\begin{tabular}{|c|c|c|}
\hline BIT3 \& \begin{tabular}{l}
R: Rectangle, square. Calculation. \\
C: 2-D and 3-D shapes. Solids: cubes, cuboids. Plane shapes: polygons \\
E: Geometric names of components. Various shapes.
\end{tabular} \& \[
\begin{gathered}
\text { Lesson Plan } \\
41
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Activity \\
1
\end{tabular} \& \begin{tabular}{l}
Solids 1 \\
T has set of solids of various shapes on table at front of class, each labelled with a number.. e.g. \\
T elicits the difference between a solid shape (3-dimensional, has width, height and depth) and a plane shape (2-dimensional, has width and height but no depth, i.e. flat). \\
T holds up one of the shapes and describes it, saying how many faces (sides) it has, whether they are curved or plane, what shape the faces are (e.g. square, rectangle, triangle, circle), etc. \\
Which solids have: \\
a) only plane faces \(\quad(1,4,5,7,8,9)\) \\
b) only a curved surface \(\quad(11,12)\) \\
c) plane faces and curved faces \(\quad(2,3,6,10)\) \\
d) only faces which are rectangles \((4,5,7,8)\) (called cuboids) (T: All squares are rectangles, but not all rectangles are squares) \\
e) only faces which are squares? \\
(8) (called a cube)
\end{tabular} \& \begin{tabular}{l}
Notes \\
Whole class activity \\
(If possible, Ps should have set on desks too.) \\
\(B B\) : solid shape plane shape \\
BB: faces \\
curved or plane \\
Whole class demonstration/ discussion. Ps try to describe other shapes in a similar way, with T's help. \\
Use enlarged copy master or OHP \\
Ps come out to point to shapes. Class agrees/ disagrees. \\
T asks Ps which solids they know the names of. \\
BB: cuboid cube
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
Solids 2 \\
a) Look at this cuboid (e.g. \(4 \times 2 \times 3\)). \\
- How many faces (sides) does it have? (6) Talk about plane shapes having sides (e.g. a triangle has 3 sides) and that the sides of solids are called faces (to avoid confusion). \\
What shape are they? (rectangles) Are they all the same size? (No, there are 3 different sizes: \(4 \times 2,4 \times 3,3 \times 2\); 2 faces for each size) Discuss 'opposite' and 'adjoining' faces. \\
- We call each corner a vertex. How many vertices does it have? (8) \\
- How many edges does it have? (12) Are they all the same length? (No, there are 3 different lengths, 4 edges for each length) Discuss 'opposite', 'equal', 'adjoining' edges (at a vertex). \\
b) Repeat with a different cuboid. (e.g. \(3 \times 3 \times 5\)) \\
- How many faces does it have? (6) Are they all the same size? (No, 2 different sizes: 4 equal rectangles and 2 equal squares) \\
Revise similar shapes (i.e. the same shape but different sizes). The same shapes of equal size are congruent (equal). \\
- How many vertices (corners) does it have? (8) \\
- How many edges does it have? (12) Are they all the same length? (No, there are 2 different lengths, 8 are 3 units long and 4 are 5 units long). \\
c) Repeat for a cube (e.g. \(3 \times 3 \times 3\)) \\
Elicit that it has 6 faces, all congruent (equal) squares, 8 vertices and 12 edges, all of length 4 cm .
\end{tabular} \& \begin{tabular}{l}
Whole class activity T has demonstration model and/or Ps have cuboid on desks made from 24 unit cubes \\
a) BB : \\
Faces: 6 rectangles \\
Vertices: 8 Edges:: 12 \\
T explains each component. \\
Ps count them. Discuss shapes, lengths, etc. \\
(Do not expect Ps to learn the geometric names yet, just to become familiar with them) \\
b) BB similar to part a), plus \\
similar congruent

\\
Agreement, praising \\
c) BB : \\
Faces: 6 squares \\
Vertices: 8 \\
Edges: 12
\end{tabular} \\

\hline
\end{tabular}

31	R: 3-D and 2-D shapes C: Parallel and perpendicular lines (plane) E: Distance apart of parallel lines	$\begin{gathered} \text { Lesson Plan } \\ 42 \end{gathered}$
Activity 1	Lines Study the diagram. What can you tell me about it? (e.g. shapes drawn on a square grid, 1 st shape is a triangle, 2 nd shape is a square (or 2 triangles), 3rd shape is a square plus a triangle (or 3 triangles.). etc. BB: - These lines are parallel to each other. (T points) They stay the same distance away from each other, however long you make them. Who can show us other lines which are parallel? (in classroom or in diagram) Class agrees/ disagrees. - These lines are perpendicular to each other. (T points) They form a square corner called a right angle. Who can show us other lines which are perpendicular? (in classroom or in diagram) Class agrees/ disagrees. (If there is disagreement, check angle with a square corner.) - What is the rule for this sequence of shapes? (Each term has 1 more triangle than the previous term.) What will the next shape be? Ps come to BB to draw shapes, explaining reasoning. Class agrees/ disagrees. - How could we write this sequence as numbers? Ps suggest number sequences, explaining reasoning. Who agrees? Who thinks another one? etc.	Notes Whole class activity Drawn on BB or use enlarged copy master or oHP Bold lines are already given Discussion about diagram. Ps describe it. (Ps might remember the terms 'parallel' and 'perpendicular' from Y2) BB: parallel lines perpendicular lines Reasoning, agreement, praising At a good pace e.g. $1,2,3,4,5, \ldots$ (triangles) or $2,4,6,8, \ldots$ (grid squares) Praising
2	Shapes Study these shapes. BB: T says the name of a shape. Ps come out to point to them. Class agrees/disagrees or points out shapes missed. a) Which are solids? $(1,2,5)$ b) Which are plane shapes? ($3,4,6,7,8,9,10,11,12$) c) Which are lines? (14, but also accept the sides of each plane shape) d) Which are points? (13, but also accept points on each shape) e) Which are rectangles? $(3,4,10)$ f) Which are quadrilaterals but not rectangles? g) Which have parallel lines? ($3,4,5,8,10,12,14$) h) Which have perpendicular lines (right angles)? ($3,4,5,8,9,10,11$) \qquad 10 min \qquad	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Involve several Ps Discussion, agreement, praising Feedback for T If problems, T (or P who knows) again confirms what each term means Elicit that in rectangles parallel sides are opposite each other.
3	Parallel lines Ps each have two straws on desk. Arrange your straws so that they are: a) horizontal and parallel b) slanting and parallel c) one crossing over the other d) vertical and parallel e) not parallel How can we be sure that lines are parallel? (Parallel lines will always stay the same distance apart, however far you extend them, so will never touch or cross over each other.)	Whole class activity Ps work on desks and T draws on BB (use a BB ruler) BB: e.g. a) \qquad b) c) d) e) Agreement, checking, praising

BK3		Lesson Plan 42
Activity 4	Perpendicular lines Which of these diagrams are similar and which are different? BB: T asks several Ps what they think. Elicit that in: - a), b) and e), the lines are perpendicular (form right angles) - c), d), e) and f), the lines are not perpendicular - b) and d), the two lines cross each other - a), c), e) and f), the ends of the lines touch Lay your straws so that they are parallel (perpendicular, crossing, ends touching) Everyone stand up! Hold one arm horizontal (vertical). Hold both arms parallel, (perpendicular, crossing each other, ends touching), ,, now! T walks round quickly, correcting and praising. 20 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Ps come to BB to explain and show what they notice Discussion, reasoning, agreement, praising T quickly monitors, correcting, praising In unison, on command At speed In good humour!
5	Parallel and perpendicular lines Study the lines in this diagram. Which do you think are parallel and which are perpendicular? T shows the mathematical way to mark perpendicular lines (a square) and sets of parallel lines (arrowheads). Ps come out to show and explain. Class agrees/disagrees. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP BB : perpendicular parallel: 1st set 2nd set 3rd set e.g. \qquad Agreement, praising Check perpendicular lines by using a square corner. Check parallel lines by measuring perpendicular distance apart at both ends
6	Folding Ps each have a piece of paper on desks. T demonstrates with large sheet of paper and Ps copy. Fold it once like this, and press down along the fold, then fold it again like this and press down the new fold. e.g. Now open out the piece of paper. What do you notice? (The two crease lines are perpendicular.) Ps draw in the 'perpendicular' sign.	Whole class activity with individual folding Pieces of paper can be of various shapes and sizes Ps check with a square corner (e.g. corner of a number card or ruler) Agreement, praising

R x^{3}		Lesson Plan 42
Activity 7	Book 3, page 42 Q. 1 Read: a) Draw over in the same colour the sets of lines which are parallel. Use different colours for different sets. b) Colour a square at all the corners which are right angles. T encourages Ps to work in a logical order (e.g. starting at 1st line on 1st letter and finding lines parallel to it). T shows Ps how to check whether lines are parallel (by counting grid squares up and across). Decide on a colour (e.g. red) for the right angles to make monitoring easier. Tell Ps to draw them smaller than a grid square. Review at BB with whole class. Mistakes discussed. How else could we have shown the sets of parallel lines? (arrows) Solution: (arrows shown for T - too complicated for most Ps) 31 min	Notes Individual work, monitored, helped Use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Note the case of RH slanting line in 'A' and lower slanting line in 'K'. (Not parallel: if shorter line is extended to 4 grid squares up, it has gone 4 grid squares across, compared with 3 grid squares across for the line in ' A ') Note right angles in K, M and Y. Check right angles with a square corner (e.g. number card, or ruler)
8	Book 3, page 42 Q. 2 Read: This is part of the track from a model railway. Measure the distance between the two horizontal rails. A, come and show us on the picture where we should measure? Is A correct? Agree that measurement should be done on inside of rails. T reminds Ps how to measure accurately with a ruler and to make sure that the ruler is perpendicular to the two lines. Elicit the unit of measure being used and that mm are shown by the smallest 'ticks' on the ruler.. Ps measure and write length in mm in Pbs. Review at BB with whole class. Mistakes discussed and corrected. Solution: $\underline{20} \mathrm{~mm}$ ($=2 \mathrm{~cm}$) Look at these drawings. Which of them could be railways? BB: Ps come to BB to point and explain their reasoning. Class agrees/ disagrees. (Only the two slanting tracks could be a railway; in the others the rails are not parallel, so the train would fall off!)	Individual work, monitored (helped) Ps have rulers on desks Use enlarged copy master or OHP as demonstration only T uses BB ruler BB: $10 \mathrm{~mm}=1 \mathrm{~cm}$ Discussion, agreement, selfcorrection, praising (Answer could be shown in unison on scrap paper) Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion involving several Ps, agreement, praising

2 <3		Lesson Plan 43
Activity 4	Parts of a whole 2 Let's help Freddie Mouse. On Sunday, he was given this box of cheese. BB: Sunday How many pieces of cheese are in the box? (6) Monday - On Monday, he ate 1 third of the cheese. How many pieces did he eat? (2 pieces) How many pieces did he have left? (4 pieces) On Tuesday, he ate 2 more pieces of cheese. What part of Monday's amount of cheese did he have left? (half) What part of the original box of cheese did he have left? (1 third) - On Wednesday, he ate 1 more piece of cheese. Did Freddie have any cheese left? (Yes, 1 piece) What part of the original box of cheese was this? (1 sixth)	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP (or pieces of cheese cut out and stuck on BB and Ps remove appropriate pieces each time, or real box of cheese) Discussion, reasoning, agreement, praising BB: T may write: 1 third of $6=2$ 1 half of $4=2$ 2 sixths +2 sixths +1 sixth + 1 sixth $=6$ sixths $=1$ whole
5	Book 3, page 43 Q. 1 Read: Piggy bought different kinds of cakes for a party he was arranging. T explains that shaded parts of cakes are the amounts Piggy ate. Read: a) Piggy wanted to taste each cake right away. What part of these cakes did Piggy eat before the party? b) After the party, Piggy checked on what had been left. Colour the parts of the cakes he found. Review at BB with whole class. Mistakes corrected. Solution: a) 1 quarter $1 \text { half }$ 1 quarter b) e.g. \square 1 quarter 1 half 1 quarter	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discuss shapes of cakes and how many equal slices they have been cut into Reasoning, agreement, selfcorrection, praising b) Praise creative solutions e.g. 1 quarter
6	Book 3, page 43 Q. 2 Read: Colour one half of each shape in red and the other half in blue. Discuss the difference between plane shapes (which have adjoining sides) and line shapes (not joined up). Elicit that shapes first have to be divided into two equal parts. Review at BB with whole class. Deal with all solutions Solution: e.g. Where can you see halves in the classroom? Ps suggest some.	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising $\begin{aligned} \text { BB: } 1 \text { half }+1 \text { half } & =2 \text { halves } \\ & =1 \text { whole } \end{aligned}$ Praise creative solutions Class agrees/disagrees

BK3	R: Mental calculation (4 operations) C: Fractions: halves, quarters, thirds. Unit fractions E: 2 quarters, 3 quarters, 4 quarters; 2 thirds, 3 thirds	$\begin{gathered} \text { Lesson Plan } \\ 44 \end{gathered}$
Activity 1	Money model How much money can you see on the BB? Which amount is more? How much more? Ps come to BB to write total value below each amount, write the inequality and then do the calculation. Agree that calculation can be done by subtracting the 100 s first, then the tens, then the units. a) BB : £2) $\Varangle 20$ $£ 20$ £20 £20 $\begin{aligned} & 3 \times £ 50+£ 2=£ 152 \\ & 5 \times £ 20+3 \times £ 5=£ 100+£ 15=£ 115 \\ & \quad £ 152>£ 115 \\ & £ 152-£ 115=£ 52-£ 15=£ 42-£ 5=£ 37 \end{aligned}$ b) BB : $£ 50$ \square £20 $\begin{gathered} £ 50+3 \times £ 20+£ 1=£ 50+£ 60+£ 1=£ 111 \\ 2 \times £ 50+4 \times £ 2+£ 1=£ 100+£ 8+£ 1=£ 109 \\ £ 111>£ 109 \\ £ 111-£ 109=£ 11-£ 9=£ \underline{£ 2} \end{gathered}$ 6 min	Notes Whole class activity Drawn on BB or use copy master, enlarged, cut out and items stuck to BB Discussion, agreement, praising Ps copy into Ex. Bks. (Heading: Lesson and date)
2	Numbers Which 2-digit numbers have:	Whole class activity At a good pace Ps dictate answers, T writes on BB (or Ps list in Ex. Bks.) Encourage Ps to think logically Agreement, praising
3	Addition Let's practise addition. (T has SB or BB or OHP already prepared.) BB: a) $2+7=(9) \quad 20+70=(90) \quad 120+70=(190) \quad 2+70=(72)$ b) $5+8=(13) 5+80=(85) \quad 50+80=(130) 50+180=(230)$ c) $3+9+6=(18) \quad 30+90+60=(180) \quad 30+90+6=(126)$ Discuss relationships, e.g. $10 \times 2+10 \times 7=10 \times 9$; $100+20+70=100+90=190$ $50+180=5 \text { tens }+18 \text { tens }=23 \text { tens }=230, \text { etc. }$ 15 min	Whole class activity Ps come out to BB to write in answers, explaining reasoning Class points out errors Or Ps copy into Ex. Bks., writing the answers too Discussion, agreement, praising

R K		Lesson Plan 44
Activity 4	Subtraction Let's practise subtraction. (T has SB or BB or OHP already prepared.) BB: a) $8-5=(3)$ $80-50=(30)$ $80-5=(75)$ b) $18-5=(13)$ $180-50=(130)$ $180-5=(175)$ c) $13-7=(6)$ $130-70=(60)$ $130-7=(123)$ d) $18-9-7=(2) 180-90-70=(20) \quad 180-9-7=(164)$ Discuss relationships and methods of calculation, e.g. $\begin{aligned} & 180-50=10 \times 18-10 \times 5=10 \times 13=130 \\ & 130-70=100+30-70=100-70+30=30+30=60 \\ & 18 \text { tens }-9 \text { tens }-7 \text { tens }=9 \text { tens }-7 \text { tens }=2 \text { tens }=20 \\ & 180-9-7=180-(9+7)=180-16=164 \end{aligned}$ 20 min	Notes Whole class activity Ps come out to BB to write in answers, explaining reasoning Class points out errors (Or Ps copy into Ex. Bks., writing in the answers too) Discussion, agreement, praising (T gives hints if Ps cannot suggest any)
5	Multiplication and division Let's practise multiplication and division. Deal with one part at a time. Review with whole class. Ps change pencils and mark/correct their own work. Ps dictate their answers, class agrees/disagrees. T writes on BB (or uncovers previously prepared answers). BB: a) Who had all 24 correct? Who had 1 mistake ($2,3,4,5$, more than 5) mistakes)? What were your mistakes? How did you do the calculation? e.g. $\begin{aligned} & 45 \times 3=40 \times 3+5 \times 3=120+15=135 \\ & 84 \div 4=80 \div 4+4 \div 4=20+1=21 \\ & 75 \div 5=50 \div 5+25 \div 5=10+5=15 \\ & 121 \div 11=110 \div 11+11 \div 11=10+1=11 \end{aligned}$ 25 min	Whole class activity Thas SB or BB or OHP already prepared T reads them out, Ps copy in Ex. Bks, writing results too. At a good pace Less able Ps might only be expected to do part a) Encourage speed in writing and calculating Ps think of easy ways to do the difficult calculations Agreement, self-correcting, evaluation, praising Quick discussion on methods of calculation Stars, stickers, points, etc. awarded for good work
6	Book 3, page 44 Q. 1 Read: Colour a quarter of each shape. Elicit that most of the shapes have been divided into 4 equal parts, and each part is 1 quarter. Ps divide up the circle themselves. Review at BB with whole class. Show different solutions and discuss mistakes. What part of each shape has not been coloured? (3 quarters) Let's colour another quarter of the shapes in a different colour. How much of each shape have we coloured now? (2 quarters = 1 half) If we coloured 3 quarters what would be left uncoloured? (1 quarter). How many quarters make 1 whole circle (shape, unit)?	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrecting, praising Whole class discussion Ps come to BB to choose a shape and colour. BB 2 quarters $=1$ half 4 quarters $=1$ unit

BK3	R: Mental calculation C: Time: quarter, half, three quarters of an hour; $\mathbf{1 5 , 3 0 , 4 5}$ minutes E: Sequences of congruent numbers	$\begin{gathered} \text { Lesson Plan } \\ 45 \end{gathered}$
Activity 1	Missing numbers Which numbers are missing from these equations? BB: a) $16+4=$ \square $160+\square=200$ \square $+140=200$ $15+3=$ \square $150+$ \square $=180$ \square $+130=180$ b) $20-5=$ \square 200 - \square $=150$ \square $-150=50$ $17-4=$ \square $170-$ \square $=130$ \square $-140=30$ Discuss methods of calculation and relationships/connections. $\begin{array}{rl} \text { e.g. } 160+\square & =200: \quad 200-160=\underline{40}, \quad 160+\underline{40}=200 \\ 170-\square & =130: \\ \square-140 & =30: \\ \square & 140+30=\underline{170}, \\ \square-170 & 140=30 \end{array}$	Notes Whole class activity T has BB or SB or OHP already prepared Ps come out to BB to write in answers, explaining reasoning Class points out errors At a good pace Discussion, agreement, praising Consolidate methods of finding the unknown number
2	Written exercises T dictates an operation, Ps write in Ex. Bks and calculate the result.. a) $3 \times 6=(18)$ $30 \times 6=(180)$ $3 \times 60=(180)$ b) $24 \div 8=(3)$ $240 \div 8=(30)$ $240 \div 80=(3)$ c) $7 \times 3+140=$ (161) $96+60 \div 3=(116)$ $132-120 \div 6=(112)$ d) $126-5 \times 6=$ (96) $90 \div 3+75=(105)$ $200 \div 5-26=(14)$ Review orally round class. Write details of difficult calculations on BB. 10 min	Individual work, monitored Ps nod their heads when they are ready for next calculation Quick checking after each part Agreement, self-correction, praising Deal with all mistakes Feedback for T
3	Graph of remainders We are going to divide the whole numbers by 4 and show the remainders on this graph. T explains graph (with help of Ps). (e.g. x axis is horizontal and shows the whole numbers, y axis is vertical and shows the remainders; x axis and y axis are perpendicular to each other). T starts, then Ps continue. Let's list the numbers which have remainder $3(2,0,1)$. Discuss the graph (e.g. pattern of slanting parallel lines of dots, why there are no dots on the horizontal grid line at 4 on y axis, etc.) 15 min	Whole class activity Drawn on BB or use enlarged copy master or OHP Initial revision of components of a graph Ps come to BB to draw dots to show the remainders, explaining reasoning Class points out errors Agreement, praising In unison Note for T Sequences of congruent numbers, difference 4
4	Book 3, page 45 Q. 1 Read: Colour the correct number of marbles. Write a division about each picture. Review at BB with whole class. Discuss other fractions: e.g. 1 half, 2 thirds, 3 quarters, 5 sixths, 7 eighths, 1 twelfth	Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising

		Lesson Plan 45
Activity 8	Book 3, page 45 Q. 2 Read: How many hours and minutes do the hands on the clock show? Review at BB with whole class. Mistakes corrected. Discuss other ways to say and write the times. Solution: Discuss positions of hour hands (e.g. LH clock: minute hand has gone half way round the clock, so hour hand is half way between 7 and 8) Are these times morning, afternoon or night? How would we say (write) these times? (e.g. LH clock: 'half past seven', 7:30 or $15: 30,7.30 \mathrm{am}$ or 7.30 pm)	Notes Individual work, monitored, helped Use enlarged copy master or OHP or show times on model clock Agreement, self-correction, praising Talk about am and pm and the 24 hour clock T asks Ps at random. Class agrees/disagrees. Praising
9	Book 3, page 45 Q. 3 a) Read: How many minutes does the minute hand on the clock show when it is pointing to these numbers? Complete the table. Ps come out one after the other to choose a column, show it on the model clock and write in the minutes. Class points out errors. Ps complete table in Pbs too. Solution: b) Read: Shade the clocks to show how far the minute hand has gone. Join up the clocks which are the same. Ps first draw a vertical line from the centre to the '12' on each clock, then they draw a line from the centre to the appropriate position and colour the relevant segment Review at BB with whole class. Deal with all mistakes. C, which clocks did you join up? Why? Who agrees? Who thinks another pair? etc. Solution:	Whole class activity Table drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Discuss the case of '12' being either 0 or 60 minutes Individual work, monitored, helped T demonstrates on BB Reasoning, agreement, self-correcting, praising
Extension		If the hour hand is at 12 noon, what times do these clocks show? (orally and written)

R \square^{3}		Lesson Plan 45
Activity		Notes
10	Book 3, page 45, Q. 4	Whole class activity
	Read: Compare the two sides. Write the correct sign between them. Ps come out to BB to write in the missing signs, explaining reasoning.	Written on BB or use enlarged copy master or OHP
	Class agrees/disagrees. If problems, demonstrate on model clock.	Ps write in Pbs too
	For inequalities, Ps also say how many minutes more or less.	At a good pace
	Solution: (30 min) (15 min) a) half an hour $<35 \mathrm{~min}$ b) $15 \mathrm{~min}=$ quarter of an hour	Reasoning, agreement, praising
	(45 min) c) 50 min \square 3 quarters of an hour d) 1 hour $=60 \mathrm{~min}$ $(20 \mathrm{~min})$ e) a quarter of an hour $+5 \min <$ half an hour -5 min (50 min) (45 min) f) $20 \mathrm{~min}+$ half an hour Δ a quarter of an hour + half an hour	Feedback for T (Or as individual work, monitored, helped, with timelimit differentiation)

BK?	R: Calculations C: Time: quarter, half, three quarters of an hour E: Thirds of an hour	$\begin{gathered} \text { Lesson Plan } \\ 46 \end{gathered}$
Activity 1	Number line Let's join the numbers to the corresponding points on the number line. Ps come out to choose a number and join to number line. Elicit that the 'ticks' show the even numbers, so the odd numbers are half-way between the ticks.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP, or stick dots (red for even and green for odd) on class number line At a good pace Agreement, praising
2	What is the rule? Ps decide on one form of the rule using the completed columns. (e.g. numbers in a are 50 more than in b) Ps come out to choose a column and fill in a missing number, explaining reasoning. Class points out errors. Who can write the rule in a mathematical way? Who agrees? Who can write it another way? etc. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Rule: a 50> b $\begin{aligned} & a=b+50 \\ & b=a-50 \\ & a-b=50 \end{aligned}$ Bold numbers given
3	Written exercises T dictates a calculation, Ps write in Ex. Bks and show result on command. Ps who respond incorrectly work through calculation on BB with help of class. Discuss the need for brackets in c) and d). a) The sum of 56 and half of 140 . Show me . . now! BB: $56+140 \div 2=56+70=\underline{126}$ b) The difference between 140 and half of 56 . Show . . now! BB: $140-56 \div 2=140-28=140-20-8=120-8=\underline{112}$ c) Half of the sum of 140 and 56 . Show me . . now! BB: $(140+56) \div 2=196 \div 2=100 \div 2+80 \div 2+16 \div 2$ $=50+40+8=\underline{98}$ d) Half of the difference between 140 and 56. Show . . now! BB: $(140-56) \div 2=(140-40-10-692=84 \div 2=\underline{42}$ e) The difference between 140 and 2 times 56 . Show ... now! BB: $140-2 \times 56=140-2 \times 50-2 \times 6=140-100-12$ $=40-12=\underline{28}$	Whole class activity T repeats each part slowly Ps nod heads when they have done calculation Ps show answers on scrap paper (or with number cards) in unison Discussion, agreement, selfcorrecting, praising Ps explain easy ways to do the calculations (Or done as mental practice if class is able)

R < 2		Lesson Plan 46
Activity 7 Extension	Book 3, page 46 Q. 2 Read: Join up the equal amounts. Review at BB with whole class. Ps come out to join up values and explain reasoning (with T's help). Write details of calculations on BB if necessary. Mistakes corrected. BB: e.g. 1 third of an hour $=60 \mathrm{~min} \div 3=20 \mathrm{~min}$ 2 thirds of an hour $=60 \mathrm{~min} \div 3 \times 2=40 \mathrm{~min}$ 1 quarter of an hour $=60 \mathrm{~min} \div 4=15 \mathrm{~min}$ 3 quarters of an hour $=60 \mathrm{~min} \div 4 \times 3=45 \mathrm{~min}$ Solution: 35 min	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Remind Ps of order of operations if only \times and \div (work from left to right) What other fractions of an hour can you think of? (e.g. 1 sixth of an hour $=$ $60 \mathrm{~min} \div 6=10 \mathrm{~min})$ Praising
8	Book 3, page 46 Q. 3 Read: Complete the open sentences so that they are correct. Review at BB with whole class. Check on model or real clock. If problems, write details of calculations on BB. Solution: a) 3 quarters of an hour +1 quarter of an hour $=1$ hour b) 30 minutes $+\underline{\text { half an hour }=1 \text { hour }}$ c) 20 minutes + half an hour $+\underline{10}$ minutes $=1$ hour d) A quarter of an hour + a third of an hour $+\underline{25}$ minutes $=1$ hour Let's think of other times which add up to 1 hour. e.g. T: '1 third of an hour', P_{1} : 'plus $10 \mathrm{~min}^{\prime}, \mathrm{P}_{2}$: 'plus half an hour', P_{3} : 'equals 1 hour'; etc. Class points out errors. 40 min	Individual work, monitored, helped T has BB or SB or OHP already prepared Discussion at model clock, reasoning, agreement, selfcorrection, praising BB: a) $45+15=60$ b) $30+30=60$ c) $20+30+10=60$ d) $15+20+25=60$ Orally, at speed round class Prase creativity
9	Book 3, page 46, Q. 4 Read: If the statement is correct, write a tick in the box. If not, write a cross and correct the mistake Ps read each part and write a tick or cross in their Pbs. If you marked it correct, put your hands on your heads and if you marked it wrong, stand up when I say. Show me your answer . . . now! Ps who responded correctly explain to those who were wrong. Mistakes corrected. Solution: a) 1 hour $=60$ minutes b) Half an hour $=2 \theta$ minutes \times (30) c) Half an hour $=2$ quarters of an hour d) 20 minutes $=\not 21$ thirds of an hour \times (1 third) e) 3 quarters of an hour $=45$ minutes f) 2 thirds of an hour $=1$ quarter of an hour $+\not \supset$ minutes \times g) 2 quarters of an hour $=1$ quarter of an hour +15 minutes	Whole class activity, but individual work first in Pbs . Or other suitable actions - Ps could choose In unison Reasoning, agreement, selfcorrection, praising In good humour! If time, Ps come to front to say own statements and class shows whether true or false on command from Ps.

BK	R: Operations. Fractions C: Time. 24 hour clock E: Sequences of time	$\begin{gathered} \text { Lesson Plan } \\ 47 \end{gathered}$
Activity 1	Fractions 1 Barry Bear has done his homework and wants us to check it for him. What do you think he had to do? How well has he done? BB: b) c) d) e) f) g) Reasoning: e.g. a) 2 parts but not equal c) 4 equal parts, but only 1 should be shaded, not 3 . e) 4 equal parts, so 2 parts should be shaded, not 3 . 2 quarters $=1$ half Ps come out to evaluate each diagram, explain why it is correct or why it is wrong and how to correct it. Class agrees/disagrees. 5 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Elicit that the task was to shade each shape to show the fraction below it. Reasoning, agreement, praising T repeats vague or inaccurate reasons correctly What mark would you give Barry Bear? Wha comment would you write beside it?
2	Fractions 2 What fraction of the whole unit are these shapes if: a) \square 1 third 2 sixths 4 twelfths b) 6 twelfths 3 sixths 2 quarters 1 half Ps come out to write the fraction below each shape, explaining reasoning. Who agrees? Is there another fraction it could be? Why do you think so? 11 min	Whole class activity Drawn on BB or use enlarged copy master or OHP (or shapes cut out of coloured paper and stuck to BB) Reasoning, agreement, praising In part b), also ask for - the fraction unshaded - the number of minutes in the shaded (unshaded) parts T give hints about fractions not suggested by Ps Discussion, reasoning, agreement, praising
3	24 hour digital clocks T shows class a 24 hour digital clock. This is a clock which is different from the traditional clock. How is it different? (rectangular, no hands, time shown with digits) What time is shown on the clock? e.g. 09:05 (five past nine, nine hours and 5 minutes, nine o five) Set your model clocks to this time. Show me them . . . now! T: This digital clock shows 9:05 twice a day, once in the morning (9.05 am) and once in the evening (9.05 pm). (T demonstrates) This digital clock (24 hour) shows 09.05 in the morning and 21:05 in the evening. Who can explain this? (T helps with explanation) Elicit that at midnight, the time is $00: 00$, then the clock counts 12 hours up to mid-day (12:00), then counts on another 12 hours to 00:00. The time 9.05 pm is really 12 hours +9 hours +5 minutes $=21$ hours and 5 minutes, so the 24 hour digital clock shows 21:05.	Whole class discussion T has analogue clock and digital 12 hour/24 hour clocks Ps have model analogue clocks on desks In unison. T sets analogue clock too as a check. $\begin{aligned} \text { BB: } 1 \text { day } & =2 \times 12 \text { hours } \\ & =24 \text { hours } \\ 1 \text { hour } & =60 \text { minutes } \end{aligned}$ Discussion, demonstration of the 24 hour clock and why it never shows 24:00. (Midnight is always $00: 00$)

BK		Lesson Plan 47
Activity 8	Book 3, page 47 Q. 3 Read: Fill in the missing numbers. Revise the units of time in the question and their relationship to one another. (BB) T shows a clock which has a second hand. Who knows how many seconds are equal to 1 minute? (60) T demonstrates on clock. Ps could count every second for, say, 10 seconds, to get an idea of how much time a second takes. Let's write the units in increasing order. Ps fill in missing numbers in Pbs. Review at BB with whole class. If problems, check on model or real clock and write details of calculations on BB. Solution: a) 1 hour $=\underline{60}$ minutes b) half a day $=\underline{12}$ hours 1 minute $=\underline{60}$ seconds a quarter of a day $=\underline{6}$ hours 1 day $=\underline{24}$ hours a third of a day $=\underline{8}$ hours 2 days $=\underline{48}$ hours 3 quarters of an hour $=\underline{45} \mathrm{~min}$ 40 min \qquad	Notes Whole class discussion Involve several Ps BB: 1 day $=24$ hours 1 hour $=60$ minutes 1 minute $=60$ seconds BB: seconds < minutes < hours Individual work, monitored Reasoning, agreement, selfcorrection, praising BB: e.g. a) 2 days $=2 \times 24$ hours $=\underline{48} \text { hours }$ b) 3 quarters of an hour $\begin{aligned} & =60 \mathrm{~min} \div 4 \times 3 \\ & =15 \mathrm{~min} \times 3=\underline{45} \mathrm{~min} \end{aligned}$
9	Book 3, page 47 Q. 4 Read: Complete the tables. Deal with one part at a time. Ps write details of calculations in Ex. Bks if necessary. (Differentiation by time limit.) Review at BB with whole class. Ps come out to fill in missing numbers or T writes what Ps dictate. Who had it all correct? Who made a mistake? What was your mistake? Who did not have enough time to finish it? Elicit that ' H ' means Hours and ' D ' means 'Days'. B , come and write the rule. Who agrees? Who wrote it another way? etc. Repeat for part b). Solution: a) $H=24 \times D, \quad D=H \div 24, \quad H \div D=24$ b) What is the rule? $M=60 \times H, \quad H=M \div 60, \quad M \div H=60$	Individual work, monitored, helped Tables drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Write details of difficult calculations on BB : e.g. $\begin{aligned} 24 \div 4 & =6 \\ 24 \div 4 \times 3 & =6 \times 3=18 \\ 24 \div 3 & =8 \\ 24 \div 3 \times 2 & =8 \times 2=16 \\ 24 \div 8 & =3 \end{aligned}$ $\text { b) } \begin{aligned} 3 \times 60 & =180 \\ 5 \times 60 & =300 \\ 60 \div 2 & =30 \\ 60 \div 4 & =15 \\ 60 \div 3 & =20 \\ 60 \div 3 \times 2 & =20 \times 2=40 \\ 60 \div 6 & =10 \\ 60 \div 5 & =12 \end{aligned}$

BK?	R: Mental calculation C: Time: days, hours, minutes. Fractions of the day or hour E: Problems	Lesson Plan 48
Activity 1	Missing items 1 Ps come out to fill in missing numbers and signs, explaining reasoning. Class points out errors. BB: a) $20 \xrightarrow{+40} \text { 60 } \xrightarrow{+50} \xrightarrow{+40} \text { 150 } \xrightarrow{+50}$ b) $200 \xrightarrow{-70} 130 \xrightarrow{-30} 100 \xrightarrow{-7} 93 \xrightarrow{-30} 63$ c) $10 \xrightarrow{\boxed{+80}} 90 \xrightarrow{+\mathbf{+ 7}} 97 \xrightarrow{+\mathbf{8 0}} 177 \xrightarrow{\boxed{+7}} 184$ d) $170 \xrightarrow{-\mathbf{5 0}} 120 \xrightarrow{+\mathbf{8}} 128 \xrightarrow{-50} \xrightarrow{\mathbf{7 8}} \xrightarrow{+8}$ 5 min	Notes Whole class activity Written on BB or use enlarged copy master or OHP At good pace Agreement, checking, praising Feedback for T (or done as a mental chain calculation and Ps show result)
2	Missing items 2 Ps come out to fill in missing numbers and signs, explaining reasoning. Class points out errors.	Whole class activity Written on BB or use enlarged copy master or OHP At good pace Agreement, checking, praising Feedback for T (or done as a mental chain calculation and Ps show result)
3	Written exercises T has BB or SB or OHP already prepared. T uncovers each equation one at a time, reads it and Ps copy and complete it in Ex. Bks. BB: a) 1 week $=$ \square 7 days b) 1 hour $=$ \square 60 minutes c) 1 day $=$ \square 24 hours d) 1 minute $=$ \square 60 seconds e) 3 quarters of a day $=$ \square 18 hours f) 2 thirds of an hour $=$ \square 40 minutes g) 120 minutes $=$ \square 2 hours h) 150 minutes $=$ \square 2 hours \square 30 minutes (= 2 and a half hours) i) 3 days $=$ \square 72 hours j) half a day = \square 12 hours k) 1 third of a day $=$ \square 8 hours l) 3 twelfths of an hour $=15$ minutes (= 1 quarter of an hour) Review at BB with whole class. T writes what Ps dictate. Mistakes corrected. Write details of problem calculations on BB.	Individual work, monitored, helped Ps nod heads when ready for T to continue Discussion, reasoning, agreement, self-correcting, praising BB: e.g. e) $\begin{aligned} 24 \div 4 \times 3 & =6 \times 3 \\ & =18 \end{aligned}$ f) $\begin{aligned} 60 \div 3 \times 2 & =20 \times 2 \\ & =40 \end{aligned}$ g) $120=60+60$ h) $150=60+60+30$ i) $\begin{aligned} 3 \times 24 & =3 \times 20+3 \times 4 \\ & =60+12 \\ & =72 \end{aligned}$ 1) $\begin{aligned} 60 \div 12 \times 3 & =5 \times 3 \\ & =15 \end{aligned}$

BK?	R: Calculations C: Fractions. Problems in context E Problem solving. Finding the rule	$\begin{gathered} \text { Lesson Plan } \\ 49 \end{gathered}$
Activity 1	Mental practice T says a fraction of an amount, Ps say value. e.g. a) half of 30,1 third of 30,1 fifth of 30,1 sixth of 30,1 tenth of 30 ; b) half of 100,1 quarter of 100,1 fifth of 100,1 tenth of 100 , 1 third of 100 . Discuss how to calculate the last fraction. (e.g. $100 \div 3=99 \div 3+1 \div 3=33+1$ third $=33$ and a third or $100 \div 3=33$, remainder 1)	Notes Whole class activity At speed T chooses Ps at random If problems, write divisions on BB Praising, encouragement only
2	Problem 1 Listen carefully, picture the story in your head and think how you would solve it. Write a plan, draw a diagram and do the calculation in your Ex. Bks. A school decided to lay a crazy paved around the playing fields. Last month, workers paved 80 m of the path. This month they have paved another 160 m . What length have they paved altogether? A, come and explain what you did. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. BB: Plan: Last month: 80 m This month: 160 m Diagram: Calculation: $x=80 \mathrm{~m}+160 \mathrm{~m}=\underline{240 \mathrm{~m}}$ Answer: They have paved 240 m altogether. What fraction of the 240 m was paved last month (this month)? BB: $\quad 240 \mathrm{~m}=80 \mathrm{~m}+(80 \mathrm{~m}+80 \mathrm{~m})$, or $240 \mathrm{~m} \div \underline{3}=80 \mathrm{~m}$ so $80 \mathrm{~m}=1$ third of $240 \mathrm{~m} ; 160 \mathrm{~m}=2$ thirds of 240 m Check: 1 third +2 thirds $=3$ thirds $=1$ whole 10 min	Individual trial in Ex. Bks, then whole class discussion on how to solve it. T repeats slowly and Ps repeat in own words Reasoning, agreement, selfcorrection, praising (T might need to help with the diagram) Elicit other relationships too, e.g. 160 m is twice 80 m 240 m is 3 halves of 160 m , i.e. 1 and a half times 160 m
3	Folding paper Ps have 3 circular pieces of paper and scissors on desks. T has large brightly coloured pieces for demonstration. a) Fold one piece of paper into 2 equal parts, then cut along the fold. What is the value of each part? (1 half) T sticks pieces on BB. What equation could we write? b) Fold the next circle into 4 equal parts, then cut along the folds. What is the value of each part? (1 quarter) T sticks pieces on BB . What equation could we write? c) Fold the last circle into 8 equal parts, then cut along the folds. What is the value of each part? (1 eighth) T sticks pieces on BB. What equation could we write? What do you notice about the shapes? (e.g. $\oslash 2$ quarters $=1$ half, 2 eighths $=1$ quarter, 4 eighths $=1$ half)	Whole class activity T demonstrates folding/cutting and Ps copy, monitored, helped BB: $2 \times 1 \text { half }=1 \text { whole }$ BB: 4×1 quarter $=1$ whole BB: $8 \times 1 \text { eighth }=1 \text { whole }$ Demonstrate by manipulating the cut-out shapes on the BB Praising

$3 K 2$	R: Mental calculation C: Fractions. Problems in context E: Problem solving	$\begin{gathered} \text { Lesson Plan } \\ 50 \end{gathered}$
Activity 1	Puzzle BB: Find these shapes in the grid so that the numbers in each shape sum to 200 . e.g. Ps come out to write numbers in shapes and show positions on grid. Class checks that they are correct. 5 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Check: $5 \times 40=200$ $2 \times(80+20)=2 \times 100$ $=200, \text { etc. }$ Agreement, praising
2	Problem 1 Listen carefully, picture the story in your head and think how you would solve it. There are 153 children in the school playground, 33 fewer boys than girls. How many boys and how many girls are in the playground? A, how would you solve it?. Who agrees? Who would solve it a different way? etc. (There are several methods of solution but the most logical is as below.) BB: Data: $\mathrm{G}+\mathrm{B}=153, \mathrm{G}-\mathrm{B}=33$ Diagram: Plan: Take off the 33 more girls first, then of the number left, half will be girls and half will be boys. Calculation: 153-33 $=120, \quad 120 \div 2=60$ Number of boys: 60 ; number of girls: $60+33=93$ Check: $60+93=153$, and $93-60=33$ Answer: There are 60 boys and 93 girls in the playground. 10 min	Whole class activity Discussion on methods of solution. Involve several Ps. Praise all contributions T suggests it if no P does so Ps copy into Ex. Bks. (Consolidate by Ps repeating problem with, e.g. 135 pupils in the playground, and 13 more boys than girls. BB: $135-13=122$ $122 \div 2=61$ G: $61, \mathrm{~B}: 61+13=74$)
3	Problem 2 Listen carefully, picture the story in your head and write a plan in your $E x . B k s$. Calculate the answer and check it. A carton of orange juice costs 40 p and with a straw costs 1 fifth more. What does a carton of orange juice with a straw cost altogether? B, how did you work it out? Who agrees? Who did it a different way? etc. Mistakes corrected. Plan: \quad Carton: $40 \mathrm{p} \quad$ Straw: 1 fifth of 40 p Calculation: $\quad 40 \mathrm{p}+40 \mathrm{p} \div 5=40 \mathrm{p}+8 \mathrm{p}=\underline{48 \mathrm{p}}$ or $40 p \div 5=8 p, 40 p+8 p=\underline{48 p}$ Answer: A carton with a straw costs 48 p aaltogether. 15 min	Individual work, monitored, helped T repeats slowly and Ps repeat in own words Discussion on BB. Reasoning, agreement, selfcorrection, praising Feedback for T
4	Number sets T has cards stuck to BB. How could we group these numbers? BB: 1 quarter 2 2 Ps suggest possible ways. Let's put them into sets of 3 1 half 1 third whole numbers and fractions.	Whole class activity Written on BB or use copy master, enlarged, cut out, and stuck to BB Discussion, agreement, praising

		Lesson Plan 50
Activity 6	Book 3, page 50 Q. 1 Read: Complete the drawings. T explains task. Elicit that 1 whole unit is $2 \times 12=24$ grid squares. How many squares are in 1 half (1 sixth, 1 eighth, 1 third) of the unit? $(12,4,3,8)$ Ps complete the drawings in Pbs. Review at BB with whole class. Mistakes corrected. What part is left? (half, 5 sixths, etc.) Solution: e.g. 34 min	Notes Individual work, minitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, praising Extra praise for creative solutions, e.g. 1 sixth:
7	Book 3, page 50 Q. 2 Read: Five children are running in a 240 m race. What are the names of the children in the race? How long is the track from start to finish? (240 m) What do you notice about it? (divided into 12 equal parts, i.e. twelfths) What distance is each part? (20 m) Everyone put your finger on Tom. How far has he run? (4 sixths of the distance) \mathbf{X}, come and show us where you think Tom has got to. Who agrees? Let's mark it with a dot. How far has Tom run? BB: $240 \mathrm{~m} \div 6 \times 4=40 \mathrm{~m} \times 4=\underline{160 \mathrm{~m}}$ Let's write it below Tom's dot. Rest done as individual work, reviewed with whole class, or continue as whole class activity. Solution: How far away is each child from the finishing line?	Ps read problem silently first T asks questions to test Ps^{\prime} understanding Discussion, agreement BB: $240 \mathrm{~m} \div 12=20 \mathrm{~m}$ Do first part with whole class first Diagram drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, praising T, Z: $240 \mathrm{~m}-160 \mathrm{~m}=80 \mathrm{~m}$ C: $240 \mathrm{~m}-180 \mathrm{~m}=60 \mathrm{~m}$ J, S: $240 \mathrm{~m}-120 \mathrm{~m}=120 \mathrm{~m}$ (or use fractions: e.g.
8	Book 3, page 50 Q. 3 Read: Gerry spent $£ 140$ on his holiday. Joe spent 1 seventh more than Gerry. a) How much money did Joe spend on his holiday? b) How much money did Gerry and Joe spend altogether? Review at BB with whole class. D, come and tell us how you worked out the answer. Who agrees? Who did it a different way? etc. Mistakes corrected. BB: a) G: $£ 140 ; \mathrm{J}: £ 140+£ 140 \div 7=£ 140+£ 20=£ \underline{£ 160}$ b) $\mathrm{G}+\mathrm{J}: £ 140+£ 160=£ 140+£ 60+£ 100=£ 300$	Individual work, monitored, helped Make sure that Ps realise that Joe' amount is 1 seventh more, not just 1 seventh! Reasoning, agreement, selfcorrection, praising Answer: a) Joe spent $£ 160$. b) Gerry and Joe spent $£ 300$ altogether.

173	R: Calculations C: Practice: numbers, fractions, time E: Challenges and puzzles	$\begin{gathered} \text { Lesson Plan } \\ 51 \end{gathered}$
Activity 1	Equal values Let's find the equal values. Agree on different ways of showing them (e.g. underlining and circling, or using different colours). BB:	Notes Whole class activity T has BB or SB or OHP already prepared Ps come out to BB, explaining reasoning Class agrees/disagrees At a good pace Extra praise if Ps notice that there is no need to do each calculation.
2	Problem 1 Listen carefully, picture the story in your head and write the important data in your Ex. Bks. Write a plan, do the calculation and solve it. A school dinner lady needs 9 eggs to make a large bacon and egg pie. How many pies could she make with 140 eggs? Ps sit up with arms folded when finished. Wait until most of the class have solved it. T asks several Ps for their answer. A, come and explain how you worked it out. Who agrees? Who did it a different way? etc. Discuss all mistakes. BB: e.g. 9 eggs $\rightarrow 1$ pie, 140 eggs $\rightarrow(140 \div 9)$ pies $\begin{aligned} 140 \div 9=(90+50) \div 9 & =90 \div 9+50 \div 9 \\ & =10+5, \text { r } 5=\underline{15}, \text { r } 5 \end{aligned}$ Answer: She could make 15 pies. 5 eggs will be left over. \qquad 14 min \qquad	Individual work, monitored, helped T repeats slowly and Ps repeat in own words (Or Ps show with number cards or on scrap paper) Reasoning, agreement, selfcorrecting, praising Feedback for T
3	Problem 2 The rabbit family are having dumplings for lunch. How many dumplings has Mrs Rabbit made? BB: T reads out the fraction each rabbit ate. Ps come out to BB to write calculations and colour appropriate numbers of dumplings . a) Ricky Rabbit ate 1 sixth of the dumplings. (BB: $36 \div 6=\underline{6}$) b) Jenny Rabbit ate 1 third of the dumplings. (BB: $36 \div 3=\underline{12}$) c) Cilla Rabbit ate 1 quarter of the dumplings. (BB: $36 \div \underline{4}=\underline{9}$) d) Tim Rabbit ate 1 ninth of the dumplings. (BB: $36 \div 9=4$) What other questions can you think of to ask? e.g. - Who ate most (fewest) dumplings? (Jenny: 12, Tim: 4) - Were all the dumplings eaten? (No, 5 were left) BB: $6+12+9+4=31, \quad 36-31=\underline{5}$	Whole class activity Drawn on BB or OHP or pictures of dumplings cut out and stuck to BB BB: $9 \times 4=36$ T could have text written on BB (SB or OHT) and uncover each section as required. Reasoning, agreement, praising (with help of T/class if needed) T aks questions if Ps cannot think of any. Agreement, praising

RK3		Lesson Plan 51
Activity 7	Book 3, page 51 Q. 4 Read: Fill in the missing items. Review at BB with whole class. Mistakes corrected. Solution: What do you notice about the diagrams? Discuss relationships and connections.	Notes Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Elicit, e.g., that: - 2 tenths $=1$ fifth - finding 1 fifth and then 1 half of something is the same as finding 1 tenth, i.e. $100 \div 5 \div 2=100 \div 10$
	What is missing? Study the table. What do you think are the missing shapes? BB: Ps come to BB to chooose a colum and draw the shape, explaining reasoning. Class agrees/disagrees. Ps suggest other units and values which could be added to table.	Whole class activity Table drawn on BB or use enlarged copy master or OHP \leftarrow added by Ps Discussion, reasoning, agreement, praising Feedback for T Extra praise for creative suggestions

BK	R: Calculations C: Practice: numbers, fractions, time E: Problem solving. Puzzles	$\begin{gathered} \text { Lesson Plan } \\ 52 \end{gathered}$
Activity 1	Mental practice T asks a question. Ps say answers, explaing reasoning. a) Which number is: 56 less than 124 ? $(124-56=68)$ b) Which number is 56 more than 124 ? $(124+56=180)$ c) What is the sum of $56+124$? d) What is the difference between 124 and 56 ? (68) e) 124 is 56 less than which number? $(124+56=180)$ f) 124 is 56 more than which number? $(124-56=68)$ 5 min	Notes Whole class activity T chooses Ps at random Reasoning, agreement Calculations written on BB if necessary, e.g. $\begin{aligned} 124-56= & 124-20-30 \\ & -4-2 \\ 124+56= & 124+50+6 \end{aligned}$ Praising, encourgaement only
2	Written exercises T reads out calculations. Ps write them in Ex. Bks and work out the answers too. Ps nod heads when they have done each one. Deal with one part at a time. Review orally round class. Ps change pencils and mark/correct own work. Who had all 8 correct? etc. a) $\begin{array}{ll} 78+4 \times 8=(78+32=110) & 87+8 \times 4=(87+32=119) \\ 79+4 \times 8=(79+32=111) & 8 \times 3+87=(24+87=111) \\ 9 \times 3+78=(27+78=105) & 87+9 \times 4=(87+36=123) \\ 79+3 \times 8=(79+24=103) & 78+4 \times 4=(78+16=94) \end{array}$ Let's write the results in increasing order. T writes as dictated by Ps. BB: $94<103<105<110<111=111<119<123$ b) $\begin{aligned} & 105-88 \div 4=(105-22=83), 105-88 \div 8=(105-11=94) \\ & 110-88 \div 4=(110-22=88), 110-88 \div 8=(110-11=99) \\ & 95+80 \div 4=(95+20=115), \quad 95+80 \div 8=(95+10=105) \\ & 95+160 \div 8=(95+20=115), 95+160 \div 4=(95+40=135) \end{aligned}$ Let's write the results in decreasing order. T writes as dictated by Ps. BB: $135>115=115>105>99>94>88>83$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, evaluation, praising All mistakes discussed and corrected Ps suggest easy way to do calculations, e.g. $\begin{aligned} & 78+32=78+2+20+10 \\ & 79+24=80+20+3 \end{aligned}$ etc. If problems, show on class number line. Ps list increasing/decreasing orders in Ex. Bks too. Feedback for T
3	Problem This is how Minnie Mouse usually spends her day. Treads out statements and Ps come to BB to write in hours spent on each activity, explaining reasoning. Class agrees/disagrees. a) She sleeps for 1 third of the day. 8 hours b) She plays for 1 eighth of the day. 3 hours c) She is at school for 1 quarter of the day. d) She visits friends for 1 sixth of the day. 4 hours e) She teases the cat for 1 twelfth of the day. How long does she have left do do her homework? BB: $\quad(8+3+6+4+2)$ hours $=23$ hours; $(24-23)$ hours $=1$ hour Answer: Minnie Mouse has 1 hour left to do her homework. What do you think of Minnie's daily schedule? Should she organise her time better? Ps work out in a similar way how they spend their time during a day.	Whole class activity Picture or drawing of Minnie Mouse stuck to BB (or use other cartoon character) BB: 1 day $=24$ hours T could have text written on BB (SB or OHT) and uncover each section as required. Reasoning, agreement, praising (with help of T/class if needed) Ps dictate what T should write. Discussion. In good humour! (or whole activity is based on Ps' suggestions)

BK?		Lesson Plan 52
Activity 6	Book 3, page 52, Q. 2 Read: How much of their money did they spend? T has model money stuck to (or drawn on) BB as in Pb . Ps come out to count up how much each person had, then to calculate the two fractions. Are they correct? Who would do it another way? etc. Solution: a) Irene had: $100+50+20+20+10=100+100=200$ spent: half of $200=200 \div 2=100$, 1 fifth of $100=100 \div 5=\underline{20}$ b) George had: $3 \times 50+20+10=150+30=180$ spent: 1 third of $180=180 \div 3=60$, $\text { half of } 60=60 \div 2=3 \underline{0}$ c) Nick had: $2 \times 100+2 \times 50+3 \times 20=200+100+60=360$ spent: half of $360=360 \div 2=200 \div 2+160 \div 2$ $=100+80=180$ 1 third of $180=180 \div 3=\underline{60}$ d) Jane had: $50+4 \times 20+3 \times 10=50+80+30=160$ spent: 1 quarter of $160=160 \div 4=40$, 1 eighth of $40=40 \div 8=\underline{5}$ (Or parts b) to d) done as individual work, monitored and reviewed) 33 min	Notes Whole class activity Discussion, reasoning, agreement, praising Elicit that, e.g. 1 fifth of a half $=1$ tenth 1 half of 1 third $=1$ sixth, etc. or $200 \div 2 \div 5=200 \div 10$ $=20$ Ps write this equation in Pbs or $180 \div 3 \div 2=180 \div 6$ $=30$ Ps write this equation in Pbs or $360 \div 3 \div 2=360 \div 6$ $=60$ Ps write this equation in Pbs or $180 \div 3 \div 2=180 \div 6$ $=3$ Ps write this equation in Pbs
7	Book 3, page 52 Q. 3 Read: Colour the parts stated. Compare the two rectangles. Fill in the missing sign. Make sure Ps know that they should write $<,>$ or $=$ in the circles. Review at BB with whole class. Mistakes discussed and corrected. Solution: a) 2 quarters c) \ominus 1 eighth (8) b) 1 third d) 4 fifths 39 min \qquad	Individual work, monitored, helped Use enlarged copy master or OHP Agreement, self-correction, praising Feedback for T
8	Book 3, page 52, Q. 4 Read: The middle number is the product of the 4 numbers around it. Fill in the missing numbers. Where should we start? (e.g. at 80 because it has 3 numbers the same) What are two factors of 80 ? (e.g. 8×10) Elicit that $8=2 \times 2 \times 2$. Ps come to BB to write ' 2 ' in all the squares and ' 10 ' in all the pentagons. Continue in similar way with Ps suggesting what to do next. Solution:	Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP Discussion on strategy Reasoning, agreement, praising Check solution is correct, e.g. BB: $\begin{aligned} 2 \times 4 \times 2 \times 4= & 8 \times 8=64 \\ 2 \times 2 \times 4 \times 10 & =4 \times 40 \\ & =160, \text { etc. } \end{aligned}$

BK3	R: Mental calculation C: Extending numbers to 1000 E: Numbers to 2000	$\begin{gathered} \text { Lesson Plan } \\ 53 \end{gathered}$
Activity 1	Money model a) Make $£ 10$ in different ways. Encourage logical strategy. Review at BB quickly with whole class. Ps dictate to T which coins or notes to stick on BB. e.g. b) Make $£ 100$ with $£ 10$ notes. Review as above. 10 c) Make $£ 1000$ with $£ 100$ notes. Review as above. 100 How many 100s did you use? (10) Let's count them: ' $100,200,300,400,500,600,700,800,900,1000 '$ Let's put 10,100 and 1000 in a place-value table. What does each heading stand for? (Thousands, Hundreds, Tens and Units) BB: 1 ten, 0 units 1 hundred, 0 tens, 0 units 1 thousand, 0 hundreds, 0 tens, 0 units Ps come out to write digits in the correct columns. \qquad 6 min	Notes Paired work, monitored, Ps have model money on desks ($£ 1$ and $£ 2$ coins and $£ 5, £ 10$ and $£ 100$ notes Set a time limit Discussion, agreement, praising BB: $10 \times £ 10=100$ Helped. T notes which Ps know what 1000 means. BB: $10 \times 100=1000$ In unison Whole class activity Table drawn on BB Agreement, praising
2	Hundreds, tens and units Ps each have on desks: 5 'hundred' squares, 10 'strips of 10 ' and 10 unit squares. How many unit squares are in the large square? $(10 \times 10=\underline{100})$ How many unit squares are in the long strip? (10) How many strips are in the large square? (10) a) Using the 100 squares, the 10 strips and the unit squares, show me on your desks the number 324. A, what did you use? Who agrees? Who did something different? T shows on BB too. Repeat for other numbers. BB: 324 Who can write 324 in the place value table? Ps come to BB. Let's check it ($324=3$ hundreds +2 tens +4 units) b) Ps stick own elements on BB and the class reads the number aloud T chooses Ps to say how many hundreds, tens and units. c) Ps write a number in the place value table and ask other Ps to say how many tens (hundreds, units).	Whole class activity Use copy master, enlarged on to card and cut out (use different coloured card for each value if possible, or plastic squares, strips, etc. if school has a set) Individual work, monitored, helped Agreement, praising (Use magnets or blue-tack stuck to back of card) Place-value table drawn on BB BB: 324 In unison Agreement, praising Praising, encouragement only

BK3	R: Mental calculation C: Extending numbers to 1000 E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 54 \end{gathered}$
Activity 1	Number line Let's mark these numbers on the number lines. Deal with one part at a time. Ps come out to mark numbers with a dot or a cross. a) $0,3,7,10$ b) $0,30,70,100$ c) $0,300,700,1000$ a) b) What is the connection between the number lines? Elicit that: $\begin{aligned} & b=10 \times a, \quad c=10 \times b, \quad c=100 \times a \\ & 0 \times 10=0, \quad 0 \times 100=0 \\ & 3 \times 10=30, \quad 30 \times 10=300=3 \times 100 \\ & 10 \times 10=100, \quad 100 \times 10=1000=10 \times 100 \end{aligned}$ $\text { and, e.g. } \quad 0 \times 10=0, \quad 0 \times 100=0$	Notes Whole class activity Number lines drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Involve several Ps T repeats vague or inaccurate statements correctly. T gives hints if necessary.
2	Sequences a) The first term is 100 , and each following term is 100 more than the previous one. (Ps: $100,200,300,400,500, \ldots$,) b) Continue this sequence. What is the rule? (increasing by 50) T: 200, 250, 300, 350, (Ps: 400, 450, 500, 550, ..) c) The first term is 1000 . Each following term is 20 less than the previous one. (Ps: 1000, 980, 960, 940, ...) \qquad 10 min	Whole class activity At speed in relay round class If a P makes a mistake, the next P corrects it. T may point to numbers on the number line if necessary Praising
3	Find the mistakes I meant to write the same number in different ways, but I have made some mistakes. Can you find them? A, what do you think? Who agrees? Who thinks something else etc. BB: All should have value 193 , so $100+30+9$ should be $100+90+3$ and $1 \times 100+9 \times 1+3 \times 10$ should be $1 \times 100+9 \times 10+3 \times 1$ 14 min \qquad	Whole class activity Drawn on BB or use enlarged copy master or OHP, or cards stuck to BB Ps come out to BB to point to mistakes and explain how they can be corrected Reasoning, agreement, praising
4 Extension	Book 3, page 54 Q. 1 Read: Barry Bear tried to write the same number in different ways but he made some mistakes. Cross out the mistakes and correct them. Review at BB with whole class. Elicit that the numbers were all supposed to be 945 , but there were 2 mistakes: - $900+50+4$ should have been $900+40+5$ - $90+45$ should have been $900+45$ In what other ways can you make 945 ? \qquad 18 min \qquad	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, praising Agreement, praising

R <		Lesson Plan 54
Activity 5	Making 3-digit numbers a) Let's list all the 3-digit numbers which you could make from the digits 2, 7 or 8 . Discuss how to do it in a logical way. Ps try it in Ex. Bks first. Review at BB with whole class. Ps dictate to T what to write. BB: Could we have known that there are 27 possible numbers before listing them all? Elicit that for each of the 3 possible hundreds digit, there are 3 possible tens digits and 3 possible units digits. b) Let's tick the numbers which contain 3 different digits. (6 numbers) Could we have known that there are 6 such numbers before ticking them all? Elicit that for each of the 3 numbers chosen as the hundreds digit, there are 2 possible tens digits, but then only 1 possible units digit: $278,287,728,782,827,872$.	Notes Initial whole class discussion on strategy Individual trial in Ex. Bks first or Ps can use number cards (Could be a timed competition) BB: $2,7,8$ Discussion, agreement, selfcorrection, praising (27 possible numbers) Agreement, praising BB: $3 \times 3 \times 3=\underline{27}$ possible numbers Ps come to BB and class keeps count Agreement, praising BB: $3 \times 2 \times 1=\underline{6}$ possible numbers.
6	Book 3, page 54 Q. 2 Read: Create as many different 3-digit numbers as you can from the digits 1,2,3 and 4. Do not use a digit more than once in any number. Ps can draw tree diagrams in Ex. Bks first or manipulate number cards on desks, then list the possible numbers in Pbs . B, how many did you write? (e.g. 24) Who had the same? Who had more (less)? B, come and explain to us how you did it. Why are there 24 possible numbers? (For each of the 4 numbers possible as the hundreds digit, there are 3 possible tens digits, then 2 possible units digits.) Let's tick the even numbers. Ps dictate to T. (12 possible)	Individual work, monitored, helped Set a time limit Discussion at BB Reasoning, agreement, selfcorrecting, praising BB: $4 \times 3 \times 2=\underline{24}$ Elicit that a 3-digit number is even if the units digit is even.

R <2		Lesson Plan 54
Activity 7 Extension	Numbers a) How many 2 -digit whole tens are there? (9) What are they? Ps: ' $10,20,30,40,50,60,70,80,90$ ' b) How many whole numbers are there which are more than 10 and less than 20? (9) What are they? Ps: ' $11,12,13,14,15,16,17,18,19$ ' c) How many 2-digit numbers are there? (90) Elicit that for each of the 9 possible tens digits there are 10 possible units digits (0 to 9). d) How many 3-digit numbers are there? (900) Elicit that for each of the 9 possible hundreds digits, there are 10 possible tens digits (0 to 9), then 10 possible units digits. 35 min	Notes Whole class activity Agreement, praising Elicit that there are: a) 9 possible tens digits, with 0 as units digit (9×1) b) 1 as tens digit and 9 possible units digits (1×9) c) $9 \times 10=\underline{90}$ d) $9 \times 10 \times 10=\underline{900}$
8	Book 3, page 54 Q. 3 Read: Which numbers was Daffy Duck thinking of? T makes sure that Ps understand the diagrams. Review at BB with whole class. Mistakes corrected Solution: a) $\underline{444}$ b) i) $200+10+4=\underline{213}$ ii) $300+11 \times 10+5=300+110+5=\underline{415}$ iii) $500+50+9=\underline{559}$ iv) $400+12=\underline{412}$ v) $300+30+3=\underline{333}$ Let's list them in increasing order. T writes what Ps dictate. BB: $\underline{\underline{213}}<\underline{333}<412<\underline{415}<\underline{559}$ Who can come and underline the odd numbers? Who agrees? 40 min	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising Feedback for T Whole class activity Elicit that a 3-digit number is odd if the units digit is odd.
9	Which is more? Ps come out to BB in pairs. Class chooses 3 digits. One P writes the smallest possible 3-digit number and the other the largest, writing the correct sign between them to show which is more. They each read their numbers aloud and say whether it is odd or even. Class agrees/disagrees. Next pair of Ps writes the numbers in words. Class agrees/disagrees. Repeat for other pairs of Ps and different digits. (Include zero for able Ps.) 45 min	Whole class activity At a good pace BB: e.g. 3,7,2 $237<732$ two hundred and thirty seven seven hundred and thirty two Praising, encouragement only

R $\square^{?}$		Lesson Plan 55
Activity 5	True or false? Study these numbers. $\begin{array}{lllllll} 340 & & 1000 & & 957 & & 599 \\ & 242 & & 409 & & 378 & \end{array}$ a) Let's read them in increasing (decreasing) order. b) Who can come and write the smallest (largest) in words? (Two Ps come to BB to write: two hundred and forty two < one thousand) c) I will say something about these numbers. If you think that the statement is true stand up but if you think it is false, put your hands on your heads when I say. (Or other agreed actions) i) At least one of the numbers is even. Show me . . . now! (True) ii) Most of the numbers are odd. Show me . . . now! (False) iii) None of the numbers is greater than 1 thousand. (True) iv) Only one number is a whole ten. Show me . . . now! (False) v) Every number is greater than 250. Show me . . now! (False)	Notes Whole class activity T has BB or SB or OHP already prepared In unison at speed Class agrees/disagrees Responses shown in unison In good humour! i) e.g. 242 is even ii) 4 even and 3 odd numbers iv) 340,1000 are whole tens: 34 tens and 100 tens) v) 242 is less than 250
6	Roman numerals What do you think the table shows? (Row A shows the whole numbers from 1 to 26 , Row R shows them as Roman numerals) BB: Revise Roman numerals: $\mathrm{I}, \mathrm{V}, \mathrm{X}, \mathrm{VI}=\mathrm{V}+\mathrm{I}, \mathrm{IV}=\mathrm{V}-\mathrm{I}$ Let's complete the table. Ps come to BB to choose a column and fill in the missing value, explaining reasoning. Class points out mistakes.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Ps can add own numbers to end of table
7	Book 3, page 55 Q. 3 Read: Write the odd numbers smaller than 600 in set A. Write the even numbers greater than 800 in set B. Choose from the numbers in set U. Ps write numbers in correct set, scoring each out from set U as it is dealt with. Discuss where to put numbers not in sets A or B. Review at BB with whole class. Two Ps come out to BB to write numbers in correct sets. Class agrees or disagrees and corrects mistakes. Let's mark the positions of the numbers on the number line. BB:	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Whole class activity Number line drawn on BB or use enlarged copy master or OHP (Positions need only be approximate) Praising

5		Lesson Plan 55
Activity 8	Book 3, page 55 Q. 4 Read: Complete the table. T explains task, doing first number with whole class if necessary. Rest done as individual work. Review at BB with whole class. Ps come out to BB to write and explain. Class agrees/disagrees. Mistakes corrected. Solution: 40 min \qquad	Notes Individual work, monitored, helped Table drawn on BB or use enlarged copy master or OHP T could ask P at BB to write number in words too. Which is the biggest (smallest) number? Class shouts out in unison: 1245 (173)
9	Abacus bingo T has number cards 0 to 9 in a box or opaque bag. Each P has a blank 'abacus' sheet. Ps are divided into three teams, A, B and C. T reads out 4 numbers for each team and Ps write them down in the boxes below each abacus. T chooses Ps to come to front of class, withdraw a card (with their eyes shut) and stick it on BB. If that digit appears in any of the numbers, Ps draw the appropriate number of dots in the correct column (thousands, hundreds, tens or units). Ps stand up when they have completed all the digits for all their numbers. T makes sure that solutions are correct. Winning team is first to stand up with all correct. Solution: e.g. A b) B b) $\mathrm{Th} \mathrm{H}^{\mathrm{T}} \mathrm{U}$ c) Th H T U d) Th H T U C a) Th H T U b) Th H T U c) Th H T U d) Th H T U	Whole class activity Copies of enlarged copy master already on desks. (Or T writes numbers on sheet before photcopying) At a good pace Pupils in the same team can help each other. Agreement, praising Stars, stickers, etc. awarded (Or copy master used for individual work: T has numbers written in words on BB or SB or OHT and Ps draw dots and write as digits on sheet)

313	R: Mental calculation C: Counting, reading and ordering numbers E: Numbers up to 2000. Comparisons	$\begin{gathered} \text { Lesson Plan } \\ 56 \end{gathered}$
Activity 1	Sequences a) The first term is 700 . Each following term is 100 more than the previous one. Let's say the terms up to 2000: Ps: '700, 800, 900, 1000, 1100, 1200, 1300, 1400, ..., 2000' b) T says the first 3 terms of a sequence and Ps continue it. $2000,1950,1900,(1850,1800,1750,1700, \ldots)$ What is the rule? (decreasing by 50)	Notes Whole class activity T chooses Ps at random At speed If a P makes a mistake, next P corrects it. Agreement, praising
2	Comparing numbers Let's compare these numbers. Which is more? Ps come out to BB to draw arrrows pointing towards the number which is greater. BB: Let's write them in increasing order. T writes what Ps dictate. BB: $584<1209=1209<1297<1526<1608$	Whole class activity Numbers written on BB or use enlarged copy master or OHP (or cards cut from enlarged copy master and stuck to BB) T helps with drawing the arrows. Reasoning, agreement, praising (There should be 14 arrows) Agreement, praising
3	Archery competition In an archery competition, these were the targets of the 4 competitors. What did they score? Who won the competition? T (or P) explains what the rings in each target mean. Ps come out to choose a target and work out the score, explaining reasoning. Class agrees/disagrees. BB: a) 1340 b) 950 1170 1520 Let's put the scores in decreasing order. T writes what Ps dictate. $\begin{array}{cccc} d & a & c & b \\ 1520 \end{array}>1340>1170>950$ Which competitor is the winner? (d) Let's mark each score on the number line. Ps come out to draw dots. Why do you think some targets have more marks than others? (In a competition, all competitors would have had the same number of arrows, but some arrows would have missed the targets.)	Whole class activity Drawn on BB or use enlarged copy master or OHP Make sure that all Ps know what archery is. At a good pace Reasoning, agreement, praising If problems, write details on BB: a) $1000+300+40=1340$ b) $900+50=950$ c) $1000+100+70=1170$ d) $1000+500+20=1520$ Agreement, praising Discussion. Ask several Ps what they think. Extra praise if Ps suggest it.

BK?		Lesson Plan 56					
Activity 6	Place value a) List the 4 -digit numbers which have 1 as the thousands digit, 5 as the hundreds digit, 4 as the tens digit and only odd units. Elicit that the number s will be of the form 154 \square Ps write the possible numbers in their Ex. Bks. Review at BB with whole class. Mistakes corrected. b) List the 4 -digit numbers which have 1 as the thousands digit, 5 as the hundreds and units digits, and tens digit less than 5 . Elicit that the numbers will be of the form 15 \square 5. Ps write the possible numbers in their Ex. Bks. Review at BB with whole class. Mistakes corrected. c) List the 4 -digit numbers which have 1 as the thousands digit, the biggest possible hundreds digit, 5 as the tens digit and the smallest possible units digit. Ps write the number in their Ex. Bks. Review at BB with whole class. Mistakes corrected.	Notes Individual work in Ex. Bks but class kept together T repeats descriptions slowly Reasoning, agreement, selfcorrection, praising BB: a) $154 \square$ 1541, 1543, 1545, 1547, 1549 b) $\quad 15 \square 5$ $1505,1515,1525,1535,1545$ c) 1950 (Or Ps could show on scrap paper on command) Feedback for T					
7	Comparing numbers Let's fill in the missing numbers and compare them. What signs could we choose from? (<.>, =) BB: a) $1 \mathrm{Th}+5 \mathrm{H}+9 \mathrm{U}=$ \qquad 1 15\|0	9 10 $059=1 \mathrm{Th}+5 \mathrm{~T}+9 \mathrm{U}$ b) $1 \mathrm{Th}+4 \mathrm{H}+6 \mathrm{~T}=$ \qquad (1) $0\|6\| 4=1 \mathrm{Th}+6 \mathrm{~T}+4 \mathrm{U}$ c) $1 \mathrm{Th}+7 \mathrm{H}+5 \mathrm{U}=$ \|17	0	5$1 / 7 \mid 2$ $=1 \mathrm{Th}+7 \mathrm{H}+2 \mathrm{~T}+5 \mathrm{U}$ d) $1 \mathrm{Th}+6 \mathrm{H}+42 \mathrm{U}=$ \qquad 1\|6	4	2 $\begin{array}{\|l\|l\|l\|} \hline 16 \mid 2 & =1 \mathrm{Th}+64 \mathrm{~T}+2 \mathrm{U} \end{array}$ Ps come to BB to fill in missing digits and signs. Class agrees/disagrees. Where one number is more, ask how many more. (BB) If problems, show on number line.	Whole class activity Written on BB or use enlarged copy master or OHP Discussion, agreement, praising BB: a) 1509 - $\begin{aligned} 1059 & =500-50 \\ & =450 \end{aligned}$ b) $\begin{aligned} 1460-1064 & =400-4 \\ & =396 \end{aligned}$ c) $1725-1705=20$
8	Book 3, page 56 Q. 2 a) Read: Add 12 to each number in A and write the result in B. Review quickly with whole class. Mistakes corrected. b) Read: Decide whether the statements are true or false. Write a tick or cross in the box. T chooses Ps to read each part. Class writes a tick or cross in the box. Is it true or false? Show me . . . now!. Ps explain reason for choice. Class agrees on correct response. Solution: a) b) i) False, e.g. 311 is missing ii) True iii) True	Individual work for part a), monitored Table drawn on BB or use enlarged copy master or OHP Whole class activity Responses shown in unison (Actions agreed beforehand, e.g. holding ears for true, knocking on desk for false, or writing T or F on scrap paper) Reasoning, agreement, self-correction, praising					

BK	R: Mental calculation C: Operations with whole tens and hundreds up to 1000 E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 57 \end{gathered}$
Activity 1	Sequences a) The first term is 420 . Each following term is 50 more than the previous one. What is the sequence? Ps: $\quad 420,470,520,570,620,670,820,870, \ldots)$ b) T says the first 3 terms of a sequence and Ps continue it. 1000, 991, 982, (973, 964, 955, 946, ...) What is the rule? (decreasing by 9)	Notes Whole class activity T chooses Ps at random At speed If a P makes a mistake, next P corrects it. Agreement, praising Ps might notice the pattern of endings in a) and b)
2	Book 3, page 57 Q. 1 Read: Which numbers sit on the rungs of the number ladders? Fill in the missing numbers. Review at BB with whole class. Elicit that each ladder shows a number sequence. What is the rule for each one? (LHS: decreasing by 30 ; RHS: increasing by 8) \qquad 10 min \qquad	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising
3	Number sets T has cards stuck randomly to side of BB and drawings of the animals stuck to centre. Sheep, Owl and Duck are collecting operations which have certain values. Sheep collects those with value 720, Owl collects those with value 700 and Duck collects those with value 820 . T writes the values being collected below the animals. Let's help them sort out all these cards. Ps come to BB to choose a card, say the complete operation and stick below relevant animal. Class agrees/disagrees. Solution: Who can think of other operations for each animal?	Whole class activity Animals and cards enlarged and cut out from copy masters At a good pace Reasoning, agreement, praising Write details of calculations on BB if necessary, e.g. $\begin{aligned} 750+70 & =750+50+20 \\ & =800+20=820 \\ 900-180 & =900-100-80 \\ & =800-80=720 \end{aligned}$ Feedback for T Orally or in Ex. Bks
4	Book 3, page 57 Q. 2 Read: Practise calculation. Write the digits in the correct boxes. What do you notice about the operations? (6 rows of 3, i.e. 18 altogether; 2 nd column is 1 st column multiplied by 10 ; 3 rd column is 1 st column multiplied by 100) Let's see how many of them you can do in 3 minutes! Start . . . now! ... Stop! Review orally round the class. Ps change pencils and mark and correct own work. Who had $18(17,16,15)$, etc correct?	Individual work, monitored Initial discussion about task Differentiation by time limit Reasoning, agreement, selfcorrection, praising If problems, write details on BB Discuss all mistakes made Extra praise for excellent work

BK3	R: Mental calculation C: Operations with whole tens and hundreds (up to 1000) E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 58 \end{gathered}$
Activity 1	Chain operations Which numbers do the letters stand for? BB: $800 \xrightarrow{-40} a \xrightarrow{-80} a \xrightarrow{+110} c{ }^{-70} d \xrightarrow{+280} e$ Ps come out to BB to write an equation for each letter and solve it. Class agrees/disagrees. (P turns over card to confirm result.) $\text { BB: } \begin{array}{lll} a=800-40=760 & b=760-80=680 \\ & c=680+110=790 & d=790-70=720 \\ e=720+280=1000 & \end{array}$ If the arrows pointed in the opposite direction, what would the operations be?	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP T also has the letters written on coloured cards stuck to BB (with number represented written on back of each one) Reasoning, agreement, praising Feedback for T $\begin{aligned} \text { BB: } & 1000-280+70-110 \\ & +80+40=800 \end{aligned}$
2	Puzzles BB: a) a) Study this puzzle. What could the rule be? Ask several Ps what they think. (The sum of any two adjacent numbers is the number directly above them.) Ps come out to BB one at a time to fill in numbers and explain reasoning. Class points out errors. b) This puzzle has all its numbers complete. Let's start from a number in the bottom row and find a path to the top so that all the numbers passed through add up to 1000. Try out the calculations in your Ex. Bks first. As soon as Ps have additions, they show them on the BB and class checks that they are correct. $\text { BB: e.g. } \quad \begin{aligned} 260+140+350+170+80 & =1000 \\ 280+190+130+320+80 & =1000 \\ 210+190+350+170+80 & =1000, \text { etc. } \end{aligned}$ 10 min	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, agreement, praising Individual trial in Ex. Bks Reviewed with whole class Reasoning, checking, agreement, praising
3	Finding the rule Study this table. What is the rule? T asks several Ps what they think. Agree on one form of the rule (e.g. number in top row + number in bottom row add up to 500) Ps come out to choose a column and fill in missing number, explaining reasoning. Class agrees/disagrees. Who can write the rule in a mathematical way? Who agrees? Who can think of another way? etc. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Discussion, agreement, checking, praising Feedback for T Bold numbers are given

13 3		Lesson Plan 58
Activity 7	Book 3, page 58 Q. 2 Let's see how many of these you can do in 3 minutes. Look for connections between the numbers to help you. Elicit that there are $4 \times 6=24$ multiplications/divisions. Start . . now! . . Stop! Review orally round class. Ps change pencils and mark/correct their own work, then count how many correct out of 24 . Who had all correct ($1,2,3,4,5$, more than 5 mistakes)? Discuss mistakes and connections. 35 min	Notes Individual work, monitored, (helped) Differentiation by time limit Reasoning, agreement, selfcorrection, evaluation, praising Stars, stickers awarded for good work
8	Book 3, page 58, Q. 3 Read: Write numbers in the circles so that the sum of the 3 numbers along each line is 1000 . Choose from 260, 280, 300, 320, 340, 360, 380, 400. Discuss strategy for solution. First Ps list possible combinations of numbers and T writes them in a logical order on the BB. Ps then suggest arrangement in ellipses by trial and error. Possible groups of 3 numbers (omitting repeats of combinations): $\begin{array}{ll} 260+280+? \text { is not possible } & 280+340+380=1000 \boldsymbol{~} \\ 260+300+? \text { is not possible } & 280+360+? \text { is not possible } \\ 260+320+? \text { is not possible } & 300+320+380=1000 \\ 260+340+400=1000 \boldsymbol{\swarrow} & 300+340+360=1000 \\ 260+360+380=1000 \boldsymbol{\swarrow} & 300+400+? \text { is not possible } \\ 280+300+? \text { is not possible } & 320+340+? \text { is not possible } \\ 280+320+400=1000 \checkmark & 320+360+? \text { is not possible } \end{array}$ Elicit that only 6 sets of numbers are possible. (N.B. Using algebra is too difficult at this stage.)	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, checking, agreement, praising Paired work to arrange the possible sets of 3 numbers if Ps wish. Solution: 340 e.g. a) b)
9	Book 3, page 58 Q. 4 Read: Write the numbers as Roman numerals. Revise the Roman numerals already known, referring to shaded sections of diagram. Deal with one part at a time. Review at BB with whole class. Mistakes corrected. Solution: 	Individual work, monitored, helped (Or whole class activity if short of time) Use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising (Less able Ps could use enlarged copy of copy master)

B		Lesson Plan 59
Activity 3	Book 3, page 59 Q. 1 Read: Write these numbers as Roman numerals. Ps may refer to Ex. Bks or Pb page 72 to help them. Review at BB with whole class. T chooses Ps to read out their answers. Class checks by doing the addtion. Mistakes corrected. Solution: a) $100+(50+10)+(1+1)=$ CLXII C LX II b) $(500+100)+(50-10)+(1+1)=$ DCXLII DC XL II c) $1000+(500+100)+1=\mathrm{MDCI}$ $\begin{equation*} M \quad D C \quad \text { I } \tag{1601} \end{equation*}$ d) $(1000-100)+(50+10)+5=$ CMLXV CM LX V e) $1000+(100+100)+(5+1)=$ MCCVI $\mathrm{M} \quad \mathrm{CC} \quad \mathrm{VI}$ f) $(500+100+100)+(10+10+10)=$ DCCXXX DCC XXX	Notes Individual trial, monitored, helped T has questions written on BB or SB or OHP Differentiation by time limit, or by set questions Ps who answered correctly explain to those who did not Reasoning, agreement, selfcorrection Praising, encouragement only
4	Book 3, page 59 Q. 2 Read: How many pence do these items cost? Write the amounts as Arabic numbers. Review at BB with whole class. Mistakes corrected. Point out that in Roman form, a smaller number may be longer to write! What would the prices be in $£$ s? Solution: a) b) d) e) f) h)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correcting, praising
5	Arabic to Roman Let's write these numbers as Roman numerals. Ps come out to BB to write numerals, explaining reasoning. Class agrees/disagrees. BB:	Whole class activity Numbers written on BB or SB or OHP At a good pace Rest of Ps write in Ex. Bks too. Reasoning, agreement, praising Feedback for T

BK3	R: Mental calculation C: Number lines. Number sequences E: Numbers up to 2000	Lesson Plan 60
Activity 1	Equal values BB: Let's join up the equal values. Ps come out to BB to join up the flowers, explaining reasoning. Class points out errors. \qquad	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T
2	Missing numbers Let's fill in the numbers on the snakes. Ps come out to fill in the missing numbers, explaining reasoning.. Class agrees/disagrees. Who can tell us the rule? Who agrees? Who thinks something else? etc. BB: a) $+9$ b) c)	Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Most obvious rules are shown but accept any valid rules. Bold numbers are given.
3	Number line What can you tell me about this number line? (curved, starts at zero and goes up to 1250; the small ticks show the whole numbers, the medium ticks show 5 units and the large ticks show the whole tens) BB: Which numbers do the letters stand for? Ps come out to choose a letter and write and say the number marked. Class agrees/disagrees. Let's write the numbers in decreasing order. T writes what Ps dictate, or Ps come out to write on BB. BB: $1243>1005>700>650>501>462>168>62>7$ What other numbers could we find? Ps suggest numbers and choose Ps to show on number line. Class agrees/disagrees. (e.g. 72, 172, 572, 1072; 5, 205, 505, 905; etc.)	Whole class activity Use enlarged copy master or OHP Ps have copies of copy master on desks too. At a good pace Ps can write the numbers on their sheets too. Agreement, praising Solution: $\begin{array}{ll} a=7 & b=62 \\ c=168 & d=462 \\ e=501 & f=650 \\ g=700 & h=1005 \\ i=1243 & \end{array}$ Praising, encouragement only

BK	R: Mental calculation C: Rounding to tens and hundreds E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 61 \end{gathered}$
Activity 1	Making 3-digit numbers Let's see how many different 3-digit numbers you can make from these number cards: BB: 8 \square \square Ps have the 3 number cards on their desks and manipulate to make different 3-digit numbers which they write in their Ex. Bks. Review quickly at BB with whole class. Ps dictate what T should write. Imagine that I wrote each of these 3-digit numbers on the same size of card and put them all into a bag. If I took out one card with my eyes shut, which of these statements would be certain, possible but not certain, or impossible? a) The number is greater than 800 . Show me ... now! (Possible) b) The number is greater than 300 . Show me . . . now! (Certain) c) The number is less than 200. Show me . . now! (Impossible) d) The number is less than 500. Show me . . now! (Possible)	Notes Whole class activity Paired work in finding the numbers Encourage logical order. Agreement, praising Ps have probability flash cards on desks (Y2 LP 154/2) or use pre-agreed actions for each response. Cards shown in unison Reasoning, agreement, praising (Demonstrate with cards in a bag only if there are problems)
2	Rounding a) What are the nearest whole tens less than and greater than each of these numbers? Ps come out to BB. Class points out errors. $\text { BB: } \begin{array}{rll} \underline{860}<863<870 & \underline{680}<683<690 \quad 380<386<\underline{390} \\ 830 & <836<\underline{840} & 630<638<\underline{640} \quad 360<368<\underline{370} \end{array}$ Which whole ten is nearest the middle number? Ps come out to underline. Class agrees/disagrees. Show on number line if problems. We say that the nearest whole ten to a number is that number rounded to the nearest ten. I will say a number and you round it to the nearest whole ten, e.g. $354(\approx 350$, to the nearest 10$), \quad 687(\approx 690$, to the nearest 10$)$, $670(=670$, to the nearest 10$), \quad 635(\approx 640$, to the nearest 10$)$. Discuss the case of 635 , where 5 units is half-way between tens. T tells class that in such cases, the number is rounded up to next ten. b) What are the nearest whole hundreds less than and greater than each of these numbers? Ps come out to BB. Class points out errors. BB: $800<863<\underline{900} 600<683<\underline{700} \quad 300<386<\underline{400}$ $\underline{800}<836<900 \quad \underline{600}<638<700 \quad 300<368<\underline{400}$ Which hundred is nearest the middle number? Ps come out to underline. Class agrees/disagrees. Show on number line if problems. We say that the nearest hundred to a number is that number rounded to the nearest hundred. I will say a number and you round it to the nearest hundred, e.g. $456(\approx 500$, to the nearest 100$), 612(\approx 600$, to the nearest 100$)$, $500(=500$, to the nearest 100$), 249(\approx 200$, to the nearest 100$)$, How do you think we would round 350 to the nearest hundred? Agreement that such numbers are rounded up to the next hundred.	Whole class activity Thas BB or SB or OHT already prepared Rest of class write in Ex. Bks. too At a good pace Reasoning, agreement, praising BB: rounded T chooses Ps at random Agreement, praising BB: $635 \approx 640, \text { to nearest } 10$ Rest of class write in Ex. Bks. too At a good pace Reasoning, agreement, praising T chooses Ps at random Agreement, praising Agree that, e.g. 600 rounded to the nearest hundred is 600 . Ask several Ps what they think. BB: $350 \approx 400$, to nearest 100

2 <3		Lesson Plan 61
Activity 3	Number line a) Let's find the approximate place of these numbers on the number line. BB: i) $542,545,548$ ii) $645,647,652,655$ Elicit that the segment of number line needed is from 500 to 700 . T draws number line on BB and Ps draw it in their Ex. Bks. Ps then mark the numbers with dots on the number line and label them (numbers can be written above the number line and joined to the dots, as they are too close together to label in exact position.) BB: b) Write the nearest whole tens and hundreds less than and greater than each number as we did before, then underline the nearest ten and nearest hundred. Review at BB with whole class. Mistakes corrected. BB: i) $\underline{540}<542<550$ $540<545<\underline{550}$ $540<548<\underline{550}$ $\underline{500}<542<600$ $\underline{500}<545<600$ $\underline{500}<548<600$ ii) $\begin{array}{lll} 640<645<\underline{650} & 640<647<\underline{650} & \underline{650}<652<660 \\ \underline{600}<645<700 & \underline{600}<647<700 & \underline{600}<652<\underline{700} \\ 650<655<\underline{660} & \\ 600<655<\underline{700} & \end{array}$ c) What is each number rounded to the nearest ten (hundred)? T points to each number in turn and chooses Ps to round to nearest ten (hundred). Class agrees/disagrees. e.g. i) $542 \approx 540$, to nearest $10 ; \quad 542 \approx 500$, to nearest 100 Discuss the case of, e.g. 545 , which is rounded up to 550 to the nearest whole ten, but is rounded down to 500 to the nearest hundred.	Notes Individual work in Ex. Bks, but class kept together Discussion, agreement, demonstration on BB T and Ps use rulers to draw straight lines and mark ticks. Individual work in drawing dots and labelling, monitored, helped Individual work, monitored, helped T could do first number on BB as a model and reminder. Differentiation by time limit Agreement, self-correction, praising Whole class activity At a good pace Encourage Ps to say the whole statement, e.g. '542 is approximately (roughly) equal to 540 , to the nearest 10^{\prime}
4	Book 3, page 61 Q. 1 Read: List the whole numbers which have these numbers as their nearest whole ten. Review orally with whole class. Ps read their numbers and class agrees/disagrees. Ps also show numbers on number line. Mistakes corrected. T elicits any numbers Ps have missed, e.g. 55, 95, etc.) Solution: a) $60: 55,56,57,58,59,60,61,62,63,64$ b) 100: $95,96,97,98,99,100,101,102,103,104$ c) $580: 575,576,577,578,579,580,581,582,583,584$ d) $1500: 1495,1496,1497,1498,1499,1500,1501,1502$, 1503, 1504 e) $0:(-4,-3,-2,-1), 0,1,2,3,4$ Show on negative class number line. Point out that -5 is rounded down to -10 , to the nearest whole ten.	Individual work. monitored, helped Differentiation by time limit Discussion, reasoning, agreement, self-correction Praising, encouragement only (Only if some Ps have listed negative numbers)

2 <2		Lesson Plan 61
Activity 5	Book 3, page 61 Q. 2 Read: Mark on the number line the numbers which have these numbers as their nearest whole hundred: a) 500, b) 1000. What is different about this question? (Asks for numbers, not whole numbers, so fractions can be included.) What will happen if we draw a dot at every possible number and fraction? (They will all join together to form a line.) Who remembers how we can show all possible numbers, including fractions? (Write an inequality, draw circles at the lowest and greatest numbers, then join circles with a thick line.) T reminds Ps about drawing a black circle if the number is to be included in the list of possible numbers and a white circle if not. (Do part a) with whole class first if Ps have forgotten.) Review at BB with whole class. Mistakes corrected Solution: a) b)	Notes Individual work, monitored, helped (or whole class activity if T thinks it is necessary) Number lines drawn on BB or use enlarged copy master or OHP Give Ps the chance to explain if they can, otherwise T revises the notation. Discussion on which numbers should be included and which should not. a) $450 \leq \square<550$ b) $950 \leq \square<1050$ Reasoning, agreement, selfcorrection, praising Feedback for T
6	Book 3, page 61 Q. 3 Read: Decide whether the quantities in the answers are exact or approximate. Write $=$ or \approx in the boxes. T chooses Ps to read out each part, then Ps write appropriate sign in box. Review orally with whole class. Ps who answered correctly explain to those who did not. Discuss all mistakes. Consolidate with similar examples if necessary. a) The shop assistant said, 'It is $£ 400$.' (=) b) The policeman said, 'It is 400 metres further on.' (\approx) (He did not measure exactly so he meant 'about 400 m '.) c) Her mother said, 'There must be 100 buttons in the box.' (\approx) (Unless Cindy's mother had emptied out the buttons and counted them all exactly.) d) The storeman said, 'There are 150 screws in a packet.' (= or \approx, depending on whether the screws had been counted by the storeman, or by machine and the number printed on the packet, or whether the screws were sold by weight, so the number might vary slightly)	Individual work, but class kept together Ps could show responses on command, either with agreed hand signs or wirtten on scrap paper. Discussion, reasoning, agreement, self-correction, praising Consolidate with similar examples if necessary. Give Ps the chance to explain why both answers could be possible, otherwise T explains.
7	Book 3, page 61 Q. 4 Read: Round these numbers to the nearest: a) ten, b) hundred. Remind Ps that to decide on the nearest: - ten, they should look at the units (5 rounds up to next 10) - hundred they should look at the tens (50 rounds up to next 100) Review orally round class. Mistakes corrected Show on number line if there are problems.	Individual work, monitored (helped) Discussion, reasoning, selfcorrection, praising a) $138 \approx 140,577 \approx 580$ $1405 \approx 1410$, etc b) $\begin{aligned} & 992 \approx 1000,135 \approx 100 \\ & 1408 \approx 1400, \text { etc. } \end{aligned}$

BK?	R: Mental calculation C: Rounding E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 62 \end{gathered}$
Activity 1	Number line Let's join up these numbers to the corresponding points on the number line. Ps come out to choose a number, draw a dot and join to number. Agree that some dots can only be in an approximate position, as the 'ticks' show only every 10 .	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Discuss the case of 20 , which cannot be shown on this segment of the number line. Feedback for T Ps tell the class the names of the shapes they know.
2	Rounding 1 Let's round these numbers to the nearest 10 and then to the nearest 100 . BB: (But note that $350 \approx 400,$ to the nearest 100) Ps come out to choose a number and fill in the appropriate columns. Class points out errors. Discuss the case of 349 , which is rounded up to 350 to the nearest 10 , but rounded down to 300 to the nearest 100 .	Whole class activity Table drawn on BB or use enlarged copy master or OHP Discuss the conventions of rounding as appropriate. [Point out that numbers such as 349 cannot be rounded up to 350 to the nearest 10 and then rounded up again to 400 to the nearest 100 , because 349 is nearer 300 than 400.] At a good pace Reasoning, agreement, praising Feedback for T
3	Rounding 2 Let's help Donald Duck with his homework. a) First he had to underline those numbers which could be rounded to 620 to the nearest 10 , but he can't do it. Who can help him? BB: $148, \underline{615}, \underline{624}, 625,610, \underline{622}, 617,628$ Ps come out to underline the relevant numbers. Class agrees/disagrees. What would the other numbers be, rounded to the nearest 10 ? b) Then he had to underline those numbers which could be rounded to 500 to the nearest 100 . Who can help him this time? BB: $348, \underline{545}, \underline{470}, \underline{451}, 551,567,612,440, \underline{490}$ Ps come out to underline the relevant numbers. Class agrees/disagrees. What would the other numbers be rounded to the nearest 100 ?	Whole class activity T could have a picture or drawing of Donald Duck stuck to BB (or use any cartoon character for motivation) At a good pace Reasoning, agreement, praising Refer to number line if there are problems. T points to each of other numbers in turn and class shouts out rounded value.

B		Lesson Plan 62
Activity 4	Number line Let's see if you can mark these numbers on the number lines. a) Whole numbers which can be rounded to 270 to the nearest 10 . Ps come out to draw dots at the possible numbers. Class agrees/ disagrees. (265 to 274) If I had asked for all possible numbers, including fractions, how could we write it in a mathematical way? A, what do you think? Who agrees? Who thinks something else? etc. How could we show it on the number line? Teacher gives hints if necessary. Ps come out to number line to draw a closed (black) circle at 265 and an open (white) circle at 275, then to join them with a thick line. Let's say the inequality together. BB: b) Whole tens which can be rounded to 800 to the nearest 100 . Repeat as in a) but drawing dots first at numbers 750 to 840 , then extending to all possible numbers. BB:	Notes Whole class activity Number lines drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising BB: a) Let x be any possible number, then $x \approx 270$, to nearest 10 $265 \leq x<275$ Discussion, reasoning, agreement, praising BB: b) Let x be any possible number, then $x \approx 800$, to nearest 100 $750 \leq x<850$
5	Oral practice Tell me the even numbers which can be rounded to: a) 1000 to the nearest $10 .(996,998,1000,1002,1004)$ b) 1000 to the nearest 100 and have 1 as the tens digit. $(1010,1012,1014,1016,1018)$ c) 1000 to the nearest 10 and have 1 as the tens digit. (Impossible - possible even numbers which round to 1000 to the nearest 10 are 996 to 1004 and none have 1 as the tens digit!) d) 1000 to the nearest 10 and have 1 as the units digit. (Impossible - a whole number which has 1^{\prime} as its units digit is odd!)	Whole class activity T chooses Ps at random (or Ps write in Ex. Bks. if they wish) Reasoning, agreement, praising only Check on number line if there are problems. Feedback for T In good humour!
6	Book 3, page 62 Q. 1 Read: List the whole numbers which a) round to 500 as the nearest hundred and have 5 as the tens digit. b) round to 500 as the nearest hundred and have 4 as the tens digit. c) round to 500 as the nearest hundred and also as the nearest ten. Review at BB with whole class. Mistakes discussed and corrected. Show on number line as confirmation. Solution: a) $450,451,452,453,454,455,456,457,458,459$ b) $540,541,542,543,544,545,546,547,548,549$ c) $495,496,497,498,499,500,501,501,503,504$	Individual work, monitored, helped (or whole class activity if T thinks best) Ps may use number line on page 76, $Q .2 a$ to help them. Discussion at BB , reasoning, agreement, self-correction, praising Feedback for T

R		Lesson Plan 62
Activity 7	Book 3, page 62 Q. 2 Read: Which digits can the letters represent so that if the numbers are rounded to a) the nearest ten, the value is 360 , b) the nearest hundred, the value is 400 ? Review at BB with whole class. T chooses Ps to give their results and class agrees/disagrees or adds any numbers omitted. Mistakes discussed and corrected. Show on number line. Solution: b) $\begin{array}{cccccc}g 50 & \hbar 49 & 3 \pi 1 & 4 / j 9 & 35 \boxed{k} & 44 \sqrt{l} \\ 3 & 4 & 5,6,7,8,9 & 0,1,2,3,4 & 0,1,2,3,4, & 0,1,2,3,4, \\ 3 & & & 5,6,7,8,9 & 5,6,7,8,9\end{array}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP T draws relevant segments of number line on BB (Ps may draw number lines in Ex. Bks to help them if needed) Discussion, reasoning, agreement, self-correction, praising
8	Book 3, page 62 Q. 3 Read: Round these numbers to: a) the nearest ten b) the nearest hundred. Let's see how many you can do in 3 minutes! Start . . . now! . . . Stop! Review at BB with whole class. Ps change pencils and mark/ correct own work. Who had them all correct? Who had 1 mistake ($2,3,4,5$, more than 5 mistakes)? What were your mistakes? etc. If problems, show on number line. Solution: a) to nearest 10 b) to nearest 100 $\begin{aligned} & 1006 \approx 1010 \\ & 1005 \approx 1010 \\ & 1001 \approx 1000 \\ & 1753 \approx 1750 \\ & 1759 \approx 1760 \\ & 1750 \approx 1750 \end{aligned}$ $1006 \approx 1000$ $1005 \approx 1000$ $1001 \approx 1000$ $1753 \approx 1800$ $1759 \approx 1800$ $1750 \approx 1800$	Individual work, monitored, helped Thas numbers already written on BB, SB or OHP and uncovers each as it is dealt with. Discussion, reasoning, agreement, self-correction, praising only Stars, stickers, etc. awarded for excellent work. Feedback for T
9	Book 3, page 62, Q. 4 Read: Two different numbers round to 300 as the nearest hundred. Is it possible that: a) both numbers are less than 300? Show me . . now! (Yes) B, which numbers could they be? (e.g. 267, 276) b) the smaller number is 100 less than the other number? Show me . . now! (No) C, explain to us why it is impossible. (The smallest possible number is 250 and the greatest possible number is 349 , so the greatest difference is 99 .) c) one number has 5 and the other has 0 as the tens digits? Show me . . now! (Yes) D, which numbers could they be? (e.g. 256 and 301) d) both numbers are whole hundreds? Show me . . now! (No) \mathbf{E}, why is it not possible? (There is only one possible whole hundred and that is 300 .)	Whole class activity (or individual work if Ps wish) Ps could use probability cards from Y3 LP 154.2, or respond with pre-agreed actions for 'Yes' and 'No' Ps who responded correctly explain to those who did not, reasoning with examples or counter examples. Agreement, praising only Feedback for T

\begin{tabular}{|c|c|c|}
\hline \& \& Lesson Plan 63 \\
\hline \begin{tabular}{l}
Activity \\
4
\end{tabular} \& \begin{tabular}{l}
Writing lengths in different ways \\
Who can think of another way to write these measurements? Elicit relationship between units. (BB) Ps come to BB to write each length in a different way. Class agrees/disagrees or suggests another way. BB: \\
a) \(3 \mathrm{~cm}=(30 \mathrm{~mm})\) \\
b) \(4 \mathrm{~m}=(400 \mathrm{~cm})\) \\
c) \(18 \mathrm{~cm}=(180 \mathrm{~mm})\) \\
d) \(13 \mathrm{~m}=(1300 \mathrm{~cm})\) \\
e) \(35 \mathrm{~mm}=(3 \mathrm{~cm} 5 \mathrm{~mm}=3.5 \mathrm{~cm})\) \\
f) \(300 \mathrm{~cm}=(3 \mathrm{~m})\) \\
g) \(135 \mathrm{~mm}=(13 \mathrm{~cm} 5 \mathrm{~mm}=13.5 \mathrm{~cm})\) \\
h) \(450 \mathrm{~cm}=(4 \mathrm{~m} 50 \mathrm{~cm}=4.5 \mathrm{~m})\) Elicit that 50 cm is 5 tenths of a m. 30 min
\end{tabular} \& \begin{tabular}{l}
Notes \\
Whole class activity \\
Written on BB or SB or OHT \\
Discussion, agreement \\
BB: \(1 \mathrm{~cm}=10 \mathrm{~mm}\) \\
\(1 \mathrm{~m}=100 \mathrm{~cm}\) \\
\(1 \mathrm{~m}=1000 \mathrm{~mm}\) \\
At a good pace \\
Reasoning, agreement, praising \\
Extra praise if Ps write as decimals without help from T
\end{tabular} \\
\hline 5 \& \begin{tabular}{l}
Book 3, page 63 \\
Q. 2 Read: Write these lengths in millimetres. \\
Deal with one part at a time. Review at BB with whole class. Mistakes corrected. Tick the lengths which are more than 1 m . Solution: \\
a) \(2 \mathrm{~cm}=\underline{20} \mathrm{~mm}, 11 \mathrm{~cm}=\underline{110} \mathrm{~mm}, 105 \mathrm{~cm}=\underline{1050} \mathrm{~mm} \boldsymbol{V}\) \\
b) \(5 \mathrm{~cm}=\underline{50} \mathrm{~mm}, 20 \mathrm{~cm}=\underline{200} \mathrm{~mm}, 132 \mathrm{~cm}=\underline{1320} \mathrm{~mm} \boldsymbol{V}\) \\
c) 9 and a half \(\mathrm{cm}=\underline{95} \mathrm{~mm}, 57\) and a half \(\mathrm{cm}=\underline{575} \mathrm{~mm}\), 123 and a half \(\mathrm{cm}=\underline{1235} \mathrm{~mm}\) \\
T (or class) chooses Ps to show the approximate lengths. Class decides whether they are good estimates. Confirm with rulers or metre rule or measuring tape.
\end{tabular} \& \begin{tabular}{l}
Individual work, monitored, helped \\
Written on BB or OHP \\
Reasoning, agreement, selfcorrection, praising \\
Whole class activity \\
Praising, encouragement only \\
In good humour!
\end{tabular} \\
\hline 6

Extension \& \begin{tabular}{l}
Book 3, page 63 \\
Q. 3 Read: Change the units of length. \\
Deal with one part at a time. Review at BB with whole class. All mistakes discussed and corrected. \\
Solution: \\
a)
$$
\begin{aligned}
& 25 \mathrm{~mm}=\underline{2} \mathrm{~cm} \underline{5} \mathrm{~mm} \\
& 125 \mathrm{~mm}=\underline{12} \mathrm{~cm} \underline{5} \mathrm{~mm} \\
& 82 \mathrm{~mm}=\underline{8} \underline{\mathrm{~cm}} \underline{\mathrm{~mm}} \\
& 382 \mathrm{~mm}=\underline{38} \mathrm{~cm} \underline{2} \mathrm{~mm}
\end{aligned}
$$ \\
b)
$$
\begin{aligned}
& 2 \mathrm{~m}=\underline{200} \mathrm{~cm} \underline{0} \mathrm{~mm} \\
& 2 \text { and a half } \mathrm{m}=\underline{250} \mathrm{~cm} \\
& 12 \mathrm{~m}=\underline{1200} \mathrm{~cm} \\
& 642 \mathrm{~cm}=\underline{6} \mathrm{~m} \underline{42} \mathrm{~cm}
\end{aligned}
$$ \\
How could we show, e.g. 25 mm , using only cm as the unit? \\
BB: $2 \mathrm{~cm}<25 \mathrm{~mm}<3 \mathrm{~cm}$ or $25 \mathrm{~mm}=2.5 \mathrm{~cm}$ (2 whole cm and 5 tenths of a cm) \\
Repeat in similar way for other lengths. Ps come out to BB to write and explain reasoning (with T's help if necessary).

 \&

Individual work, monitored, helped \\
Written on BB or SB or OHP \\
Reasoning, agreement, selfcorrection, praising \\
Whole class activity Reasoning, agreement Praising, encouragement only e.g. $6 \mathrm{~m}<642 \mathrm{~cm}<7 \mathrm{~m}$ $642 \mathrm{~cm}=6.42 \mathrm{~m}$ (6 whole metres and 42 hundredths of a metre)
\end{tabular} \\

\hline
\end{tabular}

Br3		Lesson Plan 63
Activity 7		Notes
	Rounding lengths	Whole class activity
	a) How can we round 423 mm to the nearest cm ? T shows one method (with help of Ps). Elicit that:	T leads Ps through method by asking questions and writing
	BB: $\quad 423 \mathrm{~mm}=42 \mathrm{~cm} \mathrm{3mm} \quad[1 \mathrm{~cm}=10 \mathrm{~mm}]$	each step on the BB
	BB: $\quad \underline{+3 \mathrm{~cm}} \underset{+}{42 \mathrm{~cm} \mathrm{3mm}} \underset{+7 \mathrm{~mm}}{43 \mathrm{~cm}}$	Reasoning, agreement, praising
	Which is it nearer? (42 cm) So we can say that 42 cm 3 mm , or 423 mm , is approximately equal to 42 cm . How could we write it? BB: $\quad 423 \mathrm{~mm} \approx 42 \mathrm{~cm}$, to the nearest cm	
	Repeat in similar way for 305 mm and 997 mm , with Ps coming out to BB to write and explain, with help of T and other Ps.	
		Elicit that 5 always rounds up to next value
	$305 \mathrm{~mm} \approx \underline{31} \mathrm{~cm}$, to nearest cm 	Reasoning, agreement, praising
	$997 \mathrm{~mm} \approx \underline{100} \mathrm{~cm}$, to nearest cm	If T thinks Ps have understood, part c) could be done as
Extension	What would happen if we used decimal notation? Elicit that:	individual work in Ex. Bks, reviewed with whole class.
	a) BB: $\quad 423 \mathrm{~mm}=42.3 \mathrm{~cm}$ (42 whole cm and 3 tenths of a cm) and 42.3 cm is nearer 42 cm than 43 cm , so	
	BB: $\quad 42.3 \mathrm{~cm} \approx \underline{42} \mathrm{~cm}$, to nearest cm	
	b) $305 \mathrm{~mm}=30.5 \mathrm{~cm}$, so $30.5 \mathrm{~cm} \approx \underline{31} \mathrm{~cm}$, to nearest cm	
	c) $997 \mathrm{~mm}=99.7 \mathrm{~cm}$, so $99.7 \mathrm{~cm} \approx \underline{100} \mathrm{~cm}$, to nearest cm	

		Lesson Plan 64
Activity 5	Comparing jumps Ant, Butterfly, Cricket and Dragonfly are having a jumping competition. These were the lengths of their jumps. BB: A: $150 \mathrm{~cm}, B: 120 \mathrm{~cm}, C: 183 \mathrm{~cm}, D: 95 \mathrm{~cm}$ Let's compare their jumps and put them in decreasing order. T writes what Ps dictate. Who was the winner? (Cricket) BB: $\quad 183 \mathrm{~cm}>150 \mathrm{~cm}>120 \mathrm{~cm}>95 \mathrm{~cm}$ Who could write their jumps in metres? Ps come out to BB to write jumps in metres, explaining reasoning. Class agrees/disagrees. BB: $\quad 1.83 \mathrm{~m}>1.5 \mathrm{~m}>1.2 \mathrm{~m}>\underline{0.95 \mathrm{~m}}$ Whose jump is less than 1 metre? (Dragonfly's) Elicit that: $\quad 1.83 \mathrm{~m}=1$ whole metre and 83 hundredths of a metre $1.5 \mathrm{~m}=1$ whole metre and 5 tenths of a metre $1.2 \mathrm{~m}=1$ whole metre and 2 tenths of a metre $0.95 \mathrm{~m}=$ no whole metres and 95 hundredths of a metre 22 min	Notes Whole class activity (T could have large pictures or drawings of insects if possible for motivation) Reasoning, agreement, praising Class shouts out in unison At a good pace. Agreement, praising Class shouts out in unison Feedback for T (T might need to help explain the last value)
6	Estimation Let's estimate the lengths of some objects and then check how close we are by measuring exactly. (Ps suggest things to measure.) (e.g. a pencil, a book, the width and height of a desk, etc.) \qquad 25 min \qquad	Whole class activity T chooses pairs of Ps to estimate, then a 3rd P to measure exactly. Class applauds the closest estimate.
7	Book 3, page 64 Q. 1 Read: Round these lengths to: a) the nearest $10 \mathrm{~mm}, ~ b)$ the nearest 100 mm . Review orally round class. Mistakes corrected. Let's round the lengths to the nearest cm ! T says lengths in mm and Ps round it to nearest cm , explaining reasoning. Class points out errors. Solution: a) to nearest $10 \mathrm{~mm} \quad(\mathrm{~cm})$ b) to nearest 100 mm $\begin{aligned} & 184 \mathrm{~mm} \approx 180 \mathrm{~mm} \quad(18 \mathrm{~cm}) \\ & 687 \mathrm{~mm} \approx 690 \mathrm{~mm} \quad(69 \mathrm{~cm}) \\ & 185 \mathrm{~mm} \approx 190 \mathrm{~mm} \quad(19 \mathrm{~cm}) \\ & 205 \mathrm{~mm} \approx 210 \mathrm{~mm} \quad(21 \mathrm{~cm}) \\ & 100 \mathrm{~mm}=100 \mathrm{~mm} \quad(10 \mathrm{~cm}) \\ & 372 \mathrm{~mm} \approx 370 \mathrm{~mm} \quad(37 \mathrm{~cm}) \end{aligned}$ $184 \mathrm{~mm} \approx 200 \mathrm{~mm}$ $687 \mathrm{~mm} \approx 700 \mathrm{~mm}$ $185 \mathrm{~mm} \approx 200 \mathrm{~mm}$ $205 \mathrm{~mm} \approx 200 \mathrm{~mm}$ $100 \mathrm{~mm}=100 \mathrm{~mm}$ $372 \mathrm{~mm} \approx 400 \mathrm{~mm}$ What would the actual lengths be in cm ? (e.g. $184 \mathrm{~mm}=18.4 \mathrm{~cm}$).	Individual work, monitored, helped (T could have values and approximations already written on SB or SB or OHP and uncovers each one as it is dealt with) Discussion, reasoning, selfcorrection, praising Orally at speed round class Praising, encouragement only

R <3		Lesson Plan 64
Activity 8	Book 3, page 64 Q. 2 Read: The length of a line is about 12 cm , rounded to the nearest cm. How long could the actual length of the line be? Draw 4 possible lines accurately. Write the actual length below each line. What is the shortest possible length the line could be? (11.5 cm or 115 mm or 11 cm 5 mm) What is the longest possible length the line could be? (It must be just less than 12.5 cm (or 125 mm or 12 cm 5 mm) as 12.5 cm rounds up to 13 cm , to the nearest cm) Ps draw 4 lines and write their lengths in any way they wish. Ps exchange Pbs with neighbours who check measurements are accurate. Review orally with whole class. T asks one or two Ps for their measurements. Class decides whether they are possible. 36 min	Notes Ps have rulers on desks Individual work, monitored, helped Initial whole class discussion about possible lengths and ways of writing them BB: 11.5 cm < length < 12.5 cm 115 mm < length < 125 mm T reminds Ps how to draw lines of a certain length accurately e.g. \qquad Agreement, praising
9	Book 3, page 64 Q. 3 a) Read: Write these length in millimetres. Deal with one part at a time. Review orally round class. Mistakes corrected. Solution: i) $12 \mathrm{~cm}=120 \mathrm{~mm}$ ii) $3 \mathrm{~cm} \mathrm{3} \mathrm{mm}=33 \mathrm{~mm}$ $1 \mathrm{~cm} 2 \mathrm{~mm}=12 \mathrm{~mm}$ $30 \mathrm{~cm} 3 \mathrm{~mm}=303 \mathrm{~mm}$ $10 \mathrm{~cm} 2 \mathrm{~mm}=102 \mathrm{~mm}$ $3 \mathrm{~m} 30 \mathrm{~cm}=3300 \mathrm{~mm}$ $102 \mathrm{~cm}=1020 \mathrm{~mm}$ $3 \mathrm{~m} 3 \mathrm{~cm}=3030 \mathrm{~mm}$ $120 \mathrm{~cm}=1200 \mathrm{~mm}$ $3 \mathrm{~m} 3 \mathrm{~mm}=3003 \mathrm{~mm}$ $1 \mathrm{~m} \mathrm{2} \mathrm{cm}=1020 \mathrm{~mm}$ $33 \mathrm{~cm} 3 \mathrm{~mm}=333 \mathrm{~mm}$ $1 \mathrm{~m} 2 \mathrm{~mm}=1002 \mathrm{~mm}$ $30 \mathrm{~cm} 30 \mathrm{~mm}=330 \mathrm{~mm}$ b) Read: List them in increasing order. Deal with one part at a time. Review orally round class. Mistakes corrected. Solution: i) $12 \mathrm{~mm}<102 \mathrm{~mm}<120 \mathrm{~mm}<1002 \mathrm{~mm}<$ $1020 \mathrm{~mm}=1020 \mathrm{~mm}<1200 \mathrm{~mm}$ ii) $33 \mathrm{~mm}<303 \mathrm{~mm}<330 \mathrm{~mm}<333 \mathrm{~mm}<$ $3003 \mathrm{~mm}<3030 \mathrm{~mm}<3300 \mathrm{~mm}$ 42 min	Individual work, monitored, helped Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Or done as whole class activity orally round class More able Ps could be asked to put the original measures in order.
10	Oral practice T says a length. Ps give it rounded to nearest cm . e.g. $\quad 358 \mathrm{~mm}(36 \mathrm{~cm}) ; 612 \mathrm{~mm}(61 \mathrm{~cm}) ; 949 \mathrm{~mm}(95 \mathrm{~cm})$; $1057 \mathrm{~mm}(106 \mathrm{~cm})$, etc. Ps explain reasoning too. If problems, write on BB. e.g. $B B: 1057 \mathrm{~mm}=105 \mathrm{~cm} 7 \mathrm{~mm}=105.7 \mathrm{~cm}$ (so rounds up to next whole cm)	Whole class activity T chooses Ps at random Reasoning, agreement, praising

