B	R: Calculation C: Graphs. Direct proportion E: Multiplication, crossing tens	Lesson Plan 113
Activity 1	Missing digits Let's fill in the missing digits. Ps come to BB to write numbers in boxes, explaining reasoning Class checks that they are correct or suggests alternative solutions. BB: a) d)2 3 7 9 4 8 b) or $523 \times 2=1046$ e)1449×6 894 c) or $244 \times 5=1220$ $264 \times 5=1320$ $284 \times 5=1420$ $204 \times 5=1020$	Notes Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace In good humour! Reasoning, checking, agreement, praising Other solutions are possible in b) and c) if thousands column is used in multiplicant, e.g. $\underline{1224 \times 5=\underline{6} 120}$
2	Problem 1 Listen carefully and think how you would solve this problem. Which operations should we write? Adam and Emily went to the seaside for the weekend. Each day, Adam collected 172 shells and Emily collected 3 times as many as Adam. How many shells had the children collected altogether by the end of the 2 days? Elicit that Adam and Emily spent Saturday and Sunday on the beach. Ps could write data and operations in Ex. Bks first before dictating to T. A, what do you think we should write? Who agrees? Who knows another way to do it? etc. Let's say the answer as a sentence. Answer: They had collected 1376 shells by the end of the 2 days.	Whole class activity T repeats slowly while Ps think and calculate. Ps suggest plan and method of calculation. Ps come to BB or dictate to T . Calculations done at side of BB Reasoning, agreement, praising $\begin{array}{rlrl} \text { or } 1 \text { day: } & 172 & \times 4 \text { (shells) } \\ 2 \text { days: } & 172 & \times 4 \times 2 \\ \frac{172}{\frac{1376}{51}} & =8 & =172 \times 8 \\ \frac{1376}{} \text { (shells) } \end{array}$ Accept any valid method.
3	Problem 2 How you would solve this problem? If 3 kg of grapes cost $£ 2.25$, how much do 6 kg cost? B, what do you think we should do Who agrees? Who has thought of another way to do it? etc. Ps dictate what T should write. e.g. BB: $3 \mathrm{~kg}: £ 2.25$ $\begin{aligned} 1 \mathrm{~kg}: £ 2.25 \div 3=225 \mathrm{p} \div 3 & =210 \mathrm{p} \div 3+15 \mathrm{p} \div 3 \\ & =70 \mathrm{p}+5 \mathrm{p}=75 \mathrm{p} \end{aligned}$ $6 \mathrm{~kg}: 75 \mathrm{p} \times 6=420 \mathrm{p}+30 \mathrm{p}=450 \mathrm{p}=\underline{£ 4.50}$ or $\times 2\left(\begin{array}{lll} 3 \mathrm{~kg} & \rightarrow & £ 2.25 \\ 6 \mathrm{~kg} & \rightarrow & £ 4.50 \end{array}\right) \times 2$ T shows this method if no P suggests it. Answer: 6 kg of grapes cost $£ 4.50$. Elicit that the weight and the cost increase by the same number of times. We say that they are in direct proportion to one another.	Whole class activity T repeats slowly while Ps think. Reasoning, agreement, praising Extension T could show long division, explaining reasoning in detail. Ps do not need to learn it yet! What would 9 kg cost? $(£ 2.25 \times \underline{3}=£ 6.75)$

BK		Lesson Plan 113
Activity 4	Problem 3 Let's use the same idea to solve this problem If 2 children can paint 18 eggs in 2 hours, how many eggs can 4 children paint in 4 hours? C, what do you think we should do Who agrees? Who thinks something else?. Allow Ps to explain their thinking first, then if no P has suggested it, T directs them through this method of solution. BB: Answer: 4 children can paint $\underline{72}$ eggs in 4 hours. \qquad 19 min	Notes Whole class activity T repeats slowly while Ps think. Ps note data in Ex. Bks or on 'slates'. Involve several Ps Reasoning, agreement Praise all contributions. T explains, encouraging Ps to help when they understand. Praising only
5	Graph Frank was doing an experiment. He put a snail on a board at a starting line, then measured how far it had gone after every minute. He made this graph to show his data but now he wants to show it in a table too. Let's help him! First discuss or elicit the components of the graph. (Ps come out to point and explain.) - The x-axis (the horizontal line with arrow) represents the time (measured in minutes) from 0 minutes to 11 minutes. - The y-axis (vertical line with arrow) represents the distance (measured in mm) from 0 mm to 700 mm . - The thick vertical lines with the bars on top show how far the snail has moved after every minute. Ps come to BB to point to 1 minute (2 minutes, etc) on the x-axis and move their finger vertically to the top of the line. Then they move their finger to the left along the horizontal grid lines until they reach the y-axis. Ps read out the distance (with T's help if necessary) and write it in the relevant column in the table. Class points out errors. BB: Who can write the rule? Who agrees? Who can write it another way? etc. Do you think that the snail moved at the same speed throughout the 10 minutes? (Yes, because it travelled the same distance every minute, i.e. 60 mm every minute, or 1 mm every second.) We can say that the time taken and the distance travelled are in direct proportion to one another, so we can join up the points with a straight line like this to show the snail's path. How far would the snail have gone after 11 minutes? (660 mm)	Whole class activity Graph and table drawn on BB or use enlarged copy master or OHP (Ps could have copies on desks too.) Discussion, revision, agreement, praising Involve several Ps. T (or Ps) points to relevant parts of graph. At a good pace Agreement, praising Agree that the snail moves 60 mm each minute, so each column is 60 mm more than the previous one. $\text { BB: Rule: } \begin{aligned} D & =T \times 60(\mathrm{~mm}) \\ T & =\mathrm{D} \div 60(\mathrm{~min}) \\ D & \div T=60 \end{aligned}$

BK3		Lesson Plan 113
Activity 7	Book 3, page 113, Q. 2 Read: This graph shows the approximate height above sea level of famous places. Use the graph to help you fill in the missing numbers. T explains the graph. Elicit that there is a horizontal grid line at every 100 m , that the positive numbers show height above sea level and the negative numbers show the depth below sea level. Deal with one place at a time. Where is this place? What is it? Who has been there? Who has never heard of it? T could show location on an appropriate map and talk about it briefly. Ps come to BB to point to relevant rectangle, read its height to the nearest 100 m and write it in the appropriate box. Class agrees/disagrees. Solution: 1. Ben Nevis $\approx \underline{1300} \mathrm{~m}$ 4. Hay Tor, Dartmoor $\approx 500 \mathrm{~m}$ (= 1343 m) (= 454 m) 2. Mount Snowdon $\approx 1100 \mathrm{~m}$ 5. Death Valley, USA $\approx-100 \mathrm{~m}$ ($=1085 \mathrm{~m}$) (=-86m) 3. The Dead Sea $\approx-400 \mathrm{~m}$ 6. Straits of Gibraltar $\approx-1200 \mathrm{~m}$ (-397 m) (-1181 m : deepest place on sea bed) Let's list the heights in decreasing order. (Ps dictate to T.) BB: $1300 \mathrm{~m}, 1100 \mathrm{~m}, 500 \mathrm{~m},-100 \mathrm{~m},-400 \mathrm{~m},-1200 \mathrm{~m}$ Are these heights in proportion? Is there a rule? (e.g. No, they are decreasing by different amounts each time, so they are not in proportion and there is no rule, so the rectangles cannot be joined up.)	Notes Whole class activity Graph drawn on BB or use enlarged copy master or OHP Discussion, explanation but T asking for Ps' help where appropriate. T could also have pictures to show to class. With T's help if necessary Agreement, praising Ps write approximate heights in Pbs too if they wish. Exact heights are given in brackets in case Ps ask about them. Whole class in unison Discussion, agreement, praising
8	Making a graph This table shows the price of different quantities of cherries. BB: Let's show the data in this graph. Ps come to BB to choose a column in the table, put RH finger on matching quantity on x-axis and LH finger on appropriate price on y-axis, then P moves fingers along grid lines until they meet. P draws a dot at that point. Class agrees/disagrees. BB: Do you think that the quantity and price are in direct proportion to one another? (Yes, because if the quantity increases by 3 times, etc. then the price also increases by 3 times, etc. so we can join up the dots.) What is the price of $200 \mathrm{~g}(700 \mathrm{~g})$ of cherries? What quantity of cherries would you get for $£ 1.20$ ($£ 2.70$)?	Whole class activity Table and graph drawn on BB or use enlarged copy master or OHP Ps could have copies on desks too. Initial discussion on table and relationship of rows to x-axis and y-axis on graph. Elicit that there is a horizontal grid line at every 10 p . At a good pace Demonstration, agreement, praising Discussion, reasoning, agreement Reading from graph or by calculation. Praising only.

BK	R: Calculation C: Perimeter and area of a rectangle E: Volume of cuboids. Distance on a map (km)	$\begin{gathered} \text { Lesson Plan } \\ 114 \end{gathered}$
Activity 1	Complete the table A spider can run 165 cm in 1 minute. Let's complete the table to show how far the spider can run in several minutes. BB: Ps come to BB to choose a column and fill inthe missing value, explaining reasoning. Class agrees/disagrees. Ps might notice connections between the columns to make the calculations easier, e.g. $\begin{aligned} & 165 \times 4=165 \times 2 \times 2 ; \quad 165 \times 3=165 \times 2+165 \\ & 165 \times 9=165 \times 10-165=1650-165=1485 \end{aligned}$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Ps may do calculations in Ex. Bks first before coming out to BB. Reasoning, agreement, praising Extra praise if Ps notice by themselves $\text { Elicit the rule: } \begin{aligned} D & =T \times 165 \\ T & =D \div 165 \\ D & \div T=165 \end{aligned}$
2	Drawing lines In your Ex. Bks (or on sheets of paper): a) draw a line 3 cm long and write its lengh below it in mm . (30 mm) b) draw a line 3 times as long and write its length in mm . (90 mm) c) draw a line which is 2 thirds of the length of the line in a). Write its length in mm . $(20 \mathrm{~mm}$) Review parts b) and c) with whole class. Ps explain how they worked out the length. Mistakes corrected. BB: b) $3 \times 30 \mathrm{~mm}=\underline{90 \mathrm{~mm}}$ c) 2 thirds of $30 \mathrm{~mm}=30 \mathrm{~mm} \div 3 \times 2=10 \mathrm{~mm} \times 2=\underline{20 \mathrm{~mm}}$ 9 min	Individual work, monitored, helped but class kept together. (T reminds Ps how to measure acurately if necessary by demonstrating with BB ruler.) BB: \qquad Reasoning, agreement. praising
3	Distance Along a road there are yellow markers at every 50 m and a white sign at regular intervals. How far apart are the white signs? BB: e.g. Ps come to BB to count the markers and write an operation. Agree that the white signs are 1000 m apart, so probably show every km . (4 km to $\underline{5 \mathrm{~km}}$) T elicits or reminds Ps that 'kilo' means 'thousand' (from Ancient Greek), so 'kilometre' means 'thousand metres'. What other unit of distance do you see on road signs in this country? (miles) Is a mile shorter or longer than a kilometre? (longer) T writes on BB .	Whole class activity Drawn on BB or use enlarged copy master or OHP (19 markers but 20 spaces) Agreement, praising BB: $20 \times 50 \mathrm{~m}=2 \times 500 \mathrm{~m}$ $=1000 \mathrm{~m}$ 1000 metres $=1$ kilometre Discussion, agreement $5 \mathrm{~km} \approx 3$ miles or 3 miles ≈ 1 and 2 thirds km

R <2		Lesson Plan 114
Activity 4	Distances on a map Ps have a copy of map on desks. (If using copy master, Ps could suggest names for the towns.) a) T says two places at a time. BB: Ps find them on the map and read out (or total) the distance along the roads between them. b) Now look at this map. What is different about it? (Same places but no roads) What does the scale mean? (1 mm on this map means 2 km in real life.) What would $10 \mathrm{~mm}(25 \mathrm{~mm}, 150 \mathrm{~mm})$ on this map mean in real life? ($20 \mathrm{~km}, 50 \mathrm{~km}, 300 \mathrm{~km}$) Imagine you are a bird and can fly through the air in a straight line from one town to the next and do not have to stick to the roads. How far apart in real life are, e.g. A and D (C and E, etc.) 'as the crow flies'? Ps find letters on the map, draw a straight line between them and measure from the centre of one town to the centre of the next one in mm . Then they calculate the actual distance by multiplying by 2 and changing mm to km . Ps write actual distances below lines. Why are the distances not exactly the same as the map in a)? (Roads in first map are not straight, so the more winding the road, the further you have to travel.) Elicit that the shortest distance between two points is always a straight line.	Notes Whole class activity Use enlarged copy masters or OHP (or a simple local map, amending scale to miles if necessary) Differentiated questions Ps can say the places too! Individual drawing and measuring but T keeps class together Agreement, praising T might choose only 2 or 3 pairs of towns, depending on ability of Ps. Accept small variation in measurements.
5	Quadrilaterals Thas various shapes stuck (or drawn) on BB, e.g. What questions can you think of to ask about these shapes? e.g. a) Which of these shapes are quadrilaterals? $(2,3,4,7,8)$ (Elicit that a quadrilateral has 4 straight sides.) b) Which of these shapes are rectangles? ($2,3,7,8$) (Elicit that rectangles are quadrilaterials with opposite sides equal and parallel and with square corners or right angles.) c) Which of these shapes are squares? $(2,7)$ (Elicit that a square is a regular rectangle i.e. all sides of equal length) - Who can come and point to a vertex (corner), side, right angle? - Who can show us pairs of perpendicular (parallel) lines? etc.	Whole class activity Shapes cut from coloured paper and stuck to BB or use enlarged copy master or OHP Give Ps the chance to think of questions about the shapes first. Ps can shout the numbers of the shapes in unison, or come to BB to point and explain. Elicit that they are all plane (flat) shapes, so have only 2 dimensions: height and width (Ps might mention that they all have just 1 face.) Extra praise for 'clever' questions! Feedback for T

$B K 3$		Lesson Plan 114
Activity 6	Area and volume BB: a) Study this rectangle. e.g. What is the length of its perimeter? Ps dictate what T should write. 4 units BB: $P=3+4+3+4=2 \times(3+4)=2 \times 7=\underline{14}$ (units) What is its area? Ps dictate what T should write. BB: $A=3+3+3+3=4+4+4=3 \times 4=\underline{12}$ unit squares b) Study this cuboid. e.g. BB: What is the area of all its faces? (i.e. area of its surface) 3 units What is its volume? Ps dictate what T should write. $\text { BB: } \begin{aligned} A & =4 \times 3+2 \times 3+4 \times 3+2 \times 3+4 \times 2+4 \times 2 \\ & =(4 \times 3) \times 2+(2 \times 3) \times 2+(4 \times 2) \times 2 \\ & =(4 \times 3+2 \times 3+4 \times 2) \times 2 \\ & =(12+6+8) \times 2 \\ & =26 \times 2 \\ & =\underline{52} \text { (unit squares) } \\ V & =(4+4+4) \times 2 \\ & =4 \times 3 \times 2=12 \times 2 \\ & =\underline{24} \text { (unit cubes) } \end{aligned}$	Notes Whole class activity T has rectangle drawn on BB and large cuboid made from unit cubes for demonstration. Revisen perimeter and area of a rectangle and surface area and volume of a cuboid. Ps could have $4 \times 3 \times 2$ cuboids on desks too. T leads Ps through calculation if Ps are unsure. At each stage T demonstrates which face is being noted. Stress importance of units: BB: Perimeter: units Area: unit squares Volume: unit cubes Agreement, praising
7	Book 3, page 114 Q. $1 \quad$ What are the perimeter and area of each of these diagrams if: i) the perimeter is measured in these units and the area in these square units. . . . ? Deal with one part at a time. Ps work out number of unit lengths and units squares by counting or calculating in Ex. Bks. Make sure that in part ii) Ps know that the unit length is 2 segments long, i.e. twice as long as in i), and the unit square is comprised of 4 small squares, i.e. 4 times as big as in i). Review at BB with whole class after every part. Ps come to BB or dictate results to T. Mistakes discussed and corrected. Solution: a) $\text { i) } \begin{aligned} P & =(8+5) \times 2 \\ & =\underline{26}-\text { units } \\ A & =8 \times 5=\underline{40} \square \text { units } \\ \text { ii) } P & =(4+2 \text { and a half }) \times 2 \\ & =\underline{13} \square \text { units } \\ A & =4 \times 2 \text { and a half } \\ & =\underline{10} \square \text { units } \end{aligned}$ i) b) $\begin{aligned} P & =(7+4) \times 2 \\ & =\underline{22}-\text { units } \end{aligned}$ $A=7 \times 4=\underline{28}$ \square units $=\underline{11} \longleftarrow$ units $A=3$ and a half $\times 2$ $=\underline{7}$ \square units	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP T explains task with reference to diagrams on BB. Ps can do calculations in Ex. Bks if necessary. Discussion, reasoning, agreement, self-correction, praising Feedback for T Ps could colour each a different colour, then count them as a check.

BK	R: Calculation C: Quantities (mass, capacity, length) E: Exchange of units	$\begin{gathered} \text { Lesson Plan } \\ 115 \end{gathered}$
Activity 1	Missing values Let's see how much you remember. Who can fill in these values? Ps come out to BB to fill in numbers, saying the whole equation. Class points out errors. BB: a) $\begin{aligned} & 1425 \mathrm{~m}=1 \mathrm{~km} \boxed{425} \mathrm{~m} \\ & 1007 \mathrm{~m}=1 \mathrm{~km} \quad 7 \mathrm{~m} \end{aligned}$ c) $1618 \mathrm{~mm}=$ \square 1 m \square 618 mm $1010 \mathrm{~mm}=$ \square 1 m \square 10 mm b) $1840 \mathrm{~g}=$ \square 1 kg $1016 \mathrm{~g}=$ \square 1 kg \square d) $1276 \mathrm{ml}=$ \square 1 e \square 276 ml $1042 \mathrm{ml}=1$ litre \square 42 ml e) $1328 \mathrm{~mm}=$ \square 1 m \square 328 $\mathrm{mm}=$ 1 n \square \square 32 cm \square 8 mm $157 \mathrm{~cm}=1 \mathrm{~m} 57 \mathrm{~cm}=1 \mathrm{~m} 570 \mathrm{~mm}$ \square $1 \mathrm{~km} 65 \mathrm{~m}=1065 \mathrm{~m}$	Notes Whole class activity Written on BB or SB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Revise relationships: BB: $\begin{aligned} & 1 \text { litre } \begin{aligned} & 100 \mathrm{cl}=1000 \mathrm{ml} \\ & 1 \mathrm{cl}=10 \mathrm{ml} \\ & 1 \mathrm{~km}=1000 \mathrm{~m} \end{aligned} \\ & 1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm} \\ & 1 \mathrm{~cm}=10 \mathrm{~mm} \\ & 1 \mathrm{~kg}=1000 \mathrm{~g} \end{aligned}$
2	Scale Ps have 'maps' on desks. BB: T has large copy for demonstration only. How long are the paths? Ps measure each path and write its length beside it (in cm). Ps dictate measurements for T to write on enlarged map on BB . If 1 cm on the map means 100 m in real life, what are the real distances? Ps come to BB to write real distances in metres (or class shouts out in unison as T points to each).	Whole class activity, but individual work in measuring. Use copy master (or any similar simple 'map' prepared by T) Encourage accurate measuring Agreement, praising $\text { BB: Scale: } \begin{aligned} 1 \mathrm{~cm} & \rightarrow 100 \mathrm{~m} \\ 2.5 \mathrm{~cm} & \rightarrow 250 \mathrm{~m} \\ 3 \mathrm{~cm} & \rightarrow 300 \mathrm{~m} \\ 4 \mathrm{~cm} & \rightarrow 400 \mathrm{~m} \end{aligned}$
3	Book 3, page 115 Q. 1 Read: A, B, C and D are places on a map. 1 mm on the map means 20 m in real life. What would 10 mm on the map be in real life? (200 m) What would 60 m in real life be on the map? (3 mm) a) Read: Measure each line on the map in mm and write its length beside it. Review at BB with whole class. Mistakes corrected. As each is dealt with, Ps also calculate real distance and write on their maps. T writes on BB map what Ps dicate. b) Read: In how many ways can you get from A to D ? What distance is each route? Do first route on BB, with Ps' help, as a model for Ps to follow. Rest done as individual work, with necessary calculations done in Ex. Bks. Review with whole class. Ps come to BB to show and write their routes. Class agrees/disagrees. Mistakes corrected. Which is the shortest (longest) route? (ABD, ABCD)	Whole class activity to start Drawn on BB or use enlarged copy master or OHP for demonstration only! Individual work, monitored, (helped) Agreement, self-correction, praising Reasoning, agreement, selfcorrection, praising Solution:

R		Lesson Plan 115
Activity 4	Book 3, page 115 Q. 2 Read: Study the diagram. Fill in the missing numbers. T explains the diagram. (e.g. Think of a giant stepping along the number line 132 units at a time. The top dot shows where he starts (i.e. he has not moved yet!) The line segment below the dot shows 1 step, the line below that shows 2 steps, etc. and the dot at the bottom RHS shows where he finished.) Fill in the missing numbers so that the equations show how far the Giant has gone after different numbers of steps. Review at BB with whole class. Mistakes discussed/corrected. Solution: Ps point out relationships, (e.g. $132 \times 4=132 \times 2 \times 2$) and that each line is 132 more than the line above. 22 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Whole class discussion about meaning of diagram first. Reasoning, agreement, self-correction, praising Discussion, praising
5	Mass T has various small packets at front of class (e.g. spices, herbs, cornflour, baking powder, etc.). Ps come out to choose one and read out its mass in grams. Agree that 1 gram is very light in weight! T shows a hollow 1 cm glass cube and fills it with water (or shows the ' 1 ' rod from Cuisennaire). This amount of water is 1 millilitre and its mass is 1 gram*. BB: 1 cm cube of water $(1 \mathrm{cc}) \rightarrow 1 \mathrm{ml} \rightarrow 1$ gram How many grams are in 1 kilogram? (1000) Remind Ps that 'kilo' and 'milli' are Ancient Greek words. Elicit their meaning. (BB) This cube (T shows) has edge of length 10 cm . How many 1 cm cubes do you think it can hold? $(10 \times 10 \times 10=100 \times 10=1000 \mathrm{~cm} \text { cubes })$ If a 1 cm cube holds 1 millilitre of water, how much water do you think 1000 cm cubes can hold? (1000 ml or 1 litre) T shows litre jug. If I filled this jug with water, what would the mass of the water be? $(1000 \mathrm{~g})$ What other unit of capacity do you know? (centilitre: 'centi' means hundredth) Elicit relationship to litre and ml. [*Note for T: using pure water at $4^{\circ} \mathrm{C}$]	Whole class activity Pass items round class so that Ps can get an idea of what $50 \mathrm{~g}, 100 \mathrm{~g}$, etc. feels like. [Revision/comparison of units of length, capacity and mass] BB: kilo: thousand milli: thousandth T could have strips of 10 and layers of 100 cubes already prepared as confirmation. $\begin{gathered} \mathrm{BB}: 1 \mathrm{cc} \rightarrow 1 \mathrm{ml} \rightarrow 1 \mathrm{~g} \\ 1000 \mathrm{cc} \rightarrow 1000 \mathrm{ml} \rightarrow 1000 \mathrm{~g} \\ 1 \text { litre } \rightarrow 1 \mathrm{~kg} \\ 1 \text { litre }=100 \mathrm{cl} \\ 1 \mathrm{cl}=10 \mathrm{ml} \end{gathered}$
6	Capacity Work out the capacity of these containers in your Ex. Bks. Remember to write the unit too! Review with whole class. Ps explain reasoning. a) It can be filled with four 50 litre cans. (200 litres) b) It can be filled with twenty 16 litre cans. (320 litres) c) It can be filled with five 25 litre cans and five 15 litre cans. (200 litres) d) It can be filled with twelve 9 litre and fifteen 4 litre jugs. (168 litres)	Individual work, monitored, helped Ps could show answers on scrap paper or 'slates' on command. Reasoning (in detail), agreement, self-correcting, praising

5 53		Lesson Plan 115
Activity 7	Book 3, page 115 Q. 3 Read: Do the calculations in your Ex. Bks. Fill in the missing numbers. Set a time limit. Review at BB with whole class. Ps come to BB to explain reasoning and show calculations in detail. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $24 \times 70 \mathrm{ml}=\underline{1680} \mathrm{ml}=\underline{168} \mathrm{cl}=\underline{1}$ litre $\underline{68} \mathrm{cl}$ b) $125 \times 6 \mathrm{cl}=750 \mathrm{cl}=\underline{7}$ litres $\underline{50} \mathrm{cl}=\underline{7}$ litres $\underline{500} \mathrm{ml}$ c) $174 \times 9 \mathrm{cl}+135 \times 3 \mathrm{cl}=\underline{19}$ litres $\underline{71} \mathrm{cl}=\underline{19}$ litres $\underline{710} \mathrm{ml}$	Notes Individual work, monitored, helped (or whole class activity) Written on BB Differentiation by time limit. Reasoning, agreement, selfcorrection, praising Show calculations in detail, e.g. a) $\frac{240}{\frac{1680}{2}} \times 7$ b) $\frac{125}{\underline{750}} \times 6$ c) $\frac{174}{\underline{1566}} \times 9 \underline{\frac{135}{405}} \times 3+\frac{1566}{\underline{405}}$
8	Book 3, page 115 Q. 4 Read: What is the mass of: a) 8 tablespoons of flour if 1 tablespoon of flour weighs 15 g ? b) 7 tablespoons of sugar if 1 tablespoon of sugar weighs 23 g ? c) 4 tablespoons of salt if 1 tablespoon of salt weighs 28 g ? d) 2 tablespoons of flour, 3 tablespoons of sugar and 4 tablespoons of salt? Set a time limit. Calculations done in Ex. Bks or on scrap paper. Review at BB with whole class. Ps explain reasoning in detail. Mistakes discussed and corrected. Solution: a) $8 \times 15 \mathrm{~g}=80 \mathrm{~g}+40 \mathrm{~g}=\underline{120 \mathrm{~g}}$ b) $7 \times 23 \mathrm{~g}=140 \mathrm{~g}+21 \mathrm{~g}=\underline{161 \mathrm{~g}}$ c) $4 \times 28 \mathrm{~g}=80 \mathrm{~g}+32 \mathrm{~g}=\underline{112 \mathrm{~g}}$ d) $2 \times 15 \mathrm{~g}+3 \times 23 \mathrm{~g}+4 \times 28 \mathrm{~g}=30 \mathrm{~g}+69 \mathrm{~g}+112 \mathrm{~g}$ $=\underline{211 \mathrm{~g}}$	Individual work, monitored, helped (or whole class activity, with responses shown in unison on command) T could have tablespoons to show to class. Differentiation by time limit. Reasoning, agreement, selfcorrection, praising
9	Revision practice What is the mass of, e.g.: a) $1 \mathrm{ml}(3 \mathrm{ml}, 51 \mathrm{ml}$, etc.) of water? $(1 \mathrm{~g}, 3 \mathrm{~g}, 51 \mathrm{~g}$, etc.) b) $1 \mathrm{cl}(6 \mathrm{cl}, 10 \mathrm{cl}$, etc.) of water? $(10 \mathrm{~g}, 60 \mathrm{~g}, 100 \mathrm{~g}$, etc.) c) 1 litre (1 and a half litres, half a litre, 5 litres, etc.) of water? (1000 g or $1 \mathrm{~kg}, 1500 \mathrm{~g}$ or 1 and a half $\mathrm{kg}, 500 \mathrm{~g}$ or half a kg , 5000 g or 5 kg , etc.)	Whole class activity T chooses Ps at random. At a good pace If Ps answer incorrectly, the next P corrects it. In good humour! Praising, encouragement only

BIT?	R: Mental and written operations C: Calculations with quantities. Time. E: Leap year	$\begin{gathered} \text { Lesson Plan } \\ 116 \end{gathered}$
Activity 1 Extension	Equal values Let's join up the equal quantities. BB: Ps come to BB to draw joining lines, or rearrange cards, explaining reasoning. Class agrees/disagrees. Who can think of values equal to those which are not joined up? (e.g. $12 \mathrm{~m} 35 \mathrm{~mm}=12 \mathrm{~m} 3 \mathrm{~cm} 5 \mathrm{~mm}=1203 \mathrm{~cm} 5 \mathrm{~mm}$; $2 \mathrm{~kg} 4 \mathrm{~g}=2004 \mathrm{~g} ; 348 \mathrm{~g}=0.348 \mathrm{~kg})$	Notes Whole class activity Written on BB or use enlarged copy master or OHP, or flash cards stuck to BB. At a good pace Agreement, praising Feedback for T
2	Missing numbers Let's write in the missing numbers. Nod your head if you agree with the answer and put your hands on your head if you disagree! \mathbf{A}, come and fill in the first missing number. Is \mathbf{A} correct? Show me . . now! B, what do you think it should be? Why? etc. $\begin{array}{rlrl} \mathrm{BB} \text { : a) } 1 \text { third of a year } & =\mathbf{4} \text { months } & & 1 \text { quarter of a year }=\mathbf{3} \text { months } \\ 1 \text { year } 3 \text { months } & =\mathbf{1 5} \text { months } & & \mathbf{1} \text { half } \\ \text { of a year }=6 \text { months } \\ 1 \text { year } & =4 \text { seasons } & & 2 \text { thirds of a year }=8 \text { months } \end{array}$ $\begin{array}{rlrl} \text { b) } 1 \text { quarter of a day } & =\mathbf{6} \text { hours } & & 1 \text { eighth of a day }=\mathbf{3} \text { hours } \\ 3 \text { days } & =\mathbf{7 2} \text { hours } & 3 \text { quarters of a day }=\mathbf{1 8} \text { hours } \\ \mathbf{2} \text { days } & =48 \text { hours } & 7 \text { eighths of a day }=21 \text { hours } \end{array}$ 10 min	Whole class activity (Or other pre-agreed actions) Written on BB or SB or use enlarged copy master or OHP Responses given in unison At a good pace Reasoning, agreement, praising Details given where necessary: 3 hours $=1$ eighth of a day 21 hours $=7$ eighths of a day Feedback for T
3	Open sentences Let's complete these sentences. Ps come to BB to fill in missing items, then read the sentence aloud. Class points out errors. Ps copy important statements into Ex. Bks. BB: a) $\underline{1}$ year $=4$ seasons $\quad 1$ year $=\underline{12}$ months 1 year $=\underline{365}$ days, or 1 leap year $=\underline{366}$ days Leap years are the years divisible by 4 . Only every 4th whole hundred is a leap year. The year 2000 was a leap year. The year 2000 was the last year of the 20th century. The first year of the 21 st century is 2001 . The first day of the 21st century is 1st January 2001. Years are counted from the birth date of Jesus Christ. b) 31 day months: January, March, May, July, August, October, December 30 day months: April, June, September, November 28 or 29 day months: February	Whole class activity Written on BB or SB or use enlarged copy masters or OHP At a good pace. Agreement, praising T might discuss other systems apart from the Christian one: (Hindu, Jewish, Muslim, etc.) Tell or elicit that: a century is 100 hundred years ('cent' means 'hundred'); the 20th century is the 2nd thousand years or the 200th decade (1 decade $=10$ years $)$ Ps list on BB, rest of class in Ex. Bks. Encourage neat written work. T could show short notation for minute and second. $\begin{aligned} \mathrm{BB}: 1^{\prime} & =1 \text { minute } \\ 1^{\prime \prime} & =1 \text { second } \end{aligned}$

R		Lesson Plan 116
Activity 8	Book 3, page 116 Q. 3 Read: Fill in the missing numbers. Parts a), c) and e) could be done orally round class. Parts b) and d) could be done as individual work, monitored and reviewed. (Or all done as individual work if Ps wish but reviewed after each part, or all done as a whole class activity if short of time.) Solution: a) i) 7 hours $=\underline{420} \mathrm{~min}$ ii) 15 hours $=\underline{900} \mathrm{~min}$ iii) $4 \mathrm{~h} 45 \mathrm{~min}=\underline{285} \mathrm{~min}$ iv) $15 \mathrm{~h} 10 \mathrm{~min}=910 \mathrm{~min}$ b) i) $68 \mathrm{~min}=1 \mathrm{~h} 8 \mathrm{~min}$ ii) $75 \mathrm{~min}=1 \mathrm{~h} 15 \mathrm{~min}$ iii) $135 \mathrm{~min}=2 \mathrm{~h} 15 \mathrm{~min}$ iv) $301 \mathrm{~min}=\underline{5 \mathrm{~h} 1 \mathrm{~min}}$ c) i) 10 wks 5 dys $=75$ dys ii) 25 wks 3 dys $=178$ dys iii) 50 wks 2 dys $=\underline{352 \text { dys }}$ iv) 52 wks 1 day $=365$ dys d) i) $3 \mathrm{~min}=180$ seconds ii) $8 \mathrm{~min}=480$ seconds iii) $5 \mathrm{~min} 15 \mathrm{sec}=\underline{315 \mathrm{sec}}$ iv) $20 \mathrm{~min} 42 \mathrm{sec}=\underline{1242 \mathrm{sec}}$ e) i) $121 \mathrm{sec}=2 \min 1 \mathrm{sec}$ ii) $250 \mathrm{sec}=4 \min 10 \mathrm{sec}$ iii) $372 \mathrm{sec}=6 \min 12 \mathrm{sec}$ iv) $360 \mathrm{sec}=\underline{6 \min 0 \mathrm{sec}}$ 41 min	Notes Part individual work, part whole class activity (or wholly one or the other) T could have SB or OHT already prepared with answers and uncover each as it is dealt with. Reasoning, agreement, selfcorrection where relevant, praising At a good pace If problems, write details of calcualtions on BB. Elicit that 365 days $=1$ year Feedback for T
9	Book 3, page 116 Q. 4 Deal with one part at a time. Ps read problems themselves and discuss strategy for solution with neighbour. Set a time limit. Ps suggest operations. T writes on BB what Ps dictate. Deal with all cases. a) Read: If the taps are turned on full for 1 minute, 7 litres of water runs into the bath. How much water would have run into the bath after 2 hours? e.g. 1 min: 7 litres; 2 hours $=2 \times 60 \mathrm{~min}=120 \mathrm{~min}$ $120 \mathrm{~min}: 7 \times 120=700+140=840 \text { (litres) }$ Answer: After 2 hours, 840 litres of water would have run into the bath. What would have happened in real life? (Overflow!) b) Read: A car travels 22 m in 1 second. How far has the car gone after 1 minute? $\begin{aligned} & \text { e.g. } 1 \text { sec: } 22 \mathrm{~m} ; \quad 1 \mathrm{~min}=60 \mathrm{sec} \\ & 60 \mathrm{sec}: 22 \mathrm{~m} \times 60=220 \mathrm{~m} \times 6=1200 \mathrm{~m}+120 \mathrm{~m} \\ & =1320 \mathrm{~m}=\underline{1 \mathrm{~km} \mathrm{320} \mathrm{~m}} \end{aligned}$ Answer: The car has gone 1 km 320 m after 1 minute.	Individual or paired work in planning/writing the operation Whole class activity in calculating Reasoning, agreement, praising Or calculation done as vertical multiplication. Ps say answer in unison. Discussion. (Capacity of a normal sized bath is about 180 litres) Reasoning, agreement, praising Or vertical multiplication Ps say answer in unison.

BK3	R: Calculations C: Division. Properties of division E: Divisibility	$\begin{gathered} \text { Lesson Plan } \\ 117 \end{gathered}$
Activity 1	Written exercises T dictates operations. Ps write them down and do the calculations in Ex. Bks. Review at BB with whole class. Ps explain their methods of calculation. Who made a mistakes? What kind of mistake? etc. Confirm order of operations (operations inside brackets first, then multiplication, then subtraction). BB: 381 a) $413-127 \times 3=\underline{32}$ c) $(413-127) \times 3=\underline{858}$ b) 1239 b) $413 \times 3-127=\underline{1112}$ d) $413^{1239} \times 3-127 \times 3=\underline{858}$	Notes Individual work, monitored, helped T also has questions written on BB or SB or OHT. Reasoning, agreement, selfcorrection, praising Details of calculations written on BB if problems, e.g. a) $\underline{127}_{\underline{381}} \times \frac{413}{-\frac{381}{32}}$
2	Missing numbers Let's fill in the missing numbers so that the statements are true. Ps do calculations in Ex. Bks or on slates first, then dictate to T or come to BB , explaining reasoning. Class points out errors. BB: a) $248 \times 4=496 \times \mathbf{2}$ b) $74 \times \mathbf{8}=148 \times 4$ c) $93 \times \mathbf{9}=279 \times 3$ d) $132 \times 3=132 \times 2+$ \square e) $152 \times 4=152 \times 3+$ \square f) $108 \times 6=108 \times 7-$ \square g) $311 \times 4=311 \times 6-\mathbf{6 2 2}$ h) $142 \times 3=71 \times 6+\mathbf{0}$ i) $913-378<\underset{\substack{\text { e.g.g. } \\ \boldsymbol{a}}}{\text { e.g. }}<137 \times 4$ (a: 536,537, ..546, 547) j) $524+476 \geq b \geq 250 \times 4 \quad(b=1000)$ 13 min \qquad	Whole class activity Written on BB or SB or OHT or use enlarged copy master Reasoning, agreement, praising Ps show calculations in detail if necessary. Feedback for T i) 12 possible whole numbers (536 to 547) i) and j): any letter or symbol would do.
3	Number line a) T has class number line 0 to 100 . Ps come out to mark on it: i) multiples of 4 in blue $(0,4,8,12,16,20,24, \ldots)$ We could also say that $0,4,8$, etc. are divisible by 4 , i.e. they have no remainder when divided by 4 . ii) multiples of 5 in green $(0,5,10,15,20, \ldots)$ We could also say that $0,5,10$, etc. are divisible by 5 , i.e. they have no remainder when divided by 5 . b) Let's say the numbers which are marked in blue and green. $(0,20,40,60,80,100, \ldots)$ What can you tell me about these numbers? (Multiples of 20 or divisible by 20)	Whole class activity Use class number line with sticky coloured dots or draw on BB and use coloured chalk. At a good pace Ps say each set of multiples in unison. In unison Agreement, praising

BK'		Lesson Plan 117
Activity 4	True or false? T reads a statement twice. Ps write 'T' for true or ' F ' for false on scrap paper or slates and show on command. Ps who answer incorrectly try to give counter examples. a) Every number divisible by 4 is even. Show me . . . now! b) 0 is divisible by 4 and 5 . Show me . . now! (T) c) 4 is divisible by 0 . Show me . . now! (F) d) All whole tens are divisible by 5 . Show me . . . now! (T) e) Every number divisible by 5 is a whole ten. Show me . . . now! (F) f) There is a whole ten which is not divisible by 5 . (F) g) There are numbers divisible by 5 which are not whole tens. (T) \qquad 21 min \qquad	Notes Whole class activity Responses shown in unison Discussion, agreement, praising b) $0 \div 4=0,0 \div 5=0$ because $0 \times 4=0$, etc. c) No number can be divided by zero! e) e.g. 15 is not a whole 10 f) Relate to d) g) e.g. 25
5	What is the rule? Study this table and think what the rule could be. Ps come out to fill in missing numbers and class agrees/disagrees but does not state the rule until the end. BB: A, what do you think the rule is? Who agrees? Who thinks something else? etc. Rule: b is the remainder after dividing a by 3 . 25 min \qquad	Whole class activity Drawn on BB or use enlarged copy master or OHP Give Ps time to think. At a good pace Agreement, praising Discussion, agreement, checking with values in table.
6	Book 3, page 117, Q. 3 Q. 1 Read: Write multiplications and divisions about the diagrams. Deal with one part at a time. Elicit the number of squares in each row and column. Ps work out the total, then write operations. Review at BB with whole class. Elicit that the total number of squares is the area of the rectangle. Deal with all cases. Mistakes discussed and corrected. Solution: 5 rows, 32 columns a) b) 20 rows, 30 columns e.g. $\begin{aligned} & 5 \times 32=32 \times 5=160 \\ & 160 \div 5=32, \quad 160 \div 32=5 \end{aligned}$ $\begin{aligned} & 20 \times 30=30 \times 20=600 \\ & 600 \div 30=20,600 \div 20=30 \\ & 2 \times 10 \times 30=2 \times 300=600 \\ & 600 \div 2=300,600 \div 300=2 \\ & 6 \times 100=100 \times 6=600 \\ & 600 \div 6=100,600 \div 100=6 \\ & \text { etc. } \end{aligned}$	Individual work, monitored helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement,self-correcting, praising Revise correct mathematical terms and encourage Ps to use them: 'factors, product, dividend, divisor, quotient, divisible by'

R		Lesson Plan 117
Activity 7	Book 3, page 117 Q. 2 Read: Write two divisions about each diagram. Set a time limit. Review at BB with whole class. Deal with all cases. Mistakes corrected. When reviewing each part, ask Ps to say the divisions in different ways in context, e.g. a) 'Half of 10 p is 5 p ', or 'A 10 p coin can be exchanged for two 5 p coins.', or 'One fifth of 10 p is 2 p .' or 'A 10 p coin can be exchanged for five 2 p coins.' Solution: e.g.	Notes Individual work, monitored, helped Coins stuck or drawn on BB or use enlarged copy master or OHP. Differentiation by time limit Discussion, agreement, selfcorrection, praising Ps who finish quickly can think of other divisions too. e.g. $\begin{aligned} & 100 \mid 10=10 \\ & 1000 \mid 100=10 \\ & 50 \mid 2=25 \\ & 500 \mid 5=100 \\ & 2000 \mid 5=400 \text { etc. } \end{aligned}$ T (or P) points to divisions, Ps say matching multiplications at speed round class.
8	Book 3, page 117 Q. 3 Read: Do the divisions. Check them in your head with multiplications. Let's see how many of these you can do in 3 minutes! Sit up with your arms folded when you have finished. Review orally round class. Ps change pencils and mark/correct own work. P says whole division, then checks with reverse multiplication.e.g. '1800\|90=20, because $20 \cdot 90=1800$ ' Evaluate number correct out of 24 and discuss mistakes made. Elicit relationships and connections. Encourage Ps to use correct mathematical terms. Solution: a) $18 \mid 6=\underline{3}$ $180 \mid 6=\underline{30}$ $1800 \mid 6=\underline{300}$ c) $54 \quad 6=\underline{9}$ d) $32 \mid 8=\underline{4}$ $540 \mid 6=\underline{90}$ $320 \mid 8=\underline{40}$ $320 \mid 80=\underline{4}$ b) $18 \quad \mid 9=\underline{2}$ $180 \mid 90=\underline{2}$ $180\|9=\underline{20} \quad 1800\| 90=\underline{20}$ $1800\|9=\underline{200} 1800\| 900=\underline{2}$ e) $72 \mid 9=\underline{8}$ f) $56 \quad 17=\underline{8}$ $720 \mid 9=\underline{80}$ f) $560 \quad 17=\underline{80}$ f) $560 \quad \mid 70=\underline{8}$	Individual work, monitored, helped Differentiation by time limit. Checking, agreement, selfcorrection, praising Stars, stickers, etc. awarded Discussion, agreement, e.g. 'If dividend increases by 10 times and divisor increases by 10 times, then quotient stays the same.' 'If dividend stays the same but divisor increases by 10 times, then quotient decreases by 10 times.'
9	Book 3, page 117, Q. 4 Read: Divide the amount into 4 equal parts. First elicit total amount. (840) T chooses 4 Ps to come and take an equal amount and show to class. Class checks they all have the same amount. What fraction of the money do they each have? (1 quarter) Who can write it as a division? T shows details. Ps write in Pbs. Repeat for other amounts. (e.g. $390\|3,1206\| 6$)	Whole class activity T has model money stuck to BB BB: $\sqrt[100]{1000} \sqrt{1000} \sqrt{100} \boxed{1000} \sqrt{100} \boxed{1000}$ (10) (10) (10) (10) 1 quarter of $840=\underline{210}$ $\begin{aligned} 840 \mid 4 & =800\|4+40\| 4 \\ & =200+10=\underline{210} \end{aligned}$ Praising only

BK3	R: Calculations C: Division: divisor (factor) and multiple E: Division with remainders. Caroll diagrams	$\begin{gathered} \text { Lesson Plan } \\ 118 \end{gathered}$
Activity 1	What is missing? Let's see if you can work out what is missing without calculating the products. Ps come to BB to write missing items or dictate to T, explaining reasoning. Class points out errors. In d), ask Ps to give details of calculation. BB: a) $102 \times 6=102 \times 3+102 \times 3 \quad 211 \times 3=211 \times 6-211 \times 3$ b) $116 \times 3 \underset{\times 2}{<} 116 \times 6 \quad 109 \times 2<4 \times 4 \times 2$ c) $128 \times 2 \underset{128}{<} 128 \times 3 \quad 151 \times 4 \underset{151}{>} 151 \times 3$ e) $676+487 \leq \square-126 \leq 233 \times 5$ \square : 1289, 1290, 1291	Notes Whole class activity Written on BB or SB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Ps read inequalities in unison. Details for e) $\begin{array}{r} 676 \\ +487 \\ \hline 1163 \\ \hline \end{array}$ Check: $\begin{array}{r} 1163 \\ +\quad 126 \\ \hline 1289 \\ \hline \end{array}$
2	Mental practice a) What is 1 eighth of $48(24,16)$? Show me . . . now! $(6,3,2)$ We could say: ' 48 divided by $8=6$ ' and write it like this. $\frac{48}{8}=6$ '24 divided by $8=3$ ' and write it like this. $\frac{24}{8}=3$ ' 16 divided by $8=2$ ' and write it like this. $\frac{16}{8}=2$ b) I arranged 30 eggs so that there were 5 eggs in each row. How many rows of eggs were there? Show me . . . now! (6) A, come and write it as an operation. Who agrees? Who could write it using the new method? c) I rearranged the 30 eggs into 10 equal rows. How many eggs were in each row? Show me . . . now! (3) B, come and write it as an operation. Who agrees? Who could write it using the new method? d) How many marbles would each child get if 40 marbles were shared equally among $4(10,8,5,2,20)$ children? Show me . . now! ($10,4,5,8,20,4$) Ps come to BB to write each division in the two different ways.	Whole class activity Ps show answer on scrap paper or 'slates' in unison. Agreement, praising T shows new form of notation and explains that the horizontal line means 'divided by'. In unison Agreement, praising BB: $30 \div 5=\underline{6}$ or $\frac{30}{5}=6$ In unison Agreement, praising BB: $30 \div 10=\underline{3}$ or $\frac{30}{10}=3$ In unison $40 \div 4=10 \text { or } \frac{40}{4}=10$ etc.

B <3		Lesson Plan 118
Activity 5	Book 3, page 118 Q. 1 Read Write these numbers in the correct number set. T explains task. Elicit that 'divisible by 8 ' means the same as 'multiples of 8 ' and 'multiples of 9 ' means the same as 'divisible by 9 '. Ps can underline or circle each number as it is dealt with. Review at BB with whole class. Ps come to write on BB or dictate to T , explaining reasoning, e.g. 'If 17 is divided by 8 there is a remainder of 1 , so 17 is not divisible by $8 . '$ Mistakes discussed and corrected. Which numbers are multiples of 8 and 9? (0 and 72) Solution: $0,5,8,9,12,16,17,27,40,44,45,72,80,81,90,96$ a) b) 30 min	Notes Individual work, monitored, helped Tables drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Agreement, praising
6	Book 3, page 118 Q. 2 Read Write these numbers in the correct set. Elicit that 'divisor of 36 ' means the same as 'factor of 36 ', i.e. 36 can be divided by this number exactly, with no remainder. Again, Ps underline or circle each number as it is dealt with. Review at BB with whole class. Ps come to write on BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Solution: 3, 9, 8, 1, 36, 12, 4, 6, 18, 11, 2, 5, 10, 53, 72, 0 34 min	Individual work, monitored, helped Table drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T

BK3	R: Calculations C: Division E: Mental procedures	$\begin{gathered} \text { Lesson Plan } \\ 119 \end{gathered}$
Activity 1	Puzzles Study these puzzles. The rule is that the product of any two adjacent numbers is the number directly above them. Let's fill in the missing numbers. Ps come to BB to write numbers and explain reasoning Class agrees/disagrees. Do the top row of a) and b) only if Ps want to try it. T could give hints to Ps to help them or if Ps are struggling, show how to do it. BB: Top row: e.g. a) $2 \mathrm{H} \times 8 \mathrm{H}=2 \mathrm{H} \times 8 \times 1 \mathrm{H}=16 \mathrm{H} \times 10 \times 10=16 \mathrm{Th} \times 10$ $=\underline{160 \mathrm{Th}}(160000)$ b) $4 \mathrm{H} \times 8 \mathrm{~T}=4 \mathrm{H} \times 8 \times 10=32 \mathrm{H} \times 10=\underline{32 \mathrm{Th}(32000)}$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Bold numbers are given. Reasoning, agreement, praising Stress logical deduction rather than trial and error or guesswork! Elicit that $1 \mathrm{H} \times 10=1 \mathrm{Th}$ Extra praise if Ps can do it but do not worry if they cannot.
2	Which statement is true? T asks a P to read each statement, then class decides whether ot not it is true. Ps write 'T' for true or ' F ' for false on slates or scrap paper and show on command (or use pre-agreed actions). T aks Ps to give an example (or counter example) for each. BB: a) All the mulitples of 3 are even numbers. (F) e.g. 9 is odd b) Not all the multiples of 3 are odd numbers. (T) e.g, 6 is even. c) Not all the numbers divisible by 4 are even. (F) All are even. d) A number which is a multiple of 4 is also a multiple of 2. (T) \qquad 8 min	Whole class activity Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, praising Agree that only one counter example is needed to prove that a statement is false.
3	Missing numbers Study the diagrams. What do the arrows mean? Ps come to BB to fill in the missing numbers. Class checks that they are correct. Elicit that multiplication and division are opposite operations. What other pairs of operations are opposite operations? (addition and subtraction) BB: a) b) c) d)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, checking, praising Elicit that, e.g. - 360 is a multiple of 36 and 10 - 36 and 10 are factors of 360 - 360 is divisble by 36 and 10 etc.

BK3	R: Calculation C: Division E: Preparation for pencil and paper procedures for simple division	$\begin{gathered} \text { Lesson Plan } \\ 120 \end{gathered}$
Activity 1	Missing numbers T has BB already prepared. Ps come to BB to fill in the missing numbers or dictate to T, explaining reasoning. e.g. ' 24 divided by 4 equals 6 because 6 times 4 equals 24' (or 'because 24 divided by 6 equals 4^{\prime}). Class points out errors. BB: a) $\begin{aligned} & 24 \div \square=6 \\ & 240 \div \square=6 \\ & 240 \div \square=60 \end{aligned}$ b) $\begin{aligned} & 36 \div \square=4 \\ & 360 \div \square=4 \\ & 360 \div \square=40 \end{aligned}$ c) \square $\div 5=8$ \square $]=8$ $400 \div \square=80$	Notes Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, checking, praising Feedback for T
2	Division 1 Let's calculate the quotients. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. BB: a) $12 \div 3=\underline{4}$ $120 \div 3=\underline{40}$ $1200 \div 3=\underline{400}$ b) $18 \div 6=\underline{3}$ $180 \div 6=\underline{30}$ $1800 \div 3=\underline{600}$ c) $24 \div 4=\underline{6}$ d) d) $35 \div 7=\underline{5}$ e) $48 \div 6=\underline{8}$ $240 \div 4=\underline{60}$ $350 \div 7=\underline{50}$ $480 \div 6=\underline{80}$ What do you notice about how the dividends and quotients change? (If the dividend is 10 times more and the divisor is the same, then the quotient is also 10 times more.)	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, checking, praising Discussion, agreement, praising
3	Division 2 Let's calculate the quotients for these too but think about what is happening. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. BB: $\text { a) } \begin{aligned} 120 \div 4 & =\underline{30} \\ 8 \div 4 & =\underline{2} \\ 128 \div 4 & =\underline{32} \\ 1200 \div 4 & =\underline{300} \\ 80 \div 4 & =\underline{20} \\ 1280 \div 4 & =\underline{320} \end{aligned}$ b) $\begin{aligned} 150 \div 3 & =\underline{50} \\ 6 \div 3 & =\underline{2} \\ 156 \div 3 & =\underline{52} \\ 1500 \div 3 & =\underline{500} \\ 60 \div 3 & =\underline{20} \end{aligned}$ c) $\begin{aligned} 140 \div 7 & =\underline{20} \\ 7 \div 7 & =\underline{1} \\ 147 \div 7 & =\underline{21} \\ 1400 \div 7 & =\underline{200} \\ 70 \div 7 & =\underline{10} \\ 1470 \div 7 & =\underline{210} \end{aligned}$ What do you notice? (In each part, the 3rd row is the sum of the 1st and 2 nd rows and the 6 th row is the sum of the 4 th and 5 th rows; rows 4-6 are 10 times more than rows $1-3$.) T shows how the divisions could be written in another way: e.g. BB: $128 \div 4=12 \mathrm{~T} \div 4+8 \mathrm{U} \div 4=3 \mathrm{~T}+2 \mathrm{U}=\underline{32}$, or $1280 \div 4=12 \mathrm{H} \div 4+8 \mathrm{~T} \div 4=3 \mathrm{H}+2 \mathrm{~T}=\underline{320}$	Whole class activiity T has BB or SB or OHT already prepared and uncovers one row at a time. At a good pace Reasoning, agreement, praising Extra praise if Ps notice connections before T asks. Discussion, agreement, praising T could begin and then Ps dictate what T should write when they understand.

BK		Lesson Plan 120
Activity 4	Book 3, page 120 Q. 1 Read: Peter, Rob and Sally have the same amount of money in their bank accounts. Altogether, they have $£ 969$. Circle what each of them has. Ps draw around each person's money (or colour with 3 different colours). Elicit that each person has $£ 323(3 \mathrm{H}+2 \mathrm{~T}+3 \mathrm{U})$. Read: Complete the calculation. Ps fill in missing numbers in $P b s$, then check against diagram. Review at BB with whole class. Ps dictate what T should write. Mistakes discussed and corrected. $\text { BB: } 969 \div 3=900 \div 3+60 \div 3+9 \div 3=\underline{300}+\underline{20}+\underline{3}=\underline{323}$ Let's show it in a place value table. T explains table (with Ps' help) then shows it without HTU and in the form of long division. BB:	Notes Individual work, monitored, helped Money drawn or stuck on BB or use enlarged copy master or OHP BB Discussion, reasoning, agreement, self-correcting, praising Whole class activity Drawn on BB or use enlarged copy master or OHP Either explain each step referring to relevant parts of completed tables, or build up blank tables gradually (with Ps' help if they begin to understand).
5	Book 3, page 120 Q. 2 Read: Fill in the missing numbers Do parts a) and b) with whole class first as a model for Ps to follow. Ps dicate what to write at each step. T writes on BB and Ps in Pbs. Rest done as individual work under a time limit. Review parts c) and d) with whole class. Ps come to BB or dicate what to write. Class agrees/disagrees. Mistakes corrected. Solution: a) $\begin{aligned} & 840 \div 4=800 \div 4+40 \div 4=200+10=\underline{210} \\ & 630 \div 3=600 \div 3+30 \div 3=200+10=\underline{210} \end{aligned}$ b) $\begin{aligned} & 650 \div 5=500 \div 5+150 \div 5=100+30=\underline{130} \\ & 768 \div 4=400 \div 4+360 \div 4+8 \div 4=100+90+2=\underline{192} \end{aligned}$ c) $\begin{aligned} & 840 \div 6=600 \div 6+240 \div 6=100+40=\underline{140} \\ & 459 \div 3=300 \div 3+150 \div 3+9 \div 3=100+50+3=\underline{153} \end{aligned}$ d) $\begin{aligned} & 910 \div 7=700 \div 7+210 \div 7=100+30=\underline{130} \\ & 960 \div 8=800 \div 8+160 \div 8=100+20=\underline{120} \end{aligned}$ Details of the division opposite: $4 \mathrm{H} \div 3=\underline{1 H}$, and 1 H remains $\begin{aligned} & 1 \mathrm{H}=10 \mathrm{~T}, 10 \mathrm{~T}+5 \mathrm{~T}=15 \mathrm{~T} \\ & 15 \mathrm{~T} \div 3=\underline{5 \mathrm{~T}} \\ & 9 \mathrm{U} \div 3=\underline{3 \mathrm{U}} \end{aligned}$ 29 min	Whole class activity to start Written on BB or use enlarged copy master or OHP Discuss the 'clever' way that the 3-digit numbers have been broken down into numbers which are easily divisible by the divisor. Involve several Ps. Reasoning, agreement, checking with multiplication, self-correcting, praising T shows vertical form for one of the divisions, explaining details of each step: BB:

B \mathbf{T}^{3}	R: Mental calculation C: Revision and practice E: $\quad 0$ and 1 in multiplication and division	$\begin{gathered} \text { Lesson Plan } \\ 121 \end{gathered}$
Activity 1	Equal values Which of these operations have the same result? Let's join them up. Ps calculate mentally (or in Ex. Bks.), then come to BB to draw joining lines, explaining reasoning. Class checks that they are correct. $\begin{array}{ll} \text { BB: } 550 & 770 \\ (316+234) \div 5=(110) & (930-160) \div 7=(110) \\ 106 & 876 \\ 636 \div 6+383=(489) & (1120-244) \div 2=(438) \\ 162 & 224 \\ 486 \div 3+537=(699) & 896 \div 4+265=(489) \end{array}$	Notes Whole class activity Operations written on BB or SB or OHT Discussion, reasoning, agreement, praising Ps give details of calculations during discussion, e.g. $\begin{aligned} 486 \div 3 & =300 \div 3+180 \div \\ 3+6 \div 3 & =100+60+2 \\ & =162 \end{aligned}$
2	Puzzle What do you think the rule is for this puzzle? T asks several Ps what they think. (The same shape stands for the same number. The number in the middle is the product of the 4 numbers around it.) Ps suggest where to start and how to continue. (e.g. Start at the numbers around 40 because three are the same: $40=4 \times 10=2 \times 2 \times 2 \times 5$, so the triangle could be ' 2 ' and the circle could be ' 5 '.) Let's try it! Ps write 2 all the triangles and 5 in all the circles. What should we do now? etc. Rest of class checks that solutions are correct. BB:	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, checking, agreement, praising Check: e.g. $\begin{aligned} 4 \times 5 \times 4 \times 2 & =20 \times 8=160 \\ 4 \times 4 \times 4 \times 5 & =16 \times 20 \\ & =320 \end{aligned}$ Feedback for T
3	Book 3, page 121 Q. 1 Read: Colour: - the triangle blue if the number is divisible by 3 . - the circle red if the number is divisible by 6 . - the square yellow if the number is divisible by 9 . Review at BB with whole class. Ps come to BB or dictate to T. Mistakes discussed and corrected. BB: Who can say a true statement about any of the numbers? Who can think of another one? etc. Class decides whether it is true or not and gives an example or counter example. (e.g. 'If a number is divisible by 9 , it is also divisible by 3 '; or ' 44 is not a multiple of 3,6 or 9 '; or 'Not all numbers divisible by 3 are divisible by 6 ' or '3, 6 and 9 are factors of 18 '. 16 min	Individual wok, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correcting, praising Feedback for T Involve several Ps. Praise all contributions. T repeats unclear or vague statements more succinctly. If Ps are stuck, T could start a sentence and Ps could finish it.

BIT3	R: Calculation C: Contextual problems for division E: To one from more. (To more from more.)	$\begin{gathered} \text { Lesson Plan } \\ 122 \end{gathered}$
Activity 1	True or false? T has these number cards stuck to BB. \square 8 \square If I put them in a box and took one out without looking, would these statements be true or false? Write 'T' for true or ' F ' for false and show me your answer when I say. a) It is certain that the number will be a multiple of 4 . Show me . . . now! (T) All the numbers are multiples of 4 . b) It is possible that the number will be divisible by 3 . Show me . . . now! (T) e.g. $0,12,24$ and 36 are divisible by 3 c) It is not certain that the number will be divisible by 2 . Show me . . now! (F) e.g. all multiples of 4 are divisible by 2 d) It is impossible that the number will be a multiple of 5 . Show me . . now! (F) e.g. 20 is a multiple of 5 e) It is possible that the number will be a multiple of 8 . Show me . . now! (T) e.g. 8 and 24 are multiples of 8 f) It is certain that the number will be divisible by 6 . Show me . . . now! (F) e.g. 8 and 20 are not divisible by 6	Notes Whole class activity Responses written on scrap paper or slates and shown on command in unison. Ps explain the reason for their decisions, giving examples or counter examples as appropriate. Agreement, praising Feedback for T
2	Secret numbers I am going to think of some numbers and give you clues about them. You can write notes in your Ex. Bks (or on slates or scrap paper) to help you if you wish. Show me the numbers when I say. Which number could I be thinking of? a) It is greater than 20 , less than 30 and a multiple of 4 and 8 . Show me . . now! b) It is less than 30 and is divisible by 3 and 9 . Show me . . . now! (0, 9, 18, 27) c) It is a 2-digit number greater than 80 and a multiple of 2 and 5 . Show me . . . now! d) It is less than 40 and divisible by 2 and 3 . Show me . . . now! $(0,6,12,18,24,30,36)$ 10 min	Individual trial in Ex. Bks first Give Ps time to think and write. Responses written on scrap paper or slates and shown on command in unison. Ps explain reasoning and class agrees/disagrees or points out possible numbers not listed. Praising, encouragement only Ps could make up some statements too!
3	Book 3, page 122 Q. 1 Read: a) How much money could Neil have? He has more than $£ 50$ but less than $£ 100$. He could change his money exactly into $£ 2$ coins or $£ 5$ notes. b) How many pupils can be in this class? There are less than 30 pupils. The pupils can sit in groups of 2 or 3 or 4 without any pupils being left out. Ps read problems themselves then write possible numbers in Pbs. Review with whole class. Ps give their answers, explaining their reasoning. Who agrees? Who thinks something else? etc. Solution: a) If divisible by 5 , numbers must have units digit 5 or 0 , but if also divisible by 2 , they cannot have units digit 5 . Possible amounts: $£ 60, £ 70, £ 80$ or $£ 90$ b) Number in class must be a multiple of 2,3 and 4: Possible numbers: 12 or 24	Individual work, monitored, helped Discussion at BB, reasoning, agreement, self-correcting, praising Encourage Ps to explain using mathematical terms. Agree that 24 is probably more likely in real life.

RT		Lesson Plan 122
Activity 6	Problems Listen carefully and think about what plan you would write to solve these problems. You can make notes in your Ex. Bks. if you wish. a) Sue has 3 times as much money in her bank account as Larry has. How much does Larry have if Sue has $£ 642$? \mathbf{X}, come and write your plan on the BB. Why did you write it? Who agrees with \mathbf{X} ? Who would do it a different way? etc. Plan: Sue: $£ 642$ Larry: $£ 642 \div 3$ Ps dictate calculation to T or come to BB. Class agrees/disagrees. Answer: Larry has $£ 214$ in his bank account. b) Harry was given $£ 648$ p by his Grandad. He put half the money in his piggy bank. Then he spent 1 quarter of what he had left to buy flowers for his Granny. How much did he spend on the flowers? \mathbf{Y}, come and write your plan on the BB. Why did you write it? Who agrees with \mathbf{Y} ? Who would do it a different way? etc. Plan: Was given: $£ 648 \mathrm{p}=648 \mathrm{p} \quad$ Saved: $648 \mathrm{p} \div 2$ Had left: $648 \mathrm{p} \div 2$ Spent: $648 \mathrm{p} \div 2 \div 4$ Ps dictate calculation to T or come to BB . Class agrees/disagrees. Answer: Harry spent 81 p on flowers. c) Three friends took 9 minutes to cycle a distance of 540 m . How long did it take 1 child to cycle 540 m? T asks several Ps what they think. Agree that if they all cycled at the same speed, the time would be the same for each child, so no calculation is needed. BB: 3 children: 540 m in 9 minutes 1 child: $\quad 540 \mathrm{~m}$ in 9 minutes (all cycling at same speed) 2 children: 540 m in 9 minutes Answer: One child took 9 minutes to cycle 540 m .	Notes Whole class activity T repeats slowly and a P repeats in own words. Reasoning, agreement, praising BB: e.g. a) e.g. $\text { b) } \begin{aligned} & 648 \mathrm{p} \div 2=324 \mathrm{p} \\ & 324 \mathrm{p} \div 4=\underline{81 \mathrm{p}} \\ & \text { or } 648 \mathrm{p} \div 2 \div 4 \\ &=648 \mathrm{p} \div 8=\underline{81 \mathrm{p}} \end{aligned}$ Ps say answer in a sentence. T advises Ps to think carefully about this problem and to picture it in their heads. Discussion, agreement, praising Extra praise if Ps deduce correct answer without help from T.
7	Book 3, page 122 Q. 2 Read: Is it possible to answer the question with the data given? If it is, solve it. Deal with one part at a time. Set a time limit. Review with whole class. T chooses a P to read the question. Stand up if you could solve it! How did you solve it? etc. Solutions shown on BB. Mistakes corrected. Solution: a) 10 kg of bananas costs $£ 9.40$. What is the price of 1 kg of bananas? $\quad(£ 9.40=940 \mathrm{p} ; 940 \mathrm{p} \div 10=\underline{94 \mathrm{p}})$ b) Steve bought 10 different bars of chocolate and paid $£ 12.00$ altogether. What was the price of 1 bar of chocolate? (Cannot be solved. Different bars might have different prices.) c) Karen is 9 years old. She weighs 27 kg . What did she weigh when she was 1 year old? (Cannot be solved. There is no direct proportion between age and mass.) d) 3 men worked steadily and painted a 540 m fence in 9 days. How many days would it have taken 1 man to paint the same fence? (3 men $\rightarrow 9$ days, 1 man $\rightarrow 9 \mathrm{~d} \times 3=\underline{27 \mathrm{~d} \text {) }) ~}$	Individual worked, monitored, helped Questions could be written on BB or SB or OHT. Discussion, reasoning, agreement, self-correcting, praising Price per kg is the same for any quantity of bananas. Inverse proportion: The fewer the workmen, the longer it takes to do the same job 1 third less men take 3 times more days.

B		Lesson Plan 122
Activity 8	Book 3, page 122 Q. 3 Read: Write the data. Make a plan. Estimate, calculate, check and write the answer. Deal with one part at a time. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes corrected. T reminds Ps about direct proportion. a) A spider has 8 legs. How many spiders have 864 legs? Data: 1 spider: 8 legs ? spiders: 864 legs Plan: 864 \| 8 Estimate: ≈ 100 Calculation: $864\|8=800\| 8+64 \mid 8=100+8=\underline{108}$ Answer: 108 spiders have 864 legs. b) A flower has 5 petals. How many flowers have 685 petals? Plan: 685 \| 5 Estimate: ≈ 100 $\|5+150\| 5+35 \mid 5$ Data: 1 flower: 5 petals ? flowers: 685 petals Calculation: e.g. 685 $=100+30+7=\underline{137}$ or using vertical division: Answer: 137 flowers have 685 petals. 1 3 7 5 6 8 5 - 5 1 8 - 1 5 3 5 - 3 5 0	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising BB: Direct proportion 108 1 spider $\rightarrow 8$ legs 108 108 spiders $\rightarrow 864$ legs Check: 108 • 8 = 864 1 flower $\rightarrow 5$ petals - 137 137 flowers $\rightarrow 685$ petals Check: $\frac{137}{\frac{685}{13}} \stackrel{5}{ }$ Feedback for T
9	Direct proportion Listen carefully and think how you would work out the answer to this problem 3 tickets cost $£ 6.30$. How much do 5 tickets cost? T asks several Ps what they think. If nobody knows, T leads Ps through solution using direct proportion: BB: T gives other problems for Ps to calculate mentally as consoldation. Ps write problems in form given above. e.g. - If 5 pencils cost 55 p , how much will 7 pencils cost ? (77p) - If 10 m of ribbon cost 80 p , how much can you buy for 48 p ? (6 m)	Whole class activity Discussion, reasoning, agreement, praising Ps come to BB to write and explain. Agree that if two things are in direct proportion, if one increases (decreases) by a certain number of times, then the other increases (decreases) by the same number of times. Ps could think of a problem too!

BK3	R: Calculation C: Probability: simple experiments E: Estimation of chance (probability)	$\begin{gathered} \text { Lesson Plan } \\ 123 \end{gathered}$
Activity 1	Missing numbers and signs 1 What is missing from these diagrams? Ps come to BB to write in missing numbers and operation signs, explaining reasoning. (Ps can do calculations in Ex. Bks first before coming to BB.) Class agrees/ disagrees. What do you notice? BB: a) b)	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Agree that: - if the dividend increases by 2 times, the quotient also increases by 2 times. - division is the inverse operation of multiplication. What is the inverse operation of addition? (subtraction)
2	Missing numbers and signs 2 Let's write the missing numbers and operation signs in these diagrams. P can do calculations in Ex. Bks first before coming to BB. What do you notice? (Dividing by 2 and then dividing by 3 is the same as dividing by 6 , etc.) BB: a) b)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Ps write details of calculations at side of BB. Accept any correct method. Feedback for T
3	Order of operations T has BB already prepared. First revise order of operations. (Operations inside brackets first, then multiplication or division (L to R), then addition or subtraction (L to R). If only multiplication or division, or only addition or subtraction, operations done from L to R.) Deal with one part at a time. Which operation should we do first? Ps come to BB to point, explaining choice. Class agrees/disagrees. Copy the operations in your Ex. Bks and calculate the results. Review with whole class. Mistakes discussed and corrected. BB: a) $624 \div 8-6=\quad[78-6=\underline{72}]$ $624 \div(8-6)=\quad[624 \div 2=\underline{312}]$ $624 \div 6-8=\quad[104-8=\underline{96}]$ b) c)$\begin{array}{ll} 1600 \div 8 \div 2= & {[200 \div 2=\underline{100}]} \\ 1600 \div(8 \div 2)= & {[1600 \div 4=\underline{400}]} \\ 1600 \div 2 \div 8= & {[800 \div 8=\underline{100}]} \end{array}$1 1 6 \times 8 4 8 8 0 8 0 0 9 2 8 1	Whole class discussion to start Written on BB or SB or OHT or use enlarged copy master Agreement, praising Individual work in calculating, monitored, helped Reasoning, agreement, selfcorrecting, praising If problems, Ps write calculations on BB, e.g.

3×3	
Activity	
4	Probability
	This is a diagram of a game. If I put a marble in the top, where could it fall? Ps come to BB to show the different ways. (Or T and/or Ps have models of the game and Ps note the different ways.)
	Let's write down all the possible ways it could fall. T starts but Ps continue when they understand. Elicit that there are 4 possible ways but in 2 of them the marble will come out at B.
	BB: \downarrow Possible ways

Listen carefully to what I say and show me whether you think it is possible, impossible or certain by writing 'P', 'I' or 'C'.
a) The marble can get to A and B at the same time.
b) If I dropped the marble 20 times, it will come out at A 2 times.
c) The marble will come out at A, B or C.

If we dropped the marble 4 times, how many times might it come out at A ? (most liikely 1 time) Why do you think so? Ps explain in own words and T repeats by referring to the 4 possible ways above. We say that it has 1 chance out of 4 possible ways, or that it has a probability of 1 in 4 .
Repeat for B and C. (Expected outcomes: B: 2 in 4, C: 1 in 4)
If we dropped the marble $8(20,40,100)$ times, how many times do you think it might come out at $\mathrm{A}(\mathrm{B}, \mathrm{C})$? Ask several Ps what they think and why. Write summary on BB. Relate to direct proportion.

NOTE:

If T has this game in the classroom, do the experiment of dropping the marble 20 times, noting where it comes out in a tally chart. as opposite, then compare the results with the expected outcome.
e.g.

Tally of 20 drops	Totals	
A	HH	5
B	HH HH \|	11
C	IIII	4

Extension
Talk about the fact that the more times you do the experiment, the closer you will get to the expected outcome (result). If you did the experiment 1000 times, what would you expect the outcome to be?
25 min

Book 3, page 123 Q. 1

Let's do another experiment! If possible, T has 3 opaque bags of marbles to match those described in the question
Read: I have 3 bags of marbles. Bag A contains 10 marbles, Bag B contains 20 marbles and Bag C contains 30 marbles.
One marble in each bag is red.
A P comes to front of class for each part and reads the statement. Allow time for thought, then Ps show flash cards (or slates) on command. P at front demonstrates statement and checks correct response.
Solution:
a) i) Possible, not certain;
ii) Impossible ;
iii) Possible but not certain, as we don't know if the bag contains blue marbles;
b) Bag A

Lesson Plan 123

Notes

Whole class activity
Drawn on BB or use enlarged copy master or OHP

Or T has real game in classroom for demonstration or Ps work in pairs with one game per pair.

Ps dictate to T and T writes on BB.

Responses written on scrap paper or slates (or use flash cards from Y2 LP 154/2) and shown in unison.
Ps who responded correctly explain to those who did not.

Discussion, explanation, agreement, praising

BB: Probability

A: 1 in $4=2$ in $8=5$ in 20
B: 2 in $4=4$ in $8=10$ in 20
C: 1 in $4=2$ in $8=5$ in 20
If there are enough games for 1 between two, Ps could work in pairs and make own tally chart, then add to data from other pairs to give a class total.
[A computer simulation would be ideal for 1000 times.]
About: A: 250, B: 500, C: 250
Praising, encouragement only

Whole class activity
(Or individual work, monitored and reviewed with whole class)
T could have bags drawn or stuck on BB and labelled.
BB: A B C
$10 \quad 20 \quad 30$
Cards shown in unison. Agreement, checking, praising

BB: Probability of red
A B C
1 in $10 \quad 1$ in $20 \quad 1$ in 30

BK		Lesson Plan 123
Activity 6	Book 3, page 123 Q. 2 a) Read: Toss $a £ 1$ coin and $a £ 2$ coin at the same time. Do this 15 times. i) Keep a note of how each coin lands in this table. Total each row. T explains task. Ps have real or model coins and work in pairs, taking turns to toss the coins. Ps tick appropriate box es in the table. Ps count the number of ticks in each row and write the totals in the Pupil Total column. (Keep class together at each toss if Ps are unsure what to do.) Elicit that the number of Heads and number of Tails for each coin should add up to 15 . e.g. Read: ii) Collect and write the Class data in the right hand column. Ps dictate results to T who writes in similar class table on BB. Ps calculate the Class totals and write in RH column in Pbs. What do you notice? (Number of Heads and Tails for each coin add up to number of tosses. Numbers are nearly equal.) b) Read: i) Write your own data in this table. ii) Collect and write the Class data in the RH column. Ps complete own table, then dictate results to T who writes in a similar table on BB (or Ps come to BB). Ps work out Class totals together and T writes in RH column in table e.g. What do you notice? (All add up to number of tosses. Almost equal numbers for each - about 1 quarter of the total number of tosses.) Who can explain it? (4 possible outcomes: HH, HT, TH and TT. The chance of each one happening is 1 chance out of 4 , so we would expect the number of times we tossed, e.g. HH , to be about 1 quarter of the number of tosses. The same is true for HT, TH and TT.)	Notes Paired work, monitored, helped Tables drawn on BB or use enlarged copy master or OHP Make sure that Ps know which side is Heads and which is Tails. Model coins could identify Heads/Tails with either a picture or initial letter. (If no $£ 1$ and $£ 2$ coins, use different colours of card coins.) T could have copy of Ps' table on BB and do one toss and fill in one column as a model for Ps to follow. Agreement, praising (Sample data for a pair is shown.) Whole class activity Or 1 P from each pair comes to BB to fill in their column. At speed. (Sample data are shown.) Calculation done in Ex. Bks using addition or multiplication and addition Agreement, checking, praising Discussion, agreement, praising Individual work, monitored, helped Sample Pupil data: Ps fill in RH column in table in Pbs too. Whole class discussion e.g. using sample data BB: 1 quarter of $180=\underline{45}$ $\mathrm{HH}: 48 \approx 45$

R <2		Lesson Plan 123
Activity		Notes
6	b) (Continued)	Whole class activity
Extension	What is the probability of tossing 1 Head and 1 Tail on any coin? Ask several Ps what they think. Refer to Class data in table.	Discussion, agreement, demonstration, praising
	(We would expect to toss a head and a tail 2 times (HT and TH) out of 4 , so the probability is 2 in 4 , or 2 quarters or 1 half.) e.g. using sample data:	T repeats Ps explanations or suggestions in a clear way, checking that it is true for the class data.
	BB: 2 Heads: $\quad 48 \approx 45=1$ quarter of 180 1 Head + 1 Tail: $\quad 42+47=89 \approx 90=1$ half of 180 2 Tails: $43 \approx 45=1$ quarter of 180	If we did the experiment lots more times, the data would be closer to what we expect!
7	Book 3, page 123	Individual work, monitored, helped
	Read: You asked for a 2-scoop ice-cream, saying 'Chocolate or strawberry please'. Colour the ice-creams to show what you could be given.	
		Drawn on BB or use enlarged copy master or OHP
	Review at BB with whole class. Ps come to BB to show their colouring. Who agrees? Who did it a different way? etc.	Discussion, agreement, selfcorrection, praising
	Discuss the importance of the word 'Or' as it allows a mixture of the two flavours, or all strawberry or all chocolate.	Solution:
	How many different possibilities would there be if if we had asked for:	SS SC CS CC
	- 2 chocolate scoops (1 case: CC) - a strawberry and a chocolate scoop (2 cases: SC, CS) - 2 strawberry scoops (1 case: SS)	Elicit that the probability of: $2 \mathrm{C}(2 \mathrm{~S})$ is 1 in 4 or 1 quarter
		$1 \mathrm{C}+1 \mathrm{~S}$ (in any order) is 2 in 4 or 2 quarters or 1 half

BK3	R: Calculation C: Probability. Simple experiments E: Combinatoric problems. Estimation of chance	$\begin{gathered} \text { Lesson Plan } \\ 124 \end{gathered}$
Activity 1	Division 1 Let's see what happens to the quotient if we change the dividend but keep the same divisor. Ps come to BB to fill in the missing quotients (using any method of calculation) and to colour over 1 quarter of the line segments. BB: a) $1664 \div 4=$ 416 \qquad b) $832 \div 4=$ 208 $\longmapsto \quad 1 \quad \mid$ c) $416 \div 4=$ 104 d) $208 \div 4=$ 52 HH e) $104 \div 4=$ 26 HIH What do you notice? (If the dividend is halved and the divisor stays the same, the quotient will also be halved, etc.) \qquad 5 min \qquad	Notes Whole class activity Written/drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Details of difficult calculations written on BB, e.g.
2	Division 2 Let's see what happens to the quotient if we change the divisor but keep the same dividend. Ps come to BB to fill in the missing quotients (using any method of calculation) and to colour over appropriate part of the line segments. BB: a) $976 \div 2=$ \square 488 \qquad b) $976 \div 4=$ \square 244 \qquad c) $976 \div 8=$ \square 122 What do you notice? (If the divisor is doubled and the dividend stays the same, the quotient will be halved, etc.) Extra praise if Ps notice this and reason by deduction rather than doing the calculation. 9 min	Whole class activity Written/drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Details of difficult calculations written on BB, e.g.
3	Written exercises T has BB already prepared. Quickly revise order of operations. Deal with one part at a time. T dictates operations and Ps write in Ex. $B k s$. Circle the operation sign you will do first. If you have time, do the calculations too using the method you like best. Review with whole class. Ps come to BB or dictate to T. Mistakes discussed and corrected. Ps repeat order of operations once more. BB: a) $\begin{array}{ll} 624 \div 4+356= & {[156+356=\underline{512}]} \\ 624+356 \div 4= & {[624+89=\underline{713}]} \\ (624+356) \div 4= & {[980 \div 4=\underline{245}]} \end{array}$ b) $\begin{array}{ll} 624-372 \div 4= & {[624-93=531]} \\ (624-372) \div 4= & {[252 \div 4=\underline{63}]} \\ 624 \div 4-372 \div 4= & {[156-93=\underline{63}]} \end{array}$ c) $\begin{array}{ll} 372+591 \div 3= & {[372+197=\underline{569}]} \\ (372+591) \div 3= & {[963 \div 3=\underline{321}]} \\ 372 \div 3+591 \div 3= & {[124+197=321]} \end{array}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP. Uncover each part as it is dealt with. Set a time limit. Reasoning, agreement, selfcorrection, praising Ps give details of calculations. Accept any correct method. BB: e.g. a)

BK		Lesson Plan 124
Activity 4	Book 3, page 124 Q. 1 Read: Throw a dice 20 times. Keep a tally in the table. Write the total for each row. What can you see in the LH column of the table? (The 6 different faces of a dice, showing the numbers 1 to 6) What is a tally? P comes to BB to explain: H means ' 5 '. Ps have dice on desks and work in pairs, taking turns to throw the dice. Ps keep a tally in Pbs and write the totals for each row in the Pupil Total column. (Keep class together at each throw only if Ps are unsure.) Ps check that the number of '1's, '2's, etc. add up to 20. (20) Read: Collect the class data and write them in the RH column. Ps come to BB to write their results in similar class table on BB. Class calculates the totals together and T writes in RH column, e.g. BB: What do you notice? (Totals for ' 1 ', 2', etc. add up to the total number of throws [sample data: $15 \times 20=300$]; almost equal numbers for each - about 1 sixth of the total number of throws) Who can explain it? (6 possible outcomes: $1,2,3,4,5$ and 6 . The chance of each one happening is 1 chance out of 6 , so we would expect the number of times we threw, e.g. 3 , to be about 1 sixth of the total number of throws. The same is true for each of the other numbers.) T (or P) reads each question and Ps write answer in Pbs. Review with whole class. Ps explain reasoning. Class agrees/disagrees. a) Read: How many times would you expect to throw a 4 if you threw a dice: i) 600 times $\quad(100$ times, as $600 \div 6=\underline{100})$ ii) 1200 times ? (200 times, as $1200 \div 6=\underline{200}$) b) Read: What would be the probability of throwing: i) $a 6$ (1 out of 6 times, or 1 sixth) ii) at least 5 (2 out of 6 times, or 2 sixths $=1$ third) iii) an even number? (3 out of 6 times, or 3 sixths $=1$ half)	Notes Paired work, monitored, helped Tables drawn on BB or use enlarged copy masters or OHP T could have copy of Ps' table on BB , throw the dice a few times and demonstrate how to fill in the table. Agreement, praising (Sample data for a pair is shown opposite.) Whole class activity Or Ps dictate results to T who writes in appropriate column. At speed Ps fill in RH column in table in Pbs too and calculate its total in Ex. Bks. Agreement, praising (Sample data for 15 pairs shown opposite.) Whole class discussion Involve several Ps. e.g. using the sample data: BB: 1 sixth of $300=300 \div 6$ $=\underline{50}$ Each of the totals $=$ or ≈ 50 N.B. Actual class data might not be quite as close. Stress that the more times the dice is thrown, the closer the data will be to what is expected. [A computer simulation would be very useful here.] (Or answers can be shown on slates on command.) 'At least 5' means ≥ 5, i.e. 5, 6 There are 3 even numbers: $2,4,6$

BK3	R: Calculation C: Roman numerals E: Puzzles	$\begin{gathered} \text { Lesson Plan } \\ 125 \end{gathered}$
Activity 1	Division 1 Let's see what happens to the quotient if we reduce the dividend and the divisor. Ps come to BB to fill in the missing quotients (using any method of calculation) and to colour over appropriate parts of the line segments. BB: a) $856 \div 8=$ \square 107 b) $428 \div 4=$ \square 107 $\longmapsto \quad\|\quad\|$ c) $214 \div 2=$ \square 107 What do you notice? (If the dividend is halved and the divisor is halved the quotient stays the same.)	Notes Whole class activity Written/drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising If problems, Ps write details of calculations on BB. Feedback for T
2	Division 2 Let's see what happens to the quotient if we reduce the dividend and increase the divisor. Ps come to BB to fill in the missing quotients (using any method of calculation) and to colour over appropriate part of the line segments. BB: a) $864 \div 2=$ \square 432 b) $432 \div 4=$ \square 108 c) $216 \div 8=$ \square 27 What do you notice? (If the dividend is halved and the divisor is doubled the quotient will be reduced by 1 quarter, etc.) \qquad 10 min \qquad	Whole class activity Written/drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising If problems, Ps write details of calculations on BB . Feedback for T
3	Roman numerals T has BB already prepared (with strips of card stuck to BB). Who remembers the meaning of Roman numerals? (BB) Are the equations correct? (No) Who can make them correct by moving only one strip of card? Ps come to BB to reposition one 1 strip, explaining reasoning. Class agrees or disagrees. BB: a) $\mathrm{V}+\mathrm{I}=\mathrm{III} \boldsymbol{x} \quad(\mathrm{V}-\mathrm{II}=\mathrm{III}$ or $\mathrm{V}-\mathrm{I} \neq \mathrm{III})$ b) $\operatorname{LIV}+\mathrm{I}=\operatorname{LII} \boldsymbol{x} \quad($ LIV $-I=$ LIII or LIV $-I \neq$ LII $)$ 14 min \qquad	Whole class activity (or individual trial if Ps wish) BB: $\begin{array}{ll} I=1, & V=5 \\ X=10, & L=50 \\ C=100, & D=500 \\ M=1000 & \end{array}$ Reasoning, agreement, correcting, praising
4	Sequences Copy these sequences in your Ex. Bks and continue them for as many terms as you can. Set a time limit. Deal with one at a time. Review at BB with whole class. Ps dictate terms to T or come to BB to write them. What is the rule? Who agrees? Who thinks something else? etc. Revise the 'rules', e.g. $C D=D-C, M C=M+C$, etc. BB: a) $\mathrm{X}, \mathrm{XX}, \mathrm{XXX},(\mathrm{XL}, \mathrm{L}, \mathrm{LX}, \mathrm{LXX}, \mathrm{LXXX}, \mathrm{XC}, \mathrm{C}, \mathrm{CX}, \ldots) \quad[+10]$ b) C, CC, CCC, CD , (D, DC, DCC, DCCC, CM, M, MC, ...) [+ 100] c) MM, MCMXCIX, MCMXCVIII, (MCMXCVII, MCMXCVI, ...) [- 1]	Individual trial, monitored, or a) and b) done as individual work and c) with whole class T has BB or SB or OHT already prepared and uncovers each as it is dealt with. Discussion, reasoning, agreement, self-correction, praising T points to a Roman numeral and class reads it in unison.

		Lesson Plan 125
Activity 5	Writing Roman numerals Let's write these numbers as Roman numerals. Ps come to BB to write each number as an addition of appropriate numbers, then change the numbers to Roman numerals (with help of T and class if necessary). e.g. BB: a) $\begin{aligned} 596=[500+90+6 & =500+(100-10)+(5+1) \\ & =\mathrm{D}+\mathrm{XC}+\mathrm{VI} \\ & =\mathrm{DXCVI}] \end{aligned}$ b) $\begin{aligned} 178=[100+70+8 & =100+(50+20)+(5+3) \\ & =\mathrm{C}+\mathrm{LXX}+\mathrm{VIII} \\ & =\text { CLXXVIII }] \end{aligned}$ c) $\begin{aligned} 945=[900+40+5 & =(1000-100)+(50-10)+5 \\ & =\mathrm{CM}+\mathrm{XL}+\mathrm{V} \\ & =\mathrm{CMXLV} \end{aligned}$ d) $1002=[1000+2=\mathrm{M}+\mathrm{II}=\mathrm{MII}]$	Notes Whole class activity Written on BB or SB or OHT At a good pace T helps with the bonding if necessary. Agreement, praising Ps write in Ex. Bks too. Elicit that the Romans never used more than 3 of the same symbol. e.g. $\begin{aligned} & 3=\text { III but } 4=\text { IV, } \\ & 80=\text { LXXX but } 90=\mathrm{XC} \end{aligned}$ Feedback for T
6	Book 3, page 125 Q. 1 Read: Write these numbers as Roman numerals. Follow the example. Who can come and explain the example and complete it? Who agrees? Who thinks something else? etc. Let's see if you can do the same with parts b) to d). Review at BB with whole class. Ps come to BB to write and explain reasoning. Class points out errors. Mistakes discussed and corrected. Solution: a) $\begin{aligned} 743=(500+200)+(50-10)+3 & =\text { DCC }+ \text { XL }+ \text { III } \\ & =\text { DCCXLIII } \end{aligned}$ b) $287=200+(50+30)+(5+2)$ $\begin{aligned} & =\mathrm{CC}+\mathrm{LXXX}+\mathrm{VII} \\ & =\mathrm{CCLXXXVII} \end{aligned}$ c) $\begin{aligned} 934=(1000-100)+30+(5-1) & =\mathrm{CM}+\mathrm{XXX}+\mathrm{IV} \\ & =\text { CMXXXIV } \end{aligned}$ d) $1099=1000+(100-10)+(10-1)=M+X C+I X$ $=$ MXCIX	Individual work, monitored, helped T has example written on BB or SB or OHT. Whole class explanation of part a). Agreement, praising Reasoning, agreement, selfcorrection, praising T points to Roman numerals and chooses Ps to say them. At speed. Praising, encouragement only NOTE: If you think Ps will struggle, do these sequences with the whole class beforehand. $\begin{aligned} & \text { 4, 40, } 400 \text { (IV, XL, CD) } \\ & 9,90,900 \text { (IX, XC, CM) } \end{aligned}$
7	Book 3, page 125 Q. 2 Deal with one part at a time. Ps may do calculations in Ex. Bks or on scrap paper if needed. Review each part at BB with whole class. Ps come out to BB to explain reasoning. Class agrees/disagrees. Mistakes corrected. a) Read: Change the Roman numerals to Arabic numbers. BB: \quad DIX $=509 ; \quad$ MCMXLV $=1945 ; \quad$ CMIV $=904 ;$ CDXVI $=416 ;$ MCXI $=1111 ;$ CMXCIX $=999$ b) Read: Write the Arabic numbers in decreasing order. BB: $1945>1111>999>904,>509>416$	Individual work, monitored, helped Part a) written on BB or SB or OHT Reasoning, agreement, selfcorrecting, praising Feedback for T

$B K 3$		Lesson Plan 125
Activity 7	(Continued) c) Read: Subtract the 5th number from the 3rd number. Write the difference as Roman numerals. Counting from left to right: $999-509=490=\underline{\text { CDXC }}$ d) Read: Divide the 2 nd number by 11. Write the quotient as Roman numerals. BB: $1111 \div 11=1100 \div 11+11 \div 11=100+1=101=\underline{\mathrm{CI}}$	Notes T could show calculation for part d) in other ways, e.g. long division known multiples
8	Book 3, page 125 Q. 3 Read: Above the entrance to a church, there is a Roman number: MCCCXCI a) When do you think the church was built? b) What Roman number is on the crypt if it was built 153 years before the main church? T talks about old buildings having the year in which they were built carved into the stone in Roman numerals. Talk about churches in particular and how often parts were added on over the years. Elicit or explain what a crypt is. (Cellar with an arched roof, usually found beneath churches, where people were buried.) Deal with one part at a time. Ps do any necessary calculations in Ex. Bks or on scrap pape and write answers in Pbs. Review with whole class. Ps come to BB to explain their reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) MDCCXCI $=1000+(500+200)+(100-10)+1=\underline{1791}$ (Read as 'seventeen ninety one' because it is a year) b) $1791-153=1791-100-50-3=1641-3=1638$. (Read as 'sixteen thirty-eight' because it is a year) $\begin{aligned} 1638 & =1000+(500+100)+30+(5+3) \\ & =M+\text { DC }+ \text { XXX }+ \text { VIII }=\text { MDCXXXVIII } \end{aligned}$ 40 min	Individual work, monitored, helped Initial discussion about the context. (T could find out beforehand whether there is a local church with its date carved in Roman numerals and ask Ps to note it when they next pass by.) Reasoning, agreement, selfcorrection, praising T talks about how the digits are read if they form a number and how they are read if they signify a year. Alternative calculation for b): 1791 $-\quad \begin{array}{r}153 \\ 1638\end{array}$
9	Book 3, page 125, Q. 4 a) Read: What rule has been used to make these secret codes? Give Ps time to think and discuss with their neighbours. Ask several Ps what they think. If nobody knows, T gives a hint about Roman numerals. Solution: Rule: Take the Roman numerals in each word and add up their values in Arabic numbers. The order does not matter. $\begin{array}{ll} \text { CILLA } & \rightarrow \mathrm{C}+\mathrm{I}+\mathrm{L}+\mathrm{L}=100+1+50+50=201 \\ \text { SHEILA } & \rightarrow \mathrm{I}+\mathrm{L}=1+50=51 \\ \text { EXAMPLE } & \rightarrow \mathrm{X}+\mathrm{M}+\mathrm{L}=10+1000+50=1060 \\ \text { IVANHOE } & \rightarrow \mathrm{I}+\mathrm{V}=1+5=6 \\ \text { MUM } & \rightarrow \mathrm{M}+\mathrm{M}=1000+1000=2000 \end{array}$	Whole class activity (or individual trial first if Ps prefer, dealing with one part at a time) Words written on BB or SB or OHT At a good pace Discussion, agreement on the rule, checking, praising Extra praise if Ps deduce the rule without a hint from T.

BK3		Lesson Plan 126	
Activity Extension	e) The fence around a square garden, not including the gate, is 52 m 80 cm . The gate is 2 m 40 cm . What is the length of each side of the garden? BB: Fence: 52 m 80 cm Gate: 2 m 40 cm $\begin{aligned} & \text { Fence + Gate: } 52 \mathrm{~m} 80 \mathrm{~cm}+2 \mathrm{~m} \mathrm{40cm} \\ & \text { Length of each side: } \begin{aligned} & (52 \mathrm{~m} \mathrm{80cm+2m} \mathrm{40cm)} \mathrm{\div} \mathrm{\underline{4}} \\ & =52 \mathrm{~m} \div 4+80 \mathrm{~cm} \div 4+240 \mathrm{~cm} \div 4 \\ & =13 \mathrm{~m}+20 \mathrm{~cm}+60 \mathrm{~cm} \\ & =13 \mathrm{~m}+80 \mathrm{~cm}=13 \mathrm{~m} 80 \mathrm{~cm} \end{aligned} \end{aligned}$ Answer: Each side of the garden is 13 m 80 cm long.	Notes Or $\begin{aligned} & \underline{(5280 \mathrm{~cm}+240 \mathrm{~cm})} \div \underline{4} \\ & =1320 \mathrm{~cm}+60 \mathrm{~cm} \\ & =1380 \mathrm{~cm} \\ & =13 \mathrm{~m} \mathrm{80} \mathrm{~cm} \end{aligned}$ or	
3	Sequences T has first few terms of a sequence written on BB . Ps come to BB to write following terms. Class agrees/disagrees. What is the rule? a) IV, XV, XXVI, (XXXVII, (XLVIII, LIX, LXX, LXXXI, XCII, CIII, CXIV, ...) [difference between terms is 11] b) I, II, IV, VIII, (XVI, XXXII, LXIV, CXXVIII, CCLVI, DXII, MXXIV, . . .) [each following term is twice the previous term] c) MCCLV, MCLV, MLV, (CMLV, DCCCLV, DCCLV, DCLV, DLV, CDLV, . .) [difference between terms is 100]	Whole class activity At a good pace T decides how many terms Ps should write. Discussion, agreement on the rules. Agree that it is easier to change the numerals to Arabic numbers first to find the rule. Praising, encouragement only	
4	Dates Let's write our birthdays using Roman numerals for the month and Arabic numbers for the day. I will do mine first. T does first line, then Ps follow the model and come to the BB to write their birthday. BB: e.g. What is missing from these dates? (The year of birth) Who would like to try to write the year they were born in Roman numerals? \qquad 24 min \qquad	Whole class activity At a good pace Involve as many Ps as possible. Discuss the 3rd column, which shows the days as a 2 -digit numbers. This is how a computer might show the date. e,g. 1994 = MCMXCIV Praising only!	
5	Find the mistakes Which statements are incorrect? Correct them by moving only 1 strip. Ps come to BB to work out statements, tick the correct ones and rearrange the wrong ones. Ps explain their reasoning. Class agrees/ disagrees or suggests another possibility. BB: a) $\mathrm{I}-\mathrm{III}=\mathrm{II}$ b) $\mathrm{VI}+\mathrm{V}=\mathrm{XI} \vee$ c) $\mathrm{II}-\mathrm{II}=\mathrm{III} X$ d) $\mathrm{VI}-\mathrm{IV}=\mathrm{IXX}$ Corrections: $I=I I I-\\| \text { or } I-I I \neq I I$ $I I+I=I I I$ $\mathrm{VI}+\mathrm{IV}=\mathrm{X} \text { or } \mathrm{V}+\mathrm{IV}=\mathrm{IX}$ T points to a correct statement and chooses a P (or Ps) to read it aloud. 28 min \qquad	Whole class activity T has strips of card or felt or lolly sticks stuck to BB to form the statements shown. At a good pace Reasoning, agreement, correcting, praising Ps can choose the statements and Ps too but must also say whether the reading is correct.	

BK<3		Lesson Plan 126
Activity 6	Book 3, page 126 Q. 1 Read: Correct the equations. Try to do it by moving only one line! Ps write out equations again correctly. Deal with one at a time. Review at BB with whole class. Deal with all cases. P reads corrected equation in Arabic numbers and another P writes it on the BB in Roman numerals. Class agrees whether or not it is correct. Mistakes discussed and corrected. Solution: e.g. Correction if moving only one line: a) $\mathrm{VII}+\mathrm{V}=\mathrm{III}$ $\mathrm{VII}-\mathrm{IV}=\mathrm{III}$ b) $\mathrm{XII}+\mathrm{III}=\mathrm{X}$ XII $-\mathrm{III}=\mathrm{IX}$ c) $\mathrm{XI}+\mathrm{XXX}=\mathrm{X}$ $\mathrm{XL}-\mathrm{XXX}=\mathrm{X}$ 32 min \qquad	Notes Individual work, monitored T has BB or SB or OHT already prepared (or card or felt strips or lolly sticks stuck to BB to form the equations shown and Ps come to BB to rearrange them) Reasoning, agreement, selfcorrecting, praising (Or done in a straightforward way without restriction.) Feedback for T
7	Book 3, page 126 Q. 2 Read: Join up the equal values. Review at BB with whole class. Ps come to BB or dictate to T. If problems, show breakdown of Roman numbers on BB. Solution:	Individual work, monitored Written on BB or use enlarged copy master or OHP Agreement, self-correcting, praising Feedback for T
8	Book 3, page 126 Q. 3 Read: Do the calculations. Write the operations using Roman numerals. Ps do all the calculations first as individual work, reviewed at BB with whole class. Mistakes corrected. Writing as Roman numerals could be done with the whole class. Ps dictate to T or come to BB (with help of class). Let's read the statements together. Solution: a) CXXVII + CCCXLVIII = CDLXXV b) DCLXXI - DLVIII = CXIII c) $\text { CCXXXV } \times \mathrm{III}=\mathrm{DCCV}$ d) $847 \div 7=$ $700 \div 7+140 \div 7+7 \div 7=100+20+1=121$ DCCCXLVII VII = CXXI	Individual work in calculating, monitored, helped Whole class activity in changing to Roman numerals (or individual trial if Ps wish) Written on BB or use enlarged copy master or OHP Agreement, praising In unison. In good humour! Alternative calculation for part d):

$B \leq 3$		Lesson Plan 126
Activity 9	Book 3, page 126, Q. 4 a) Read: Which Roman numerals could be written instead of the shapes to make the statements true? How could we do it? T asks several Ps what they think. (Change the Roman numerals to Arabic numbers first, then find the possible Arabic numbers and change back to Roman numerals.) Ps come to BB to write Arabic numbers and then say the possible numbers the shapes could represent. Class agrees/disagrees. Solution: i) CDLXXIX $<\square<$ CDLXXXIII 479483 $\square: 480,481,482:$ CDLXXX, CDLXXXI, CDLXXXII ii) $\begin{gathered} \text { CMXCVIII } \\ 998 \end{gathered}<\bigcirc<\begin{gathered} \text { MIV } \\ 1004 \end{gathered}$: 999, 1000, 1001, 1002, 1003 : CMXCIX, M, M1, MII, MIII b) Read: Correct the equations. T has strips of card or felt or lolly stick stuck to BB to form the equations. Who can correct the equation by moving only two strips? Ps come to BB to show their solution and class agrees/disagrees. Who can think of another way? etc. Solution: Correction: e.g. i) VII - II $=$ II $\mathrm{VII}-\mathrm{V}=\mathrm{II}$ or $\mathrm{VII}-\mathrm{II}=\mathrm{V}$ ii) $\mathrm{XII}+$ VIII $=\mathrm{X}$ $\mathrm{XII}+\mathrm{III}=\mathrm{XV}$ iii) $V-X V=X+1$ $\mathrm{IV}=\mathrm{XV}-\mathrm{X}-\mathrm{I}$	Notes Whole class activity (or individual work if Ps wish) Written on BB or SB or OHT Discussion on strategy for solution Reasoning, agreement, praising (Or individual work, where Ps make own equations on desks and rearrange strips (sticks). T chooses Ps to show solutions to class.) Or done in a straightforward way without restriction on how amendments can be made. Agreement, praising Extra praise for creative solutions.

BK2	R: Calculation C: Money problems E: Negative balance	$\begin{gathered} \text { Lesson Plan } \\ 127 \end{gathered}$
Activity 1	Mental practice Listen carefully and try to do the calculation in your head if you can. T asks Ps at random. Class points out errors. If problems, details of calculation written on BB. a) How many $£ 2$ coins would I get for: $£ 68$ (34), £126 (63), £448 (224), £314 (157), £723 (361 but $£ 1$ is left unchanged), etc. How do we know whether a number is exactly divisible by 2? (If it is even) What possible remainder can there be if it is odd? (1) b) How many $£ 5$ notes would I get for: $£ 75$ (15), £120 (24), £545 (109), £380 (76), £733 (146 but $£ 3$ is left unchanged), etc. How do we know whether a number is exactly divisible by 5? (If it has 5 or 0 in its units column) What possible remainder can there be if it does not have 5 or 0 in the units column? $(0,1,2,3,4)$	Notes Whole class activity At speed Ps gve details of difficult calculations on BB, e.g. a) b) Reasoning, agreement, praising Feedback for T
2	Money a) How much money is in the purses altogether? A, come and show us how you would do it. Who agrees? Who would do it another way? etc. Ps explain reasoning and write calculations in different ways on BB. e.g. BB: b) How much money is in the piggy banks altogether? B, come and show us how you would do it. Who agrees? Who would do it another way? etc. Ps explain reasoning and write calculations in different ways on BB. e.g. BB:	Whole class activity Purses drawn or stuck on BB or use enlarged copy master or OHP Reasoning, agreement, checking, praising Feedback for T Piggy banks drawn or stuck on BB or use enlarged copy master or OHP Reasoning, agreement, checking, praising Feedback for T

BK3		Lesson Plan 127
Activity 4	(Continued) b) Gordon has $£ 648$. Lenny has twice as much. How much does Lenny have? Plan: Lenny: $£ 648 \times 2$ Calculation: Check: 1 Answer: Lenny has $£ 1296$. 28 min	Notes Or $\begin{aligned} 648 \times 2 & =600 \times 2+48 \times 2 \\ & =1200+80+16 \\ & =\underline{1296} \end{aligned}$ Check can also be done using division
5	Extracting data Listen carefully to the problem and note down the data. On the 16th November in 1998, six of us went to the cinema. Tickets cost $£ 2.50$ before 6.00 pm and $£ 2.90$ after 6.00 pm . How much more would we spend if we bought the dearer tickets? What data were we given? T writes what Ps dictate. BB: 16 November $1998 \quad £ 2.50$ before 6.00 pm (6)people £2.90 after 6.00 pm Who can come and circle the data needed to answer the question? Who disagrees? Why? etc. Let's write a plan and do the calculation. T writes what Ps dictate. BB: $(£ 2.90-£ 2.50) \times 6=£ 0.40 \times 6=\underline{£ 2.40}$ Answer: We would spend $£ 2.40$ more.	Whole class activity T repeats slowly or has problem written on BB or SB or OHT Discussion, agreement that the date is not important. The actual time is not needed in the calculation, just the fact that there is a cheaper and a dearer price. Reasoning, agreement, praising. Ps say answer as a sentence.
6	Book 3, page 127 Q. 2 Read: What data are needed? Make a plan. Calculate, check and write the answer. Ps read problems themselves, then circle or underline important data and cross out the data which are not needed. Review important data first before Ps solve problems. Review solutions at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees or suggests alternative calculations. Mistakes discussed and corrected. Solution: a) $\underline{3}$ boys and $\underline{4}$ girls were travelling on a 42 -seater bus. Their tickets cost $£ 15.47$ altogether. How much was each ticket? Plan: £15.47 $\div(3+4)$ Calculation: $=1547 \mathrm{p} \div 7$ Check: Answer: Each ticket cost $£ 2.21$.	Individual work, monitored, helped Discussion, agreement on important data If Ps are less able, deal with one part of the solution at a time. Reasoning, agreement, selfcorrecting, praising Vertical calculations can be done on grid sheets or in Ex. Bks, or Ps use horizontal calculations, e.g. $\begin{aligned} & 1547 \mathrm{p} \div 7 \\ & =1400 \mathrm{p} \div 7+147 \mathrm{p} \div 7 \\ & =200 \mathrm{p}+21 \mathrm{p} \\ & =221 \mathrm{p} \\ & =\underline{£ 2.21} \end{aligned}$

B	R: Calculation C: Money problems E: Direct proportion: from one to more	$\begin{gathered} \text { Lesson Plan } \\ 128 \end{gathered}$
Activity 1	Comparison T has BB already prepared. How much is in each purse? Which purse has more? How much more? Ps come to BB to write amount above/below each purse and then to compare them by writing the appropriate sign and the difference. Class points out errors.	Notes Whole class activity Drawn or stuck on BB or use enlarged copy master or OHP At a good pace Agreement, praising Feedback for T
2	Written exercises Listen carefully and work out the answer in your Ex. Bks. You might find it easier to change the $£$ s to pence first. Show me the result when I say. Ps who respond correctly explain to those who do not. a) How much will one bar of chocolate cost if 6 of the same bar cost £6.72? Show me . . now! (£1.12) b) How much does one exercise book cost if 4 of them cost $£ 3.24$? Show me . . now! (81 p or $£ 0.81$) c) How much is 1 balloon if a packet of 8 balloons costs $£ 5.68$? Show me . . now! (71 p or £0.71) Ps might calculate using horizontal or vertical division. If T thinks Ps understand about division, short form could be introduced as opposite. T works through each one, explaining each step. e.g. ' 6 H divided by 6 is 1 H , so I write 1 in the hundreds column in the answer. 7 T divided by $6=1 \mathrm{~T}$ and 1 T remains, so I write 1 in the tens column in the answer and the remaining 1 T below. $1 \mathrm{~T}=10 \mathrm{U}, 10 \mathrm{U}+2 \mathrm{U}=12 \mathrm{U}$. 12 U divided by $6=2 \mathrm{U}$, so I write 2 in the units column in the answer.'	Individual work, monitored T walks round class while repeating each question. Responses written on scrap paper or slates and shown in unison. Reasoning, agreement, selfcorrection, praising BB: e.g..
3	Direct proportion What is the price of 4 tickets if 7 tickets cost $£ 9.24$? How can we solve it? (Calculate the price of 1 ticket., then calculate the price of 7 tickets) T starts the working out and Ps continue it by coming to BB or dictating to T . Class agrees/disagrees BB: Answer: 4 tickets cost $£ 5.28$. Elicit that the number of tickets is in direct proportion to the cost. (If the number of tickets increases by a certain number of times, the cost increases by the same number of times.)	Whole class activity Discussion, reasoning, agreement, praising Ps might remember diagram used in Lesson Plan 152/9. Accept any correct form of form of calculation. BB: $£ 9.24=924 \mathrm{p}$ 4 tickets: $924 \mathrm{p} \div 7 \times 4$ $=528 \mathrm{p}$ $=£ 5.28$ Extra praise if Ps try the short form of divison!

5		Lesson Plan 128
Activity 6	(Continued) Q. 3 b) Andrea has $£ 6.42$. She bought some flowers for $£ 2.35$. The money she has left is 1 third of the money her sister has. How much does her sister have? BB: A: $£ 6.42-£ 2.35$ S: A $\times 3$ S: $(£ 6.42-£ 2.35) \times 3=£ 4.07 \times 3=£ 12.21$ Answer: Andrea's sister has $£ 12.21$. c) Eve had $£ 5.64$. She bought some sweets with 1 quarter of her money. How much did she have left? BB: Had: $£ 5.64$ Spent: $£ 5.64 \div 4$ Had left: $£ 5.64-£ 5.64 \div 4=£ 5.64-£ 1.41=\underline{£ 4.23}$ or $£ 5.64 \div 4 \times 3=£ 1.41 \times 3=\underline{£ 4.23}$ Answer: Eve had $£ 4.23$ left.	Notes Details: e.g. Accept any correct method of calculation, e.g.
7	Book 3, page 128 Q. 4 Read: What is the price of 7 tickets if 4 tickets cost $£ 9.24$? Review at BB with whole class. Mistakes corrected. Agree that the number of tickets and the price are in direction proportion to one another Solution: 4 tickets cost: £9.24 1 ticket costs: $£ 9.24 \div 4=£ 2.31$ 7 tickets cost: $£ 2.31 \times 7$$=\underline{£ 16.17}$ 2 3 1 4 9 2 4 - 8 1 2 - 1 2 0 4 - 4 0 2 3 1 \times 1 6 1 7 2 or 3 tickets: $£ 2.31 \times 3=£ 6.93$ 9 2 4 +6 9 3 1 6 1 7 1 41 min	Individual work, monitored, helped Ps could show results on scrap paper or slates on command. Reasoning, agreement, selfcorrection, praising $\text { BB: } \begin{aligned} £ 9.24 & =924 \mathrm{p} \\ 1617 \mathrm{p} & =£ 16.17 \end{aligned}$
8	Book 3, page 128 Q. 5 Read: Calculate the balance. How can we solve it? T asks several Ps what they think. (e.g. count the positive amounts, then the negative amounts, and subtract them, or pair up positive and negative amounts on a one-to-one basis and see what is left over.) What do you think is the easiest method? Ps come to BB to explain reasoning and to write the balance. Class agrees/disagrees. Ps write balance in in Pbs too. Solution: a) $(4 \times 1+9 \times-1)$ $\text { (+ } 4 \text { and }-9)$ b) -50 $(4 \times 10+9 \times-10)$ (+ 40 and -90) c) 50 $\begin{gathered} (9 \times 10+4 \times-10) \\ (+90 \text { and }-40) \end{gathered}$	Whole class activity (or individual work, one at a time if Ps wish) Drawn on BB or use enlarged copy master or OHP Discussion on strategy for solution. Reasoning, agreement, praising Refer to class number line. Remind Ps that positive numbers are greater than zero (to right of 0 on number line) and negative numbers are less than zero (left of 0 on number line) and that positive numbers are usually written without the ' + ' sign in front of them, i.e. $+6=6$

BK3	R: Mental and written calculation C: Revision: Enlargement, reduction E: Puzzles	$\begin{gathered} \text { Lesson Plan } \\ 129 \end{gathered}$		
Activity 1	Equal values Let's match up the mouseholes to the houses. Ps come to BB to draw joining lines (or stick mouseholes inside appropriate houses) saying the whole equation. (e.g. '120 times 3 equals 360') Class agrees/disagrees. BB:	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP, or items cut out and stuck to BB At a good pace Agreement, praising Feedback for T		
2	Boom! Let's count down from 91 and say 'boom' instead of the numbers which are divisible by 3 . '91, Boom, 89, 88, Boom, 86, 85, Boom, 83, 82, Boom, 80, ... T advises Ps to break down 'difficult 'numbers into smaller bonds, e.g. $87=60+27$, if they are unsure whether it is a multiple of 3 . \qquad 8 min \qquad	Whole class activity At speed in order round class. If a P makes a mistake, next P corrects it. In good humour! Praising, encouragement only		
3	Sets Let's write the whole numbers from 70 to 90 in the set diagram. BB: Ps come to BB to write numbers in order in correct set, explaining reasoning. Class agrees/disagrees.	Whole class activity Use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T		
4	Magic square This is a magic square. Who remembers what its rules are? (The sums of each row, column and diagonal are the same.) What is the 'magic sum'? T asks several Ps what they think. P comes to BB to explain how he/she deduced it from completed column. $(\mathrm{BB}: 230+270+310=\underline{810})$ Where should we go next? (e.g. 2nd row as only one number missing) Ps come out to fill in missing number, explaining reasoning. Class checks that they are correct. Continue in similar way until complete. If Ps wish, let them try it themselves first in Ex. Bks. When they have found a row or column, they come to BB to show it and class checks that they are correct. Calculations done at side of BB if necessary.	Whole cla Drawn on copy mast Ps have co or draw an BB Mag Reasoning agreement	acti B or or y of writ c squ 230 270 310 chec prais	vity use enlarged OHP copy master e in Ex. Bks. are 280 290 240 king, ing

B		Lesson Plan 129
Activity 5	Construction Let's draw a table according to my instructions. T reads instructions and a P comes out to draw on BB or OHP while Ps draw on square grid or in Ex. Bks (using rulers). a) Draw a table with height 2 units and width 4 units. Label it A. A b) Now draw a table which is the same height as A but twice the width. Label it B. c) Now draw a table which is the same width as A but half its height. Label it C. d) Now draw a table which is twice the height and twice the width of A. Label it D. e) Now draw a table which is the same height as A but half the width. Label it E. B \square C \square D E Which tables are similar? Who remembers how to write it? \qquad	Notes Individual work, monitored, helped but class kept together. Use BB with square grid or grid on copy master or OHP T repeats each instruction slowly while walking round class. Class points out any errors made by Ps working at BB . Agreement, correction, praising BB: Similar shapes: $\begin{aligned} & \mathrm{A} \sim \mathrm{D} \\ & \mathrm{~B} \sim \mathrm{C} \end{aligned}$ (same shape, same or different size)
6	Similar shapes Thas various shapes stuck to BB . Which of these shapes are similar? Ps come to BB to choose similar shapes. Class agrees/disagrees. e.g. BB: Ps say the names of the groups of shapes. Agree that only the ellipse (or oval) does not have a similar shape.	Whole class activity Use copy master, with shapes enlarged onto coloured paper, cut out and stuck to BB at random At a good pace Point out the two different kinds of rectangles. Agreement, praising
7	Book 3, page 129 Q. 1 Read: Colour similar shapes in the same colour. Review at BB with whole class. Ps come to BB to colour shapes (or write initial letter of colour to save time). Class agrees/disagrees. Mistakes corrected. (Only one triangle remains uncoloured because it does not have a similar shape.) Solution: 30 min	Individual work, monitored, helped Use enlarged copy master or OHP, or shapes enlarged onto coloured paper, cut out and stuck to BB Discussion, agreement, selfcorrection, praising Feedback for T

BIK3		Lesson Plan 129
Activity 8	Book 3, page 129 Q. 2 Read: Colour similar rectangles in the same colour. Some of these rectangles look similar. How can we make sure that they are similar? (Count the units along each side,) Elicit that there are rectangles with sides in the ratio of: $1: 1$ (squares), $2: 1,3: 2$, etc. Review at BB with whole class. Ps come to BB or dictate to T who writes similarities on BB. Class agrees/disagrees. Mistakes corrected. Agree that only Shape A does not have a similar shape. Who could draw one? P comes to BB. Class decides whether or not it is similar. Solution:	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Initial discussion to draw Ps^{\prime} attention to the different ratio of lengths of sides. Discussion, agreement, selfcorrection, praising BB: $\begin{align*} & \mathrm{B} \sim \mathrm{G} \sim \mathrm{H} \sim \mathrm{~K} \tag{2:1}\\ & \mathrm{C} \sim \mathrm{E} \sim \mathrm{I} \tag{3:2}\\ & \mathrm{D} \sim \mathrm{~J} \tag{5:2}\\ & \mathrm{~F} \sim \mathrm{~L} \sim \mathrm{M} \tag{1:1} \end{align*}$ Extension Ps calculate the perimeter and area of each rectangle. e.g. $\text { K: } \begin{aligned} P & =(2+1+2+1) \text { units } \\ & =6 \text { units } \\ A & =(2 \times 1) \text { unit squares } \\ & =2 \text { unit squares } \end{aligned}$
9	Book 3, page 129 Q. 3 Read: Enlarge each shape to twice its size. Ps could have copies of copy master on desks if diagrams in Pbs are too small. Agree that each side of a shape should be twice as long. Deal with one part at a time. Review at BB with whole class. Ps show their solutions on BB. Class checks that they are correct. Solution: a) b)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising Extension T points to some shapes and Ps say the perimeter and area (part a) in unit squares and part b) in unit triangles) Class agrees/disagrees. Praising
10	Book 3, page 129 Q. 4 Read: Lengthen this line to 3 times its length. What is the length of the line in your Pbs? (Ps measure in cm) Agree that it is 5 cm long. Ps lengthen it as instructed and write its total length in cm below the line. Agree that it should be $3 \times 5 \mathrm{~cm}=15 \mathrm{~cm}$ long. How many mm is 15 cm ? (150 mm) What fraction of the new line is the original line? (1 third)	Ps have cm rulers on desks. Individual work, monitored Agreement, self-correcting, praising

BK3	R: Mental and written calculation C: Revision: enlargement, reduction. Plans and maps E: Problems and puzzles	$\begin{gathered} \text { Lesson Plan } \\ 130 \end{gathered}$
Activity 1	Missing numbers Study the diagrams. Think about what is happening. Ps do the calculations mentally or in Ex. Bks. Ps come to BB to fill in missing numbers, explaining reasoning. Class agrees/disagrees. Which method do you think is easier? Why? BB: a) b) 5 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Details of calculations: e.g. a) b)
2	Multiplication and division tables Ps stand. They have multiplication squares on desks in case they need it. T says a multiplication or division. Ps say product or quotient. If a P answers correctly he/she sits down but if not, next P corrects it. T notes which facts certain Ps do not know and keeps coming back to ask them again. T asks Ps to note unknown facts too and to learn them by heart. (T could ask them at any time during the school day!) 10 min	Whole class activity At speed. T calls Ps in order or at random. Praising, encouragement only In good humour! T notes which Ps need to use their multiplication tables.
3	Comparison Which side is more? How many more? Ps come to BB to work out LHS and RHS, explaining reasoning in detail, then to write in the missing sign and how many more. Class checks that they are correct. BB: а) $600 \stackrel{60}{\div} 10 \underset{5}{<} 5 \stackrel{65}{\times} 13$ b) $180 \stackrel{90}{\div} 2 \underset{13}{7} 7 \stackrel{77}{\times} 11$ c) $140 \stackrel{20}{\div} 7 \underset{8}{<} 100-6{ }_{(28)}^{-6} \times 12$ d) $1000 \stackrel{250}{\div 4}$ $13 \times 3+211$ T chooses Ps to read the completed statements (or class reads in unison). \qquad 15 min \qquad	Whole class activity Ps do calculations in Ex. Bks if they wish (or at side of BB) Reasoning, agreement, praising. Details, e.g. a)
4	Sorting numbers Barry Bear is collecting numbers divisible by 7. Flossie Rabbit is collecting the multiples of 4 . Let's help them by writing the numbers from 10 to 40 in the correct set. BB: Ps come to BB to write numbers. Class points out errors. Agree that numbers belonging to neither set should be written outside. Discuss the number 28 , which belongs in both sets. Who should have it? What can we do to prevent a quarrel? (Write 28 in both sets.) In what other way could we show it? (Draw a Venn diagram.) Allow Ps to draw it if they can (with T's help).	Whole class activity Drawn on BB or use enlarged copy master or OHP At speed Agreement, praising Discussion, agreement BB: Venn diagram e.g. Praising, encouragement only!

2		Lesson Plan 130
Activity 5	Similarity and congruence T has pictures of different forms and sizes stuck on BB. e.g. BB: - Which are similar? (i.e. have the same shape but are the same or a different size). Ps come to BB to point. Class agrees/disagrees. How can we write it mathematically? Ps write with T's help. - Which are exactly the same? Ps come to BB to point. Class agrees/disagrees. What do we call shapes which are exactly the same as each other? (congruent) Who remembers how we can write it mathematically? T shows if nobody remembers. Agree that congruent shapes are also similar to each other but similar shapes are not necessarily congruent.	Notes Whole class activity Use enlarged copy master or OHP, or any other suitable pictures. Ask Ps to describe the pictures and elicit that there are 3 different forms. Encourage them to use mathematical terms, e.g. A is an enlargement of I. K is a reduction of H . H has been stretched vertically. G has been stretched horizontally. BB: Similar shapes $\begin{aligned} & \mathrm{D} \sim \mathrm{H} \sim \mathrm{~K} \\ & \mathrm{~A} \sim \mathrm{E} \sim \mathrm{~F} \sim \mathrm{I} \\ & \mathrm{~B} \sim \mathrm{C} \sim \mathrm{G} \sim \mathrm{~J} \end{aligned}$ Congruent shapes $\begin{aligned} D & \cong K \\ F & \cong I \\ B & \cong G \end{aligned}$ Agreement, praising
6	Book 3, page 130 Q. 1 Read: Join up the shapes which are congruent. Review at BB with whole class. Ps come to BB to draw joining lines. Class agrees/disagrees. Mistakes corrected. T points to a shape and Ps say its mathematical name. (square, rectangle, quadrilateral, triangle, semi-circle, pentagon) Solution: Who can point to parallel lines (perpendicular lines, right angles)? Who remembers how we show them? BB:	Individual work, monitored helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising (Or Ps point to shapes and say the names they know.) How can we check that two shapes are congruent? (Cut one out or trace over one and see if it covers the other exactly.) T demonstrates with pairs of prepared shapes from this (or previous) question. Agreement, praising
7	Book 3, page 130 Q,2 Read: This is a plan of a school. Measure each side of the rectangles in the plan. T explains the plan, indicating the 4 rectangles (Rectangle 1 being the whole site) and elicits the meaning of the scale. Do you think we need to measure each side of every rectangle? (No, we only need to measure a long and a short side, as opposite sides are equal.) Let's say that the length is the long side and the width is the short side of a rectangle. What unit should we use to measure? (mm)	Ps have cm rulers on desks. Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP for demonstration only Initial discussion about plan BB: Scale: $1 \mathrm{~mm} \rightarrow 1 \mathrm{~m}$ on map in real life

BK3	R: Mental and written calculation C: Revision: similarity, enlargement, reduction (perimeter, area) E: Problems, puzzles	$\begin{gathered} \text { Lesson Plan } \\ 131 \end{gathered}$
Activity 1	Number sets Let's write these numbers in the correct place on both diagrams. BB: $16,27,25,53,46,57,60,35,31,47,14,58,54$	Notes Whole class activity Written/drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Reasoning: e.g. $57=11 \times 5+(2)$ or $57 \div 6=9$, remainder 3 or '60 is exactly divisible by 5 because it has zero as the units digit',
2	Writing numbers Write these numbers as digits in your Ex. Bks. T dictates: a) $5 \mathrm{H}+6 \mathrm{~T}+4 \mathrm{U}$ (564) b) $1 \mathrm{Th}+5 \mathrm{H}+2 \mathrm{~T}$ (1520) c) $36 \mathrm{~T}+5 \mathrm{U}$ (365) d) $15 \mathrm{H}+6 \mathrm{U}$ (1506) e) $7 \mathrm{H}+28 \mathrm{~T}$ (980) f) $1 \mathrm{Th}+3 \mathrm{~T}+43 \mathrm{U}$ (1073) Review at BB with whole class. Ps change pencils and mark/correct own work. Ps give details if problems. Who had all correct? Who made a mistake? What kind of mistake? Who did the same? etc. What other questions could we ask about the numbers? e.g. - List them in increasing order. - What is the nearest 10 (100)? - How could we put them in sets? (Ps suggest different ways.)	Individual work, monitored, helped T could have BB or SB or OHT already prepared and uncover each as it is dealt with. Details,: e.g. $\begin{aligned} 36 \mathrm{~T}+5 \mathrm{U} & =3 \mathrm{H}+6 \mathrm{~T}+5 \mathrm{U} \\ & =365 \end{aligned}$ Agreement, self-correcting, evaluation, praising Praise all contributions. Class decides which ones they would like to do.
3	Missing digits Which digits are missing from these addition sums? Ps come to BB to fill them in, explaining reasoning. Class checks that they are correct. BB: a) 6 4 8 +2 8 1 9 2 9 $\begin{array}{r}303 \\ +345 \\ \hline 648 \\ \hline\end{array}$ $\begin{array}{r}999 \\ +88 \\ \hline 1888 \\ \hline\end{array}$ b) $\begin{array}{r}358 \\ +185 \\ \hline 543 \\ \hline\end{array}$ 5 1 +5 8 1 3 0 $\begin{array}{r}33 \\ +617 \\ \hline 955 \\ \hline\end{array}$	Whole class activity (or Ps copy in Ex Bks and complete individually if they wish) Written on BB or use enlarged copy master or OHP Agreement, checking, praising Feedback for T

315	R: Mental and written calculation C: Revision: perimeter, area E: Problems. Challenges	$\begin{gathered} \text { Lesson Plan } \\ 132 \end{gathered}$
Activity 1	Sequences T says first 4 terms of a sequence. Ps write them in Ex. Bks. Let's see how far you can continue the sequence in 2 minutes! Start . . now! . . . Stop! Everyone stand up! Ps say one term each and T writes on BB. Ps sit down when they have made a mistake or have come to the end of their terms. Last P standing gives his/her remaining terms. Class applauds the winner(s). What is the rule? Ps explain the rule they used, e.g. difference between terms is increasing by 2 : BB: $1,4,9,16,(25,36,49,64,81,100,121,144,169, \ldots)$ $\begin{array}{lllllllllllll} 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 & 25 & \ldots \end{array}$ or ordinal numbers (which position they are in) multiplied by themselves: BB: 1 st term: 1×1, 2 nd term: 2×2, 3rd term: 3×3, etc. Ps check all the terms on the BB, giving details of difficult calculations. e.g. $12 \times 12=12 \times 10+12 \times 2=120+24=144$, etc. T explains that the numbers in the sequence are called square numbers because they are made by multiplying a number by itself. Their factors can form the sides of a square. (T demonstrates some on BB.)	Notes Whole class activity Differentiation by time limit Quick evaluation of terms Agreement, praising Discussion, checking, agreement, praising Ps dictate differences to T If no P has used this rule, give them the chance to think of it (with a hint if necssary). Discussion, checking, agreement, praising BB: Square numbers
2	Missing digit Which digits are missing from these addition sums? Ps come to BB to fill them in, explaining reasoning. Class checks that they are correct. BB: a) b) c) d) e) $\begin{array}{r\|r\|r} 8 & 5 & 3 \\ -7 & 2 & 1 \\ \hline 1 & 3 & 2 \\ \hline \end{array}$ $\begin{array}{r}73 \\ -43 \\ \hline 43 \\ \hline 296 \\ \hline\end{array}$ $\begin{array}{r\|r\|r\|} 7 & 3 & 8 \\ -5 & 1 & 9 \\ \hline 2 & 1 & 9 \\ \hline \end{array}$ $\begin{array}{\|r\|r\|r\|} \hline 1 & 2 & 2 \\ \hline- & 1 \\ \hline & 4 & 9 \\ \hline & 7 & 2 \\ \hline \end{array}$ Trevises methods of subtraction in detail if necessary. (BB) 10 min \qquad	Whole class activity (or Ps copy in Ex Bks and complete individually if they wish) Written on BB or use enlarged copy master or OHP Agreement, checking, praising Feedback for T
3	Problems Listen carefully and picture the problem in your head. You can do the calculation mentally or write it in your Ex. Bks if you need to. Show me the answer when I say. a) A giraffe is about twice as tall as an ostrich. If a giraffe is about 500 cm tall, about how tall is an ostrich? Show me . . . now! (250 cm) [BB: $500 \mathrm{~cm} \div 2=250 \mathrm{~cm}$] b) A fully grown swan is about 1 m 60 cm in length. The smallest bird in Europe is about 8 cm long. How many times longer is a swan? Show me ...now! (20) [BB: $160 \mathrm{~cm} \div 8 \mathrm{~cm}=20$ (times)] c) A bison weighs about 1800 kg , which is about 3 times the mass of a horse. What does a horse weigh? Show me ...now! (600 kg) [BB: $1800 \mathrm{~kg} \div 3=600 \mathrm{~kg}]$ d) An ant takes 1 minute to go 356 cm . How far can it go in 4 minutes? Show me . . now! (1424 cm or 14 m 24 cm)	Whole class activity (T could have pictures of relevant animals and birds to show to class) Responses shown on scrap paper or slates in unison. Ps who respond correctly explain to those who do not. (Or in b) or c) T could give only the facts and ask Ps to think of a question for class to answer.) Reasoning, agreement, praising BB: d) or $3 \mathrm{~m} 56 \mathrm{~cm} \times 4=12 \mathrm{~m}+2 \mathrm{~m}$ $+24 \mathrm{~cm}=14 \mathrm{~m} 24 \mathrm{~cm}$

2		Lesson Plan 132
Activity 6	Book 3, page 132 Q. 2 Read: Count how many of the given units are in the perimeter and area of each shape. T explains task. Elicit that P means perimeter and A means area. Deal with one part at a time only if Ps are unsure. Review at BB with whole class. Ps dictate to T or come to write on BB. Class agrees/disagrees.Mistakes discussed and corrected Solution: a) b) $P=16 \longmapsto$ $A=12$ c) $P=\frac{32}{}{ }_{\square}$ $A=48 \square \square$ d) $P=32 \ldots$ $A=38$ What do you notice about the shapes? What connections can you see? e.g. - The first 3 shapes are congruent (same form and equal size) - All 4 shapes have the same perimeter length, but have been measured in different sizes of unit, e.g. using a unit half the size $\rightarrow 2$ times as many needed using a unit 1 quarter the size $\rightarrow 4$ times as many needed. - The first 3 shapes cover the same area, but have been measured with different sizes of unit squares, e.g. using a unit 1 quarter of the size $\rightarrow 4$ times as many needed using a unit 1 sixteenth of the size $\rightarrow 16$ times as many needed. - Shapes c) and d) have been measured using the same units. They have equal perimeters but c) has a larger area.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising Whole class discussion Involve several Ps Praise all contributions. T points out (or gives hints about) any not mentioned by Ps. Ask Ps why they think c) has a larger area. (More regular)
7	Area and perimeter a) Draw different rectangles which have an area of 24 unit squares. Compare their perimeters. Set a time limit. T chooses Ps to show different rectangles on a grid on BB or OHP. Which has the longest perimeter? BB: $P=50$ units	Inividual work, monitored, helped Ps use squared Ex. Bks or have squared sheets on desks. Differentiation by time limit Discussion on the different possible lengths of sides. Relate to the factors of 24 : $1 \times 24,2 \times 12,3 \times 8,4 \times 6$ Agree that the longest perimeter has the least number of sides of a square touching another square, i.e. one row! Agreement, praising

R <3		Lesson Plan 132
Activity 7	(Continued) b) Draw different rectangles which have a perimeter of 24 units. Compare their areas. Set a time limit.. T chooses Ps to show different rectangles on a grid on BB or OHP. Which has the biggest area? BB: $A=11 \text { square units }$ $A=32$ square units $A=35$ square units $A=36$ square units 40 min \qquad	Notes Individual work, monitored, helped (Or T could have BB or OHT already prepared) Discussion on the different possible lengths of sides. Ps might notice that: short + long side $=12$ units, so possible lengths are: $\begin{aligned} & 1+11,2+10,3+9,4+8 \\ & 5+7,6+6 \end{aligned}$ Agree that the rectangle with the largest area is the most regular, i.e. a square. Extra praise for Ps who deduced this by themselves.
8	Book 3, page 132, Q. 3 Read: Divide up each shape into rectangles and triangles. Write the area of each smaller shape inside it. Write the total area of each shape in the box. Ps come to BB to draw the dividing lines. Other Ps come to BB to count the squares and write the area of each part, (counting the small triangles as half a square). What is the total area? Ps shout out in unison and T writes in relevant box. T might need to help with counting the parts of squares in b). (Or part a) done as individual work and part b) with the whole class.) Solution: a) a) $A=$ \square 16 unit squares b) $A=$ \square 29 unit squares b)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Discussion, agreement, praising Ps can work in in Pbs too if they wish. [Finding the area of complex shapes] Who can think of questions to ask about the shapes? (e.g. - What is the length of each perimeter? - Which shape is symmetrical? - How many vertices do they each have? etc.)

B	R: Calculation C: Building and drawing solids E: 3 views. Surface area. Volume	$\begin{gathered} \text { Lesson Plan } \\ 133 \end{gathered}$
Activity 1	Missing numbers Which numbers could be written instead of the shapes so that the statement is true? Ps do calculations in Ex. Bks first, then come out to write on BB (or dictate to T), explaining reasoning in detail. Class agrees/disagrees. BB: a) $\begin{aligned} & 637^{389}-248<126+\square<98 \times 4 \\ & (263<\square<266 \\ & \square: 264,265) \end{aligned}$ b) $\begin{aligned} & 287^{502}+215>802-\bigcirc>166 \stackrel{498}{\times 3} \\ & (300<\bigcirc<304 \\ & \bigcirc: 301,302,303) \quad \text { (Discuss why } \end{aligned}$ Details: e.g. (or 400-8 = 392) ' must change to ${ }^{\prime}<$ '.) 6 min \qquad	Notes Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, checking, praising
2	Number sets Let's write these numbers in the correct place in the set diagrams. Ps come to BB one after the other to write numbers in the sets and to underline or circle the number in the list as it is dealt with. Class points out errors. BB: $\quad A=\{1,2,3,4,5,6,7,8,9,10,12,15,16,18,20,21,24,30\}$ I will make statements about the sets and you must show me whether you think they are true or false. a) There is at least one number which is a factor of 12 and 30 . b) All the numbers which are factors of 12 are also factors of 30 . (F) c) There is a number which is a factor of 30 but not a factor of 12.(T) \qquad 13 min \qquad	Whole class activity Written/drawn on BB or use enlarged copy master or OHP Elicit that ' A ' in the diagrams means all the numbers inside the curly brackets. At a good pace Agreement, praising Feedback for T T repeats slowly and Ps show responses in unison (by writing ' T ' or ' F ' on slates or by pre-agreed actions) e.g. 2 e.g. 4 is not a factor of 30 e.g. 5
3	Smallest numbers Write these digits in your Ex. Bks. Cross out 3 of the digits so that the remaining digits make as small a number as possible without changing the order. T dictates and also writes on BB : a) 987987 b) 454432 c) $\times 100345$ (787) (432) (1003) Review at BB with whole class. Ps come to BB to cross out digits and rewrite the smallest numbers. Class agrees/disagrees. Mistakes discussed and corrected (Ps can can suggest a list of digits too!) 16 min	Individual work, monitored, helped Do part a) with whole class first if Ps do not understand what to do. At a good pace Reasoning, agreement, selfcorrection, praising

B		Lesson Plan 133
Activity 4	Problem Listen carefully and picture the problem in your head. Write the data in your Ex. Bks. Think about what data is important and cross out the data you do not need. Do the calculation and show me the answer when I say. A newborn grey whale is about 4 and a half metres long and weighs about 1500 kg . It drinks about 200 litres per day of its mother's milk, so its weight increases by about 20 kg each day. After how many days will the baby whale weigh 2000 kg ? Show me . . now! (25 days) Ps who answered correctly explain at BB. Class agrees/disagrees. Mistakes discussed and corrected. BB: Birth weight: 1500 kg Final weight: 2000 kg Each day: +20 kg $\begin{aligned} (2000 \mathrm{~kg}-1500 \mathrm{~kg}) \div 20 \mathrm{~kg} & =500 \mathrm{~kg} \div 20 \mathrm{~kg} \\ & =50 \mathrm{~kg} \div 2 \mathrm{~kg}=\underline{25}(\text { days }) \end{aligned}$ Answer: The baby whale will weigh 2000 kg after 25 days.	Notes Individual trial, monitored Responses shown on scrap paper or 'slates' in unison T repeats slowly. Give Ps time to make notes, think and calculate. In unison T could have problem written on SB or OHT. Reasoning, agreement, selfcorrection, praising Feedback for T T asks Ps to say the answer in a sentence.
5	Drawing cuboids Ps each have, e.g. an empty matchbox, on their desk. What shape is it? (cuboid) How many faces does it have? (6) Elicit that each face is a rectangle and that opposite faces are equal, so there are only 3 different sizes of rectangle. Let's draw them. T (or P) draws around large model on BB , Ps in Ex. Bks. e.g. BB: $\quad \begin{array}{r}\text { Front view } \\ \end{array}$ Top view Repeat with a box shaped like a cube. BB: Front view Top view Who can tell us something about the solids? Ps come to BB to point to vertices, sides, parallel and perpendicular lines on drawings and vertices, edges, faces (perpendicular and parallel) on the large models.	Whole class discussion to start BB: Cuboid Discuss the different ways to view the 3 rectangles. Individual work in drawing, monitored, helped Praising, encouragement only BB: Cube Elicit that a cube is a regular cuboid, that all 6 faces are equal and that each view will be a square. Discussion, demonstration, agreement, praising only (Revision of terms)
6	Book 3, page 133 Q. 1 Read: This solid has been built from unit cubes. Draw different views of it. Ps build solid from unit cubes first. Who can explain the ground plan? (Numbers refer to how many bricks high that column is.) In the grids, draw what you would see from the different views. Review at BB with whole class. 3 Ps come to BB to draw the 3 views. Class agrees/disagrees. Mistakes discussed/corrected. What is its volume? (6 cubes) What is the area of is surface? Ps count or calculate. T confirms by referring to large model. BB: $A=\underline{26}$ unit squares	Individual work, monitored, helped Use large model. Diagrams drawn on BB or use enlarged copy master or OHP. Agreement, self-correction, praising Solution:

BIT3	R: Calculation C: How many possible cases? (Combinatorics) E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 134 \end{gathered}$
Activity 1	Possible numbers T has 4 numbers cards stuck to BB: $0,1,2 \boxed{4}$ a) How many 3 -digit whole tens can you make from these digits? You cannot use a digit more than once. Ps come to BB to rearrange the cards and write their number in a place value table Class points out duplications or repeated digits. Encourage logical listing. Agree that ' 0 ' must be in units column. $\begin{array}{lcccl} \text { BB: e.g. } & \mathrm{H} & \mathrm{~T} & \mathrm{U} & \text { Agree that there are } 6 \text { possible whole tens. } \\ \cline { 2 - 4 } & 2 & 0 & \text { What is their total? (1540) } \\ 1 & 4 & 0 & \text { Ps use vertical addition or: } \\ 2 & 1 & 0 & \\ 2 & 4 & 0 & 2 \times 100 \times(1+2+4)+2 \times 10 \times(1+2+4) \\ 4 & 1 & 0 & =200 \times 7+20 \times 7=1400+140=\underline{1540} \\ 4 & 2 & 0 & \end{array}$ b) How many odd numbers can you make from these digits? You cannot use a digit more than once. Ps come to BB to rearrange the cards and write their number in a place value table. Class points out duplications or repeated digits. Encourage logical listing. Agree that ' 1 ' must be in the units column. BB: e.g. (2-digits) (1-digit) $\frac{\mathrm{U}}{1}$ Agree that there are 11 possible odd numbers. \qquad 6 min \qquad	Notes Whole class activity (Or individual or paired work if Ps wish. Ps have number cards on desks.) Place value tables drawn on BB At a good pace Reasoning, agreement, praising Accept any correct method of calculating. Whole class activity (or paired work in Ex. Bks if Ps wish) At a good pace T helps with layout of listing if necessary. Agreement, praising
2	Possible colours a) In how many different ways can we make this house? $\quad \mathrm{BB}:$ The roof can be either red or blue and the walls can be yellow, green or pink. Let's show the different ways in this table. Ps come to BB to choose 2 colours at a time and fill in a column in the table. BB: Agree that for each of the 2 colours chosen for the roof, there are 3 possible colours for the walls., i.e. $2 \times 3=\underline{6}$ different ways. b) In how many different ways can we make this tower? BB: The roof can be either red or blue, the top floor can be either white or orange, and the bottom floor can be yellow, green or pink. Let's show the different ways in this table. Ps come to BB to choose 3 colours at a time and fill in a column in the table. BB: Agree that there are $2 \times 2 \times 3=\underline{12}$ different ways.	Whole class activity Use elements from a construction set, or if there are not enough colours, use copy masters enlarged onto coloured paper and cut out for Ps to have on desks. Tables drawn on BB or use enlarged copy master At a good pace (Or Ps dictate to T and T writes in table to save time.) Discussion, agreement, praising (Elicit that for each of the $\underline{2}$ colours chosen for the roof, there are 2 possible colours for the top floor, and for each of these there are $\underline{3}$ possible colours for the bottom floor.) Feedback for T

BK		Lesson Plan 134
Activity 3	Book 3, page 134 Q. 1 Read: In how many different ways can you colour the flags red, white, green and blue? Use every colour only once in each flag. Set a time limit. Review at BB with whole class. Elicit that for each of the $\underline{4}$ colours chosen for the top stripe there are $\underline{3}$ choices for the 2 nd stripe, then for each of these there are $\underline{2}$ choices for the 3 rd stripe, then for each of these there is only 1 choice for the bottom stripe, i.e. there are $4 \times 3 \times 2 \times 1=\underline{24}$ different ways BUT the flags can be flown upside down too, so really there are only 12 ways! Solution:	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Thas spare copies of flags in case Ps ask for more than are in the Pbs. Ps dictate colours or T could have copy master already coloured to save time. Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps realise there are only 12 possible flags without help from T.
4 Extension	Book 3, page 134 Q. 2 Read: Andrea, Becky and Carol are sitting around a circular table. Colour the tables where the girls are sitting in the same order. Imagine you are one of the girls. Think about who could be on each side of you! T sets a time limit. Review at BB with whole class. Demonstrate with 3 Ps at front of class. Agree that there are only 2 possible orders: ABC and ACB , i.e. clockwise and anticlockwise. Solution: T chooses 3 Ps to stand in a row facing the class. In how many different orders can they be? T asks several Ps what they think and why. ($3 \times 2 \times 1=\underline{6}$ possible orders) Ps at front demonstrate as a check.	Individual work, monitored Drawn on BB or use enlarged copy master or OHP (Ps could use coloured counters for A, B and C and rearrange them on desks if they wish.) Agreement, checking, selfcorrecting, praising Elicit that there are 3 choices for the 1st P, then 2 choices are left for the middle P , then only 1 choice is left for the last P .
5	Book 3, page 134 Q. 3 Imagine you are going upstairs. If there is only 1 stair, in how many ways can you step up it? (1 way: take 1 step). If there are 2 stairs, in how many ways could you step up them? (2 ways: 1 stair at a time or 2 stairs at once.) T draws diagrams on BB. Repeat for 3 stairs. (T could have a set of steps at the front of the class for demonstration.) BB: 1 1 stair 2 stairs 3 stairs	Whole class activity Discussion, demonstration, agreement, praising Ps could draw the diagrams, with T's help.

BK3	R: Calculation C: Combinatorics. Probability E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 135 \end{gathered}$
Activity 1	Book 3, page 135 Q. 1 a) Read: Colour the windmills red, white, yellow and green so that each one is different from the others. What do windmills do? (Turn) Remember this when you are colouring. Make sure that the colours are in different orders in the same direction. Encourage logical working. Review at BB with whole class. Ps come to BB to colour or write R, W, Y and G on diagram. Class points out missed cases or duplicates. Agree that there are $\underline{6}$ different cases. Solution: b) Read: Mr. Silly does not know his compass directions. He paints the letters N, E, S and W on the compass at random. What chance does he have of painting the compass correctly? T asks several Ps how they would solve it. T gives hint about similarity to part a) if nobody knows. Elicit that Mr. Silly had the same task as in a) but he was writing 4 letters in a circle rather than using 4 colours. So there would be 6 possible ways he could do it randomly. Only one way would be correct: NESW clockwise. Solution: The chance of NESW is 1 in 6 , or 1 sixth. (If there is no arrow on the face to help him!)	Notes Whole class introduction T could have a 'real' windmill to show to class and to demonstrate that the order matters. Show by rotation that, e.g. Then individual colouring, monitored, helped Discussion, agreement, selfcorrection, praising Whole class activity Compass drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Allow Ps to explain if they can, then T repeats in a clearer way if necessary. BB (The arrow would point to North.)
[2	Probability 1 If I toss a coin once, what is the chance (probability) of me getting: a) a head (1 half) b) a tail? (1 half) Who can explain it? (There are only $\underline{2}$ possible cases, a head or a tail, and each has an equal chance of landing face up.) We say that the probability of a certain event happening is 1 and the probability of an impossible event happening is 0 . Events which are possible but not certain have a probability between 1 and 0 , i.e. are fractions! How many heads (tails) would we expect to get if we tossed a coin $4(6,20,100,1000,53)$ times? $(2,3,10,50,500,26$ or 27 times $)$ Who has heard someone say that an event has a 50 per cent chance of happening? Who knows what it means? (50 'per cent' means 50 out of 100) Who knows how to write it? T shows if nobody knows. (BB: 50\%) Discuss meaning of 50% and 100% as 1 half and 1 whole. [A computer simulation would be good for 100 and 500 tosses, or T could use a calculator to generate random numbers.] 15 min	Whole class activity T asks several Ps. T repeats clearly if necessary T chooses Ps at random Discuss the case of 53, which is odd. Discussion. Allow Ps to try to explain first. (Ps might have heard of the expression, a 'fifty-fifty chance'. Relate it to 50% for, 50% against.)

BK3	R: Calculation C: Numbers up to 1000 E: Quantities up to 1000	Lesson Plan 136
Activity 1	Building a cube Let's build a cube with edges 10 units (cm) using these unit cubes. How many cubes will be in each row? (10) T makes one in front of Ps. (Ps make on desks.) How many rows will be in each layer? (10) T has one already prepared. (Ps make on desks) How many layers will there be? (10) T shows finished cube. Ps hold up their cubes. Who can write a multiplication about it? Who agrees? Who thinks something else? BB: $10 \times 10 \times 10=100 \times 10=\underline{1000}$ cubes. How many edges (vertices, faces) does it have? $(12,8,6)$ What shape is each face? (a square)	Notes Whole class activity T has already prepared rows, layers and a finished 10 cm cube from multilink cubes. (If possible, Ps have multilink cubes on desks and work in pairs to make the cube too, or build with Cuisennaire rods.) Praising Reasoning, agreement, praising Ps come out to point to an edge, vertex, face
2	Place value How many unit cubes are shown? Let's write it in the place value table. BB: In what other ways could we write the number? e.g. BB: 2 thousands +3 hundreds +2 tens +4 units $\begin{aligned} & 2 \mathrm{Th}+3 \mathrm{H}+2 \mathrm{~T}+4 \mathrm{U} \\ & 2 \times 1000+3 \times 100+2 \times 10+4 \times 1=2324 \end{aligned}$ Two thousand, 3 hundred and twenty four (MMCCCXXIV)	Whole class activity T has real models already prepared or drawn on BB or use enlarged copy master or OHP. Ps come to BB to count and write the digits, then to write the number in other ways. Class points out errors. Agreement, praising Ps write the table and different forms in their Ex. Bks. Extra praise if a P thinks of using Roman numerals!
3	Money How much is in each pile? Ps come to BB to say the amount and write a multiplication about it. Class agrees/disagrees. 	Whole class activity Amounts drawn or stuck on BB or use enlarged copy master or OHP Ps write the operations in $E x . B k s$ as they are dealt with. Reasoning, agreement, praising T points to an amount and class reads it in unison.
Extension	If this was real money, what unit could it be? (Cannot be $£ s$ as largest banknote is $£ 50$. T talks about countries which use 1000,5000 and 10000 unit bank notes. If possible, T could have notes/coins to show.) \qquad 13 min \qquad	Discussion, demonstration T (Ps) could tell of own experiences on holiday abroad

R ${ }^{\text {a }}$		Lesson Plan 136
Activity 5	(Continued) b) Let's do these additions. Ps come to BB to write the results. Class points out errors. BB: e.g. $\begin{array}{ll} 1000+400+30+5=(1435) & 1000+800+3=(1803) \\ 6000+400+30+5=(6435) & 5000+800+3=(5803) \\ 1000+70+8=(1078) & 1000+400+60=(1460) \\ 9000+70+8=(9078) & 7000+400+60=(7460) \end{array}$ Let's write one or two of them in a place-value table. Ps choose the numbers and dictate to T or come to BB. Class agrees/disagrees. T (or P) points to a digit, Ps say its value in unison. 25 min	Notes Whole class activity T has BB or SB or OHT already prepared. At a good pace Ps say the whole addition while writing the numbers. Agreement, praising e.g. BB:
6	Number line 1 a) Study these number lines. What numbers should be below the dots? Ps come to BB to say and write the number. Class points out errors. BB: b) T says a number and Ps come to BB to show roughly where it would be on the appropriate number line. Class agrees/disagrees. e.g. $8.5,67,320,5800,8326(\approx 8330 \approx 8300)$ c) Let's join up the the numbers to the correct point on the number line. Ps come to BB to choose a number and point to where it should be on the number line. Class agrees/disagrees. T draws the joining line. BB:	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace T might need to help with writing numbers on the 'thousands' number line. Agreement, praising Agreement, praising T or class helps with difficult numbers (by approximating). Drawn on BB or use enlarged copy master or OHT At a good pace Agreement, praising Continue with other numbers (suggested by Ps) if time.

313	R: Calculation C: Revision: Quantities (length, capacity, mass) E: Problems. Numbers up to 10000	Lesson Plan 137
Activity 1	Measuring Listen carefully and follow my instrucitions. a) Draw a long, straight, horizontal line with your ruler. b) Draw a short vertical line on the LHS of your line and label it A. c) Measure 34 mm to the right of A and mark that point B. d) Measure 10 and a half cm to the right of B and mark that point C . e) Calculate the distance from A to C . Check it by measuring. Ps show result on scrap paper or slates on command. P who answered correctly explains to those who did not. BB:	Notes Individual work, monitored, helped, corrected Ps have sheets of plain paper and rulers on desks. Treads and repeats each instruction while walking round class. Reasoning, agreement, selfcorrecting, praising T (or P) draws diagram on BB to demonstrate solution. $\mathrm{BB}: \quad \begin{aligned} \mathrm{AC} & =\mathrm{AB}+\mathrm{BC} \\ & =34 \mathrm{~mm}+105 \mathrm{~mm} \\ & =139 \mathrm{~mm} \\ & =13 \mathrm{~cm} 9 \mathrm{~mm} \end{aligned}$
2	Revision of Length Let's list the units of length in increasing order. Ps dictate to T. Elicit the relationship between them. BB: $1 \mathrm{~mm}<1 \mathrm{~cm} \underset{\times 10}{<100} \underset{\times 1000}{<1} \mathrm{~m}<1 \mathrm{~km}$ Let's fill in the missing numbers. Ps come to BB. Class agrees/disagrees. BB: $1 \mathrm{~km}=1000 \mathrm{~m} \quad 1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ Ps suggest places which are approximately 1 km away from school. Ps suggest items in the classroom which measure $1 \mathrm{~m}(1 \mathrm{~cm}, 1$ $\mathrm{mm})$ or demonstrate with hands/arms/fingers. Class agrees/disagrees.	Whole class activity Agreement, praising Thas BB or SB or OHT already prepared. At a good pace Discussion, agreement, checking, praising Thas places (items) already in mind. In good humour!
3	Book 3, page 137 Q. 1 Read: Fill in the missing numbers. Deal with one part at a time if necessary. Set a time limit. Review at BB with whole class. Ps dictate to T. Mistakes discussed and corrected. Details written on BB if problems. Solution: a) i) $1 \mathrm{~km}=\underline{1000} \mathrm{~m}$ ii) $1 \mathrm{~km} 564 \mathrm{~m}=\underline{1564} \mathrm{~m}$ iii) $2 \mathrm{~km}=\underline{2000} \mathrm{~m}$ iv) $4 \mathrm{~km} 105 \mathrm{~m}=\underline{4105} \mathrm{~m}$ v) $7 \mathrm{~km}=\underline{7000} \mathrm{~m}$ vi) $8 \mathrm{~km} 16 \mathrm{~m}=\underline{8016} \mathrm{~m}$ b) i) $1 \mathrm{~m}=\underline{1000} \mathrm{~mm}$ ii) $1 \mathrm{~m} 45 \mathrm{~cm}=\underline{145} \mathrm{~cm} \underline{0} \mathrm{~mm}$ iii) $5 \mathrm{~m}=\underline{5000} \mathrm{~mm}$ iv) $3 \mathrm{~m} 70 \mathrm{~cm} 2 \mathrm{~mm}=\underline{3702} \mathrm{~mm}$ v) $8 \mathrm{~m}=\underline{8000} \mathrm{~mm}$ vi) $5 \mathrm{~m} \mathrm{6} \mathrm{cm} 3 \mathrm{~mm}=\underline{5063} \mathrm{~mm}$ 13 min	Individual work, monitored, helped T has BB or SB or OHT already prepared. Reasoning, agreement, selfcorrection, praising Details, e.g. $\begin{aligned} 8 \mathrm{~km} 16 \mathrm{~m} & =8000 \mathrm{~m}+16 \mathrm{~m} \\ & =\underline{8016 \mathrm{~m}} \end{aligned}$ Feedback for T
4	Mental practice a) T says a length. Ps say it in mm . Class points out errors. e.g. $17 \mathrm{~cm}(170 \mathrm{~mm}), 420 \mathrm{~cm}(4200 \mathrm{~mm}), 4 \mathrm{~cm} 50 \mathrm{~mm}(90 \mathrm{~mm})$, etc. b) T says a length in mm . Ps change it to other units. e.g. $353 \mathrm{~mm}(35 \mathrm{~cm} 3 \mathrm{~mm}), 240 \mathrm{~mm}(24 \mathrm{~cm} 0 \mathrm{~mm}), 1258 \mathrm{~mm}(125 \mathrm{~cm}$ 8 mm or 1 m 25 cm 8 mm), 9001 mm (900 cm 1 mm or 9 m 1 mm)	Whole class activity T chooses Ps at random At speed. In good humour! Agreement, praising Details written on BB if necessary. Feedback for T

R <2		Lesson Plan 137
Activity 5	Revision of Mass Let's list the units of mass (weight) in increasing order. Ps dictate to T. Elicit the relationship between them. BB: $\begin{gathered} 1 \mathrm{~g}<1 \mathrm{~kg}<1 \text { tonne } \\ \times 1000 \times 1000 \end{gathered}$ Let's fill in the missing numbers. Ps come to BB . Class agrees/disagrees. $\text { BB: } \quad 1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1 \text { tonne }=1000 \mathrm{~kg}$ Remind Ps of their relationship to units of length. If a glass cube with edges $10 \mathrm{~cm}(1 \mathrm{~cm})$ is filled with water, the water it contains weighs $1 \mathrm{~kg}(1 \mathrm{~g})$, or has mass $1 \mathrm{~kg}(1 \mathrm{~g})$ BB: Ps suggest instances when each unit of mass would be used (or T suggests items and Ps say what unit they would use to measure their mass, e.g. feather, elephant, grapes, potatoes, sweets, etc.)	Notes Whole class activity Agreement, praising T might need to remind Ps about a tonne. Agreement, praising T has BB or SB or OHT already prepared. Discussion. Allow Ps to explain if they can. Agreement, praising. In good humour! T could have 1 g and 1 kg weights for Ps to hold.
6	Book 3, page 137 Q. 2 Read: Change the weights to the given units. Deal with one part at a time if necessary. Set a time limit. Review at BB with whole class. Ps dictate to T. Mistakes discussed and corrected. Details written on BB if problems. Solution: a) $\begin{aligned} 1028 \mathrm{~g} & =1 \mathrm{~kg} \mathrm{28g} \\ 2300 \mathrm{~g} & =2 \mathrm{~kg} \mathrm{300g} \\ 3005 \mathrm{~g} & =3 \mathrm{~kg} 5 \mathrm{~g} \\ 416 \mathrm{~g} & =0 \mathrm{~kg} 416 \mathrm{~g} \end{aligned}$ b) $\begin{aligned} & 1 \mathrm{~kg} 26 \mathrm{~g}=\underline{1026 \mathrm{~g}} \\ & 3 \mathrm{~kg} \mathrm{157g}=\underline{3157 \mathrm{~g}} \\ & 8 \mathrm{~kg} \mathrm{60g}=\underline{8060 \mathrm{~g}} \\ & 9 \mathrm{~kg} \mathrm{2g}=\underline{9002 \mathrm{~g}} \end{aligned}$ 25 min	Individual work, monitored, helped Thas BB or SB or OHT already prepared. Reasoning, agreement, selfcorrection, praising. Details, e.g. $\begin{aligned} 9 \mathrm{~kg} 2 \mathrm{~g} & =9000 \mathrm{~g}+2 \mathrm{~g} \\ & =\underline{9002 \mathrm{~g}} \end{aligned}$ Feedback for T
7	Revision of Capacity What is capacity? (How much liquid a container can hold.) Let's list the units of capacity in increasing order. Ps dictate to T. Elicit the relationship between them. Remind Ps of their relationship to units of length. BB: $1 \mathrm{ml}<1 \mathrm{cl}<1$ litre $\times 10 \quad \times 100$ Let's fill in the missing numbers. Ps come to BB. Class agrees/disagrees. BB: 1 litre $=100 \mathrm{cl} \quad 1 \mathrm{cl}=10 \mathrm{ml} \quad 1$ litre $=1000 \mathrm{ml}$ Ps suggest instances when each unit would be used (or T has containers of various sizes and Ps say which units they would use to measure their capacity, e.g. medicine spoon, egg cup, glass, cup, jug, bottle, bucket, etc.)	Whole class activity Agreement, praising Allow Ps to explain if they can. Agreement, praising Thas BB or SB or OHT already prepared. At a good pace Discussion, agreement, praising. Feedback for T

BK<		Lesson Plan 138
Activity 5	Book 3, page 138 Q. 2 a) Read: List the numbers which have a hundreds digit greater than 7, a tens digit less than 3, and a units digit which is odd and not greater than 3. Elicit that: - it is a 3-digit number, - the hundreds digit can be 8 or 9 , - the tens digit can be 0,1 or 2 - the units digit can be 1 or 3 . Review at BB with whole class. Ps dictate numbers to T. Class agrees/disagrees. Mistakes corrected. $\begin{aligned} \text { BB: } & 801,803,811,823,821,823 \\ & 901,903,911,923,921,923 \end{aligned}$ b) Read: What is their sum? Discuss easy methods of addition. (Add them in 4 lots of 3 then add the 4 totals, or use multiplication and addition, or add all the 8 hundred numbers and then all the 9 hundred numbers, then add the two totals.) Review at BB with whole class. Ps dictate their results to T . Class agrees/disagrees. Mistakes corrected. 212 c) Read: Which of them are divisible by 3? T points to each of the 12 numbers in turn and class decides whether it is divisible by 3 . (By calculation or by reasoning. Only 801 needs to be calculated.) BB: e.g. $801=600+180+21$ (all terms are divisible by 3) $803=801+2$, so is not divisible by 3 , $811=801+10$, so is not divisible by 3 , etc. $901=900+1$, so is not divisible by 3 , etc. Solution: 801, 813, 903, 921 are divisible by 3 .	Notes Whole class discussion to start Involve several Ps Agreement, praising Individual work, monitored, helped Agreement, self-correcting praising Whole class discussion to start Ps suggest ways to calculate Praise all contributions. Individual work, monitored Reasoning, agreement, selfcorrecting, praising Let's read the total toegether! 'ten thousand, 3 hundred and forty-four' Whole class activity Ps shout out in unison (or use pre-greed actions) T gives hints if Ps do not think of easy reasoning. At a good pace Agreement, praising
6	Book 3, page 138, Q. 3 Read: List all the 3-digit numbers in which: a) the sum of the 3 digits is 5 , b) the product of the 3 digits is 4 , c) the sum of the 3 digits is 4 . Deal with one part at a time. Set a time limit. Encourage a logical listing. T could start each list and Ps continue it. Review at BB with whole class. Ps dictate numbers to T. Class checks that they are correct. Mistakes corrected. Solution: a) $113,131,311 ; 104,140,401,410 ; 122,212,221$; 203, 230, 302, 320; 50	Individual work, monitored, helped (or whole class activity if T prefers) Whole class discussion on strategy for listing. Agreement, correction, praising b) $114,141,411,122,212$, 221 c) $103,130,301,310 ; 112$, 121, 211; 202, 220; 400 [10]

3		Lesson Plan 139
Activity 4	Puzzle In how many ways can Andrew get from his house to Frank's house? He has to cycle along the roads as there are no shortcuts. The roads in their area are a one-way system, so Andrew can only cycle in the direction shown by the arrows. How can we solve it? Ps suggest ways. (e.g. colour over each route in a different colour, or label each crossroads or vertex.) Let's label the crossroads on this diagram. Ps suggest the letters. e.g. BB: Copy the diagram in your Ex. Bks and see how many different routes you can find. Review at BB with whole class. X, which routes did you find? Who found the same? Who found others? P dictates to T or come to BB. T shows any routes not covered. Agree that there are 10 possible routes and that each route is 5 'units' long (2 units up and 3 units across but in different combinations).	Notes Whole class discussion on strategy, then individual (or paired) trial, monitored, helped Grid drawn on BB or use enlarged copy master or OHP Use names of Ps in class. Use a 2 by 2 grid first if Ps are not very able. Set a time limit. Discussion, agreement, selfcorrecting, praising BB: Possible routes ACF, ABGF, ABKDF, ABLEF, AHF, AJDF, AJKGF, AJKLEF, AIEF, AILGF
5	Book 3, page 139 Q. 4 Read: How many routes lead from A to G, H I and J if you can only move down to the left or to the right? Write the letters of each route in order. Let's see how many ways you can find in 3 minutes! Review a BB with whole class. Ps dictate to T. Class agrees/ disagrees. Omissions added and mistakes corrected. Solution: A to G: 1 route (ABDG) A to $\mathrm{H}: 3$ routes ($\mathrm{ABDH}, \mathrm{ABEH}, \mathrm{ACEH}$) A to I: 3 routes (ACFI, ACEI, ABEI) A to J : 1 route (ACFJ)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion at BB Agreement, praising BB:
6	Probability We know that there are 400 pupils in a school. Which of these statements is Certain, Possible but not certain, or Impossible? a) There are at least 2 pupils whose birthday is on the first of January. Show me . . . now! (P) (365 days in a year, so 365 Ps could have different birthdays and the remaining 35 must have birthdays on one of these 365 days, which could be the 1st January) b) There are 2 pupils whose birthdays are on the same day. Show me . . . now! (C) (The 366th must be the same as another P.) c) Each P has a different birthday. Show me . . . now! (I) (400 Ps but only 365 days in a year)	Whole class activity Ps write 'C', 'P' or 'I 'on scrap paper or slates or have flash cards on desks, or use pre-agreed actions. Responses shown in unison Ps responding correctly explain reasoning to class. Trepeats unclear reasoning in a more precise way if necessary Agreement, praising. In good humour!

B	$\mathrm{R}:$ Calculation C: Puzzles E: Challenges	$\begin{gathered} \text { Lesson Plan } \\ 140 \end{gathered}$
Activity 1	True or false? Decide whether the statement is true or false. If it is true, hold your ears and if it is false, clap your hands when I say. I thought of a number. I added 800 and the result was a whole number less than 1000 . Are these statements true or false?	Notes Whole class activity Ps stand up. Ps who respond incorrectly have to sit down. In good humour! Responses shown in unison. Possible, but not certain Possible, but not certain Class applauds Ps still standing.
2	Book 3, page 140 Q. 1 Read: Write the missing numbers in the puzzles if the sum of the 3 numbers along each side is 1500 . Choose from these numbers. Deal with one part at a time. Set a time limit. Review at BB with whole class. Ps come to BB to write numbers, explaining reasoning. Who agrees? Who thinks something else? etc. Class checks the sums of each line. Solution: a) $420,400,520$, b) $540,560,580,480$, 540, 560, 580 $500,520,400,460$	Individual trial first, monitored helped Drawn on BB or use enlarged copy master or OHP Calculations done mentally Discussion, agreement, checking, self-correcting, praising (or done as a whole class activity)
3	Book 3, page 140 Q. 2 Read: Bunny can only escape from the maze by passing through numbers which add up to 1200 . Draw possible paths he could take. Use a different colour for each one. Make sure that Ps draw lines to show the paths and do not colour in the boxes as some numbers need to be used more than once! Set a time limit. Review at BB with whole class. Ps come to BB to show their paths. Class keeps a running total of the numbers passed. Solution: e.g. $\begin{aligned} & 160+180+270+590=1200 \\ & 160+340+340+360=1200 \\ & 430+230+240+300=1200 \\ & 430+322+240+108=1200 \end{aligned}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, checking, agreement, selfcorrection, praising Feedback for T

BK3		Lesson Plan 140
Activity 7	Book 3, page 140, Q4 Read: Fill in the missing numbers. T chooses two teams of volunteers. Ps come out one after the other from each team to do a step of their puzzle, explaining reasoning.. T times them with a stop watch Rest of class checks that they are correct. The team with correct solution or with the quickest time is the winner. Let's give them a clap! Solution: b)	Notes Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP At a good pace Ps say the whole operation to class as they are writing in the missing numbers. Reasoning, agreement, correcting, praising T goes through each solution again quickly, referring to diagrams.
8	Book 3, page 140 Q. 4 Read: How many triangles can you see in each diagram? Set a time limit for a) and b). Review at BB with whole class. For parts c) and d), T asks several Ps how many triangles they can see. Who agrees? Who thinks there are more? etc. Ps with correct answer come to BB to point to the triangles. Class agrees/disagrees. Solution: d) For part d), T shows how the counting could be done more easily by redrawing the base of each triangle. BB:	Parts a) and b) done as individual work, monitored Parts c) and d) done with the whole class. Drawn on BB or use enlarged copy master or OHP Discussion, agreement, praising Note to : We are choosing 2 out of 6 possible vertices for each base, but each pair can be reversed, so the number of triangles is $\frac{6 \times 5}{1 \times 2}=\frac{30}{2}=15$

