy master, enlarged, coloured and cut out At a good pace Ps may use their multipication tables if necessary Agreement, checking, praising At speed. Ps chosen at random. Class agrees/disagrees. Praising. (or Ps could give other divisions for each ball)
9	Book 3, page 9 Q. 3 Read: Colour different fractions of the shape. T elicits that parts a), b) and c) have the same shape. What can you say about it? (4 rows of 5 squares: $4 \times 5=20$ squares) Think how many squares would be in each fraction before you start to colour the shapes. Review at BB with whole class. Deal with all mistakes. Discuss the fact that the shaded squares can be in different positions, but that the number of shaded squares is the same. 41 min \qquad	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, agreement BB: a) 1 half of $20=20 \div 2=\underline{10}$ b) 1 fifth of $20=20 \div 5=\underline{4}$ c) 1 tenth of $20=20 \div 10=\underline{2}$ (Ps show different solutions)
10	Book 3, page 9 Q. 4 Read: Draw a line 9 cm long. Divide it into thirds. T revises how to draw a certain length of line accurately. Ps draw 9 cm line first. Discuss how to divide it into thirds. (3 equal parts, each part is 1 third) BB: 3 thirds (1 whole): $9 \mathrm{~cm}, 1$ third: $9 \mathrm{~cm} \div 3=3 \mathrm{~cm}$ Ps mark with short, vertical lines every 3 cm starting from LHS.	Ps have rulers on desks Individual work, monitored, helped Discussion, agreement, checking, praising accuracy Check: $3 \times 3 \mathrm{~cm}=9 \mathrm{~cm}$

BK	R: Mental calculation C: Revision: division tables (2,4,8); (1, 0) E: Factors and multiples	$\begin{gathered} \text { Lesson Plan } \\ 10 \end{gathered}$
Activity 1	Sequences a) The first term of this sequence is 100 . Each following term is 4 less than the previous term. Continue the sequence. T: $100, \mathrm{P}_{1}: 96, \mathrm{P}_{2}: 92, \mathrm{P}_{3}: 88, \mathrm{P}_{4}: 84$, etc. b) What could the rule be for this sequence? $\mathrm{T}: ~ ' 80,72,64,56, \ldots$ ' A, what do you think? Who agrees? Who thinks something else? (decreasing by 8) Let's continue the sequence: $48,40,32,24,16,8,0,(-8, \ldots)$	Notes Whole class activity T chooses Ps at random As far as Ps are able Ask several Ps Agreement, praising Whole class in unison
2	Book 3, page 10 Q. 1 Read: Write a division about each picture. Check with a multiplication. Talk about the pictures first: a) 7 squares, each made up of 4 sticks, 28 sticks altogether. b) 7 rows of circles, 8 circles in each row, 56 circles altogether. Review at BB with whole class. Deal with all mistakes. What do you notice about the total numbers in parts a) and b)? (56 is twice 28; 28 is half of 56) Let's find them in our multiplication table. (In columns/rows for 4, 7, 8)	Individual work, monitored Use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising Feedback for T Ps come out to point. (Ps can use own tables too.)
3	Book 3, page 10 Q. 2 Read: Write a division to show how 32 marbles can be shared equally among: a) 2 children, b) 4 children, 8 children. Deal with one part at a time. Ps can have counters, etc. on desks if necessary and put into $2(4,8)$ equal groups. Review at BB with whole class. B, how many marbles would 2 children get? (16) Is \mathbf{B} correct? How did you calculate it? Who did it another way? etc. (e.g. 1st group of 10 to $\mathrm{A}, 2 \mathrm{nd}$ group of 10 to B, half of 3 rd group of 10 (5) to A and half to B, 1 of the remaining pair to A , the other to B) How can we write it as a division? Who agrees? etc. Similarly for b) and c). BB: a) $32 \div 2=20 \div 2+10 \div 2+2 \div 2=10+5+1=16$ Check: $16 \times 2=10 \times 2+6 \times 2=20+12=32$ b) 32 marbles $\div 4=\underline{8}$ marbles Check: $\underline{8} \times 4=32$ c) 32 marbles $\div 8=\underline{4}$ marbles Check: $4 \times 8=32$ 13 min	Individual work, monitored, (helped) T could have counters stuck to BB as in diagram in Pb Discussion at BB (SB, OHP) Demonstrate with Ps at front of class only if necessary Agreement, checking, selfcorrection, praising Feedback for T T uses the words 'factor', 'multiple': e.g. 4 is a factor of 32 32 is a multiple of 4
4	Division practice T says a division (involving 2, 5, 10, 4 or 8). Ps say the quotient and check it with a multiplication. e.g. T: '48 $\div 8$ ' ($\mathrm{P}_{1}: ~ ' 6$, because 6 times 8 is 48 '); T : ' $40 \div 4$ ', ($\mathrm{P}_{2}:{ }^{\prime} 10$, because 10 times 4 is 40^{\prime}) Similarly for $16 \div 2,30 \div 10,45 \div 5,40 \div 5,48 \div 8$, etc.	Whole class activity At speed. Ps chosen at random Ps may use their multiplication tables if needed Praising, encouragement only

BK3		Lesson Plan 10
Activity 5 Extension	Sets Duck is collecting numbers divisible by 4 and Frog is collecting numbers divisible by 5 . Let's help them! BB: Ps come out to choose a number and put in the correct set, explaining reasoning. Class agrees/disagrees. Debate on placing 20 and 40 (as both are divisible by 4 and also by 5). What can we do to make it fair? (Could provide 2 cards for each of these numbers so that there is no argument!) T: I have another idea! T shows how the circles for Duck and Frog can be redrawn so that they overlap or intersect). Where would 20 and 40 go now? (in the overlap or intersection) Let's call Duck's set, set D and Frog's set, set F. How many numbers (elements) are in: a) i) $\operatorname{set} \mathrm{D}$ (4) ii) $\operatorname{set} \mathrm{F}$ b) sets D and F altogether c) set D and also in set F (i.e. in the intersection of set D and set F)? T introduces the symbols : n (D) [number of elements in set D], \cup [union], \cap [ntersection]. Do not expect Ps to learn them yet, just to become familiar with them.	Notes Whole class activity Use copy master, enlarged, coloured and cut out, with numbers stuck to side of BB as in diagram (or use OHP with Ps writing in the numbers) At a good pace Reasoning, agreement, checking, praising Ask several Ps what they think BB: Discussion, demonstration BB a) $\mathrm{n}(\mathrm{D})=4, \mathrm{n}(\mathrm{F})=4$ b) $n(D \cup F)=6$ c) $n(D \cap F)=2$ Praising, encouragement only [Preparation for intersection of two sets]
6	Operations I am going to show you some operations. If you think it is correct, clap once but f you think it is wrong, put your hands on your heads when I say. T shows one operation at a time. Is it correct? Show me . . . now! a) $32 \mid 4=8 \quad$ (clapping) b) $40\|10+24\| 8=8$ (hands on heads) $4+3 \neq 8,4+3=7$ c) $20 \mid 5-1 \cdot 3=1 \quad$ (clapping) $4-3=1$ d) $9 \cdot 4+2 \cdot 3=42 \quad$ (clapping) $36+6=42$ e) $28-3 \cdot 4=10$ (hands on heads) $28-12 \neq 10,28-12=16$ 25 min	Whole class activity T has SB already prepared and uncovers one operation at a time (or has operations on flash cards and holds up one at a time) Responses given in unison Done in good humour Ps explain why some responses are wrong and correct them.
7	Book 3, page 10 Q. 3 Read: Complete the table. T first elicits how many legs a spider (chair) has. How many people, chairs and spiders are there if you can see this number of legs? (T points to top row of table.) Review at BB with whole class. C, which numbers did you write in the 2 nd row? Why? (Each person has 2 legs, so the number of people is half the number of legs, or number of legs divided by 2 .) Who agrees? etc. Similarly for 3rd and 4th rows. Why are there only zeros in the first column? (No legs, so no people, chairs or spiders) Why are there dashes in the table? (numbers not exactly divisible by 2,4 , or 8 , so there would be legs remaining - not possible in reality!)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising. Compare the rows and write the rules. e.g. $L=2 \cdot P=4 \cdot C=8 \cdot S$ Discuss the role of zero: $\text { e.g. } 0 \mid 2=\underline{0}, \text { as } \underline{0} \cdot 2=0$

BK3		Lesson Plan 10
Activity 8	Inequalities Which is more? How many more? T has BB or SB already prepared: BB: a) $\quad 6$ 10 a) $60 \div 10$ $20 \div 2$ b) $18 \stackrel{9}{\div} 2$ Ps come out to write result \square $36 \stackrel{9}{\div} 4$ above LHS, then RHS, then fill c) $35 \stackrel{7}{\div} 5$ \square $18 \stackrel{9}{\div} 2$ in the missing signs (and numbers where relevant). d) $64 \stackrel{8}{\div} 8$ \square $32 \stackrel{8}{\div} 4$ Class agrees/disagrees. e) $10 \stackrel{5}{\div} 2$ \square $10 \div 10$	Notes Whole class activity Or use enlarged copy master or OHP At a good pace Reasoning, agreement, checking, praising Refer to class number line if there are problems.
9	Fractions Ps have copies of copy master on desks. What are these shapes? (square, rectangle, triangle) BB: a) b) Colour in the part I say. After each part, show me your colouring when I tell you. P who responds correctly explains to Ps who are wrong. a) 1 quarter Show me . . . now! (4 squares coloured) $16 \div 4=4$ b) 1 eighth Show me . . . now! (3 squares coloured) $24 \div 8=\underline{3}$ c) 1 half Show me . . . now! (8 triangles coloured) $16 \div 2=\underline{8}$ 40 min	Whole class activity but colouring as individual work T uses enlarged copy master or OHP At a good pace Ps show colouring in unison Reasoning, agreement, praising Praise creative colouring (Or done as whole class activity with Ps coming to BB)
10	Book 3, page 10 Q. 4 Read: Practise division. Elicit that there are $3 \times 6=18$ divisions and that in part b) the answer is obtained by dividing the dividend by the quotient. Let's see how many you can do in 3 minutes! Try to do them without using your multiplication table. Sit up with your arms folded when you have finished. Start . . . now! Stop! Review orally round class. (Check with inverse operation.) Ps change to coloured pencil, mark own work and count how many correct out of 18 . Who had all correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Who did the same? etc. Discuss similar divisions: e.g. $16 \div 8=\underline{2}, 160 \div 8=\underline{20}, \quad 160 \div 80=\underline{2}$ - if dividend is 10 times more, quotient is also 10 times more; - if dividend and divisor are 10 times more, then quotient stays the same Discuss zero as dividend and divisor: e.g. $\underline{0} \div 4=0$, because $0 \times 4=\underline{0}$ BUT $4 \div 0$ is impossible because $\square \times 0 \neq 4$ Consolidate with similar divisions orally if there is time (e.g. $12 \div 6,120 \div 6,120 \div 60 ; \underline{0} \div 10$)	Individual work, monitored Initial discussion with class Keep to time limit (Time differentiation) Agreement, checking, self-correction, praising Feedback for T Discussion, agreement Inverse operation used as a check or proof At speed round class. Praising

BK3	R: Mental calculation C: Revision: division tables $(3,6,9)$ E: Factors and multiples	$\begin{gathered} \text { Lesson Plan } \\ 11 \end{gathered}$
Activity 1	Boom! Let's play Boom! Everyone stand up! a) Start at 10 and say 'boom' instead of every number divisible by 3 . Ps: 10,11 , boom, 13,14 , boom, 16,17 , boom, \ldots b) Start at 13 and say 'boom' instead of every number divisible by 6 . Ps: $13,14,15,16,17$, boom, $19,20,21,22,23$, boom, $25, \ldots$ c) Start at 18 and say 'boom' instead of every number divisible by 9 . Ps: boom, 19, 20, 21, 22, 23, 24, 25, 26, boom, 28, ... 5 min	Notes Whole class activity T chooses Ps at random. If P makes a mistake he/she sits down and T points to another P to say it correctly. Elicit that the 'boom' numbers are multiples of 3 $(6,9)$ Done in good humour!
2	Mental practice T says divisions and multiplications. Ps write only answers in Ex. Bks. (Heading: Lesson number and date) a) $32 \quad 4$ b) $3 \cdot 6$ c) $30 \quad 3$ d) $24 \quad 4$ e) $56 \mid 8$ f) $70 \quad 10$ g) $9 \cdot 7$ h) $45 \quad 9$ Review orally round class. Ps change pencils and mark own work. Who had $8(7,6,5$, less than 5$)$ correct? Mistakes corrected. \qquad 9 min \qquad	Whole class activity but individual work in Ex. Bks. At a good pace Agreement, self-correction, evaluation, praising
3	Oral work Tell me a true statement about the number 6. Think of different ones. (e.g. 6 is an even number; 6 is a 1 -digit number; 6 is equal to 2 . 3 ; 6 is half of $12 ; 6$ is 1 quarter of $24 ; 6$ is a multiple of $2(1,3,6)$; 6 is divisible by $3(1,2,6) ; 6$ is equal to $10-4 ; 6$ is a factor of 12 $(18,24, \ldots) ; 6$ is 1 tenth of 60,6 is 2 thirds of $18 ; 6$ is 94 less than 100, etc.)	Whole class activity T chooses Ps at random Class agrees/disagrees Encourage creativity Praising
4	Book 3, page 11 Q. 1 Read: Write a division about each picture. Check it with a multiplication. Talk about each picture first. (e.g. 7 triangles, each triangle has 3 sides, 21 sides altogether; 8 hexagons, each hexagon has 6 sides, 48 sides altogether; 6 dominoes, each domino has 9 dots, 54 dots altogether) Review at BB with whole class. Mistakes corrected. BB: a) $21 \mid 3=7 \quad$ Check: $7 \cdot 3=21$ b) $48 \mid 6=8 \quad$ Check: $8 \cdot 6=48$ c) $54 \mid 9=6 \quad$ Check: $6 \cdot 9=54$ T uses the words 'dividend', 'divisor', 'quotient', 'factor', 'divisible by', 'factor'. 19 min	Individual work, monitored Use enlarged copy master or OHP Initial class discussion Involve several Ps Reasoning, agreement, self-correction, praising (Feedback for T) Ps find in • tables (class and individual tables) e.g. 54 is a multiple of 9 54 is divisible by 6 9 is a factor of 54

BK3		Lesson Plan 11
Activity 5	Book 3, page 11 Q. 2 Read: Write a division to show how 54 sweets can be shared equally among: a) 3 children, b) 6 children, 9 children. Deal with one part at a time. Ps can have counters, etc. on desks if necessary and put into $3(6,9)$ equal groups. Review at BB with whole class. A, how many sweets would each of the 3 children get? (18) Is A correct? How did you work out the answer? Who did it another way? etc. (e.g. each child would get one row of sweets each.) How can we write it as a division? Who agrees? etc. Similarly for b) and c). BB: a) $54\|3=30\| 3+24 \mid 3=10+8=\underline{18}$ Check: $18 \cdot 3=10 \cdot 3+8 \cdot 3=30+24=54$ b) 54 sweets $\mid 6=\underline{9}$ sweets \quad Check: $\underline{9} \cdot 6=54$ c) 54 sweets $\mid 9=\underline{6}$ sweets \quad Check: $\underline{6} \cdot 9=54$ T (Ps) points out the dividend, divisor, quotient in each division. 24 min	Notes Individual work, monitored, (helped) Use enlarged copy master or OHP (or real sweets!) Discussion at BB (SB, OHP) Demonstrate with Ps at front of class only if necessary Agreement, checking, selfcorrection, praising Feedback for T Ps find in • tables Ps start to use the words factor, multiple, divisible by: 3,6 and 9 are factors of 54, 54 is a multiple of 3,6 and 9 54 is divisible by 3,6 and 9
6	Division practice Let's practise division! T says a division, Ps say quotient and check with multiplication (inverse operation). (Ps can ask the divisions too.) e.g. $48\|6,27\| 3,18\|9,30\| 5,72 \mid 8$, etc. 27 min	Whole class activity T chooses Ps at random At speed. Ps may use • table Agreement, praising
7	Chain calculation Listen carefully, do the calculations and write the final result in your Ex. Bks. (Heading: Lesson number and date.) Nod your heads when you have done each step. a) T : 'One eighth of $32^{\prime} \ldots$ ' multiply by $9^{\prime} \ldots$ 'divide by 6 ', ... 'add 14'. Write down the final result. (20) B, what is your answer? Who agrees? Who thinks something else? P who answered incorrectly comes out to BB to work through it. BB: $32\|8=4,4 \cdot 9=36,36\| 6=6,6+14=\underline{20}$ b) T : 'One ninth of $90^{\prime} \ldots$. .add $17^{\prime} \ldots$ ' 'divide by 9 ' . . 'add 15 '. . . 'divide by 6 '. Write down the final result (3) C, what is your answer? Who agrees? Who thinks something else? P who answered incorrectly comes out to BB to work through it. BB: $90\|9=10,10+17=27,27\| 9=3,3+15=18$, $18 \mid 6=\underline{3}$	Whole class activity (Develops calculation skills and memory) T gives Ps time to calculate (or Ps can show result with number cards/on scrap paper) Reasoning, agreement, praising T (or P) repeats each step while P writes on BB As above Feedback for T

BK2		Lesson Plan 11
Activity 8 Extension	Book 3, page 11 Q. 3 Read: Complete the table. We have made some shapes with sticks (rods). What can you tell me about the shapes? (Row 2: triangle, 3 sticks; Row 3: hexagon, 6 sticks; Row 4: 1 large triangle made from 3 small triangles, $3 \cdot 3=9$ sticks) Why are there only zeros in the first column? (No sticks, so no shapes can be made.) Why are there dashes in the table? (numbers not exactly divisible by 3,6 , or 9 , so there would be sticks remaining.) Review at BB with whole class. D, which numbers did you write in the 2 nd row? Why? (1 third of numbers in top row) Who agrees? etc. Who wrote something else? etc. Similarly for 3rd and 4th rows. Instead of the dashes, let's write the number of shapes which could be made and the number of sticks remaining.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Initial whole class discussion Time differentiation (only more able Ps expected to get beyond 30) Reasoning, agreement, selfcorrection, praising. Compare the rows and write the rules. e.g. $\begin{aligned} & S=3 \cdot t=6 \cdot H=9 \cdot T \\ & H=2 \cdot t, T=t \mid 3, \\ & t=1 \text { third of } S \text {, etc. } \end{aligned}$
9	Book 3, page 11 Q. 4 Elicit that there are 3 - $6=18$ divisions; in part b) the missing number (divisor) is found by dividing the dividend by the quotient; in the last three in part c) the missing dividend is found by multiplying the divisor by the quotient. Let's see how many you can do in 3 minutes! Try to do them without using your multiplication table. Sit up with your arms folded when you have finished. Start . . . now! Stop! Review orally round class. (Check with inverse operation.) Ps change to coloured pencils, mark own work and count how many correct out of 18 . Who had all correct? Who had $1(2,3,4)$ mistakes? What were your mistakes? Who did the same? etc. Discuss similar divisions: e.g. $18\|3=\underline{6}, 180\| 3=\underline{60}, 180 \mid 30=\underline{6}$ - if dividend is 10 times more, quotient is also 10 times more; - if dividend and divisor are 10 times more, then quotient stays the same Discuss zero as dividend and divisor: e.g. $\underline{0} \mid 3=0$, because $0 \cdot 3=\underline{0}$ BUT $3 \mid 0$ is impossible because - $0 \neq 3$	Individual work, monitored Initial discussion with class Keep to time limit (Time differentiation) Agreement, checking, self-correction, praising Feedback for T Discussion, agreement Inverse operation used as a check or proof Consolidate with other examples orally if necessary

BTK3	R: Mental calculation C: Revision: division table for 7 E: Order of operations. Equations	$\begin{gathered} \text { Lesson Plan } \\ 12 \end{gathered}$
Activity 1	Boom! Let's play Boom! Everyone stand up! a) Start at 10 and say 'boom' instead of every multiple of 7. Ps: $10,11,12,13$, boom $, 15,16,17,18,19,20$, boom,\ldots b) Start at 20 and say 'boom' instead of every number which is either divisible by 7 or has 7 as the units digit. Ps: 20 , boom, $22,23,24,25,26$, boom, boom, $29,30,31, \ldots$	Notes Whole class activity If Ps makea mistake they sit down and next P answers correctly. At speed round class (Develops concentration and quick thinking) Done in good humour!
2	Matching pairs Let's put these flowers into pairs. How could we do it? (Type or value) Let's pair them up according to their value. Ps come out to BB to choose a pair, explaining reason for choice. Class agrees/disagrees. Ps give inverse operation (multiplication). What do you notice? ($63 \div 9$ does not have a partner) Let's think of one. T asks several Ps for a matching division. (e.g. $35 \div 5,14 \div 2$) \qquad 10 min \qquad	Whole class activity Drawn on BB and Ps join up or use copy master, enlarged, coloured, cut out and flowers stuck to BB. At a good pace (Practice of division tables. T notes Ps' knowledge of 7) Reasoning, agreement, checking, praising
3	Book 3, page 12 Q. 1 Read: Complete the table. Elicit that a dash means that there is not an exact number of weeks - there would be days remaining. Review orally round class. Mistakes corrected. Write details on BB if there are problems. e.g. $\quad 21$ days $\div 7$ days $=3$ (times), $84 \div 7=70 \div 7+14 \div 7=10+2=\underline{12}$ Let's change the dashes to the number of whole weeks and the number of days left over. e.g. e.g. $25 \div 7=3$, remainder $4 ; 25$ days is 3 weeks and 4 days BUT 25 is not a multiple of 7,25 is not divisible by 7 and 7 is not a factor of 25 !	Individual work, monitored, helped Table written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, praising Whole class discussion Refer to calendar if necessary T says a number, Ps say whether or not it is a multiple of 7 .
4	Book 3, page 12 Q. 2 Read: Divide the 35 sticks into 7 equal groups. Check your calculation in two ways. Review at BB with whole class. A, how many sticks are in each group? (5) What calculation did you write? How did you check it? Who agrees with \mathbf{A} ? Who did it another way? etc. (e.g. half each of the 3 groups of 10 sticks to make 6 groups of 5 sticks plus the remaining group of 5 gives 7 groups of 5)	Individual work, monitored, (helped with the checking) Ps can have sticks on desks if needed Reasoning, agreement, selfcorrection, praising BB: $35 \div 7=5$ Check: $5 \times 7=35,7 \times 5=35$

BKB		Lesson Plan 12
Activity 5	Sets Study the sets of numbers. What could be written in the labels? BB: Deal with one part at a time. Ps suggest labels and T writes on BB . Class agrees/disagrees. e.g. Ps: a) Multiples of 7; divisible by 7 b) Multiples of 3 (9); divisible by 3 (9); the sum of their digits is 9 c) Multiples of $8(4,2)$; divisible by $8(4,2)$ Ps give other numbers which would belong to the various sets (to match each of the suggested labels). Class agrees/disagrees.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Ps give reason for choice of label Agreement, praising Additional numbers: e.g. a) $7: 42,63,56,14, \ldots$ b) $9: 9,27,54 \ldots$ c) $\underline{8}: 16,32,48, \ldots$
6	Book 3, page 12 Q. 3 Read: Help Barry Bear find the matching lids for these honey pots. T reminds Ps about order of operations. (division before addition or subtraction) Review at BB with whole class. Mistakes corrected. Solution: 30 min	Individual work, monitored Use enlarged copy master or OHP (or cut out lids and pots and stick to BB) Reasoning, agreement, selfcorrection, praising Feedback for T
 7 Extension	Book 3, page 12 Q. 4 Read: Follow the arrows, do what they tell you and write the final number in the house. Start at 20 and write the results of each step above the animals. Show me your answer with your fingers . . . now! (20) Ps who responded incorrectly work through calculations on BB with help of rest of class. Mistakes corrected. BB: $\begin{aligned} & 20 \div 2=10,10 \div 5=2,2 \times 8=16,16+24=40 \\ & 40 \div 8=5,5 \times 7=35,35-15=20,20 \times 1=\underline{20} \end{aligned}$ If the arrows pointed in the opposite direction, what would the operations be? 35 min	Individual work, monitored Use enlarged copy master or OHP In unison Reasoning, agreement, selfcorrection, praising Orally round class. Praising

BK3	R: Mental calculation (4 operations) C: Revision: division with remainders E: Problems in context. Order of operations. Brackets	$\begin{gathered} \text { Lesson Plan } \\ 13 \end{gathered}$
Activity 1	Jumps along the number line Fox starts at 52 and jumps 6 units at a time back along the number line. Which numbers does he land on? A, come and show us Fox's jumps while we say the numbers. Ps: '52, 46, 40, 34, 28, 22, 16, 10, 4' What is common to all these numbers? (e.g. even, multiples of 2, divisible by 2 , not divisible by $60(50,100)$, when divided by 6 there is a remainder of 4) How many jumps of 6 units did \mathbf{A} take to get from 52 to 4? (8) How many units remained? (4) Who can write it as a division on the BB? Who agrees? Who thinks something else? etc. BB: $52 \div 6=8$, remainder 4 . How can we check it if there is a remainder? \mathbf{B}, come and show us. Is \mathbf{B} correct? etc. Check: $8 \times 6+4=48+4=52$ Repeat for the other numbers landed on, e.g. BB: $46 \div 6=7$, remainder $4 ; 40 \div 6=6$, remainder 4 ; etc. 4 min	Notes Whole class activity Use enlarged copy master or OHP or show jumps on class number line. At a good pace Ask several Ps what they think. If nobody suggests last property, T gives hint Reasoning, agreement, praising BB: 52-6-6-6-6-6-6 $-6-6=4$ (6 is contained in $52 \underline{8}$ times and 4 units remain) T uses the words 'dividend', 'divisor', 'quotient', 'remainder'
2	Book 3, page 13 Q. 1 Read: Grandpa gave 23 marbles to his 3 grandchildren. They want to share out the marbles equally. How many marbles will each grandchild get and how many marbles will remain? Ps can have counters, etc. on desks if necessary (or circle or colour marbles in Pbs). Review at BB with whole class. B, how many marbles would each of the 3 children get and how many would remain? (7) Is B correct? How did you work out the answer? Who did it another way? etc. (e.g. each child would get one row of 6 marbles +1 marble each from 4th row, leaving 2 marbles) (Note that marbles are too hard to cut into thirds, so the two remaining marbles cannot be shared out equally.) How can we write it as a division? Who agrees? etc. BB: Data: 23 marbles, 3 grandchildren Plan: 23 marbles $\div 3$ (or $m \div g$) Calculation: $23 \div 3=$ 7, remainder 2 Check: $7 \times 3+2=21+2=23$ Answer: Each child gets 7 marbles and 2 marbles remain.	Individual work, monitored Use enlarged copy master or OHP (or real marbles) Discussion at BB (SB, OHP) Agreement, checking, selfcorrection, praising Discussion, agreement Ps who made a mistake should write it out again correctly in their Ex. Bks.

$B K 3$		Lesson Plan 13
Activity 3	Money Let's exchange $37 £ 1$ coins for $£ 5$ notes. How many $£ 5$ notes would we get and how many $£ 1$ coins would remain? C, come and write an operation about it. Who agrees? Who thinks something else? etc. Let's check. BB: £37\|£5=7 (times), remainder £2; $37 \mid 5=7$, remainder 2 Check: $\underline{7} \cdot 5+2=35+2=37$ Repeat for $£ 2$ coins and $£ 10$ notes, with Ps writing divisions in Ex. Bks as above. Review at BB with whole class. Mistakes corrected. BB: $£ 37 \mid £ 2=18$ (times), remainder $£ 1,37 \mid 2=18$, remainder 1 Check: $18 \cdot 2+1=36+1=37$ £37 \|£10 = 3 (times), remainder $£ 7 ; 37 \mid 10=3$, remainder 7 Check: $\underline{3} \cdot 10+7=30+7=37$	Notes Whole class activity to start Ps may have model money on desks Reasoning, agreement, checking, praising Individual work, monitored, (helped) Reasoning, agreement, selfcorrection, praising Feedback for T
4	Book 3, page 13 Q. 2 Read: What are the secret numbers? Do the calculations and then check your answer. a) Ps read problem and write the calculation without help in Pbs. Write your answer on a scrap of paper (or show with number cards) and show me . . . now! (57) D, tell us how you got your answer. Who agrees? Who did it a different way? Who made a mistake? What kind of mistake? etc. BB: $57 \mid 9=6$, remainder 3 or $6 \cdot 9+3=\underline{57}$ b) Ps read problem and write the calculation without help in Pbs . \mathbf{E}, tell us how you got your answer. Who agrees? Who wrote something else? (First subtract 2 from 47 , then find two numbers which multiply to give a product of 45 .) BB: $47 \mid 5=9$, remainder 2; $9 \cdot 5+2=47$ BB: $47 \mid=9=5$, remainder 2; $5 \cdot 9+2=47$ or $47 \mid 3=$ (15), remainder 2; 15 • $3+2=47$ or $47 \mid 15=3$, remainder $2 ; 15 \cdot 3+2=47$	Individual work, monitored In unison Reasoning, agreement, checking, praising Deal with all mistakes Reasoning, agreement, checking, praising Creative question - more than one solution. Feedback for T
5	Competition T divides class into similar ability groups. I will give you half a minute to continue this sequence in your Ex. Bks for as many terms as you can. Start and stop when I say. The first term is 83. Each of the following terms is 6 less than the previous term. Start . . . now! Stop! Review at BB with whole class. Ps dictate terms and T writes on BB. Ps change pencils and mark own (or neighbour's) work. Mistakes discussed and corrected. P with most correct terms is the winner of each group. Class applauds winners.	Individual work in Ex. Bks Differentiation $\mathrm{T}(\mathrm{P})$ repeats slowly once or twice Ps start/stop in unison BB: $83,77,71,65,59,53,47,41$, $35,29,23,17,11,5,(-1, \ldots)$ Stars (stickers, etc) awarded

		Lesson Plan 13
Activity 6	True or false? T has BB or SB already prepared. Are these statements true or false? If you think it is true clap your hands once and if you think it is false, put your hands on your heads when I say. Deal with one part at a time. T reads statement and says, 'True or false?' Show me . . . now!' Ps who responded correctly explain to Ps who did not. (One P for each side of inequality.) BB: a) $\quad 3 \times 9-2<3 \times(9-2)$ b) $4 \times{ }^{32}+12>4 \times(5+12)$ c) $32 \div \stackrel{12}{\div} 8+8>32 \div(8+8)$ d) $\quad \begin{array}{r}30 \\ 5+5 \times 5\end{array}<\stackrel{50}{(5+5) \times 5}$ e) $\quad \stackrel{19}{7+4 \times 3}<\stackrel{33}{33} \times 3$	Notes Whole class activity Written on BB (SB) or use enlarged copy master or OHP In unison Reasoning, agreement, praising False statements modified to make a true one, either by using \nless or \ngtr or by changing the signs.
7	Book 3, page 13 Q. 3 Read: a) Circle in blue the numbers which give a remainder of 1 when divided by 2 . b) Circle in green the numbers which give a remainder of 2 when divided by 3 . c) Circle in red the numbers which give a remainder of 3 when divided by 4 . Review at BB with whole class. Elicit that the numbers circled in part a) are odd numbers.	Individual work, monitored Agreement, checking, praising Feedback for T BB: a) $5,7,15,21,23$, b) $2,5,20,23,26$ c) $7,15,23$
8	Book 3, page 13 Q. 4 Read: Tom has 78 stamps in his collection. He has already filled 2 stamp albums. How many stamps will go into a third album if each album can hold 30 stamps? Review at BB with whole class. \mathbf{X}, come and explain to us how you worked out the answer. Who agrees with \mathbf{X} ? Who did it a different way? etc. Plan: Stamps altogether: 78 Stamps in 1 full album: 30 Stamps in 2 full albums: 2×30 Stamps in 3rd album: $78-2 \times 30$ Calculation: $78-2 \times 30=78-60=\underline{18}$ $\text { or } \quad 78=2 \times 30+18$ Check: $2 \times 30+18=60+18=78$, and $18<30$ Answer: 18 stamps will go into a third album.	Individual work, monitored, helped Discussion at BB Reasoning, agreement, checking, praising Self-correction (in Ex. Bks if no room in Pbs) Feedback for T
9	Book 3, page 13 Q. 5 Read: One quarter of a line is 2 and a half cm. Draw the whole line. How many quarters are in a whole? (4) Elicit that length of whole line will be 4×2 and a half $\mathrm{cm}=8 \mathrm{~cm}+2 \mathrm{~cm}=\underline{10} \mathrm{~cm}$	Ps have rulers on desks Whole class discussion followed by individual work in drawing the line Praise accuracy

BK3		Lesson Plan 14
Activity 7	Book 3, page 14 Q. 2 Read: During one week, Billy took 8 p out of his piggy bank every day. How much money was in Billy's piggy bank at the beginning of the week if 4 p remained at the end? Picture the story in your head. Is the amount getting bigger or smaller? Write a plan in your Ex. Bks if it will help you. Review at BB with whole class. B, come and explain your answer to us. Who agrees? Who did it a different way? etc. $\begin{aligned} & \text { BB: Plan: } \quad 1 \text { week }=7 \text { days } \quad \text { Had left: } 4 \mathrm{p} \\ & \text { Each day: } 8 \mathrm{p} \quad 7 \text { days: } 7 \times 8 \mathrm{p} \\ & \text { Calculation: } 7 \times 8=56 ; 56+4=\underline{60} \\ & \text { or } 7 \times 8+4=56+4=\underline{60} \\ & \text { or } 60-7 \times 8=4 \end{aligned}$ Answer: Billy had 60 p at the beginning of the week. 35 min	Notes Individual work, monitored, helped Reasoning, agreement, checking, self-correction, praising Check: $60-7 \times 8=60-56$ $=4$ Demonstrate with model (real) money and P as Billy only if there are problems.
8	Book 3, page 14 Q. 3 Read: Change $£ 1$ coins into $£ 5$ notes. Complete the table. T (or P) explains task using completed column of table. Ps fill in remaining columns in Pbs. (Only more able Ps are expected to complete the whole table.) Review at BB with whole class. Ps come out to fill in columns, explaining reasoning. Class agreesdisagrees. Mistakes corrected. Solution: Number of: Write details on $B B$ if necessary, e.g. BB: $10 \times 5+2=50+2=\underline{52}$ $77 \div 5=50 \div 5+27 \div 5=10+5, \mathrm{r} 2=\underline{15}, \mathrm{r} \underline{2}$	Individual work, monitored Table drawn on BB or use enlarged copy master or OHP Differentiation - time limit Reasoning, agreement, checking, self-correcting, praising Notation: ' r ' means 'remainder'
	Book 3, page 14 Q. 5 Read: Which number does each letter represent? Fill in the missing numbers. Do first few equations on BB if necessary. Review orally round class. Mistakes corrected. If problems, write details on BB. T uses names of the components: multiplicand', 'multiplier', 'product', 'dividend', 'divisor', 'quotient', 'remainder'. Solution: $\begin{array}{lllll} a=2 ; & b=4 ; & c=8 ; & d=6 ; \quad e=4 ; & f=63 ; \\ g=56 ; & h=7 ; & i=4 ; & j=8 ; & k=84 ; \end{array} \quad l=64$ Ps make up own equations, with a letter instead of a number, for neighbour (or class) to solve.	Individual work, monitored, helped Demonstration on BB if necessary Reasoning, agreement, self-correction If poblems, write details on BB $\text { e.g. } \begin{aligned} l & =9 \times 7+1 \\ & =63+1=\underline{64} \end{aligned}$ Praising, encouragement only

BK3	R: Mental calculation. 4 operations:,,$+- \times, \div$ C: Division with remainder E: Problems in context. Brackets. Order of operations.	$\begin{gathered} \text { Lesson Plan } \\ 15 \end{gathered}$
Activity 1	Sequences a) The first term of a sequence is 10 . Each following term is 7 more than the previous one. Let's continue the sequence: Ps: $10,17,24,31,38,45, \ldots$, What else can you say about the numbers in this sequence? (When divided by 7 there is a remainder of 3.) b) T : Here is another number sequence. $100,92,84, \ldots$ What could the rule be? (e.g. decreasing by 8 , but accept others) Let's continue the sequence: . . ., 76, 68, 60, 52, 44, 36, 28, 20, (12, 4, $-4, \ldots$) (or as far as Ps are able) What else can you say about the numbers in this sequence? (When divided by 8 there is a remainder of 4 .)	Notes Whole class activity T chooses Ps at random Class points out errors. (Develops calculation skills) Agreement, praising Ask several Ps what they think. In chorus Agreement, praising T notes Ps having difficulty
2	Mental practice Revise order of operations. (If only + or - , or \times or \div, then work from left to right; if + or - and \times or \div, do \times or \div first.) T says divisions and multiplications. Ps write only answers in Ex. Bks. (Heading: Lesson number and date) a) $74-28$ b) $32+19$ c) $21-19$ d) $9 \times 4+5$ e) $40 \div 8 \times 2$ f) $7 \times 7-49$ Review orally with whole class, with Ps explaining how they did each calculation. (e.g. $74-28=74-20-8=54-8=46$) Ps change to coloured pencils and mark/correct own work. Who had $6(5,4$, less than 4$)$ correct? What mistakes did you make? Who did the same? etc. Let's say the results in increasing order: ' $0,2,10,41,46,51$ '	Whole class activity but individual work in Ex. Bks. Ps show they are ready for next one by nodding heads Reasoning, agreement, selfcorrection, evaluation, praising Write details on BB if there are problems. a) 46 b) 51 c) 2 d) 41 e) 10 f) 0 In unison
3	Dividing by 3 Let's help Mick the Monkey to sort the bananas into groups of 3 . BB: b) e) f) $19 \div 3=6, r 1$ $20 \div 3=6, r 2$ $21 \div 3=7$ 6 Ps come out to BB to circle the bananas and to write a division about it. Class agrees/disagrees. What do you notice about the divisions? (divisor is 3 in each case; dividend increases by 1 ; remainders are $1,2,0,1,2,0$. Who can think of a division by 3 which has a remainder of 3 ? (Impossible, as there would be enough for another group of 3.)	Whole class activity Drawn on BB or use enlarged copy master or OHP (P can have copy on desks too) Reasoning, agreement, praising Ps will probably express it in other words, but T repeats using the names of the components.

BK3		Lesson Plan 15
Activity 4	Sharing 13 Sam Snail is having trouble arranging 13 flowers in the vases so that there is the same number in each vase. Let's help him! (4,5, 7 vases) BB: Ps come out to BB to stick flowers in the vases and write a division for each part, explaining reasoning. Class agrees/disagrees. 22 min	Notes Whole class activity Use 4 copies of copy master, enlarged, coloured, cut out and elements stuck to BB (or use plastic flowers or card flowers stuck to straws, and real vases or jam-jars or Ps holding bunches at front of class) At a good pace Reasoning. agreement, checking, praising
5	Book 3, page 15 Q. 1 Read: If the 1st of January was a Saturday, which dates in January were: a) Saturdays, b) Tuesdays, c) Fridays? How many days are there in January? (31) Ps write initial letters of days above, and relevant numbers below, the number line in Pbs to help them. Then they write the dates beside each named day. Review with whole class. Refer to calendar if necessary. What do you notice about the dates? (increasing by 7) Why? (because there are 7 days in a week) If the first day in November is a Wednesday, which dates will be Sundays? (5th, 12th, 19th, 26th)	Individual work, monitored (or done as a whole class activity with Ps coming out to write on Bb or enlarged copy master or OHP) Under T's direction Discussion, agreement, self-correction, praising a) Sat: 1 st, 8 th, 15 th, 22 nd , 29th b) Tue: 4th, 11th, 18th, 25 th c) Fri: 7th, 14th, 21st, 28th T chooses Ps at random Agreement, praising
6	Inequalities T has BB or SB already prepared. What numbers could the shapes be? BB: a) $3 \times 4<\square<2 \times 9 \quad \square: \ldots \ldots \ldots \ldots \ldots \ldots$. b) $24 \div 4<\bigcirc<24 \div 3 \bigcirc: \ldots \ldots \ldots \ldots . .$. Ps read out inequalities (from left to right: ' 3 times 4 is less than the square and the square is less than 2 times 9 '; from the square: 'the square is more than 3 times 4 and less than 2 times 9 '; from RHS: ' 9 times 2 is more than the square and the square is more than 3 times 4^{\prime}). Ps come to BB to calculate the results for LHS and RHS and fill in the possible numbers for each shape. Class agrees/disagrees.	Whole class activity Written on BB (SB or OHP) Reasoning, agreement, checking, praising a) $\square: 13,14,15,16,17$ b) $\square=7$ Show on class number line if there are problems.
	Book 3, page 15 Q. 2 Read: List the whole numbers which make the inequalities true. Ps first write results above each side of inequality, then list possible numbers. Review at BB with whole class. Solution: a: 49, 50, 51, 52, 53, 54, 55 b: 6,7 $c: 8,7,6,5,4,3,2,1,0,(-1,-2, \ldots)$ $d: 7,8,9,10, .$.	Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising Ps show on class number line d) Discuss 'endless' results: symbol for infinity : ∞

$B K 3$		Lesson Plan 15
Activity 8	Book 3, page 15, Q3 Read: Write the operations without brackets if possible so that the result is the same. Do the calculations as a check. Remind Ps that calculations inside brackets are done first. a) \mathbf{X}, come and show us how we could write it without brackets. Is \mathbf{X} correct? Who thinks something else? Let's check that the result is the same for both. Ps calculate results for both. Repeat with other Ps for parts b) to f). Ps can write results in Pbs too. BB: a) $\left(\begin{array}{c}10 \\ (2+8)\end{array} \times 7=2 \stackrel{14}{\times 7}+8 \stackrel{56}{\times 7}=\quad \underline{70}\right.$ b) $(11 \stackrel{8}{-} 3) \times 9=11 \times 9-3 \stackrel{27}{\times 9}=\underline{72}$ c) $\left(21{ }^{35}+14\right) \div 7=21 \stackrel{3}{\div} \div 7+14 \stackrel{2}{\div} 7=7$ d) $(24-8) \div 4=24 \stackrel{6}{\div} \div 4-8 \stackrel{2}{\div} \div 4=4$ *e) $80 \div(12-4)=80 \div 8 \quad=\quad \underline{10}$ *f) $72 \div(3+6)=72 \div 9 \quad=\quad \underline{8}$	Notes Whole class activity T has SB or BB already prepared (or use enlarged copy master or OHP) Reasoning, agreement, checking, praising Elicit that it is impossible to write parts e) and f) without brackets and obtain the same result: e) 80 is not divisible by 12 (or $80 \div 12-80 \div 4=$ 6 and 2 thirds $-20 \neq 8$) f) $\begin{aligned} & 72 \div 3+72 \div 6= \\ & 24+12=36 \neq 8 \end{aligned}$ Feedback for T
9	Book 3, page 15 Q. 4 Read: Do the calculations with and without brackets. Ps read problems, then write the calculations in two ways, checking that the results are the same. Review at BB with whole class. Y, come and explain to us how you worked out the answer. Who agrees with \mathbf{Y} ? Who did it a different way? etc. a) Grandma has 3 grandsons and 3 granddaughters. On her birthday, each grandchild gave her 7 flowers. How many flowers was she given altogether? Plan: No. of grandchildren: $3+5$ Each gave: 7 flowers Calculations: $\quad(3+5) \times 7=8 \times 7=\underline{56}$ $\text { or } \quad 3 \times 7+5 \times 7=21+35=\underline{56}$ Answer: She was given 56 flowers. b) The 3 children in a family were given $90 p$ by Dad and $60 p$ by Mum. They shared the money equally. How much did they each get? Plan: Given: $90 \mathrm{p}+60 \mathrm{p} \quad$ No. of children: 3 Calculations: $\quad(90+60) \div 3=150 \div 3=\underline{50}$ $\text { or } \quad 90 \div 3+60 \div 3=30+20=\underline{50}$ Answer: Each child got 50 p.	Individual trial, monitored, helped Discussion, reasoning, agreement, checking, praising Ps who were wrong write out again correctly in Ex. Bks (Or answers could be shown in unison on command) Differentiation - time limit Only the more able Ps should be expected to do both parts. Feedback for T

	R: Mental calculation C: The four operation E:					Lesson Pla 16
Activity 1	Boom! Let's play Boom! Everyone stand up! Let's start at 10 and say 'boom' instead of every number which is either divisible by 4 or has 4 as a digit. Ps: 10,11 , boom, 13, boom, 15 , boom, 17, 18, 19, boom, 21, 22, 23, . . Continue until only one P is left standing.					Notes Whole class activity If Ps make a mistake they sit down and next P answers correctly. At speed round class In good humour! Class applauds the winner.
2	Addition Study the picture carefully. BB: What has Bennie Bunny done with the numbers whispered in his ears? Elicit that Bennie Bunny adds the numbers whispered in his right ear, then adds the numbers whispered in his ear, then adds the two sums together. Let's complete the table. BB: Who can explain to us what each row means? Ps come out to choose a column and fill in the total, explaining reasoning. Class agrees/disagrees. 10 min					Whole class activity Use enlarged copy master or OHP Ask several Ps what they think BB: Right ear Left ear $50+40=\underline{90} \quad 7+2=\underline{9}$ Total: $90+9=\underline{99}$ Table drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising
3	Competition What numbers and signs could go in the rectangles to make the statements true? BB: T divides class into 3 teams (one for each animal) \square >50 Ps come out to BB e.g. $39-15$ $(54-14) \div 8$ $37-11$ $9 \times 5+2$ 100-25 to write a calculation $12 \times 4+5$ below their animal. $(54-20) \div 2$ Rest of team makes sure they are correct. T says 'Stop!' after 4 minutes. Class agrees/disagrees with calculations. The team with most correct statements is the winner! \qquad 16 min \qquad					Whole class activity Drawn on BB or use enlarged copy master or OHP, or animals stuck to BB and statements written below. Encourage creativity At speed Agreement, checking, praising Class applauds winning team T awards stars, stickers, etc. to most creative statements.
4	Days of the week If today is Thursday, what day will it be in					Whole class activity T asks several Ps what they think T writes divisions as dictated by Ps Check on calendar if necessary Reasoning, agreement Praising

BK3	$\begin{array}{ll} \text { R: } & \text { Calculation } \\ \text { C: } & \text { Measurement: length. Numbers up to } \mathbf{2 0 0} \\ \text { E: } & \text { Whole hundreds to } 1 \text { thousand (or over) } \end{array}$	$\begin{gathered} \text { Lesson Plan } \\ 17 \end{gathered}$
Activity 1	What am I? Listen to the clues and think what I could be! - People buying material and ribbon make use of me. - I am used to name some events in athletics. - I have a big brother whose name is on maps of the country. - My big brother is one thousand times as long as I am. What am I? T asks several Ps what they think. (metre) What is my big brother? (kilometre) (BB: $1000 \mathrm{~m}=1 \mathrm{~km}$) What other standard unit is used to measure length? (cm, mm, mile, inch) Everyone stand up! Hold your hands $1 \mathrm{~cm}(1 \mathrm{~m})$ apart. (T walks round and adjusts where necessary. What do you think is about 1 km from the school? (T should have ascertained this beforehand.) 5 min	Notes Whole class activity Ps stand up when they think they know Agreement Discussion on other units and when they are used. T could show a metre stick, ruler, tape measure, etc. Practice in estimation
2	Sequences Let's continue these sequences. a) $85,90,95, \ldots$ $(100,105,110,115,120, \ldots)$ b) $100,200,300, \ldots \quad(400,500,600,700,800, \ldots)$ c) $1000,800,600, \ldots \quad(400,200,0,-200, \ldots)$ d) $100,300,500, \ldots \quad(700,900,1100, \ldots)$ \qquad 8 min	Whole class activity In unison. At speed T takes note of what Ps already know. Praising, encouragement only
3	Standard Units Who can remember how many mm are in 1 cm ? (BB: $1 \mathrm{~cm}=10 \mathrm{~mm}$) Ps confirm by finding on their rulers. Which units would you use to measure these objects? T has flash cards stuck at random on BB with standard units at the side of BB : Ps come out to BB to choose an object and put the appropriate unit of length below it. Discuss the use of two units for, e.g,. height. What other things would we measure in $\mathrm{mm}(\mathrm{cm}, \mathrm{m}, \mathrm{km})$? \qquad 12 min \qquad	Whole class acivity Use copy master, enlarged, cut out and cards stuck to BB (or use pictures cut from magazines) Agreement, praising (e.g. height can be measured in m and cm) Ps make suggestions (with T's help)
4	Ordering units of length a) Let's put these units of length in decreasing order. BB: $\quad 1 \mathrm{~m} \quad 1 \mathrm{~cm} \quad 1 \mathrm{~km} \quad 1 \mathrm{~mm}$ Ps come to BB to write out again, crossing off each unit as it is used (or to rearrange cards). What sign could we put between them? ($>$) BB: $1 \mathrm{~km}>1 \mathrm{~m}>1 \mathrm{~cm}>1 \mathrm{~mm}$	Whole class activity Written on BB or use flash cards Agreement, praising Ps copy into Ex. Bks too. (Lesson number and date)

R		Lesson Plan 17
Activity	b) What could the arrows mean? Ps come out to write numbers in the rectangles, saying complete equation (in correct direction.) e.g. ' 1 mm times ten equals 1 cm ' $' 1 \mathrm{~cm}$ divided by 10 equals 1 mm ' Class agrees/disagrees. c) Let's complete the equations. Ps come out to fill in missing numbers. $\left.\begin{array}{rlrl} \text { BB: } & 1 \mathrm{~km} & =1000 \mathrm{~m} & 1 \mathrm{~m}=1000 \mathrm{~mm} \\ 1 \mathrm{~m} & =100 \mathrm{~cm} & 10 \mathrm{~mm} & =1 \mathrm{~cm} \\ 1 \mathrm{~cm} & =10 & \mathrm{~mm} & 100 \mathrm{~cm} \end{array}\right)=1 \mathrm{~m}$ \qquad	Notes Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising What if the arrows were turned in the opposite direction? At a good pace Agreement, praising Ps copy into Ex. Bks too.
5	Book 3, page 17 Q. 1 Read: Imagine the size of these things in real life. Estimate their real lengths. Which letter could be written in which box? Think about if you were holding the object, or standing beside it. Which would be the biggest (smallest)? Review at BB with whole class. Have a metre rule or measuring tape at hand to confirm if there is disagreement. Solution: $\begin{aligned} & 1 \mathrm{~m}<e<2 \mathrm{~m} ; 8 \mathrm{~cm}<b<10 \mathrm{~cm} ; 20 \mathrm{~cm}<a<30 \mathrm{~cm} \\ & 4 \mathrm{~m}<d<5 \mathrm{~m} ; 10 \mathrm{~m}<c<20 \mathrm{~m} \end{aligned}$	Individual work, monitored, helped Use enlarged copy master or OHP Discussion, agreement, checking (e.g. soap, book, table), self-correction, praising T chooses Ps to read out inequalities starting at LHS, letter and RHS.
6	Book 3, page 17 Q. 2 Read: Estimate, then measure exactly, the total length of the lines. Think of how long a cm is and estimate how many cm you think the lines in each part will be. Write the number of cm in the box at the top of each shape. Review orally with whole class. Now use your rulers to measure the lines accurately and write the total accurate length in the box at the bottom of each diagram. What do you notice? (Each grid square has side 5 mm or half a cm, so every 2 sides are 1 cm long) Review at BB with whole class. (Wildly inaccurate measures should be done again but allow small discrepencies.) Solution: $\begin{aligned} & a=3 \mathrm{~cm}+5 \mathrm{~cm}+3 \mathrm{~cm}=\underline{11} \mathrm{~cm}, \quad b=5 \times 2 \mathrm{~cm}=\underline{10} \mathrm{~cm}, \\ & c=2 \times(2 \mathrm{~cm}+4 \mathrm{~cm})=2 \times 6 \mathrm{~cm}=\underline{12} \mathrm{~cm}, \\ & d=2 \times 4 \mathrm{~cm}+2 \mathrm{~cm}=\underline{10} \mathrm{~cm}, \\ & e=1 \mathrm{~cm}+\text { half a cm }+1 \mathrm{~cm}+\text { half a cm }+2 \mathrm{~cm}=\underline{5} \mathrm{~cm} \end{aligned}$	Individual work, monitored, helped Let's check who is correct! Ps may write additions or multiplications for each part in their Ex. Bks Ps dictate their answers and T writes on BB. Class agrees/disagrees Self-correction Praising, encouragement only Use enlarged copy master for demonstration only!

BIE	R: Calculation C: Measurement: capacity. Numbers up to 200 (or over) E: Hundreds and 50s to 1 thousand (or over)	$\begin{gathered} \text { Lesson Plan } \\ 18 \end{gathered}$
Activity 1	What am I? Listen to the clues and think what I could be! - People measuring liquids make use of me. - My name is on bottles of water and cartons of milk and orange juice. - I have a brother who is one hundred times smaller than me. He is used to measure doses of medicines when you are ill. - You will see my name on petrol pumps at service stations. What am I? T asks several Ps what they think. (litre) What is my little brother? (centilitre) (BB: $100 \mathrm{cl}=1$ litre) What other standard unit is used to measure how much liquid something can hold (capacity)? (pint, gallon) T demonstrates that 1 litre of water fills a cube 10 cm by 10 cm by 10 cm , i.e. 1000 centimetre cubes (cc)	Notes Whole class activity Ps stand up when they think they know Agreement, praising Discussion on other units and when they are used. T could show measuring jugs, milk bottle, medicine spoons, etc. BB: 1 litre of water $=1000 \mathrm{cc}$ 1 cl of water $=10 \mathrm{cc}$
2	Measuring capacity T has a measuring jug with, e.g., a 10 cl scale , a bucket of water and various containers on the table at the front of the class. Ps come out to choose a container, fill it with water and pour into the measuring jug. They then read its capacity out to the class. After one or two times, class could try to estimate the capacity first. T writes cqpacity of each container on the BB. e.g. glass: 50 cl 10 min	Whole class activity e.g. wine glass, bottle, mug, jam jar, flower vase, tumbler Choose 3 Ps at a time: 1st to hold measuring jug, 2nd to pour the water and 3rd to read out the quantity.
3	Units of capacity T has various utensils and containers at front of class, e.g. spoon, glass, jug, cup, bucket, ice-cream tub. T holds up one item at a time and asks Ps to say which unit of capacity they would use to measurehow much liquid each could hold. (e.g. spoon: cl or ml; glass: cl; cup: cl; jug: litre; bucket: litre) \qquad 15 min \qquad	Whole class activity Ps say the name of each container and the unit Agreement, praising
4	Book 3, page 18 Q. 1 Read: Which capacity would be measured by which unit? Join up the containers to a suitable standard unit. Talk about the containers first and what each would be used for. Which container (unit) is biggest (smallest)? Review at BB with whole class. Discuss the fact that the measuring jug could be a litre jug, so could be measured in litres. Solution: Let's put these units in decreasing order and write the correct sign between them. Complete these equations in your Ex. Bks.. $\text { BB: } 1 \text { litre }=100 \mathrm{cl} ; 1 \mathrm{cl}=10 \mathrm{ml} ; 1 \text { litre }=1000 \mathrm{ml}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps come to BB to join up. Discussion, reasoning, agreement, praising T on BB and Ps in Ex. Bks: $1 \text { litre }>1 \mathrm{cl}>1 \mathrm{ml}$ Compare British units of pint and gallon with the litre.

BK3		Lesson Plan 18
Activity 5	Book 3, page 18, Q. 2 Read: What could the rule be? Fill in the missing numbers and complete the diagram. What have the equations on the LHS to do with the diagram? Elicit that they are the calculations needed for each segment of the circle. What is the rule for the diagram? (The sum of the two quantities in each segment is 10 cl .) How many millilitres is 10 cl ? $(10 \mathrm{cl}=100 \mathrm{ml})$ Ps come out to BB to fill in a set of equations, find the matching segment and write in the missing quantity, explaining reasoning. Class agrees/disagrees. BB: $\begin{array}{ll} 10 \mathrm{cl}=100 \mathrm{ml}, & 100 \mathrm{ml}+\underline{0} \mathrm{ml}=100 \mathrm{ml} \\ 50 \mathrm{ml}=\underline{5} \mathrm{cl}, & 5 \mathrm{cl}+\underline{5} \mathrm{cl}=10 \mathrm{cl} \\ 60 \mathrm{ml}=\underline{6} \mathrm{cl}, & 60 \mathrm{ml}+\underline{40} \mathrm{ml}=100 \mathrm{ml} \\ 4 \mathrm{cl}=\underline{40} \mathrm{ml}, & 40 \mathrm{ml}+\underline{60} \mathrm{ml}=100 \mathrm{ml} \\ & 18 \mathrm{ml}+\underline{82} \mathrm{ml}=100 \mathrm{ml} \end{array}$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, agreement Ps complete in Pbs at the same time Reasoning, agreement, praising Let's not forget what 'cl' and 'ml' are short for . BB: ml millilitre cl centilitre $1 \mathrm{ml}=1$ thousandth of a litre $1 \mathrm{cl}=1$ hundredth of a litre
6	Equal quantities Let's help Maurice Mouse to join up the equal quantities. BB: Ps come to BB to join up the quantities, explaining reasoning. Class agrees/disagrees. Let's write them as equations. (T on BB and Ps in Ex. Bks) BB: $10 \mathrm{cl}=100 \mathrm{ml}, 1$ litre $=100 \mathrm{cl}=1000 \mathrm{ml}, 1 \mathrm{cl}=10 \mathrm{ml}$ 30 min	Whole class activity Drawn on BB or use enlarged copy master or OHP (or quantities cut out and stuck to BB and Ps arrange in groups) Reasoning, agreement, praising Class reads them in unison
7	Missing quantities T has BB or SB already prepared and containers which would hold approximately these quantities. BB: a) 1 litre $=$ \square cl d) 1 litre $50 \mathrm{cl}=$ \square 150 cl b) 2 litres $=$ \square 200 cl e) half a litre $=$ \square 50 cl c) 5 litres $=$ \square 500 cl f) 3 litres $10 \mathrm{cl}=$ \square 310 cl Ps come out one at a time to fill in the missing quantity and to choose the container which they think would hold it. Who agrees? Who thinks another one? Let's check! Which is the biggest (smallest) quantity? (5 litres, half a litre)	Whole class activity Written on BB, SB or OHP (Containers could have capacity written on bottom beforehand, or T could pour water from a measuring jug into chosen container.) Agreement, checking, praising Class shouts in unison

B13		Lesson Plan 18
Activity 8	Exercises T reads statatement, Ps write in Ex. Bks and then complete the missing numbers and/or units. BB: a) 1 litre $=100$ d) 2 litres $50 \mathrm{cl}=250$ \square b) 3 litres = \square cl e) 1 and a half litres $=$ \square cl c) 7 litres $=$ \square cl f) $50 \mathrm{cl}=$ \square ml Review orally round class. Ps change to coloured pencils and mark own work, correcting mistakes. Who had $6(5,4$, less than 4$)$ correct? What were your mistakes? Who did the same? Who does not understand?	Notes Individual work but class kept together T repeats each part slowly Ps nod their heads when they are ready for next part Agreement, self-correction Evaluation. Praising
9	Book 3, page 18 Q. 3 Read: For a picnic, we made some lemonade and poured it into $50 \mathrm{cl}, 80 \mathrm{c}$, and 1 litre bottles. The graph shows the number of each size of bottle that we filled. Do the calculations and answer the questions in your Exercise Books. T explains task. Elicit that each shaded grid square represents 1 bottle and that the height of the columns shows how many of each size of bottle was filled. Deal with one part at a time. Do first part (50 cl) of a) and b) on BB with whole class, then 80 cl and 1 litre as individual work, reviewed. Part c) as individual work, reviewed at BB. Mistakes corrected. Solution: a) $50 \mathrm{cl}: 8$ bottles; $80 \mathrm{cl}: 4$ bottles; 1 litre: 13 bottles b) $\begin{aligned} & 50 \mathrm{cl}: 8 \times 50 \mathrm{cl}=400 \mathrm{cl}=4 \text { litres, or } \\ & 8 \times 50 \mathrm{cl}=4 \times(2 \times 50 \mathrm{cl})=4 \times 100 \mathrm{cl}=\underline{4 \text { litres }} \\ & 80 \mathrm{cl}: 4 \times 80 \mathrm{cl}=320 \mathrm{cl}=\underline{3 \text { litres } 20 \mathrm{cl}} \\ & \text { 1 litre: } 13 \times 1 \text { litre }=\underline{13 \text { litres }} \end{aligned}$ c) 4 litres +3 litres $20 \mathrm{cl}+13$ litres $=\underline{20 \text { litres } 20 \mathrm{cl}}$	Whole class discussion to start Use enlarged copy master or OHP Make sure that Ps understand the graph. Whole class work followed by individual work in $E x . B k s$, monitored, helped Reasoning, agreement, selfcorrecting, praising Feedback for T (or all done as a whole class activity)

BK3	R: Calculation C: Measurement: mass (weight). Numbers up to 200 (or over) E: Hundreds and 50s to 1 thousand (or over)	$\begin{gathered} \text { Lesson Plan } \\ 19 \end{gathered}$
Activity 1	Weight and mass T has a 1 litre measuring jug, an open-topped transparent cube (glass or plastic) measuring 10 cm by 10 cm by 10 cm and a balance with a 1 kg weight on table at front of class. T pours 1 litre of water into jug, and then fills the cube. Who can write an equation about it? T pours the water from the glass cube into one side of the scales and puts a 1 kg weight on the other. What do you notice? (They balance, so they must weigh the same.) Who can write an equaiton about it? (BB) When we say that the weight of water is 1 kg , we should remember that we really mean 'mass' (how much water there is). Here are two examples to show the difference between weight and mass: - Suppose we ate a loaf of bread here on Earth, then went to the Moon on a spaceship and ate the same size of loaf there. The amount of bread (mass) we ate would be the same but the bread would weigh about six times lighter on the moon than on the earth. - An astronaut is able to jump about 6 times further on the Moon than on the Earth but his mass is the same. Anything weighs less on the Moon than it does on th Earth but its mass stays the same.	Notes Whole class activity T explains and demonstrates BB: 1 litre water $=1000 \mathrm{cc}$ BB: 1 litre water $=1 \mathrm{~kg}$ BB: Weight Mass For T's information: A 1 kg loaf of bread would weigh about 10 Newtons on Earth and just less than 2 Newtons on the Moon. Agreement that Ps can use either word and T will know what they mean.
2	Units of mass (weight) The weight on the balance is 1 kg and is quite heavy. What unit would we use if we wanted to weigh very small things? (g) Who knows how many grams are in 1 kilogram? (1000) T writes on BB and Ps in Ex. Bks: BB: $\quad 1 \mathrm{~kg}=1000 \mathrm{~g}$ T has various items (small and large) and sets of scales to show kg and g . Ps come out to choose an item and read its weight from the appropriate scale (with T's help if necessary). There is a unit of mass which is 1 thousand times larger than 1 kg . Who knows what it is called? (tonne) Who can write an equation about it? BB: 1 tonne $=1000 \mathrm{~kg}$ Who knows other standard units for measuring mass (weight)? (British) \qquad 10 min \qquad	Whole class activity (from previous activity) Ask several Ps what they think e.g. pencil, straw, $£ 1$ coin, book, pupil, teacher, etc. Ps suggest what things might be weighed in tonnes: e.g. elephant, tanker, crane, rhino e.g. ounces, pounds, stones
3	Book 3, page 19 Q. 1 Read: How much do you think they weigh in real life? Join up each picture to the suitable quantity. Talk about the pictures first and compare their weights. Which do you think would be heaviest (lightest) in real life? Which of the measures is biggest (smallest)? Review at BB with whole class. T could have a real pot of jam (packet of crisps, carton of milk, herself) to weigh if problems. Let's put the units in decreasing order and write the correct sign between them. (T on BB and Ps in Ex. Bks.) BB: 1 tonne $>60 \mathrm{~kg}>16 \mathrm{~kg}>1 \mathrm{~kg}>700 \mathrm{~g}>25 \mathrm{~g}$	Whole class introduction Use enlarged copy master or OHP Discussion, agreement BB: dog: 16 g ; jam: 700 g ; crisps: 25 g ; woman: 60 kg ; lorry: 1 tonne; milk: 1 kg Ps fill in missing numbers: $\begin{aligned} 1 \text { tonne } & =1000 \mathrm{~kg} \\ 1 \mathrm{~kg} & =1000 \mathrm{~g} \end{aligned}$

BK<		Lesson Plan 19
Activity 4	Equal mass Let's join up the equal measures. BB: Ps come to BB to join up the fish, explaining reasoning. Class agrees/disagrees. Let's write them as equations. (T on BB and Ps in Ex. Bks) BB: $1 \mathrm{~kg}=1000 \mathrm{~g}, 1$ tonne $=1000 \mathrm{~kg}$, half a $\mathrm{kg}=500 \mathrm{~g}$, 1 quarter of a $\mathrm{kg}=250 \mathrm{~g}=$ half of 500 g 20 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP (or fish coloured, cut out and stuck to BB and Ps arrange in pairs) Reasoning, agreement, praising Joking about possibility of fish really weighing these amounts and the size they would be!
5	Book 3, page 19 Q. 2 Read: Fill in the missing numbers and units. Review orally with whole class. Ps change to coloured pencils and mark own work, correcting mistakes. a) $1 \mathrm{~kg}=1000 \mathrm{~g}$ d) 1 quarter of a $\mathrm{kg}=250 \mathrm{~g}$ b) half a $\mathrm{kg}=\underline{500} \mathrm{~g}$ e) 1 tonne $=1000 \mathrm{~kg}$ c) 1 and a half $\mathrm{kg}=1500 \mathrm{~g}$ f) half a tonne $=\underline{500} \mathrm{~kg}$ Who had $6(5,4$, less than 4$)$ correct? What were your mistakes? Who did the same? Who does not understand where they went wrong?	Individual work, monitored (helped) Discussion, agreement, self-correction Evaluation, praising Feedback for T Show on different segments of the number line if necessary.
6	Weight table and bar chart The pupils in a class were all weighed and the data displayed in this table. Then they drew a chart to show the data more clearly. BB: T explains the table and bar chart (with the help of Ps). Revise inequality signs and tally marks if necessary. Let's read the inequalities together: e.g. 'twenty-five kilograms is less than or equal to a and a is less than thirty kilograms', etc. Ps can show numbers on class number line. Study the chart carefully and tell me the answer to these questions. a) How many girls (boys) are in each weight group? b) How many girls (boys) are in the class? c) How many Ps are in each weight group? d) How many Ps are in the class? e) Which is the most (least) common weight group? (b, d and e) How heavy are you? Which group would you be in? (T has scales at hand if Ps do not know their weights.) Come and draw where you would be on the chart. (Ask a few Ps if there is time.)	Whole class activity Use enlarged copy master or OHP Ps could have copies on desks too Give Ps opportunity to study table and bar chart and to explain connections In unison. T asks several Ps what they think. P who responds correctly explains to others. Class agrees/disagrees. Ps come to BB to add their tally mark and to amend the chart. Class agrees/disagrees.

BK3	R: Mental calculation C: Measurement: time E: Numbers up to (and beyond) 2000	$\begin{gathered} \text { Lesson Plan } \\ 20 \end{gathered}$
Activity 1	Standard units of measurement Let's help Daffy Duck sort out this mess! How do you think we could do it? T asks several Ps what they think. Elicit that the units are all mixed up and that similar measures should be put together. Ps come to BB to put measures into matching sets: BB: Length: $\mathrm{km}, \mathrm{m}, \mathrm{cm}, \mathrm{mm}$ Capacity: litre, cl, ml Mass (weight): tonne, kg, g Time: year, month, week, day, minute Can you think of other standard units for each set? e.g. foot, inch, mile; gallon, pint; stone, pound, ounce; hour, second, (millennium)	Notes Whole class activity Written on BB or use copy master, enlarged, cut out and cards stuck to BB Discussion, agreement T elicits names of sets and encourages logical order for each (e.g. decreasing) Ask several Ps what they think. Class agrees/ disagrees. Praising
2	Missing numbers T has BB (SB) already prepared: BB: 1 year $=$ \square months $1 \text { day }=$ \square hours 1 month \approx \square weeks 1 hour $=$ \square minutes 1 week = \square days 1 minute $=$ \square seconds Ps come to BB to write in missing numbers, saying whole equation. Let's think of other equations about time! e.g. BB: 1 year $=\underline{4}$ seasons (spring, summer, autumn, winter) $1 \text { year }=365 \text { days } \quad \underline{\text { but }} \quad 1 \text { leap year }=366 \text { days }$ Discuss that leap years are divisible by 4 (e.g. 1996, 2000) but only every 4th whole hundred is a leap year (e.g. 1900 was not a leap year, 2000 is a leap year and 2100 will not be a leap year). \qquad 10 min \qquad	Whole class activity Written on BB or SB or OHP beforehand Agreement, praising Give Ps the chance to suggest them but if Ps cannot, T starts equations on BB and Ps complete them. Discussion. Where does the extra day occur? (February 29th) Praising
3	Year 2020 calendar Let's look at the calendar for this year. a) Let's say the days of the week. (Monday, Tuesday, . . . Sunday) b) Let's say the months of the year. (January, February, . . . December) c) Let's find: i) the 25 th of August. What day is it? (Tuesday) ii) the 30th of February What day was it? (No such day) iii) the 31st of April What day was it? (No such day) d) What is the date today? Let's write it in our Ex. Bks. (Heading: Lesson number and date) T shows how to write it in different ways and Ps copy into Ex. Bks: e.g. BB: 22 October 2020, 22nd October 2020 October 22, 2020, 22/10/2020. T circles the form class uses (will use in future) e) Find your birthday. Write it in your Ex. Bks. T asks several Ps what they have written.	Whole class activity Use real calendar (downloaded from the internet) Ps have copy of calendar on desks too Discussion, agreement, praising Individual work, monitored d) Today's date is . . . e) My birthday is (was) on . . . Agreement, praising

BK?		Lesson Plan 20
Activity 5	Book 3, page 20 Q. 1 Read: a) Colour in the same colour the clocks where the hands are mirror images. b) Write below each clock the number of whole hours it shows. Who can tell us what a 'mirror image' is? Who agrees? Who thinks something else? (T explains if no P can remember.) Review at BB with whole class. Demonstrate with a real mirror if there are problems. Solution: 10 hours - 2 hours; 7 hours -5 hours; 3 hours -9 hours 31 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, demonstration Agreement, self-correction, praising. Feedback for T
6	Book 3, page 20 Q. 2 Read: Write below each clock how many hours and minutes the hands show. T explains that Ps should write the whole hours and the number of minutes after that whole hour (not the minutes to the next hour). Do first clock with whole class if necessary. Review at BB with whole class. Mistakes corrected. Solution: 6 hours, 15 minutes; 9 hours, 35 minutes; 2 hours, 50 minutes; 12 hours 0 minutes In what other way could we express these times? (e.g. a quarter past six, $6: 15 ; 9: 35$, twenty-five to ten; etc.) 35 min	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising. Orally round class. Praising
7	Book 3, page 20, Q. 3 Read: There are 24 hours in a day. The clock started at midnight. Draw where the hour and minute hands would be after these times. Let's set the clock at 12 midnight. B, come and show where the hands would be after 9 hours and 45 minutes have passed. Who agrees with B? Who thinks something else? What time does the clock show? (a quarter to ten) Is it in the morning or at night? (morning) How can we show whether a time is in the morning or at night? (Use am and $\mathrm{pm}-\mathrm{T}$ explains) So we could write this time as 9.45 am or we could write it as 09:45 using the 24 hour clock. (T has a digital clock to demonstrate.) Repeat in a similar way for the other times. BB: 22 hours and 15 minutes: 10.15 pm or $22: 15$; 15 hours and 30 minutes: 3.30 pm or $15: 30$; 7 hours and 45 minutes: 7.45 am or $07: 45$; etc. 40 min	Whole class activity Use model clock and enlarged copy master or OHP Reasoning, agreement, praising Discussion BB: am: before mid-day pm: after mid-day Ps can complete clocks in Pbs too if they wish Involve several Ps (with T's help throughout)
8	Book 3, page 20 Q. 4 and Q. 5 Let's see if you can do these without any help! Review at BB with whole class. Mistakes corrected. Solutions: Q.4: a) 8 weeks 6 days $=8 \times 7+6=56+6=\underline{62}$ days b) 3 days 8 hours $=3 \times 24+8=72+8=\underline{80}$ hours c) 2 hours 45 min . $=2 \times 60+45=120+45=165$ minutes d) 3 min .10 sec . $=3 \times 60+10=180+10=\underline{190}$ seconds Q.5: 8.20 to $9.00: 40 \mathrm{~min} ; 9.00$ to $10.00: 1$ hour; 10.00 to $10.10: 10 \mathrm{~min}$	Individual work, monitored, (helped) Quick revision of number of days/week, hours/day, minutes/hour, seconds/minute Reasoning, agreement, selfcorrection, praising Show on model clock that time passed is 1 hour and 50 min .

BK?	R: Calculation C: Collecting and recording data E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 21 \end{gathered}$
Activity 1	Boom! Let's play Boom! Everyone stand up! Let's start at 12 and say 'boom' instead of every number which is either divisible by 7 or has 7 as a digit. Ps: 12,13 , boom, 15,16 , boom, 18, 19, 20, boom, 22, 23, 24, 25, $26 \ldots$ Continue until only one P is left standing.	Notes Whole class activity If Ps make a mistake they sit down and next P answers correctly. At speed round class In good humour! Class applauds the winner.
2	Finding the average In a class test, the most that pupils could score was 20 marks. These were the pupils' scores: BB: $\quad 20,5,20,19,11,14,18,20,18,17,17,12,15,17,17$ First let's put the scores in increasing order. T writes scores as dictated by Ps, crossing each off the original list as it is dealt with: BB: $5,11,12,14,15,17,17,17,17,18,18,19,20,20,20$ Let's fill in this table to show how many pupils had these scores. BB: Ps come out to fill in bottom row of table. Class agrees/disagrees. How many marks did the pupils in the class have altogether? How could we work it out? (By using only addition, or by addition and multiplication) BB: $\begin{aligned} & \underbrace{5+11+12+14+15}_{57}+\underbrace{4 \times 17}_{68}+\underbrace{2 \times 18}_{36}+19+\underbrace{3 \times 20}_{60} \\ & =\underbrace{57+68}_{125}+\underbrace{36+19}_{55}+60=\underbrace{125+55}_{180}+60=180+60=\underline{240} \end{aligned}$ How many pupils were in the class? (15) So 15 pupils collected 240 marks altogether. Who is clever enough to tell me how we could work out the average score for the class? (Divide 240 by 15.) BB: Total marks: 240 Number of pupils: 15 Average score: $240 \div 15$ Who can think of an easy way of dividing 240 by 15 ? $\begin{aligned} & \text { e.g. } \begin{aligned} 240 \div 15=\underbrace{240 \div 3} \div 5=80 \div 5 & =50 \div 5+30 \div 5 \\ & =10+6=\underline{16} \\ \text { or } 240 \div 15=480 \div 30=\underbrace{480 \div 10 \div 3} & =48 \div 3 \\ & =30 \div 3+18 \div 3 \\ & =10+6=\underline{16} \end{aligned} \end{aligned}$ If all 15 pupils had scored 16 marks each, the total marks scored would be the same as before, 240 marks. $\text { Check: } \begin{aligned} 16 \times 15 & =10 \times 15+6 \times 15 \\ & =10 \times 10+10 \times 5+6 \times 10+6 \times 5 \\ & =100+50+60+30 \\ & =150+90=\underline{240} \end{aligned}$	Whole class activity T has BB already prepared Ps shout numbers out in unison Drawn on BB or use enlarged copy master or OHP Ps cross off scores in ordered list as they are dealt with. Ps suggest how to do it. T leads Ps through the calculations, showing easy methods where possible, $\text { e.g. } \begin{aligned} 4 \times 17 & =4 \times 10+4 \times 7 \\ & =40+28=68 \\ 57+68 & =60+65=125 \\ 36+19 & =35+20=55 \end{aligned}$ Discussion, reasoning, agreement, praising T helps Ps explain, or gives hints, or explains if nobody knows what to do For less able classes, T (or Ps) could use a calculator. Or use calculator as a check after doing calculation on BB T checks on BB with help of Ps Praising, encouragement throughout

BK?	R: Calculation C: Organising and writing data. Solving a problem by interpreting data E: Numbers up to 200 (and over)	$\begin{gathered} \text { Lesson Plan } \\ 22 \end{gathered}$
Activity 1	Secret number I am thinking of a number. You must find out what it is by asking me questions but I can answer only 'yes' or 'no'. e.g. 32: it is 2-digit? (Yes) Is it even? (Yes) Is it less than 50? (Yes) Is it between 10 and 30 ? (No) Is it more than 40 ? (No) Is it less than 35 ? (Yes) Is its tens digit less than its unit digit? (No) It is 32. (Yes) (Ps can think of numbers and answer questions about them too.) 5 min	Notes Whole class activity Encourage Ps to ask logical questions and keep in mind clues already given Ps question T in order or T chooses Ps at random Praise creative questions
2	Sequence competition I will describe a sequence and then give you half a minute to write as many terms as you can in your Ex Bks. (Heading: Lesson number/date) The first term is 100 and it decreases by 6. Start . . . now! . . . Stop! Everyone stand up. Ps list the terms in order round class. Ps who made a mistake, or did not have time to write that term, sit down. Let's give the winner(s) a big round of applause! 9 min	Individual work Keep to time limit Checking sequence: $100,94,88,82,76,70,64, \ldots$ Agreement, self-correcting, praising. Stars, etc. awarded.
3	Probability 1: tossing a coin Let's look at the table we made about tossing coins from yesterday's lesson, e.g BB: How many: - tosses altogether? (e.g. 240) - pupils did the tossing? (e.g. 24) - heads (tails) did we throw? (e.g. 121, 119) I will say something and you must think about whether it is certain, possible or impossible. I tossed a coin 400 times: a) and got 190 heads (possible) b) and got 399 tails (possible, though very unlikely) c) and got 180 heads and 210 tails (impossible, because $180+210<400)$ d) the numbers of heads and the number of tails added up to 400 altogether. (certain) How many heads would you expect to get if you tossed a coin 50 (100, $200,400)$ times? (Ps: $25,50,100,200)$ Why do you think that? (half the number of tosses as only 2 possible outcomes, head or tail, and both have an equal chance.) [N.B. If a P says, e.g. '4 heads', T asks class, 'Is it possible?' (Yes) 'Is it likely to happen?' (No)]	Whole class activity Table drawn on BB or use copy master from LP 21 Agreement, praising T repeats each statement slowly and Ps either write answer in Ex. Bks or show flash cards (made from copy masters) on command Discussion, reasoning, agreement Praising only Discussion involving several Ps. T repeats vague, inaccurate responses correctly

	Calculation Lists, tables, graphs Numbers up to 200 (and over)							$\begin{gathered} \text { Lesson Plan } \\ 23 \end{gathered}$
Activity 1	Sequences a) The first term of this sequence is 160 . Each following term is 7 more than the previous term. Continue the sequence. Ps: ' $16,23,30,37,44,51,58,65,72,79, \ldots$ ' b) What could the rule be for this sequence? T : ' $100,97,94,91, \ldots$. A, what do you think? Who agrees? Who thinks something else? (decreasing by 3) Let's continue the sequence: ' $88,85,82,79,76,73,70,67,64, \ldots$ '							Notes Whole class activity At speed round class If P makes a mistake the next P corrects it Ask several Ps Agreement, praising Whole class in unison
2	Secret Code I have written some additions and multiplications on the BB and each has a letter beside it. In your Ex. Bks, write only the answers and the letters. (Heading: Lesson number and date) $\begin{array}{lrllll} \text { BB: } & 34+17 & \mathrm{P} & (51) & 4 \times 8-12 & \text { G } \\ & 20+19 & \mathrm{R} & (39) & 6 \times 9 & \mathrm{H} \\ & 3 \times 9+14 & \text { A } & (41) & & \tag{54} \end{array}$ Review with whole class. Ps change their pencils (to red) and mark their work, correcting any mistakes. Ps read answers and T writes on BB. Who had all 5 correct? Who made a mistake? What kind of mistake? Write the answers out again in increasing order and write the letters underneath. What word have you written? Class shout, 'GRAPH' BB: $\begin{array}{lllll} 20, & 39, & 41, & 51, & 54 \\ \mathrm{G} & \mathrm{R} & \mathrm{~A} & \mathrm{P} & \mathrm{H} \end{array}$ 10 min							Whole class activity but Ps write results individually T has BB or SB already prepared Discussion, agreement, selfcorrecting, praising (Feedback for T) In unison P comes to BB to show it. Mistakes corrected
3	Head size Let's make a tally of how big your heads are in this table. T demonstrates with a P at front of class how to measure all the way round the outside (circumference) of a Ps' head at forehead level. Ps measure each other in pairs (to nearest cm) then come out to draw their tally mark in the appropriate box in the table. e.g. BB Let's show the data in a graph. T draws graph on squared grid with help of Ps. e.g. T asks questions about the data. Ps show answers with number cards or scrap paper or write in Ex. Bks. (e.g. 50 cm) (e.g. 47 cm) (e.g. 53 cm) (e.g. 4) f) How many pupils have heads with circumference not more than 50 cm ?							Whole class activity Use a measuring tape if possible (or a plastic neck measure, or a piece of string which can then be laid out straight along a ruler) Table and graph drawn on BB or use enlarged copy master or OHP Discuss what the x and y axes show Review with whole class if answers written in Ex. Bks. Reasoning, agreement, praising Extension Talk about shape of graph ('normal' spread: most in middle, becoming fewer at each end)

BK		Calculation Frequency tables. Pictograms, bar charts, Venn diagrams Numbers up to 200 (and over)											$\begin{gathered} \text { Lesson Plan } \\ 24 \end{gathered}$
Activity 1	Oral work Let's see how many different ways we can think of to describe the number 53 . $(\text { e.g. } 5 \times 10+3,4 \times 8+21,7 \times 9-10,31+22,100-47, \ldots$ Repeat with 77. T (or Ps) writes responses on BB .												Notes Whole class activity T chooses Ps at random At speed Class agrees/disagrees with each description
2	Sequences T says first 3 terms of a sequence. Ps continue it and give the rule. a) $\mathrm{T}: 33,42,51, \ldots$ Ps: $60,69,78,87,96,105, \ldots$ (+9) b) $\mathrm{T}: 120,112,104, \ldots$ Ps: $96,88,80,72,64,56, \ldots$ (-8)												Whole class activity T chooses Ps at random Class points out errors Praising, encouragement only
3	Height Let's measure how tall you are. T makes 2 marks on LHS and RHS of BB , each 1 metre from the floor (using a metre rule). Ps come to BB in groups of 4 (2 pairs). P_{1} stands with back to BB and P_{2} measures to nearest cm how much taller than 1 metre P_{1} is. (2nd pair of Ps do the same at other mark on BB.) Elicit that this length should be added to 1 metre (100 cm) to give their actual height.) Let's record the heights in this table. Ps make a tally mark in relevant boxes in table, than another 4 Ps come to BB to measure their heights. e.g. BB:												Whole class activity T explains what Ps have to do and helps each pair if necessary At a good pace Table drawn on BB or use enlarged copy master or OHP (with extra columns added at beginning and end if necessary) Praise clever questions and correct answers Encourage creativity
4	Book 3, page 24 Q. 1 Read: Donald Dog was practising weighing. He numbered all his bones and weighed each one. Then he made this graph. How many bones does Donald have? (8) A, what does the x axis show? (Donald's bones, 1 bar per bone) Ps colour the white bars in bright colours so that they stand out. B, what does the y axis show? (Mass/weight of bones in grams) What does each grid line show? (every 100 grams) Let's start from zero and count up the y axis in100s: 'zero grams, 100 grams, ..., 800 grams' T points to grid lines. What is missing from the y axis? (y) Write it beside the arrow.												Whole class activity to start Use enlarged copy master or OHP Initial discussion Individual work in Pbs Class agrees/disagrees In unison On BB and in Pbs

BK3		Lesson Plan 24
Activity Extension	Let's see if you can answer the questions by yourselves. For part a) T explains that the range means from the smallest to the largest. Ps write answers in Pbs. Review at BB with whole class, with Ps pointing to relevant bar or grid line on graph. Mistakes corrected. Solution: a) i) Bone 3 ii) Bone 4 b) Bones 1 and 5 c) What other questions could we ask about the data? e.g. - Which two bones weighed the same as Bone 3? (e.g. 4 and 7) - What did Donald's bones weigh in total? $\begin{aligned} & (300+500+800+200+300+400+600+700=3800) \mathrm{g} \\ & {[\text { Note that: } 800+200=1000,400+600=1000 \text { and }} \\ & 300+700=1000 ; 3000+(300+500)=3800] \end{aligned}$ - What was the average weight of Donald's bones?) $(3800 \mathrm{~g} \div 8=475 \mathrm{~g})$	Notes Agreement, praising Class agrees/disagrees Reasoning, agreement, self-correcting, praising Drawn on BB or use enlarged copy master or OHP Involve several Ps (Ps do not necessarily need to calculate the answers, only to know how to do it) T shows easy method of addition T can use a calculator and show result to class
5	Pictogram This table show how many times the pupils in a class went to the cinema during half term. BB: Let's show the data by drawing a pictogram in your Ex. Bks. Who remembers what a pictogram is? (using pictures to represent data) T shows how to draw a 'stick man' to represent each pupil. Elicit that number of visits to cinema should be written vertically and appropriate number of 'stick men' drawn opposite each one Review at BB with whole class. Mistakes corrected. BB: Number of pupils T asks questions about the data. e.g.	Individual drawing, monitored helped Table drawn on BB or use enlarged copy master or OHP Agreement, praising BB: $\underset{X}{ }=1$ pupil T could show first set of values in table on BB if necessary. Reasoning, agreement, selfcorrection, praising Ps can show answers with fingers on command. Feedback for T Praise clever questions

