BK	R: Mental calculation C: Revision: numbers to $\mathbf{1 0 0 0}$. Writing and ordering. Rounding E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 1 \end{gathered}$
Activity 1	Combinatorics In how many different ways can we write the word 'ONE' if we can read the letters by taking one step to the right or 1 step down? Ps come to BB to show the different ways. Who agrees? Who can think of another way? etc. Agree that there are 4 ways. BB: a) ONE $\left[\begin{array}{llll}\text { ONE } & \text { ON } & \text { O } & \text { O } \\ & \text { E } & \text { NE } & \text { N } \\ & & & \mathrm{E}\end{array}\right]$ 4 different ways We can show them as one diagram like this. BB: ONE Class checks that all the 4 possible ways are shown. Let's think of how many different ways we can get to each position. T points to each letter in turn and Ps say how many different ways they can get to it. T writes as numbers on BB. T circles the 'end' numbers and writes it as an addition. BB: Repeat for 4 -letter and 5 -letter words, e.g. b) MORE ORE R E E $1+3+3+1=\underline{8}$ (different ways) c) S UGAR $1111 / 1$ UGAR $123 / 4$ GAR AR $1+4+6+4+1=\underline{16}$ (different ways) R	Notes Whole class activiry Words written on BB or letters on cards stuck to BB. Agreement, praising Ps may notice the easiest way of calculation of the possible cases by themselves. The numbers show the number of routes to that place. Ps could suggest the words.
2	\qquad 9 min Problems Listen to the problem. Think about how you would work out the answer. a) I divided 10 into two parts, then I divided one part by the other part. The quotient is 4 . What are the two numbers? T asks several Ps what they think (or the numbers could be written on slates and shown in unison). P answering correctly explains method of solution to the others. Who did the same? Who did it a different way? etc. e.g. i) Trial and error 1: $\begin{aligned} 10 & =7+3 \text { but } 7 \div 3 \neq 4 \\ & =8+2 \text { and } 8 \div 2=4 \end{aligned}$ ii) Trial and error 2 : Rule: $b=4 \times a$ Check: $2+8=10$ iii) Equation: $\begin{aligned} a+4 \times a & =10 \\ 5 a & =10 \\ a & =\underline{2} \end{aligned}$ so one number is 2 and the other is $10-2=\underline{8}($ or $4 \times a=\underline{8})$	Whole class activity (or individual trial first if Ps wish) Give Ps time to think. Discussion. Ps come to BB or dictate what T should write. Reasoning, agreement, praising Accept all correct methods but stress most logical method using an equation. T shows it if no P suggests it.

BKK		Lesson Plan 1
Activity	b) I subtracted an even number from an odd number. Then I multiplied the difference by thirteen. Next I doubled the product. Was the result an even or an odd number? T asks several Ps what they think. Why do you think so? Who agrees? Who thinks something else? etc. (It must be even as any number multiplied by 2 has an even result. Only the last step (doubling) is important!) Ps may check it if they wish. e.g. BB: $9-6=3,3 \times 13=39,39 \times 2=\underline{78}$, which is even. 18 min	Notes Whole class activity Give Ps time to think. Discussion, reasoning, agreement, checking, praising Extra praise if Ps notice this without help.
3	Making 3-digit numbers a) Let's make 3-digit numbers from these number cards. BB: 392 Letr's write them in increasing order. Ps dictate to T: BB: $239<293<329<392<923<932$ Agree that there are 3 possible hundreds digits, then for every hundreds digit there are 2 possible tens digits, then for every tens digit there is only one possible units digit, i.e. $3 \times 2 \times 1=\underline{6}$ possible numbers. b) How many 3-digit numbers can we make from 3 digits if we can use a digit more than once? What kind of diagram can we draw to help us? (Tree diagram) Who remember how to draw it? BB: Agree that there are $\underline{27}$ possible numbers. Could we have reasoned without drawing the tree diagram? (We had 3 possible choices for the hundreds digit, then 3 choices for the tens digit, then 3 choices for the units digit, i.e. $3 \times 3 \times 3=\underline{27}$.) T shows in table on BB. Who can think of questions to ask about these numbers? e.g. - How many are even (odd)? $(9,18)$ - What fraction of them are even (odd)? (1 third, 2 thirds) - How many have all 3 digits the same? (3) Discuss place value and real value. e.g. $222=200+20+2$ - How many are divisible by 3 (4)? $(8,6)$ 24 min	Whole class activity Number cards stuck on BB (Ps could have the number cards on desk too.) Reasoning, agreement, praising Ps suggest strategy and draw it on BB and in Ex. Bks. with T's help if necessary. At a good pace Reasoning, agreement, praising BB: T gives hints if Ps cannot think of any. Praise all contributions. Extra praise for clever questions.
4	Book 4, page 1 Q. 1 Read: Write the numbers in the place value table. Review at BB with whole class. Ps come out to write in the numbers, explaining reasoning. Who made a mistake? What kind of mistake? Deal with all cases. Lets read the numbers in increasing (decreasing) order.	Individual work, monitored (helped) Use enlarged copy master/OHP Agreement, self-correction, praising In unison, at speed Feedback for T

BKK		Lesson Plan 1
Activity 5 Extension	Book 4, page 1 Q. 2 Read: Write these numbers as digits and list them in increasing order. T could choose a P to read each number aloud and Ps could write as digits above the words. Then Ps list in order. Review at BB with whole class. Ps dictate what T should write. Mistakes discussed and corrected BB: $98<560<605<777<1418$ Let's round the numbers to the nearest hundred (ten). T points to each number in turn and Ps say the rounded value. 34 min	Notes Individual work, monitored, helped Agreement, self-correction, praising Ps chosen at random. At speed. Class points out errors.
6	Book 4, page 1 Q. 3 Read: Write these numbers in the correct sets. Deal with one part at at a time. Set a time limit. Review at BB with whole class. Mistakes discussed and corrected. Solution: $\{6,10,54,109,468,893,1000,1302,1517,1999\}$ a) c) b) d) 40 min \qquad	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, self-correction Praising only for numbers beyond 1000.
7	Book 4, page 1, Q. 4 Read: Study the numbers. Are the statements true or false? Write T or F in each box. T chooses a P to read statement aloud. Is it true or false? Show me . . . now! (on slates or scrap paper) a) There is at least one number which is odd. b) All the numbers are even. c) None of the numbers is more than 1500 . d) There are no whole tens. e) Not every number is odd. Who can think of another statement which means the same as (i.e. is equivalent to) this one? T points to each in turn. Ps suggest statements. Class decides whether it is equivalent. e.g. a) There is at least one number which is odd. (Not every number is even.)	Whole class activity (or individual work if Ps wish) In unison. Ps give reasons for their answers. (e.g. 23 is odd) (e.g. 23 is not even) (the largest, $1499<1500$) (e.g. 1240 is a whole ten) (e.g. 802 is even) BB: equivalent (means the same) N.B. 0 is even and can be thought of as no whole ten.

BTK	R: Mental calculation C: Numbers up to 1000. Comparison. Rounding E: Numbers up to 2000. Roman numerals	$\begin{gathered} \text { Lesson Plan } \\ 2 \end{gathered}$
Activity 1 Extension	Writing numbers a) T dictates numbers up to 1000 (2000) and Ps write them in Ex. Bks. Review at BB with whole class. Mistakes discussed and corrected. b) Ps dictate numbers and choose other Ps to write them as digits on the BB. Class agrees/disagrees. T points to some of numbers on BB and Ps round to nearest 10 (100). 8 min \qquad	Notes Individual writing but class kept together. T could have numbers already prepared on $\mathrm{SB} / \mathrm{OHT}$. Discussion, agreement, selfcorrecting, praising At a good pace!
2	Find the mistakes Birdy has tried to write the same number in different ways but he has make a couple of mistakes. Let's help him to find and correct them. Ps come to BB to underline the mistake, say why it is wrong and then to write it again correctly. Class agrees/disagrees. BB: (7×100) a) 7 hundred +1 thousand +3 units; $1 \times 1000+\underline{7 \times 10}+3 \times 1$; \boldsymbol{x} 17 hundreds +3 units; $\boldsymbol{\sim}$ one thousand seven hundred and 3 ; $1000+700+3 ; 1$ thousand +70 tens +3 units b) $1 \times 1000+4 \times 100+3 \times 10+4 \times 1 ; 143$ tens +4 units; one thousand, four hundred and thirty $\underline{\text { one: }} ; 1000+400+30+4 ;$ 14 hundreds $+34 \boldsymbol{V}$ (four) \qquad 13 min	Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace Reasoning, agreement, praising Feedback for T
3	Book 4, page 2 Q. 1 Read: Fill in the missing numbers, then list them in decreasing order. Set a time limit. Ps write numbers in boxes first. Review with whole class. Mistakes discussed and corrected. BB: $\begin{array}{ll} 8 \times 100+5 \times 10=\underline{850} & 3 \times+7 \times 1=\underline{307} \\ 8 \times 100+5 \times 1=\underline{805} & 3 \times 100+7 \times 10=\underline{370} \\ 1 \times 1000+6 \times 10=\underline{1060} & 1 \times 1000+8 \times 100=\underline{1800} \\ 1 \times 1000+6 \times 1=\underline{1006} & 1 \times 100+8 \times 10=\underline{180} \end{array}$ Then Ps list in decreasing order in Pbs. Review at BB with whole class. Ps dictate to T or come to BB. Mistakes corrected. $\text { BB: } 1800>1060>1006>850>805>370>307>180$ 18 min	Individual work, monitored Differentiation by time limit Operations written on BB or SB or OHT Encourage Ps to say the whole equation. Make sure that mistakes are corrected before Ps order the numbers. Individual work, monitored Agreement, self-correction, praising
4	Book 4, page 2 Q. 2 Read: Fill in the missing numbers, then list them in increasing order. Set a time limit. Ps write numbers in boxes first. Review with whole class. Mistakes discussed and corrected. BB: $\begin{array}{ll} 600+30=\underline{630} & 1000+500+4=\underline{1504} \\ 300+60=\underline{360} & 1000+40+5=\underline{1045} \\ 600+3=\underline{603} & 1000+900+1=\underline{1901} \\ 300+6=\underline{306} & 1000+90+1=\underline{1091} \end{array}$ Then Ps list in decreasing order in Pbs. Review at BB with whole class. Ps dictate to T or come to BB. Mistakes corrected. BB: $306<360<603<630<1045<1091<1504<1901$	Individual work, monitored Differentiation by time limit Operations written on BB or SB or OHT Encourage Ps to say the whole equation. Make sure that mistakes are corrected before Ps order the numbers. Agreement, self-correction, praising

BKK		Lesson Plan 2
Activity 5	Sum of digits is 2 In your Ex. Bks. write all the numbers up to 1000 which have 2 as the sum of their digits. Ps dictate their numbers and T writes them on BB. BB: 2, 11, 20, 101, 110, 200 Are there any more? (No) Now write all the numbers from 1000 to 2000 which have 2 as the sum of their digits. Ps dictate their numbers and T writes them on BB. BB: 1001, 1010, 1100, 2000	Notes Individual trial in Ex. Bks first then whole class review. Ps correct wrong numbers or add those missed. Agreement, praising Or done as a whole class activity. Agreement, praising
6 Extension	Book 4, page 2 Q. 3 Read: Write the whole numbers up to 1000 which have the sum of their digits as 3 . Review at BB with whole class. Ps dictate numbers or come to BB. Class agrees/disagrees. Mistakes discussed/corrected. BB: $\quad 3,12,21,30,102,111,120,201,210,300$ Repeat for 1000 to 2000: 1002, 1011, 1020, 1101, 1110, 1200	Individual work, monitored Ps correct wrong numbers or add those missed. Agreement, praising Whole class activity, with Ps dictating numbers to T to write on BB.
7	Equal values Study these numbers. Let's join up the equal values. Ps come to BB to draw joining lines and to explain reasoning. Class points out errrors. Quick revision of Roman numerals . Let"s see what you remember! ($\mathrm{I}=1, \mathrm{~V}=5, \mathrm{X}=10, \mathrm{~L}=50, \mathrm{C}=100, \mathrm{D}=500$, $\mathrm{M}=$ thousand; $\mathrm{VI}=\mathrm{V}+1=6 ; \mathrm{IV}=\mathrm{V}-1=4$, etc.) a) T writes Roman numbers on BB and Ps say them as Arabic numbers. (e.g. LVII, CCXXXI, XLIX, etc.) b) T (or P) says Arabic numbers and Ps write them as Roman numerals. (e.g. 79, 458, 950, 1555, etc.)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Discussion. Involve several Ps. Allow Ps to tell class what they know. T chooses Ps at random. Class points out errors. At a good pace Agreement, praising
8	Book 4, page 2 Q. 4 Read: Write the Roman numerals as Arabic numbers. Set a time limit. Review at BB with whole class. Ps come to BB to fill in numbers, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Details shown on BB if problems. Solution: a) $\mathrm{CV}=\underline{105}$ b) \quad CXXXIX $=\underline{139}$ c) CXLVIII $=\underline{148}$ d) $\mathrm{DCLX}=\underline{660}$ e) CMIX $=909$ f) \quad MCMXCVIII $=1998$ (Or done as a whole class activity if Ps are still unsure.)	Invidual work, monitored, helped Differentiation by time limit T has BB or SB or OHT already prepared Reasoning, agreement, selfcorrection, praising Details: e.g. $\begin{aligned} \text { DCLX } & =500+100+50+10 \\ & =600+60=660 \\ \text { CMIX } & =1000-100+10-1 \\ & =900+9=909 \end{aligned}$

BK	R: Mental calculation C: Numbers up to 1000. Comparison. Rounding. Sequences E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 3 \end{gathered}$
Activity 1	Numbers with digit 1 Let's list the numbers which have 1 as one of their digits. Let's list them in increasing order. Ps dictate numbers to T who writes on BB . BB: $1,10,11,12,13,14,15,16,17,18,19,21,31,41,51$, $61,71,81,91,100,101,102,103, \ldots$ Extra praise when Ps realise that all numbers with 1 in the units, tens, hundreds and/or thousands columns will be included! 5 min	Notes Whole class activity At speed round class Agreement, praising T decides when to stop! Discussion on general case.
2	Sequences T says first few terms of a sequence and Ps continue it. What is the rule? a) $777,766,755,(744,733,722,711,700,689,678,667, \ldots)$ [Rule: - 11] b) $32,182,332,(482,632,782,932,1082, \ldots)$ [Rule: + 150] c) $1,3,7,15,31,(63,127,255,511,1023,2047, \ldots)$ [Rule: 2 times the previous term plus 1] (For T only: $a_{n+1}=a_{n} \times 2+1$) 12 min	Whole class activity At speed round class If a P makes a mistake, next P corrects it. Discussion/agreement on the rule. Ps can write terms in their Ex. Bks. if they cannot keep them in mind. Praising, encouragement only
3	Book 4, page 3 Q. 1 Read: The rule for the next term in the sequence is: 3 times the previous term plus 2. a) Write the first six terms of the sequence if the first term is 2. b) Write the first six terms of the sequence if the first term is 3 . Set a time limit. Ps can do calculations in Ex. Bks if necessary. Review at BB with whole class. Ps come to BB or dictate terms to T. Class agrees/disagrees. Mistakes corrected. Solution: a) $2,8,26,80,242,728$ (All terms are even numbers) b) $3,11,35,107,322,971$ (All terms are odd) 18 min	Individual work, monitored, helped Differentiation by time limit Or if class is less able, deal with one part at a time. Discussion, agreement, selfcorrection, praising Details of calculations written on BB if problems, e.g. $\begin{aligned} 242 \times 3 & =600+120+6 \\ & =726 \end{aligned}$ What do you notice about the terms in each sequence?
[4	Which digits? T writes a string of digits on BB. Which 3 digits would you cross out so that the remaining digits make as great a number as possible without changing the order? Ps can try it in Ex. Bks first if they wish. X, come and show us which digits you think should be crossed out. What number is left? Class reads it in unison. Who agrees with \mathbf{X} ? Who thinks something else? etc. Repeat for other strings of digits. e.g. BB: a) $987987 \rightarrow 98$ 亿 $987 \rightarrow 998$ (Smallest: 787) b) $454532 \rightarrow 454532 \rightarrow 553$ 432 c) $1100345 \rightarrow 1100345 \rightarrow 1345$ 1003) Which digits would you cross out if you wanted to make the smallest number possible?	Whole class activity T could demonstrate on BB first if Ps do not understand what to do. Reasoning, agreement, praising Ps could dictate strings of digits too! Agreement, praising

BK		Lesson Plan 3
Activity 5	Book 4, page 3 Q. 2 Read: Complete the tables. Do first 2 lines of each table with whole class first if necessary (or deal with one part at a time). Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Mistakes discussed and corrected. If problems, show on relevant part of number line (drawn on BB). Solution: a) b)	Notes Individual work, monitored (helped) Tables drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Agree that: 5 is rounded up to nearest 10 50 is rounded up to nearest 100 Feedback for T
6	Book 4, page 3 Q. 3 Read: Mark the numbers with a dot and a letter on a suitable number line. Talk about each number line first. Elicit what the 'ticks' mean. (e.g. top number line: 200 to 300, small tick at every 1; middle number line: 400 to 500 , small tick at every 5 ; bottom number line: 600 to 1600 , tick at every 100) Make sure that Ps know to write only the letter above each dot and that some dots need only be approximate. Set a time limit. Review at BB with whole class. Ps come to BB to draw dots and write letters, explaining reasoning. Class agrees/disagrees. Who made a mistake? What was your mistake? Who did the same? etc. Mistakes corrected. Solution:	Individual work, monitored, helped (or whole class activity if Ps prefer) Drawn on BB or use enlarged copy master or OHP Discussion on distance between 'ticks' on the number lines Do a and b with whole class first if Ps are unsure. Differentiation by time limit At a good pace Reasoning, agreement, selfcorrecting, praising Extension - T (or P) points to a tick on a number line and Ps say the number. - T (or P) says a number and chooses a P to point to its position on a suitable number line. In good humour!

BK					Lesson Plan 3
Activity 7					Notes
	Book 4, page 3, Q. 4				Whole class activity
	Read: Write the numbers in the set diagram.				Drawn on BB or use enlarged
	Elicit that 'divisible by 5 ' means that there is no remainder when that number is divided by 5 . Let's see how quickly we can do this!				copy master or OHP
	Ps come to BB to choose a number, cross it off the list and write it in correct set, explaining reasoning. Class agrees/disagrees. Solution:				Reasoning, agreement, correcting, praising
	$5,100,909$	The number is	even	odd	Ps can write numbers in table in Pbs too.
	$0,217,1000$ $13,352,1215,$	$\begin{gathered} \text { divisible } \\ \text { by } 5 \end{gathered}$	$\begin{array}{ccc} 100 & 60 & 900 \\ 1000 & 0 & 1780 \end{array}$	$\begin{array}{lr} 5 & 1215 \\ & 1605 \end{array}$	
	$\begin{aligned} & 60,834,1605, \\ & 78,900,1780 \end{aligned}$	not divisible by 5	$\begin{array}{cr} 352834 \\ 78 \end{array}$	$\begin{gathered} 909 \\ 13 \end{gathered}$	(Or individual work if Ps prefer, reviewed at BB with whole class)
	$\mathrm{T}(\mathrm{P})$ points to each set in turn and Ps think of other numbers which could belong in that set.				In good humour! Praising only!

BK4	R: Calculation C: Numbers up to 1000 E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 4 \end{gathered}$
Activity 1	Reading and marking numbers Thas numbers written as words on BB or SB or OHT. T chooses a P to read each number, then to come to BB to write it as digits and mark its position on the number line. Class agrees/disagrees. BB: e.g. forty five, one hundred and fifty, four hundred and eighty, three hundred and twenty, eight hundred and five, seven hundred and ninety, one thousand and ten, etc.	Notes Whole class activity T chooses Ps at random Number line drawn on BB or OHT or use enlarged copy master or OHP At a good pace Agreement, praising Ps can choose numbers too! Extension minus twenty (-20)
2	Divisibility by 5 a) Let's list the 3 -digit numbers which have 5 as the sum of their digits. First let's think of the possible 3 -term additions. T writes on BB what Ps suggest. (e.g. BB: $1+4+0=5,1+3+1=5$, $1+2+2=5,2+3+0=5,5+0+0=5)$ Now we can think of the possible numbers more easily. T writes on $B B$ what Ps suggest. BB: $104,140,401,410 ; 113,131,311 ; 122,212,221$; 203, 230, 302, 320; 500 Which of them are even numbers? Which of them are divisible by 5? Agree that any number which has 0 in the units column is divisible by 5 . b) Lets list the 3-digit numbers which have 5 as the product of their digits. First let's think of the possible multiplications. What are the factors of 5? (only 1 and 5) T tells or elicits that numbers which have only 1 and the number itself as factors are called prime numbers. (BB) Elicit that the only possible multiplication is $1 \times 5 \times 1$ and that the order does not matter in multiplication. What 3 -digit numbers have only 1,1 and 5 as dgits? Ps come to BB to write them. Class agrees/ disagrees. BB: 115, 151, 511 Which of them are divisible by 5? (115) Agree that all numbers which have either 5 or 0 in the units column are divisible by 5 .	Whole class activity Discussion on strategy Involve several Ps. Elicit that order in addition does not matter. Agreement, praising Elicit that none of the odd numbers are divisible by 5 . Discussion on strategy Some Ps might remember this from previous years. BB: Prime number factors: only 1 and itself Discussion, agreement, praising

R1,		Lesson Plan 4
Activity 3	Book 4, page 4 Q. 1 Read: Continue the pattern. Colour the correct part of the circles in the flow chart. Ps continue the pattern first, then try to understand what the flow diagram means. T explains ordinal numbers if necessary. Review at BB with whole class. Who can explain the flow chart to us? Who knows how to colour the circles? Who agrees? Who thinks something else? T leads the whole class through the flow chart, explaining clearly and relating to the 3 types of numbers. Solution: 16 min \qquad	Notes Individual work, monitored (or whole class activity) Drawn on BB or use enlarged copy master or OHP (position in an order) Discussion, agreement, checking, self-correction, praising Demonstration of, e.g. $15,22,29$ T says a number and Ps come to BB to show how its circle would be shaded. e.g. What would the 413th shape be? $413=300+90+21+(2)$ $\checkmark \vee v$ so shape would be
4	Roman numerals Who can write these Roman numerals as Arabic numbers? Ps come to BB to write numbers, explaining reasoning in detail. Class agrees/disagrees. Revise Roman numerals if necessary. $\begin{array}{llll} \text { BB: } & \text { CCL }=(250) & \text { CCLXXXI }=(281) & \text { CCCLXIV }=(364) \\ & \text { CDVI }=(406) & \text { DCCLIII }=(753) \end{array}$ 20 min	Whole class activity Written on BB or SB or OHT At a good pace Details: e.g. $\begin{aligned} \text { CDVI } & =500-100+5+1 \\ & =400+6=\underline{406} \end{aligned}$ Agreement, praising
5	Book 4, page 4 Q. 2 Read: Continue the sequences using Roman numerals. Set a time limit. Review at BB with whole class. Ps come to BB to write their sequence, explaining reasoning and rule. Who agrees? Who thinks something else? etc. All mistakes discussed and corrected. Solution: a) XLVII, LXVII, LXXXVII, (CVII, CXXVII, CXLVII, $\begin{array}{ccccc} \text { 47, } 67, \quad 87, & 107, & 127, & 147, \\ \text { CLXVII, } & \text { CLXXXVII, } & \text { CCVII, } \ldots) & {[\text { Rule: }+20]} \\ \text { 167, } & 187, & 207 \end{array}$ b) CMI, DCCCI, DCCI, (DCI, DI, CDI, CCCI, CCI, 901, 801, 701, 601, 501, 401, 301, 201, CI, I) [Rule: - 100] 101, 1	Individual work, monitored, helped Differentiation by time limit Discussion on the rule, reasoning, agreement, selfcorrection, praising Feedback for T

| Activity |
| :---: | :---: | :---: | :---: | :---: |
| 9 |

BK	R: Calculation C: Operations with numbers up to $\mathbf{1 0 0 0}$. Addition, subtraction E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 5 \end{gathered}$
Activity 1	Mental practice T says an addition, P says sum. If a P makes a mistake, the next P must correct it. e.g. $\begin{aligned} & 20+90(=110), 31+50(=81), 150+400(=550), 7+16(=23), \\ & 45+47(=92), 132+68(=200), 435+435(=870), \text { etc. } \\ & 5 \text { min } \end{aligned}$	Notes Whole class activity In order round class At speed Ps can think of additions too! Praising
2	Money models a) Let's calculate how much money these two people have altogether. Ps come to BB to write amounts in the place value table, explaining reasoning. Class agrees/disagrees. What should we do before we start the calculation? (Estimate) Ps estimate the total mentally and come to BB to do the calculation, explaining reasoning in detail. Class agrees/disagrees. BB: Finlay: 100 100 10 10 (1) (1) (1) (1) (1) (1) E: $440+390=830$ Horizontal methods: $436+387=700+110+13=\underline{823}$ or $436+387=736+87=816+7=\underline{823}$ b) Let's calculate how much money Helen had left after she had been shopping. Ps come to BB to write amounts in the place value table, explaining reasoning. Class agrees/disagrees. What should we do before we start the calculation? (Estimate) Ps estimate the total mentally and come to BB to do the calculation, explaining reasoning in detail. Class agrees/disagrees. BB: $E: \quad 8400-5 \quad 600=280$ Horizontal method: $843-555=700+130+13-555$ e.g. $\begin{aligned} & =700-500+130-50+13-5 \\ & =200+80+8=\underline{288} \end{aligned}$ or mentally: $\begin{aligned} 843-555=843-543-12 & =300-12 \\ & =\underline{288} \end{aligned}$	Whole class activity Drawn or stuck on BB or use enlarged copy master or OHP (Or T could have 2 purses already prepared and ask 2 Ps to come to front of class, open their purse and stick model money on BB. Names on BB would then be the Ps' names.) Details: e.g. $\begin{aligned} & 6 \mathrm{U}+7 \mathrm{U}=13 \mathrm{U}=1 \mathrm{~T}+\underline{3 \mathrm{U}} \\ & 3 \mathrm{~T}+8 \mathrm{~T}+1 \mathrm{~T}=12 \mathrm{~T} \\ & =1 \mathrm{H}+\underline{2 \mathrm{~T}} \\ & \begin{aligned} 4 \mathrm{H}+3 \mathrm{H}+1 \mathrm{H} & =\underline{8 \mathrm{H}} \end{aligned} \end{aligned}$ Revision of mental and written procedures Whole class activity Drawn or stuck on BB or use enlarged copy master or OHP (Or use name of a P in class) Accept any correct reasoning e.g. adding same amount to reductant and subtrahend, as in main diagram, or changing 1 H to 10 T and 1 T to 10 U : or T stresses preferred method.

BKK		Lesson Plan 5
Activity 3	Problems Listen carefully, write the data and do the calculations in your Ex. Bks. Show me the answer when I say. Ps who respond correctly come to BB to explain reasoning. Who agrees? Who did it another way? Who made a mistake? What kind of mistake? etc. a) Gina has $£ 2.35$ in her piggy bank and $£ 4.59$ in her purse. How much money does she have altogether? BB: $£ 2.35=235 \mathrm{p} \quad £ 4.59=459 \mathrm{p}$ Answer: Gina has $£ 6.94$ altogether. 1 b) How much money would Gina have if her father were to put another $£ 2.00$ in her piggy bank? Show me . . now! (£8.94) c) How much money would Gina have if she took $£ 3.00$ from her purse and spent it? Show me . . . now! (£3.94) d) How much money would Gina have if she took $£ 4.00$ out of her purse and put it in ther piggy bank? Show me... now! (£6.94)	Notes Individual work in Ex. Bks but class kept together, then whole class review Give Ps time to think and do calculations, then responses shown in unison. Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising BB: $694 \mathrm{p}=£ 6.94$ $\text { BB: } £ 6.94+£ 2.00=£ 8.94$ $\text { (or } £ 4.35+£ 4.59=£ 8.94 \text {) }$ BB: $£ 6.94-£ 3.00=£ 3.94$ $\text { (or } £ 2.35+£ 1.59=£ 3.94 \text {) }$ There would be no change, as she only moved money from one place to the other.
4	Book 4, page 5 Q. 1 Read: Write your estimation in detail. Calculate the exact sum. Deal with one part at a time. Review at BB with whole class. Ps give details of calculation. Mistakes discussed and corrected. Solution: a) $\mathbf{2 6 3 + 5 2 6}$ E: $300+500=800$, or $260+530=790$ $C: \begin{array}{r}2663 \\ +\quad 526 \\ \hline 789\end{array}$ b) $\mathbf{3 5 4 + 4 1 9}$ E: $400+400=800$, or $350+420=770$ C: $\begin{array}{r}354 \\ +\quad 419 \\ \hline 773 \\ \hline 1\end{array}$ c) $\mathbf{4 7 5}+\mathbf{5 3} \mathbf{+ 4 1 9}$ E: $500+100+400=1000$, C: or $480+50+420=950$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Details: e.g. c) $\begin{aligned} 5 \mathrm{U}+3 \mathrm{U}+9 \mathrm{U} & =17 \mathrm{U} \\ & =1 \mathrm{~T}+\underline{7 \mathrm{U}} \\ 7 \mathrm{~T}+5 \mathrm{~T}+1 \mathrm{~T} & +1 \mathrm{~T} \\ =14 \mathrm{~T} & =1 \mathrm{H}+\underline{4 \mathrm{~T}} \\ 4 \mathrm{H}+4 \mathrm{H}+1 \mathrm{H} & =\underline{\mathrm{H}} \end{aligned}$ Feedback for T

BKK		Lesson Plan 5
Activity 5	Book 4, page 5 Q. 2 Read: How much money do we have left? Estimate, calculate and check the result. How much money did we have? (£645) How can we check our calculation? (addition and subtraction) Set a time limit. Review at BB with whole class. Ps give details of calculations. Class agrees/disagrees. Mistakes discussed and corrected. Solution: We bought: E: $650-230=420$ C: 6 4 5 -2 2 3 2 4 1 3 Check: $\begin{array}{r}4113 \\ +232 \\ \hline 645 \\ \hline\end{array}$ $\begin{array}{r}645 \\ -\quad 413 \\ \hline 232 \\ \hline\end{array}$	Notes Individual work, monitored, helped Drawn (or stuck) on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T
6	Book 4, page 5 Q. 3 Read: What is the difference between 743 and 558? Estimate, calculate and check the result. What kind of operation is it? (subtraction) How can we check it? (addition and subtraction) Review at BB with whole class. Ps give details of calculations. Who did the same? Who calculated in a different way? Mistakes discussed and corrected. Solution: E: $\quad 7000-600=100$ or 7 4 C: - 5_{1} 5 Check: 1 8 5 + 5 5 8 7 4 3 1 1 Who could write it as an inequality? Who agrees? etc.	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Details: e.g. I cannot subtract 8U from 3 U , so I add 10 U to reductant and 1 T to subtrahend: $\begin{aligned} & 10 \mathrm{U}+3 \mathrm{U}=13 \mathrm{U} \\ & 13 \mathrm{U}-8 \mathrm{U}=\underline{5 \mathrm{U}} \end{aligned}$ $5 \mathrm{~T}+1 \mathrm{~T}=6 \mathrm{~T}$, but I cannot subtract 6 T from 4 T , so I add 10 T to reductant and 1 H to subtrahend, etc BB: $743 \underset{185}{>} 558$
7	Book 4, page 5, Q. 4 Read: Fill in the missing numbers and write above the dotted and dashed arrows what they mean if the solid arrow means +180 and the double arrow means - 75 . Ps come to BB to write the operations beside the arrows and to fill in the missing numbers. Ps explaining reasoning in detail. Rest of class check that they are correct. Solution: If the arrows pointed in the opposite direction, what would they mean?	Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP Involve several Ps. At a good pace Ps write solution in Pbs too. Agree that both dotted and dashed arrows mean the same (+105) so only one arrow is necessary. Agreement, praising

BK4	R: Calculation C: Operations with numbers up to 1000 E: Operations with numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 6 \end{gathered}$
Activity	Mental practice T says an operation, Ps say result. a) Addition and subtraction: $\begin{aligned} & \text { e.g. } 5+8,11+7,38-5,76+22,400+500,680-80,76+9 \text {, } \\ & 96-7.42+49(=42+40+9=82+9=91), \\ & 64-38(=64-30-8=34-8=26) \text {, etc. } \end{aligned}$ b) Multiplication and division: $\begin{aligned} & \text { e.g. } 3 \times 4,8 \times 7,6 \times 9,7 \times 6,5 \times 20,81 \div 9,42 \div 2 \text {, } \\ & 250 \div 2,640 \div 80,50 \times 3,50 \times 30,34 \times 10,450 \div 9 \text {, etc. } \end{aligned}$	Notes Whole class activity At speed round class (or T chooses Ps at random) If a P makes a mistake, the next P corrects it. If problems, write details of calculation on BB. Reasoning, agreement, praising
2	Secret number 1 I am thinking of a 2-digit number. I will give you clues and you must tell me what number I could be thinking of. 1) The difference between its digits is 3 . What number could I be thinking of? Ps write possible numbers in Ex. Bks. Ps dictate numbers to T. BB: $14,25,36,47,58,69,30,41,52,63,74,85,96$ 2) It is also divisible by 6. What number could it be? Ps show possible numbers on command. BB: 30, 36 or 96 3) Also, the number in reverse order is divisible by 7. Show me the number . . now! (36) [63 is divisible by 7]	Whole class activity Give Ps time to think and write. Agreement, praising Responses shown on scrap paper or slates in unison In unison. Praising
3	Secret number 2 Think of a 1 -digit number. Multiply it by 9 . If you tell me the units digit of the product, I will tell you the number you first thought of. T asks several Ps for units digits and tells them their original number. e.g. P_{1} : the units digit of my product is 3 . T : your number is 7 . P_{2} : the units digit of my product is 8 . T : your number is 2 . Who knows how I do it? Ask several Ps what they think. Reason with reference to the 9 times table. e.g $7 \times 9=6 \underline{3}, 2 \times 9=1 \underline{8}$ BB: $\quad 0,9,18,27,36,45,54,63,72,81$ $\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	Whole class activity Ps could stand up when they know how it is done. Let them try too before discussing strategy with the class. Reasoning, agreement, praising
4	Problems Listen carefully, write the data and do the calculations in your Ex. Bks. Show me the answer when I say. (On scrap paper or slates) Ps who respond correctly come to BB to explain reasoning. Who agrees? Who did it another way? Who made a mistake? What kind of mistake? etc. a) Dan had $£ 925$ in his bank account. He bought a computer for $£ 458$. How much does he have left in his account? BB: $925-458=525-58=475-8=\underline{467}$ or Answer: Dan has $£ 467$ left. Use this result to help you answer the following questions.	Individual work in Ex. Bks but class kept together, then whole class review Give Ps time to think and do calculations, then responses shown in unison. Reasoning, agreement, selfcorrection, praising

BKL		Lesson Plan 6
Activity 4	(Continued) b) How much money would Dan have left if he had $£ 200$ less in his account before he bought the computer? Show me . . . now! (£267) BB: $467-200=\underline{267}$ or c) How much money would Dan have left if he had spent $£ 200$ less? Show me . . . now! (£667) BB: $467+200=\underline{667}$ or d) How much money would Dan have left if he had $£ 300$ more in his account before he bought the computer? Show me . . . now! (£767) BB: $467+300=\underline{767}$ or e) How much money would Dan have left if he had spent $£ 300$ more? Show me . . .now! (£167) BB: $467-300=\underline{167}$ or f) How much money would Dan have left if he had $£ 400$ more in his account before he bought the computer and the computer cost $£ 400$ more? Show me . . . now! (£467) $\text { BB: } 467+400-400=\underline{467} \text { or }$ or 'If you have $£ 400$ more but spend $£ 400$ more, the amount left stays the same.'	Notes BB: BB: BB: BB: BB: Extra praise if Ps deduce this without help.
5	Book 4, page 6 Q. 1 Read: Practise addition. Estimate the sum first. Set a time limit. Remind Ps to check their results mentally by adding in opposite direction and also by comparing with estimate. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Solution: a) $263+526$ b) $\quad 493+174$ c) $278+426$ E: 700 E: 700 4 9 3 +1 7 4 6 6 7 1 	Individual work, monitored (helped) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Extension Think of a subtraction for each addition. T chooses Ps at random. e.g. a) $879-523=356$ Orally at speed
6	Book 4, page 6 Q. 2 Read: Practise subtraction. Estimate the difference first. Check your result in two ways. Set a time limit. Remind Ps to compare results with estimates. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning in detail. Mistakes discussed and corrected. Solution: a) 978 - 426 E: 600 C: b) 803-576 E: 200 C: 8 0 3 $-\quad 5$ 7 6 2 2 7	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Thelps with spoken details of subtraction if necessary.

[^0]| BKK | | Lesson Plan 6 |
| :---: | :---: | :---: |
| Activity 7 | Book 4, page 6
 Q. 3 Read: Complete the additions and subtractions.
 Set a time limit. Set simpler tasks (without crossing tens) for less able Ps if necessary. Ps check their results by doing the calculations again mentally.
 Review at BB with whole class. Ps come to BB to do calculations, explaining reasoning in detail. Class agrees/ disagrees. Mistakes discussed and corrected.
 Solution:
 a)
 b)
 3 4 8
 + 2 5
 6 0 5
 c)
 d) | Notes
 Individual work, monitored, helped
 Written on BB or use enlarged copy master or OHP
 Differentiation by time limit (or by task)
 Reasoning, agreement, selfcorrection, praising
 Thelps with details of reasoning where necessary. |
| 8 | Book 4, page 6, Q. 4
 Read: I thought of a number, then added 900.
 The result was a number less than 1000.
 T (or P) reads each statement, then Ps show decision on whether true or false by pre-agreed actions (e.g. hands in the air if true or knock on the desk if false) or by writing T or F ($\operatorname{or} \boldsymbol{\checkmark}$ or \boldsymbol{X}) on scrap paper or slates.
 a) The number I first thought of must be less than 100 .
 Show me . . . now!
 (T) $(100+900=1000)$
 b) The number I first thought of must be less than 99.
 Show me . . . now!
 (F) $\quad(99+900=999<1000)$
 c) The number I first thought of could be equal to 99.
 Show me . . . now!
 d) The number I first thought of cannot be more than 99.
 Show me . . . now!
 e) The number I first thought of could be equal to 10 .
 Show me . . . now!
 (T) $(10+900=910<1000)$
 f) The number I first thought of cannot be100.
 Show me . . . now!
 (T) | Whole class activity (or individual trial first if Ps wish)
 Statements written on BB or SB or OHT (or use enlarged copy master)
 Ps decide on actions, if used.
 Responses shown in unison on command.
 Ps give examples or counter examples to support their responses (especially incorrect ones!)
 In good humour!
 Discussion, reasoning, agreement (self-correction in $P b s$ if done individually first)
 Praising, encouragement only
 Feedback for T |

BKK		Lesson Plan 7
Activity 4	Book 4, page 7 Q. 1 Read: The sum of any two adjacent numbers is the number directly above them. Fill in the missing numbers. Set a time limit. Review at BB with whole class. Ps come to BB to fill in numbers or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes corrected. Solution: a) b) 20 min \qquad	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Calculations done in Ex. Bks or on slates if necessary. Reasoning, agreement, selfcorrection, praising At a good pace Bold numbers are given.
5	Book 4, page 7 Q. 2 Read: Fill in the missing numbers. Make sure Ps know that equations must be true both horizontally and vertically. Encourage Ps to calculate mentally and to check their results. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Solution: b) 26 min	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, agreement, self-correction, praising Feedback for T
6	Book 4, page 7 Q. 3 Read: Do the additions and subtractions. Look for connections between them. Encourage Ps to do calculations mentally. Set a time limit. Review at BB with whole class. Ps dictate results to T or come to BB. Mistakes discussed and corrected. Solution: a) $25+40=65$ $725+40=765$ $725+140=865$ b) $58-40=18$ $658-40=618$ $658-240=418$ c) $60+17=77$ $60+317=377$ $460+317=777$ d) $93-63=30$ $393-63=330$ $393-363=30$ What did you notice about them? (e.g. if one of the terms is increased by a certain amount, then the sum will also increase by that amount; if the number being subtracted (subtrahend) is increased by a certain amount, then the difference will decrease by that amount, etc.)	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Agreement, self-correction, praising Feedback for T Whole class discussion Involve several Ps. Ps come to BB to point and explain. Praise all contributions. T repeats Ps' explanations more clearly if necessary.

3 K		Lesson Plan 7
Activity 7	(Continued) e) One morning there were 664 children on the beach. 385 of them went home for lunch. How many children remained on the beach? Plan: Were: 664 children Went home: 385 children Children remaining: 664-385 Estimation: 700-400 $=300$ C: $\quad 6{ }_{6}^{10}{ }_{4}^{10}$ or $660-390=260+10=270$ Answer: 279 children remained on the beach. $\qquad$$3_{1}$ 8_{1} 5 2 7 9 Stand up if you had all 5 problems correct. Let's give them a round of applause!	Notes or use subtraction Stars, stickers, etc. awarded

Bk4 Activity 1	R: Mental calculati C: Operations up E: Numbers up to							les		Lesson Plan 8
	Multiplication practice Let's practise the multiplication table. Ps say whole equation. $\left.\begin{array}{c} 1 \times 0=0,1 \times 1=1,1 \times 2=2, \ldots 1 \times 10=10,(1 \times 11, \ldots) \\ 2 \times 0=0,2 \times 1=2,2 \times 2=4, \ldots 2 \times 10=20,(2 \times 11, \ldots) \\ 3 \times 0=0,3 \times 1=3,3 \times 2=6, \ldots 3 \times 10=30,(3 \times 11, \ldots) \\ \ldots \end{array}\right] .$									Notes Whole class activity Some in unison, some in order round class, some where T chooses Ps at random At speed. Praising Less able Ps may use printed tables.
2	Division practice Let's practise the division table. T says a division, Ps say quotient. $\begin{aligned} & 0 \div 0 \text { (impossible), } 1 \div 0 \text { (impossible), } 7 \div 0 \text { (impossible) } \\ & 0 \div 1=0,1 \div 1=1,2 \div 1=2, \ldots 10 \div 1=10,(157 \div 1=157) \\ & 0 \div 2=0,2 \div 2=1,4 \div 2=2,6 \div 2=3,8 \div 2=4, \\ & 10 \div 2=5, \ldots 20 \div 2=10,\left(68 \div 2=34,1 \div 2=\frac{1}{2}, 7 \div 2=3 \frac{1}{2}\right) \\ & 0 \div 3=0,3 \div 3=1,6 \div 3=3,9 \div 3=3, \ldots 30 \div 3=10 \\ & \left(33 \div 3=11,36 \div=12,150 \div 3=50,960 \div 3=320,2 \div 3=\frac{2}{3}\right. \\ & \left.50 \div 3=48 \div 3+2 \div 3=16+\frac{2}{3}=16 \frac{2}{3}\right) \\ & \\ & \cdots \\ & 0 \div 10=0,10 \div 10=1,20 \div 10=2, \ldots, 100 \div 10=10 \\ & \left(1500 \div 10=150,1320 \div 10=132,672 \div 10=67+\frac{2}{10}=67 \frac{2}{10}=67.2\right) \end{aligned}$									Whole class activity T chooses Ps at random. Class points out errors. At speed Divisions in brackets are to see what Ps can do and to extend more able Ps. Write on BB if there are problems, especially divisions resulting in fractions. Thelps Ps with explanations but stress that Ps will learn it in a later lesson. Praising, encouragement only
3	Order of operations Let's see how clever you are at doing calculations! Ps come to BB to do calculations in correct order, explaining reasoning in detail. Other Ps point out errors or suggest easier ways of calculating. BB: a) $\begin{aligned} & 89+45-28=(106) \\ & 89+(45-28)=(106) \\ & (89+45)-28=(106) \end{aligned}$ b) $\begin{aligned} & 197-54+28=(171) \\ & 197-(54+28)=(115) \\ & (197-54)+28=(171) \end{aligned}$ c) $\begin{aligned} & 360 \div 4 \times 2=(180) \\ & 360 \div(4 \times 2)=(45) \\ & (360 \div 4) \times 2=(180) \end{aligned}$ d) $\begin{aligned} & 120 \times 8 \div 4=(240) \\ & 120 \times(8 \div 4)=(240) \\ & (120 \times 8) \div 4=(240) \end{aligned}$ 20 min									Whole class activiry Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Calculations done at side of BB if necessary. BB: details, e.g. $\begin{aligned} & 89+45=90+44=134 \\ & 360 \div 8=90 \div 2=\underline{45} \\ & \begin{aligned} 120 \times 8 & =100 \times 8+20 \times 8 \\ & =800+160=\underline{960} \end{aligned} \end{aligned}$
4	Book 4, page 8 Q. 1 Read: Complete the table using the rule given. Set a time limit. Encourage mental calculation. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.									Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Calcualtions may be done in Ex. Bks if necessary Reasoning, agreement, selfcorrection, praising

B		Lesson Plan 8
Activity 7	Book 4, page 8 Q. 4 Read: Underline the important data. Write a plan, estimate, calculate and check your result. Write the answer in a sentence. Do the work in your exercise book. Deal with one part at a time. Set a time limit. Ps read question themselves and solve it in Ex. Bks. Make sure that you do not miss a step! Ps sit up with arms folded when finished. Review with the whole class. Ps come to BB to show solutions, explaining reasoning. Who agrees? Who did it a different way? Who made a mistake? What kind of mistake? etc. Repeat for each of the other questions. Solution: a) Ann has $\underline{£ 716}$ and Barry has $£ 285$ less. How much money does Barry have? How much money do Ann and Barry have altogether? i) Plan: A: $£ 716, \mathrm{~B}: £ 716-£ 285 \mathrm{C}$: Estimation: e.g. $700-300=400$ Answer: Barry has $£ 431$. ii) Plan: A + B: $£ 716+£ 431$ C : Estimation: e.g. $720+430=1150$ Answer: Ann and Barry have $£ 1147$ altogether. b) Ann has $\underline{£ 716}$ and Sarah has $\underline{£ 285 \text { more. How much money }}$ does Sarah have? How much money do Ann and Sarah have altogether? i) Plan: A: $£ 716, \mathrm{~S}: £ 716+£ 285 \mathrm{C}$: Estimation: e.g. $700+300=1000$ Answer: Sarah has $£ 1001$. ii) Plan: A + S: $£ 716+£ 1001$ C : Estimation: e.g. $720+1000=1720$ Answer: Ann and Sarah have $£ 1717$ altogether. c) Ann has $£ 716$, which is $£ 285$ less than Tom has. How much does Tom have? How much do Ann and Tom have altogether? i) Plan: A: $£ 716, \mathrm{~T}: £ 716+£ 285=\underline{£ 1001}$ (from b)) Answer: Tom has $£ 1001$. ii) Plan: A + T: $£ 716+£ 1001=\underline{£ 1717} \quad$ (from b)) Answer: Ann and Tom have $£ 1717$ altogether. d) Ann has $£ 716$, which is $£ 285$ more than Suzy has. How much does Suzy have? How much do Ann and Suzy have altogether? i) Plan: A: $£ 716, \mathrm{~S}: £ 716-£ 285=\underline{£ 431}$ (from a)) Answer: Suzy has $£ 431$. ii) Plan: A + S: $£ 716+£ 431=\underline{£ 1147}$ (from a)) Answer: Ann and Suzy have $£ 1147$ altogether.	Notes Individual work, monitored, helped. Class kept together for a) and b), then differentiation by time limit. Only the most able Ps will have time to finish all the questions individually. If no P finishes in the set time, e) can be done at home if Ps wish and reviewed in Lesson 9, or done with the whole class. Discussion, reasoning, agreement, self-correction, praising Keep up a good pace throughout. Check with addition or subtraction or $716 \times 2-285=1432-285$ Check with addition in opposite direction or $716 \times 2+285$ Extra praise if Ps notice similarity to b) Extra praise if Ps notice similarity to a)

BK4		Lesson Plan 8
Activity 7	(Continued) e) Ted has $£ 761$ and Sam has $£ 285$. How much money should Ted give to Sam so that they both have the same amount? Plan: T: £761, S: $£ 285$ Difference: $£ 761$ - $£ 285$ The point where they both have the same amount will be half way between 761 and 285 . (Show on a diagram on BB.) Mid-point: $(761-285) \div 2=476 \div 2 \quad C$: $=\underline{238}$ Details: $476 \div 2=400 \div 2+60 \div 2+16 \div 2$ $=200+30+8=\underline{238}$ Answer: Ted should give $£ 238$ to Sam and they will both have $£ 523$. Stand up if you had all 5 problems correct. (Much deserved applause!)	Notes Individual work, reviewed with whole class, or done as whole class activity Allow Ps to explain solution, with hints from T if necessary Reasoning, agreement, selfcorrection, praising
8	Book 4, page 8 Q. 5 Read: Fill in the missing digits. Set a time limit. Ps check by doing calculation again mentally. Review at BB with whole class. Ps come to BB, explaining reasoning in detail. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\mathbf{1}$ 4 3 + 6 $\mathbf{0}$ 9 7 5 2 1 5 + 8 6 1 0 2 c) \qquad d) \qquad $\begin{array}{r}807 \\ -\quad 534 \\ \hline 273\end{array}$	Individual work, monitored, helped (or whole class activity if time is short, or could be set for homework and reviewed in Lesson 9) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising

BKK	R: Mental and written calculation C: Multiplication and division tables E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 9 \end{gathered}$
Activity 1	Sequences T says the first few terms of a sequence and Ps continue it. What is the rule? a) $0,7,14,(21,28,35,42,49,56,63,70,77,84, \ldots)$ Rule: +7 (or multiples of 7 in increasing order) b) $0,-4,4,-8,8,-12,12,(-16,16,-20,20,-24,24, \ldots)$ Rule: Negative, then corresponding positive, multiples of 4. c) $\ldots,-24,-16,-8,0,8,16,(24,32,40,48,56,64,72, \ldots)$ Rule: +8 (or whole multiples of 8 in increasing order) d) $11,22,33,(44,55,66,77,88,99,110,121,132,143, \ldots)$ Rule: +11 (or natural multiples of 11 in increasing order) 6 min	Notes Whole class activity At speed in order round class Discussion on the rule. Talk about the different kinds of numbers: Natural numbers: positive whole numbers ($1,2,3, \ldots$) Negative numbers: $n<0$ Positive numbers: $n>0$ Fraction: part of 1 unit Praising, encouragement only
2	Multiplication table relay T says a multiplication, e.g. ' 3×4 ', P_{1} says result ($'=12$ '), then says a multiplication for P_{2}, e.g.' $7 \times 6^{\prime}$; P_{2} says result ($\left(=42^{\prime}\right.$), then says a multiplication for P_{3}, e.g. $5 \times 9^{\prime}, \mathrm{P}_{3}$ says result $(=45)$, etc. Ps may have multiplication table on desks if they wish. T notes the Ps who use it. Class points out errors if next P misses it. \qquad 11 min \qquad	Whole class activity At speed in order round class If a P makes a mistake, next P corrects it quickly and says the next multiplication. In good humour!
3	Division table relay T says a division, e.g. ' $8 \div 4$ ', P_{1} says result ($'=2$ '), then says a division for P_{2}, e.g.' $15 \div 5$ '; P_{2} says result (${ }^{\prime}=3$ '), then says a division for P_{3}, e.g. ' $28 \div 7$ ', P_{3} says result $(=4)$, etc. If there is a remainder, Ps must solve it but T states that it was not a correct question. Class points out errors if next P misses it. \qquad 17 min \qquad	Whole class activity At speed in order round class If a P makes a mistake, next P corrects it quickly and says the next division. In good humour!
4	Writing operations Study the diagrams. Who can write additions or multiplications or divisions about them? Ps come to BB or dictate what T should write. BB:	Whole class activity Model money stuck or drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Extra praise for unexpected operations, e.g. $50 \times 10 \times 2=1000$

BKK		Lesson Plan 9
Activity 5	Book 4, page 9 Q. 1 Read: Calculate the products. Look for relationships. Set a time limit. Encourage mental calculation. Review at BB with whole class. Ps dictate results to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $4 \times 5=\underline{20}$ $40 \times 5=\underline{200}$ $4 \times 50=\underline{200}$ $4 \times 500=\underline{2000}$ $40 \times 50=\underline{2000}$ $\left.\begin{array}{lll} \text { b) } 3 \times 6=\underline{18} & 30 \times 6=\underline{180} & 3 \times 60=\underline{180} \\ & 3 \times 600=\underline{1800} & 30 \times 60=\underline{1800} \end{array}\right]$ Ps tell class what relationships they noticed. (e.g. if one of the factors increases by 10 times, the product increases by 10 times; if both factors increase by 10 times, the product increases by $10 \times 10=100$ times, etc.)	Notes Individual work, monitored, helped Written on BB or SB or OHT (or T has BB already prepared and uncovers results as they are dealt with) Reasoning, agreement, selfcorrection, praising Feedback for T Involve several Ps. T repeats Ps' reasoning in a clearer way if necessary. Praise all contributions.
6	Book 4, page 9 Q. 2 Read: Calculate the quotients. Look for relationships. Set a time limit. Encourage mental calculation. Review at BB with whole class. Ps dictate results to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) b) $\begin{array}{ll} 12 \div 4=\underline{3} & 120 \div 40=\underline{3} \\ 120 \div 4=\underline{30} & 1200 \div 40=\underline{30} \\ 1200 \div 4=\underline{300} & 1200 \div 400=\underline{3} \\ 20 \div 5=\underline{4} & 200 \div 5=\underline{40} \\ 200 \div 5=\underline{40} & 2000 \div 50=\underline{40} \\ 2000 \div 5=\underline{400} & 2000 \div 500=\underline{4} \end{array}$ Ps tell class what relationships they noticed. (e.g. if the dividend increases by 10 times, the quotient also increases by 10 times; if the divisor increases by 10 times, the quotient decreases by 1 tenth, etc.)	Individual work, monitored, helped Written on BB or SB or OHT (or T has BB already prepared and uncovers results as they are dealt with) Reasoning, agreement, selfcorrection, praising Feedback for T Involve several Ps. T repeats Ps' reasoning in a clearer way if necessary. Praise all contributions.
7	Book 4, page 9 Q. 3 Read: Calculate the products. Look for relationships. Set a time limit. Ps can write calculations in Ex. Bks if necessary. Review at BB with whole class. Ps come to BB to write results, explaiing reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\begin{aligned} 3 \times 100 & =\underline{300} & \text { b) } 100 \times 7 & =\underline{700} & \text { c) } & 200 \times 4 \end{aligned}=\underline{800}\left(\begin{array}{rlrl} 3 \times 40 & =\underline{120} & 30 \times 7 & =\underline{210} \end{array} r \underline{80 \times 4}=\underline{\underline{320}}\right.$ Use this idea to help you do some of the next multiplications.	Individual work, monitored, helped Written on BB or SB or OHT Do parts a), b) and c), then review before doing parts d), e) and f) Reasoning, agreement, selfcorrection, praising Ps relate what they notice. (Bottom row is the sum of the other two rows)

BKK		Lesson Plan 9
Activity 7	(Continued) d) $\begin{aligned} & 3 \times 12=\underline{36} \\ & 3 \times 120=\underline{360} \\ & 30 \times 12=\underline{360} \end{aligned}$ e) $6 \times 13=\underline{78}$) $7 \times 14=\underline{98}$ f) $6 \times 130=\underline{780}$ $7 \times 140=\underline{980}$ $60 \times 13=780$ Ps tell what they notice. (e.g. $60 \times 13=6 \times 130$, etc.) 37 min \qquad	Notes If problems, write details on BB, e.g. $\begin{aligned} 6 \times 13 & =6 \times 10+6 \times 3 \\ & =60+18=\underline{78} \end{aligned}$ $\begin{aligned} 7 \times 140 & =7 \times 100+7 \times 40 \\ & =700+280=\underline{980} \end{aligned}$
8	Book 4, page 9 Q. 4 Read: Underline the data. Write a plan. Estimate, calculate and check your result in your exercise book. Write the answer as a sentence. Set a time limit. Ps read questions themselves, write plans and solve them in Ex. Bks, then write the answers as sentences in Pbs. Review at BB with whole class. Ps come to BB to show solutions, explaining reasoning. Who agrees? Who did it a different way? Who made a mistake? What kind of mistake? etc. Solution: a) A box of apples weighs about 28 kg . How much do 30 boxes of apples weigh? Plan: 1 box: $28 \mathrm{~kg}, \quad 30$ boxes: $30 \times 28 \mathrm{~kg}$ Estimation: e.g. $30 \times 30 \mathrm{~kg}=900 \mathrm{~kg}$ C: $30 \times 28=30 \times 20+30 \times 8=600+240=\underline{840}(\mathrm{~kg})$ Answer: 30 boxes of apples weigh 840 kg . b) How much is the cost of 8 kg of pears if 1 kg costs $£ 1.90$? Plan: $1 \mathrm{~kg}: £ 1.90=190 \mathrm{p}, \quad 8 \mathrm{~kg}: 8 \times 190 \mathrm{p}$ Estimation: e.g. $8 \times 200 \mathrm{p}=1600 \mathrm{p}$ $\begin{aligned} C & : 8 \times 190=8 \times 100+8 \times 90=800+720=\underline{1520}(\mathrm{p}) \\ & 1520 \mathrm{p}=£ 1520 \mathrm{p}=£ 15.20 \end{aligned}$ Answer: 8 kg of pears cost $£ 15.20$.	Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Accept any correct method. e.g. a) $\begin{aligned} 30 \times 28= & 3 \times 10 \times 28 \\ =3 \times 280 & =600+240 \\ = & \underline{840} \end{aligned}$ b) $\begin{aligned} & 8 \times 190 \\ & =8 \times 200-8 \times 10 \\ & =1600-80=\underline{1520} \end{aligned}$ Feedback for T
9	Book 4, page 9, Q. 5 Read: Write a plan for each question. Deal with one part at a time. Set a time limit. Ps read question themselves, write their plan on slates or scrap paper and show on command. P who wrote correct plan explains to those who did not. Let's solve it. Ps come to BB or dictate what T should write. Solution: a) 6 children collected 120 kg of chestnuts. They share them equally. How many kg of chestnuts does each child get? Show me ...now! $120 \mathrm{~kg} \div 6(=\underline{20 \mathrm{~kg}})$ Answer: Each child gets 20 kg of chestnuts. b) At the market, they are packing fruit into boxes, 30 kg per box. They have 900 kg of fruit. How many boxes will they need? Show me . . now! $\quad 900 \mathrm{~kg} \div 30 \mathrm{~kg}$ ($=\underline{30}$) Answer: They will need 30 boxes.	Individual work in writing plans, but reviewed with whole class. Reasoning, agreement, self-correction in Pbs, praising Elicit that 120 kg is divided into 6 equal parts and that each child will get 1 sixth. It can be thought of as: 'How many 30 kg are in 900 kg ? or 'How many times does 30 kg go into 900 kg ?'

Individual work in writing plans, but reviewed with whole class.

Reasoning, agreement, self-correction in Pbs, praising

Elicit that 120 kg is divided into 6 equal parts and that each child will get 1 sixth.

It can be thought of as: How many 30 kg are in does 30 kg go into 900 kg ?'

BKK		Lesson Plan 10
Activity 3	Missing numbers Who can fill in the missing numbers? Ps come to BB to write and explain reasoning with inverse operation. e.g. ' 7 times $6=42$, because 42 divided by $6=\underline{7}^{\prime}$. BB: a) \qquad $\times 5=0$ e) \square 8 $\times 1=8$ i) $18 \div 3=6$ m) b) $10 \times 7=70$ f) \square 1 $\times 9=9$ j) \square $1 \div$ $\div 5=7$ n) $48 \div \mathbf{8}=6$ c) $7 \times 6=42$ g) $7 \times 7=49$ k) 1) $25 \div 5=5$ $\mathbf{0} \div 8=0$ o) \square	Notes Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Agree that it is impossible to divide any number by zero.
4	Division practice Let's do these divisions. Ps come to BB in pairs, one P to write quotients and remainders and the other to check with multiplication and addition. Class points out errors. BB: a) $\begin{aligned} & 17 \div 4=(4, \text { r } 1) \\ & {[4 \times 4+1=17]} \end{aligned}$ c) $\begin{aligned} & 23 \div 5=(4, \mathrm{r} 3) \\ & {[4 \times 5+3=23]} \end{aligned}$ e) $\begin{aligned} & 40 \div 6=(6, r 4) \\ & {[6 \times 6+4=40]} \end{aligned}$ g) $\begin{aligned} & 85 \div 5=(17) \text { (no remainder) } \\ & {[17 \times 5=85] \boldsymbol{V}} \end{aligned}$ b) $\begin{aligned} & 23 \div 2=(11, \mathrm{r} 1) \\ & {[2 \times 11+1=23]} \end{aligned}$ d) $\begin{aligned} & 27 \div 7=(3, \text { r } 6) \\ & {[3 \times 7+6=27]} \end{aligned}$ f) $\begin{aligned} & 28 \div 2=(14) \text { (no remainder) } \\ & {[14 \times 2=28] \boldsymbol{V}} \end{aligned}$ h) $\begin{aligned} & 75 \div 9=(8, r 3) \\ & {[8 \times 9+3=75]} \end{aligned}$ 25 min \qquad	Whole class activity (or individual work in Ex. $B k s$ if Ps wish) Written on BB or SB or OHT At a good pace Reasoning, agreement, checking, praising Details written on BB if problems, e.g. $\begin{aligned} 85 \div 5 & =50 \div 5+35 \div 5 \\ & =10+7=\underline{17} \end{aligned}$ Feedback for T
5	Book 4, page 10 Q. 2 Read: Do the calculations in the correct order. Set a time limit. Ps write result above the first calculation to be done or keep it in mind before writing final result. Review at BB with whole class. Ps come to BB or dictate to T. Mistakes discussed and corrected. What did you notice? e.g. $(60+20) \times 2=60 \times 2+20 \times 2$ Solution: a) $\begin{aligned} & 60+20 \times 2=\underline{100} \\ & 80 \\ & (60+20) \times 2=\underline{160} * \\ & 120 \\ & 60 \times 2+20=\underline{140} \\ & 60 \times 2+20 \times 2=\underline{160} * \end{aligned}$ b) $\begin{aligned} & 10 \\ & 15+30 \div 3=\underline{25} \\ & (15+30) \div 3=\underline{15} * \\ & 15 \div 3+30=\underline{35} \\ & 15 \div 3+30 \div 3=\underline{15} \div \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising. Extra praise if Ps notice and explain equal results without help from T.

BKK	R: Mental calculation C: Multiplication and division tables. Operations up to 1000 E: Operations up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 11 \end{gathered}$
Activity 1	Multiplication table practice T says a multiplication and: a) chooses Ps at random to answer, b) Ps answer in order round class, c) T says a multiplication, P answers it and says a multiplication for next P to answer, etc. (relay round class) 5 min	Notes Whole class activity At speed T notes Ps who need to use their own \times tables or to look at the \times table on classroom wall. Praising, encouragement only
2	Chain calculations Listen to my instructions. Do the calculations in your head and write the results of each step one below the other in your Ex. Bks. Nod your head when you have done each step. Show me the final result when I say. e.g. Start with 800. Find its quarter. . . . Add 10. . . . Multiply by 3. . . . Add 70. ... Divide by 7. Show me your answer . . . now! (100) Let's write the operations on the BB. Ps come to BB or dictate to T. BB: $\quad 800 \div 4=200 ; 200+10=210 ; \quad 210 \times 3=630$; $630+70=700 ; 700 \div 7=\underline{100}$ How could we write it as one equation? Ps suggest how to do it. Class agrees/disagrees. T helps with the brackets if necessary. Let's check it. BB: $[(800 \div 4+10) \times 3+70] \div 7=\underline{100}$ Repeat for, e.g. Start with 20. Multiply by 8. (160) Add 20. (180) Divide by 60. (3) Add 60. (63) Divide by 9. (7) Multiply by 80. (560) Show me . . . now! (560) Ps suggest how to write it as one equation (with T's help if necessary). BB: $\left[(20 \times 8+20)^{180} \stackrel{3}{\div} \cdot 60+63\right]^{63} \stackrel{7}{\div} 9 \times 80=\underline{560}$ 160 10 min	Whole class activity (but individual mental calculation) Wait until majority are ready before continuing to next step. Responses written on scrap paper or slates and shown in unison. Agreement, praising Discussion, agreement, checking, praising Remind Ps to use curved brackets for 1 st set needed, then square brackets for 2 nd set needed. Check that operations will be done in the correct order. You have been very clever!
3	Boom! Everyone stand up! We will count in multiples of 10 but you must say 'Boom' instead of the multiples of: a) 50: ' $0,10,20,30,40$, 'Boom', 60, 70, 80, 90, 'Boom', 110, ..' b) 40 or $70: ~ ' ~ 0, ~ 10, ~ 20, ~ 30, ~ B o o m, ~ 50, ~ 60, ~ B o o m, ~ B o o m, ~ 90, ~ . . ' ~ ' ~$ etc. Continue until fewer than 5 Ps remain standing. Let's give them a round of applause! 15 min	Whole class activity At speed, in order round class Ps knock on desks when they hear a mistake and P who made it must sit down. In good humour! Ps can choose the 'Boom' multiples too.
4	Secret numbers I am thinking of a number. I will give you a clue and you must work out what it is. Show me the number when I say. a) It is 300 more than half of 420 . Show me . . now! (510) P who answered correctly explains to those who did not. Let's check each step to make sure it is correct. b) If I multiply it by 5 , then add 400 , then divide by 11 , the result is 50 . Show me . . now! (30) P explains. Class checks each step. If time, Ps can think of secret numbers and give clues too!	Individual work in Ex. Bks. Responses shown on scrap paper or slates in unison. BB: e.g. a) $\begin{aligned} n & =420 \div 2+300 \\ & =210+300=\underline{510} \end{aligned}$ b) $\begin{aligned} n & =(50 \times 11-400) \div 5 \\ & =(550-400) \div 5 \\ & =150 \div 5=\underline{30} \end{aligned}$

BKK		Lesson Plan 11
Activity 5	Inequalities Which natural numbers will make the inequality true? Elicit that natural numbers are positive whole numbers. a) Class reads inequality aloud first. 'Five hundred plus the square is less than six hundred and eighteen minus one hundred and nine' What should we do first? (Work out the RHS.) Ps come to BB to do calculation, explaining reasoning. Class agrees/disagrees. Ps check with least and greatest possible values. $\begin{array}{ll} \text { BB: } & 500+\square<618-109 \\ & \square: 1,2,3,4,5,6,7 \text { or } 8 \end{array}$ b) Class reads the inequality aloud first. What should we do first? (Work out the LHS and RHS.) Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. Ps check with least and greatest possible values. $\begin{gathered} \text { BB: } \quad \begin{array}{c} 81 \\ \times 27+150 \end{array}<200+\bigcirc<400-164 \\ 231<200+\bigcirc<236 \\ \bigcirc 32,33,34,35 \end{gathered}$	Notes Whole class activity Inequalities written on BB or SB or use enlarged copy master or OHP In unison Discussion, reasoning, agreement, checking, praising Check: BB: $\begin{aligned} & 500+1<509 \\ & 500+8<509 \end{aligned}$ In unison Discussion, reasoning, agreement, checking, praising Check: BB: $\begin{aligned} & 231<200+32<236 \\ & 231<200+35<236 \end{aligned}$
6	Book 4, page 11 Q. 1 Read: Do the calculations in the correct order. Deal with one at a time. Ps write results of 1st calculations above the operation signs. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $2 \stackrel{800}{\times} 400-258=\underline{542}$ b) $3 \times 140-130=\underline{290}$ c) $7 \stackrel{560}{\times} 80+258=\underline{818}$ d) $220+4 \stackrel{360}{\times 90}=\underline{580}$ e) $912-\stackrel{250}{5 \times} 50=\underline{662}$ f) $595-6^{420} \times 70=\underline{175}$	Individual work, monitored, helped Written on BB or SB or use enlarged copy master or OHP Calculations can be done in Ex. Bks if Ps cannot do them mentally. Reasoning, agreement, selfcorrection, praising Feedback for T
7	Book 4, page 11 Q. 2 Read: Do the calculations in the correct order. Deal with one at a time. Ps write results of 1st calculations above the operation signs . Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $640 \stackrel{80}{\div 8}+379=\underline{459}$ b) $580+420 \stackrel{70}{\div} \div 6=\underline{650}$ c) $910-480 \stackrel{60}{\div} 8=\underline{850}$ d) $\left(1052^{560} 492\right) \div 7=\underline{80}$ e) $810 \stackrel{90}{\div} 9-34=\underline{56}$ f) $1200 \div(9-5)=\underline{300}$	Individual work, monitored, helped Written on BB or SB or use enlarged copy master or OHP Calculations can be done in Ex. Bks if Ps cannot do them mentally. Reasoning, agreement, selfcorrection, praising Feedback for T

BK	R: Mental calculation C: Multiplication and division tables. Operations up to 1000 E: Operations up to 2000	Lesson Plan 12
Activity 1	Secret number I am thinking of a number. Try to find out what it is by asking me questions about it. I can answer only yes or no and your question must be different from the previous one.	Notes Whole class activity T chooses Ps at random to ask a question. Encourage Ps to ask logical questions and to keep in mind clues already found out from previous questions. Ps can make notes in Ex. Bks. At a good pace Extra praise for clever questions Repeat with another number if time (or P comes to front to think of a number and to answer questions.)
2	Calculation practice T dictates 5 numbers. Ps write them in Ex. Bks, one below the other, lining them up by place value. e.g. T: 567 318 9 935 76 Do these calculations in your Ex. Bks. Show me the result when I say. a) What is the difference between the greatest and 2nd greatest numbers? Show me . . . now! (368) Write a 'B' at the bottom of your page if you were correct. b) What is the sum of the three 3-digit numbers? Show me . . now! (1820) Write an ' E ' at the bottom of your page if you were correct. c) Divide the 2 nd greatest number by the smallest number. Show me . . now! (63) Write an 'S' at the bottom of your page if you were correct. d) What is the product of the two smallest numbers? Show me . . now! (684) Write a ' T ' at the bottom of your page if you were correct. What word did you make if you got them all correct? (BEST)	Individual work but class kept together Responses written on scrap paper or slates. Quick check after each one. Ps who answered correctly come to BB to explain to Ps who were wrong. Reasoning, agreement, selfcorrecting, praising Ps shout out in unison. Praising

BK4		Lesson Plan 12
Activity 3	Multiplication Let's show these multiplications in detail to remind ourselves what we are doing. Ps come out to work on BB and rest of class work in Ex. Bks. BB: a) shorter way 2 1 6 \times 2 4 3 2 2 1 6 \times 3 6 4 8 216×4 b) $\text { shorter way } \begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline & 3 & 1 & 4 & \times & 4 \\ \hline 1 & 2 & 5 & 6 & & \\ \hline \end{array}$ $\begin{array}{\|l\|l\|l\|l\|l\|} \hline 2 & 3 & 4 & \times & 4 \\ \hline 9 & 3 & 6 & \\ \hline 1 & 1 & & \\ \hline \end{array}$ Details of reasoning: e.g. $\begin{array}{ll} 314 \times 4: & 4 \times 4 \mathrm{U}=16 \mathrm{U}=1 \mathrm{~T}+\underline{6 \mathrm{U}} \\ & 4 \times 1 \mathrm{~T}=4 \mathrm{~T} ; 4 \mathrm{~T}+1 \mathrm{~T}=\underline{5 \mathrm{~T}} \\ & 4 \times 3 \mathrm{H}=12 \mathrm{H}=\underline{1 \mathrm{Th}}+\underline{2 \mathrm{H}} \end{array}$	Notes Whole class activity Written on BB or use enlarged copy master or OHP Encourage Ps to give reasoning with details of place-value (as example below) Agreement, praising Use the expressions to show: - place value (e.g. 5T) - digit value (e.g.5) - real value (e.g. 50) If any P still does not understand, ask them to do another example on BB (with help of rest of class)
4	Book 4, page 12 Q. 1 Read: Estimate the product first, then do the multiplication. Set a time limit. Ask Ps to estimate to the nearest 10 . Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning in detail. Class agrees/disagrees. Mistakes discussed and corrected. If problems, show multiplication in long form on BB. Solution:	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T Ps point out relationships. e.g. doubling one term and halving the other term gives the same result, etc.

BK4		Lesson Plan 12
Activity 5	Division Let's do the division in different ways. Ps dictate what T should write (horizontal division), or come to BB (vertical division), explaining reasoning. Who agrees? Who can do it another way? etc. T demonstrates shorter way if no P has done so, with place-value details. BB: a) $476 \div 2=400 \div 2+70 \div 2+6 \div 2=200+35+3=\underline{238}$ b) $812 \div 7=700 \div 7+70 \div 7+42 \div 7=100+10+6=\underline{116}$ $\text { Shorter way } \begin{array}{\|c\|c\|c\|c\|} & 1 & 1 & 6 \\ \hline 7 & 8 & 1 & 2 \\ \hline & 1 & 4 \end{array}$ Details: $8 \mathrm{H} \div 7=\underline{1 H}$, and 1 H remains $1 \mathrm{H}+1 \mathrm{~T}=11 \mathrm{~T}$ $11 \mathrm{~T} \div 7=\underline{1 \mathrm{~T}}, \text { and } 4 \mathrm{~T} \text { remains }$ $4 \mathrm{~T}+2 \mathrm{U}=42 \mathrm{U}$ $42 \mathrm{U} \div 7=\underline{6 \mathrm{U}}$ c) $714 \div 6=600 \div 6+60 \div 6+54 \div 6=100+10+9=\underline{119}$ $\begin{array}{rl\|l\|l\|l\|} & & 1 & 1 & 9 \\ \text { Shorter way } & 6 & 7 & 1 & 4 \\ \hline & 1 & 5 \\ \text { Details: } & 7 \mathrm{H} \div 6=\underline{1 H}, \text { and } 1 \mathrm{H} \text { remains } \\ 1 \mathrm{H}+1 \mathrm{~T}=11 \mathrm{~T} \\ 11 \mathrm{~T} \div 6=\underline{1 \mathrm{~T}}, \text { and } 5 \mathrm{~T} \text { remains } \\ 5 \mathrm{~T}+4 \mathrm{U}=54 \mathrm{U} \\ 54 \mathrm{U} \div 6=\underline{9 \mathrm{U}} \end{array}$ d) $735 \div 5=500 \div 5+200 \div 5+35 \div 5=100+40+7=\underline{147}$ Shorter way 1 4 7 5 7 3 5 2 3 Details: $7 \mathrm{H} \div 5=\underline{1 \mathrm{H}}$, and 2 H remains $2 \mathrm{H}+3 \mathrm{~T}=23 \mathrm{~T}$ $23 \mathrm{~T} \div 5=\underline{4 \mathrm{~T}}$, and 3 T remains $3 \mathrm{~T}+5 \mathrm{U}=35 \mathrm{U}$ $35 \mathrm{U} \div 5=\underline{7 \mathrm{U}}$	Notes Whole class activity Divisions written on BB or SB or OHT Use squared board if possible or grids drawn on BB or use enlarged copy master for long and short vertical division. Allow Ps to show the methods of calculation, with rest of class pointing out errors. T could show how to do the first short division in detail, then Ps could do the others (with T's help). At a good pace Reasoning, agreement Praising, encouragement only

BK4		Lesson Plan 12
Activity 6	Book 4, page 12 Q. 2 Read: Estimate the quotient first, then do the division. Check with multiplication. Ps estimate by rounding to nearest 100 . Ps can use long or short division. Deal with one part at a time if Ps are unsure. Review at BB with whole class. Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $E: 200$ Check: b) $E: 140(700 \div 5)$ Check: c) E : e.g. $125(1000 \div 8)$ Check:	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Ps give details of how they estimated and also say what they are doing when showing calculations. Extra praise if Ps used short division correctly and can explain reasoning! e.g. 1 3 4 b) 5 6 7 0 $6 \mathrm{H} \div 5=\underline{1 H}$, and 1 H remains $1 \mathrm{H}+7 \mathrm{~T}=17 \mathrm{~T}$ $17 \mathrm{~T} \div 5=\underline{3 \mathrm{~T}}$, and 2 T remain $2 \mathrm{~T}+0 \mathrm{U}=20 \mathrm{U}$ $20 \mathrm{U} \div 5=4 \mathrm{U}$ Feedback for T
7	Book 4, page 12 Q. 3 Read: Underline the data. Make a plan. Estimate, calculate and write the answer. Deal with one part at a time. Ps read problem themselves and write just a plan for each first. Review plans with the whole class. A, what plan did you write? Who wrote the same? Who wrote a different one? etc. Class agrees on which plans are correct Mistakes corrected. Then Ps estimate, calculate and write the answers. Ps can use Ex. Bks for calculations and write only plans and answers in Pbs. Review with whole class. Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Lisa had collected 516 shells. She gave 1 quarter of the shells to Alice and 1 third of them to Julie. How many shells did Lisa have left? $\begin{aligned} & \text { Plan: L: } 516, \text { A: } 516 \div 4, \mathrm{~J}: 516 \div 3 \\ & \text { L had left: } 516-516 \div 4-516 \div 3 \\ & \text { or } 516-(516 \div 4+516 \div 3) \\ & \text { C: e.g. } 516 \div 4=400 \div 4+80 \div 4+36 \div 4 \\ & \quad=100+20+9=\underline{129} \quad \text { A: } 129 \\ & \\ & \quad \begin{aligned} & 516 \div 3=300 \div 3+210 \div 3+6 \div 3 \\ &=100+70+2=\underline{172} \quad \text { J: } 172 \\ & \text { A }+\mathrm{J}: 129+172=229+72=299+2=\underline{301} \\ & \text { L- }(\mathrm{A}+\mathrm{J}): 516-301 \geq 15 \end{aligned} \end{aligned}$ Answer: Lisa had 215 shells left.	Individual work in writing plans first, monitored, helped Discuss correct plans with whole class before calculating. Individual work in calculating (or done with whole class if time is short) Reasoning, agreement, selfcorrection, praising E: $500-100-200=200$ Or BB: Check: $129+172+215$ $=\underline{516}$

BKK	R: Mental calculation (4 operations) C: Written calculation. Division with remainders. Divisibility E: Numbers up to 2000. Problems in context	$\begin{gathered} \text { Lesson Plan } \\ 13 \end{gathered}$
Activity 1	Addition and subtraction practice Let's fill in the missing numbers. Ps come out to BB to write missing values, saying whole equation and explaining reasoning. Class agrees/ disagrees. Check with reverse operation. BB: a) $36+$ \square 50 $=86$ b) \square 40 $+57=97$ c) $84-$ \square 70 $=14$ d) \square 72 $-30=42$ e) $236+$ \square 50 $=286$ f) \square 40 $+357=397$ g) $584-$ \square 70 $=514$ h) \square 472 $-30=442$ i) $236+$ \square 450 $=686$ j) \square 240 $+357=597$ k) $584-\mathbf{2 7 0}=314$ 1) 572 \square $+130=442$ \qquad	Notes Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace Agreement, praising Feedback for T
2	Multiplication and division practice Let's fill in the missing numbers. Ps come out to BB to write missing values, saying whole equation and explaining reasoning. Class agrees/ disagrees. Check with reverse operation. BB: a) \square 50 $\times 3=150$ b) \square 3 $\times 60=180$ c) \square 20 $\times 9=180$ d) \square 8 $\times 70=560$ e) $40 \times$ \square 20 $=800$ f) \square 25 $\times 4=100$ g) $250 \times$ \square 4 $=1000$ h) \square 35 $\times 20=700$ i) $320 \div$ \square 8 $=40$ j) $450 \div$ \square 50 $=9$ k) \square 300 $\div 6=50$ 1) \square 420 $\div 70=6$ 10 min	Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace Agreement, praising Feedback for T
3	Sequences T says and writes on BB the first few terms of a sequence. Ps note terms in Ex. Bks and work out the rule. Let's continue the sequence. What is the rule? Who agrees? Who can express it in a different way? etc. a) $1,5,9,13,(17,21,25,29,33,37,41,45,49,53,57, \ldots)$ Rule: Increasing by 4 , or gives a remainder of 1 after dividing by 4 b) $18,33,48,63,(78,93,108,123,138,153,168,183, \ldots)$ Rule: Increasing by 15 , or gives a remainder of 3 after dividing by 15 (or by 5) c) $11,111,211,311,(411,511,611,711,811,911,1011, \ldots)$ Rule: Increasing by 100 , or gives a remainder of 11 after dividing by 100 (or by 50 or by 20)	Whole class activity At speed in order round class Class points out errors. Discussion, agreement on the rule. If disagreement, check one or two terms, e.g. $\text { BB: } 138=15 \times 9+3$ or $711=7 \times 100+(11$

$3 K 4$		Lesson Plan 13
Activity 4	Problems Listen carefully, note the data, do the calculation in your Ex.Bks. and show me the result when I say. a) Rabbit 's burrow is 216 m from the woods. If one day Rabbit makes 2 journeys to the wood and back, what distance did he cover that day? Show me . . . now! (864 m) P who responded correctly explains to those who did not. e.g. He made 2 journeys there and back so he covered the distance 4 times.$\text { C: } \begin{aligned} 216 \times 4 & =200 \times 4+10 \times 4+6 \times 4 \\ & =800+40+24 \\ & =\underline{864}(\mathrm{~m}) \end{aligned}$2 1 6 \times 4 8 6 4 2 Answer: Rabbit covered 864 m. b) Dan measured the length of his exercise book 5 times and found it was 295 mm each time. How wide is Dan's exercise book? Show me . . now! (295 mm) No calculation is needed. The width is given in the question! Answer: Dan's exercise book is 295 mm wide.	Notes Whole class activity T repeats each question slowly and a P repeats in own words. Give Ps time to think and calculate. Results written on scrap paper or slates and shown in unison. Reasoning, agreement, selfcorrection, praising T stresses that Ps should listen to (or read) questions carefully and picture them in their heads. Imagine yourself measuring your own Ex. Bk. 5 times!
5	Divisibility Let's make 2 -digit numbers from the digits $0,1,2,3,4$ and 5 so that they are divisible by a) $2(10,12,14,20,22,24,30,32,34,40,42,44,50,52,54)$ b) $3(12,15,21,24,30,33,42,45,51,54)$ c) $4(12,20,24,32,40,44,52)$ d) $5(10,15,20,25,30,35,40,45,50,55)$ e) $7(14,21,35,42)$ If a P makes a mistake, show it by reasoning with division. e.g. - 3 is not a factor of 52 , because $52 \div 3=30 \div 3+22 \div 3$ $=10+7, \mathrm{r} 1=\underline{17, r 1}$ - 43 is not divisible by 4 , because $43 \div 4=\underline{10, \mathrm{r} 3}$	Whole class activity T write digits on BB Ps dictate the 2-digit numbers Class points out errors. Agreement, checking in case of mistake, praising Show details of more difficult cases, e.g. $\begin{aligned} 52 \div 2 & =40 \div 2+12 \div 2 \\ & =20+6=\underline{26} \\ 54 \div 3 & =30 \div 3+24 \div 3 \\ & =10+8=\underline{18} \end{aligned}$

BKL		Lesson Plan 13
Activity 8	Book 4, page 13 Q. 3 Read: Do the calculations in your exercise book. Write the answers in the boxes. Set a time limit. Ps read questions themselves, do calculations and write results in Pbs. Review with whole class. T (or P) reads each question and class show solutions on command. Ps who respond correctly explain at BB to those who were wrong. Mistakes corrected. Solution: a) Which number is three times as much as 264 ? BB: e.g. $264 \times 3=600+180+12=\underline{792}$ b) Three times a numbers is 264 . What is the number? BB: e.g. $264 \div 3=240 \div 3+24 \div 3=80+8=\underline{88}$ c) Which number is 1 third of 426? BB: e.g. $426 \div 3=300 \div 3+120 \div 3+6 \div 3$ $\begin{equation*} =100+40+2=\underline{142} \tag{1278} \end{equation*}$ BB: e.g. $426 \times 3=1200+60+18=\underline{1278}$	Notes Individual work, monitored, helped Ps may use any correct method of calculation. Responses shown on scrap paper or slates in unison. Reasoning, agreement, selfcorrection, praising or2 6 4 \times 3 7 9 2 1 1 or or 1 4 2 3 4 2 6 1 or
9	Remainders Let's practise finding remainders. Ps dictate numbers to T who writes on BB as a sequence. Class points out errors or missed numbers. T decides when to skip some terms and continue from other numbers. a) Tell me the natural numbers which have a remainder of i) 1 after they have been divided by 3, e.g. $1,4,7,10,13,16,19, \ldots, 601, \ldots, 820, \ldots$ Elicit that they are 1 more than multiples of 3 . ii) 2 after dividing by 3 , e.g. $2,5,8,11, \ldots, 602, \ldots, 821, \ldots$ Elicit that they are 2 more than multiples of 3 . iii) 1 after dividing by 7 e.g. $1,8,15,22,29, \ldots, 351, \ldots, 904, \ldots$ Elicit that they are 1 more than multiples of 7 . b) Book 4, page 13, Q. 4 Read: Write 2-digit numbers which have a remainder of 6 after dividing by 7. Give Ps time to write numbers in Pbs. Then Ps dictate numbers to T who writes them on BB as a sequence. Class points out errors or missed numbers. BB: $13,20,27,34,41,48,55,62,69,76,83,90,97$ Elicit that they are 6 more (or 1 less) than multiples of 7	Whole class activity Elicit that natural numbers are positive whole numbers. At speed in order round class Check on BB that new 3-digit start numbers have the correct remainder, e.g. BB: $\begin{aligned} & 820=600+210+9+(1) \\ & 351=350+(1) \\ & 904=700+140+63+(1) \end{aligned}$ Individual work, monitored (or continue as whole class activity) Agreement, self-correcting praising

BK4	R: Mental calculations C: Written calculations. Division (with remainders). Divisibility E: Numbers up to 2000. Problems.	Lesson Plan 14
Activity	Forming rectangles Let's draw different rectangles which have a perimeter of 24 units. Elicit that 1 unit is the side of a grid square. Ps come to BB to draw rectangles on the grid, confirming perimeter length by writing an operation. What is its area? e.g. BB: 10 $\begin{aligned} & P=2 \times 1+2 \times 11=\underline{24} \text { (units) } \\ & A=\underline{11} \text { (unit squares) } \end{aligned}$ $P=2 \times(2+10)=2 \times 12=\underline{24}$ (units) $A=2 \times 10=\underline{20}$ (unit squares) 9 $P=2 \times(3+9)=2 \times 12=\underline{24}$ (units) $A=3 \times 9=\underline{27}$ (unit squares) $\begin{aligned} & P=2 \times(4+8)=2 \times 12=\underline{24} \text { (units) } \\ & A=4 \times 8=\underline{32} \text { (unit squares) } \end{aligned}$ $\begin{aligned} & P=2 \times(5+7)=2 \times 12=\underline{24} \text { (units) } \\ & A=5 \times 7=\underline{35} \text { (unit squares) } \end{aligned}$ Extra praise for unexpected sides e.g. $\begin{array}{r} \frac{11 \frac{1}{2}}{2} \\ P=2 \times\left(11 \frac{1}{2}+\frac{1}{2}\right)=2 \times 12=\underline{24} \text { (units) } \\ A=5+1 \text { half }+1 \text { quarter }=5+3 \text { quarters } \\ =5 \underline{5} \text { (unit squares) } \end{array}$	Notes Whole class activity Grid drawn on BB or use squared BB or enlarged copy master or OHP Ps could have copies on desks too if they wish. At a good pace Reasoning, agreement, praising Thelps with writing operations where necessary. [Revision of perimeter and area of a rectangle (square).] What do you notice? Agree that the 24-unit perimeter which gives the largest area is the most regular shape, i.e. a square. If a P suggests this case, T helps with calculating the area.
2	Book 4, page 14 Q. 1 Read: The area of a rectangle is 360 unit squares. How long is the other side if one side is: a) 5 units, b) 12 units, c) 8 units? T or P explains task with aid of a diagram. Elicit that the operation to be done is division. Ps can do calculations in Ex. Bks if they cannot do them mentally. Review at BB with whole class. Ps come to BB to show their calculations. Who agrees? Who did it another way? etc. Solution: e.g. a) $360 \div 5=350 \div 5+10 \div 5=70+2=\underline{72}$ (units) b) $360 \div 12=360 \div 6 \div 2=60 \div 2=\underline{30}$ (units) c) $360 \div 8=320 \div 8+40 \div 8=40+5=\underline{45}$ (units)	Individual work, monitored, helped but whole class introduction $\begin{aligned} & \text { BB: } \quad b \quad A=360 \\ & A=b \times c \quad{ }^{c} \\ & = \\ & = \\ & b=A \div c, c=\mathrm{A} \div \text { unit squares } \div b \end{aligned}$ Reasoning, agreement, self-correcting, praising (or vertical long or short division)

$3 K 4$		Lesson Plan 14
Activity 2	(Continued) Read: Calculate the perimeter of each rectangle. Review at BB with whole class. Ps dictate operations to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $P=2 \times(5+72)=2 \times 77=\underline{154}$ (units) b) $P=2 \times(12+30)=2 \times 42=\underline{84}$ (units) c) $P=2 \times(8+45)=2 \times 53=\underline{106}$ (units)	Notes Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising.
Extension	How could we show the sides of all the rectangles which have an area of 360 unit squares? T asks several Ps what they think. Agree that best way would be to show them in a table. T (or P) draws table on BB or OHT. Let's do it logically! Which values should be put in the first column? (e.g. 1 and 360) Ps dictate to T or come to BB, explaining reasoning. Encourage Ps to do the calculations mentally. Class points out errors. What is the rule for the table? Who can write it a different way? etc. Rule: $b=360 \div c, \quad c=360 \div b, \quad(b \times c=360)$ What could we say about all the numbers in the table? (They are all factors of 360 .)	Whole class activity (or individual or paired work within a time limit if Ps prefer, reviewed at BB with whole class) At a good pace Reasoning, agreement, praising Then table carries on with values reversed. Discussion on the rule. Agreement, praising
3	Factorising Let's break down 360 into its lowest factors T shows the first 1 or 2 steps on BB and Ps continue the diagram. Class agrees/disagrees. BB : e.g. $360=2 \times 2 \times 2 \times 3 \times 3 \times 5$ What kind of numbers have we circled? (Prime numbers). What is a prime number? (A number which has only 2 factors: 1 and itself.) We can say that we have broken down 360 into its prime factors. Does it matter how we do factorisation? (No, as we will always end up with the same prime factors.)	Whole class activity Ps decide how to break down the factors. Try it in 2 or 3 different ways If a factor cannot be broken down further, Ps draw a circle around it. At a good pace Agreement, praising Check by multiplying the circled factors in increasing order. BB: Prime number factors: 1 and itself

BK4		Lesson Plan 14
Activity 4	Book 4, page 14 Q. 2 Read: Practise division. Check your divisions with multiplication in your head (or in your $E x$. Bks) if you have time. T sets a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Do checks on BB with whole class. Ps dictate what T should write. Solution: a) 1 1 6 7 8 1 3 - 7 1 1 - 7 4 3 - 4 2 1 Check: c) \qquad d) Check. 1 3 1 \times 3 3 9 3 + 2 3 9 5	Notes Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Accept long or short vertical division. Differentiation by time limit Reasoning, agreement, checking, self-correction, praising Feedback for T
5	Book 4, page 14 Q. 3 Read: Practise division. Check your divisions with multiplication in your head (or in your $E x . B k s$) if you have time. T sets a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Do checks on BB with whole class. Ps dictate what T should write. Solution: b) Check: 8 2×8 6 5 6 + 1 6 5 7 Check: 8 3 \times 9 7 4 7 + 5 7 5 2 c) Check: 7 1 3 5 5 + 1 6 d)	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Accept long or short vertical division. Differentiation by time limit Reasoning, agreement, checking, self-correction, praising Feedbck for T

BKK	R: Mental calculation. C: Written calculations. Divisibility E: Numbers up to 2000. Problems	$\begin{gathered} \text { Lesson Plan } \\ 15 \end{gathered}$
Activity 1	Boom! Everyone stand up. I will say the first few terms of a sequence and you must continue it but you must say 'boom' instead of any number divisible by 9 . a) 3,6 , (boom, 12,15 , boom, 21,24 , boom, 30,33 , boom, ...) b) $2,4,6,(8,10,12,14,16$, boom, $20,22,24,26,28, \ldots)$ c) $10,20,30,(40,50,60,70,80$, boom, $100,110,120, \ldots)$ This time you must say 'boom' instead of any number divisible by either 4 or 6 ! d) 1,2 , 3, boom, 5, boom, 7, boom, 9, 10, 11, boom, 13, ..) 6 min	Notes Whole class activity At speed in order round class. Ps who make a mistake sit down and the next P corrects their mistake. Class points out mistake if next P misses it. In good humour! Class applauds Ps still standing at the end.
2	Calculation practice T asks questions and Ps calculate in Ex. Bks (or mentally). Ps write answers on scrap paper or slates and show to T on command. Ps who responded correctly explain at BB to those who did not. Who did the same? Who did it another way? Who made a mistake? What was your mistake? etc. a) What is 4 times the sum of of 176 and 49 ? Show me . . now! (900) $\text { e.g. } 176+49=175+50=225 ; \quad 225 \times 4=800+100=\underline{900}$ b) What is 4 times the difference between 176 and 49 ? Show me . . . now! (508) $\text { e.g. } 176-49=177-50=127 ; \quad 127 \times 4=480+28=\underline{508}$ c) What is the sum of 176 and 4 times 49 ? Show me . . now! (372) $\begin{gathered} \text { e.g. } 49 \times 4=160+36=196 \text {, or } 49 \times 4=50 \times 4-4=196 ; \\ 176+196=276+96=276+100-4=376-4=\underline{372} \end{gathered}$ d) What is the difference between 4 times 176 and 49? Show me . . . now! (655) $\begin{aligned} & \text { e.g. } 176 \times 4=400+280+24=680+24=704 \\ & 704-49=705-50=\underline{655} \end{aligned}$	Whole class activity but individual work in Ex. Bks. Give Ps time to do calculations/write answers. Responses shown in unison. Reasoning, agreement, praising Accept any correct method of calculation. e.g. a) d)1 7 6 \times 4 7 0 4 3 2 Extra praise for 'quick' ways. Feedback for T
3	Multiplication practice T has numbers already written on BB. BB: $\quad A=\{108,247,319\}$ $B=\{3,4\}$ a) Let's write multiplications using a number from $\operatorname{Set} A$ and a number from Set B. Ps come to BB or dictate what T should write. $\begin{array}{lll} \text { e.g. } 108 \times 3= & 247 \times 3= & 313 \times 3= \\ 108 \times 4= & 247 \times 4= & 319 \times 4= \end{array}$ b) Which would give the smallest product? $(108 \times 3=324)$ c) Which would give the greatest product? $(319 \times 4=1276)$ d) Which would give an even number as the product? $108 \times 3 \rightarrow \text { (4) } 108 \times 4 \rightarrow \text { (2) } 247 \times 4 \rightarrow \text { (8) } 319 \times 4 \rightarrow \text { (6) }$ Agree that any number times an even number \rightarrow an even product.	Whole class activity BB or SB already prepared Agreement, praising Smallest multiplicant and the smallest multiplier Greatest multiplicant and the greatest multiplier Only the units digit needs to be considered.

B $<~$		Lesson Plan 15
Activity 3	(Continued) e) Which would give an odd number as the product? $247 \times 3 \rightarrow$ (1) $313 \times 3 \rightarrow$ (9) (Odd \times odd \rightarrow odd product) f) Which numbers in $\operatorname{Set} A$ are divisible by 3 ? $(108$, as $108=90+18)$ $(247=240+6+(1)$ and $319=300+18+$ (1), so not divisible by 3$)$ g) Which numbers in Set B are divisible by 4 ? $(108$, as $108=100+8)$ (the other two numbers are odd, so are not divisible by 4)	Notes Only the units digit needs to be considered. Ps might want to do all the divisions in long or short form to check.
4	Book 4, page 15, Q. 1 Read: Which numbers can be written instead of the letters? Deal with one at a time. Class reads each statement in unison. Ps suggest which operation to do first and how to continue. Ps come to BB to do calculations, explaining reasoning. Class points out errors. Solution:	Whole class activity (If some Ps wish to try the first 3 statements individually, let them) Written on BB or SB or OHT At a good pace Results of operations can be written above the operation signs or in a new line as shown here. Discussion, reasoning, agreement, (self-correction if done individually), praising T will probably need to help with d. Demonstrate on class number line if problems.
5	Book 4, page 15 Q. 2 Read: One quarter of a path has already been paved. How much has been done if the whole path is 792 m long? Elicit that the shaded part in the diagram is the part already paved. Review at BB with whole class. Ps come to BB to write plan, estimate, calculate, check and write the answer as a sentence. Class points out errors. Mistakes discussed and corrected. Solution: Plan: $792 \mathrm{~m} \div 4$ What fraction of the path Estimation: $800 \div 4=200$ has not been paved yet? Answer: 198 m has been paved.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising

B1/		Lesson Plan 15
Activity 6	Book 4, page 15 Q. 3 Read: Pete can cycle 4 m in one second. How long will it take Pete to cycle: a) 760 m, b) $380 \mathrm{~m}, ~ c) ~ 1520 \mathrm{~m}$? Set a time limit. Ps can use any correct form of calculation. Review at BB with whole class. Ps explain their solutions on BB. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: e.g. a) 760 m b) 380 m c) 1520 m If no P has done so, T could elicit another way to obtain solutions to b) and c) using direct proportion. T draws arrows. Extra praise if Ps noticed relationships without hints from T.	Notes Individual work monitored, helped Differentiation by time limit Discussion, reasoning, agreement, self-correcting, praising or, e.g. $760 \mathrm{~m} \div 4 \mathrm{~m}$ $=(400 \mathrm{~m}+360 \mathrm{~m}) \div 4 \mathrm{~m}$ $=100+90=\underline{190}$ (times) Revise direct proportion. [If one value (i.e. dividend) increases (decreases) by a certain number of times, another value (i.e. quotient) also increases (decreases) by that number of times.]
7	Book 4, page 15 Q. 4 Read: Fill in the missing numbers and signs. Ps do calculations and check with reverse operations at RHS of Pbs or in Ex. Bks.. Review at BB with whole class. Ps come to BB to fill in numbers and signs, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. In a), agree that dividing by 2 and then by 3 is the same as dividing by 6 . Solution: a) b) $698=$$\mathbf{1} \mathbf{3}$ $\mathbf{9}$$\times 5+\mathbf{3}$	Individual work monitored, helped (or whole class activity if time is short) Written on BB or use enlarged copy master or OHT Discussion, reasoning, agreement, self-correcting, praising or, e.g. $\begin{aligned} & 708 \div 2=(600+108) \div 2 \\ & \quad=300+54=\underline{354} \\ & 354 \div 3 \\ & =(300+30+24) \div 3 \\ & =100+10+8=\underline{118} \\ & \text { etc. } \end{aligned}$

		Lesson Plan 16
Activity 3	Problems Listen carefully and think how you would work out the answer. a) How much will 8 bars of chocolate cost if 2 of the same bars cost £1.22? Ps come to BB or dictate to T. Who agrees? Who would do it another way? etc. T summarises by writing out as below. $\begin{array}{ll} \text { BB: } \quad 2 \text { bars } & \rightarrow £ 1.22=122 \mathrm{p} \quad \square \square \\ & 1 \text { bar } \\ & 8 \text { bars } \end{array} \rightarrow 122 \mathrm{p} \div 2=61 \mathrm{p} \quad 122 \mathrm{p} \div 2 \times 8=61 \mathrm{p} \times 8=488 \mathrm{p}=£ 4.88$ T highlights the combined operations as a one-line plan. Or by using direct proportion: BB: $\left.\times 4\left(\begin{array}{ll} 2 \text { bars } & \rightarrow 122 \mathrm{p} \\ 8 \text { bars } \rightarrow 488 \mathrm{p} \end{array}\right) \times 4 \begin{array}{\|c:c:c:c} & 4 & 2 & \times 4 \\ \hline \end{array}\right) 8: 8$ Answer: 8 bars of chocolate will cost $£ 4.88$. b) How much will 9 packets of sweets cost if 3 of the same packets of sweets cost $£ 3.06$? Who can write the operations in one line? Who can show it using direct proportion? BB: 3 packets $£ 3.06=306 \mathrm{p}$ $\begin{aligned} 9 \text { packets } 306 \mathrm{p} \div 3 \times 9 & =102 \mathrm{p} \times 9 & & 000 \\ & =918 \mathrm{p}=\underline{£ 9.18} & & 000000000 \end{aligned}$ Or by using direct proportion: 9 packets are 3 times 3 packets, so will cost 3 times as much as 3 packets. BB: $\quad 306 \mathrm{p} \times 3=918 \mathrm{p}=£ 9.18$ Answer: 9 packets of sweets will cost $£ 9.18$.	Notes Whole class activity Initial discussion about different methods of solution. Involve several Ps. At a good pace Reasoning, agreement, praising T writes out again only if Ps have not done so clearly If Ps do not suggest this way, T elicits or demonstrates it. Ps say answer as a sentence. Reasoning, agreement, praising Ps say answer as a sentence.
4	Book 4, page 16 Q. 1 Read: Write the numbers from 200 to 220 in the correct column in the table. Draw dots on the graph to show the remainders. $\mathrm{T}(\mathrm{P})$ explains task. Do first two numbers with whole class first if Ps are unsure what to do. Review at BB with whole class. Ps come to BB one after the other to write a number in the table and show it in the graph. Class agrees/disagrees. Mistakes discussed and corrected. Solution:	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising Why are there no dots on the remainder 5 line? (e.g. Because if you had a remainder of 5 you would be at the next multiple of 5 whichis already shown on the line for remainder 0 .)

BK	R: Calculation C: Measures: revision of length, capacity, mass. Numbers up to 2000 E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 17 \end{gathered}$
Activity 1	Measuring length a) What units does your ruler show? (e.g. cm and mm) What range of lengths can you measure with it? (e.g. 0 cm to 27 cm or 0 mm to 275 mm ; or more if we mark, e.g. 20 cm , then move the ruler along) Who can fill in the missing items? Ps come to BB or dictate to T. BB: 1 centimetre $=10$ millimetres $1 \mathrm{~cm}=10 \mathrm{~mm}$ Measure the width of your exercise book. T asks several Ps their result. Ps might give it in different units. T writes on BB. e.g. BB: Width of exercise book: $18 \mathrm{~cm} 5 \mathrm{~mm}=185 \mathrm{~mm}$ b) i) What range of lengths can we measure with this metre stick? (0 m to 1 m , or 0 cm to 100 cm , or 0 mm to 1000 mm) ii) What range of lengths can we measure with this tape measure? (e.g. 0 m to 1 and a half m , or 0 cm to 150 cm , or 0 mm to 1500 mm) Let's measure the width of A's desk (the classroom). Ps come to front of class in pairs to choose an appropriate measuring tool, measure and write length on BB. (T should have an idea of what the lengths are beforehand. If the measures are way out, ask another pair of Ps to repeat it.) e.g. BB: Width of: A's desk: $503 \mathrm{~mm}=50 \mathrm{~cm} 3 \mathrm{~mm}$ the classroom: $1245 \mathrm{~cm}=12 \mathrm{~m} 45 \mathrm{~cm}$ ($=12450 \mathrm{~mm}$) Who can fill in the missing items? Ps dictate to T or come to BB. Rest of class write in Ex. Bks. too. BB: $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ $1 \mathrm{~km}=1000 \mathrm{~m}$ $1 \mathrm{~cm}=10 \mathrm{~mm}$ What place is about 1 km from the school? (T should already have one or two in mind, or cite number of times round playground)	Notes Whole class activity Ps have rulers on desks and T has other measuring tools (e.g. metre rule, tape measure, etc.) (T could have a ruler or tape measure in inches and feet too and compare these Imperial units with cm and m .) Discussion, agreement, praising At a good pace throughout And/or T could ask several Ps how tall they are (or measure them) and write their heights on BB. Extension [T might mention that in some countries, e.g. Hungary, they use these units of length. BB: $1 \mathrm{~mm}<1 \mathrm{~cm}<1 \mathrm{dm}<1 \mathrm{~m}<1 \mathrm{~km}$ $\times 10 \times 10 \times 10 \times 1000$ What do you think dm means? (decimetre) How many cm do you think are in 1 dm ? (10) How many dm do you think are in 1 m ? (10). Elicit or tell that $1 \mathrm{dm}=1$ tenth of a m]
2	Measuring capacity What is capacity? (How much liquid a container can hold.) a) Let's measure capacity using non-standard units. (e.g. measuring the capacity of a jug or bottle using a tumbler or glass.) Ps estimate first, then confirm by measuring with water. e.g. BB: 3 glasses < capacity of jug < 4 glasses b) What range of capacity can be measured using this measuring jug (feeding bottle)? e.g. 0 ml to 1000 ml , or 0 cl to 100 cl , or 0 litre to 1 litre. How much water is in this bucket (bottle, etc.)? Ps estimate first, then measure. (e.g. 2 litres, $75 \mathrm{cl}, 750 \mathrm{ml}$, etc.) What is missing? Ps come to BB or dictate to T . BB: 1 litre $=100$ \square cl = \square 1000 $1 \mathrm{cl}=10$ \square ml Ps copy in Ex. Bks. Elicit the relationship between capacity and length. Show it in a diagram or demonstrate with an open-top 10 cm glass cube.	Whole class acivity Thas various containers of different size Discussion, agreement, praising At a good pace T could mention Imperial units too (pint, gallon) and compare with decimal units. Extension How many litres of water would you displace in a bath?

BKK		Lesson Plan 17
Activity 3	Measuring mass Thas various objects to weigh and different sets of scales and weights. a) Ps come to front of class to measure weights using non-standard units. Ps estimate first. e.g. 2 spoons $<$ a book <3 spoons b) What range of units could we measure with these scales? Ps come to BB ro read range and T writes on BB . (e.g. 0 g to 1000 g , or 0 kg to 5 kg) Ps come to front to estimate mass first then weigh various items using appropriate sets of scales and standard units. Ps write weights on BB. T could ask various Ps what they weigh, or Ps come to front of class to weigh themselves on bathroom scales and write weights on BB . What is missing? Ps come to BB or dictate to T . BB: $1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1$ tonne $=1000 \mathrm{~kg}$ Ps copy in Ex. Bks. What kind of things would you weigh in tonnes? (e.g. ships, elephants, transporters, etc. - very heavy things!) Elicit the relationship between mass, capacity and length. Ps can demonstrate by filling a $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ open-top glass cube with water, pouring it into a litre jug, then pouring it into the container on a set of scales. BB: 1000 cm cubes (cc) of water $\rightarrow 1$ litre $\rightarrow 1 \mathrm{~kg}$ 1 cc of water $\rightarrow 1 \mathrm{ml} \rightarrow 1 \mathrm{~g}$ 28 min	Notes Whole class activity Digital and mechanical scales and balances with various weights: e.g. $1 \mathrm{~g}, 2 \mathrm{~g}, 5 \mathrm{~g}$, $10 \mathrm{~g}, 20 \mathrm{~g}, 50 \mathrm{~g}, 100 \mathrm{~g}$, $200 \mathrm{~g}, 500 \mathrm{~g}, 1 \mathrm{~kg}$ [T might show Imperial weights too (ounce, lb , stone) and compare with decimal measures.] At a good pace Discussion, agreement, praising Allow Ps to explain it if they can but T should have appropriate measuring tools available for them to use. T gives hints only if Ps do not remember. Agreement, praising
4	Book 4, page 17 Q. 1 Read: Fill in the missing numbers and units. What kind of measures are these? (length) Set a time limit. Review at BB with whole class. Ps dictate results to T or come to BB, explaining reasoning. Mistakes discussed and corrected. Solution: a) $3 \mathrm{~m} 35 \mathrm{~cm}=\underline{335} \mathrm{~cm}$ b) $5 \mathrm{~m} 70 \mathrm{~cm}=570 \mathrm{~cm}$ c) $198 \mathrm{~cm}=\underline{1} \mathrm{~m} \underline{98} \mathrm{~cm}$ d) $609 \mathrm{~cm}=6 \underline{\mathrm{~m}} \underline{9} \mathrm{~cm}$ e) $8 \mathrm{~cm} 4 \mathrm{~mm}=\underline{84} \mathrm{~mm}$ f) $1 \mathrm{~m} 32 \mathrm{~cm} 5 \mathrm{~mm}=1325 \mathrm{~mm}$ g) $1273 \mathrm{~mm}=\underline{1} \mathrm{~m} \underline{27} \mathrm{~cm} \underline{3} \mathrm{~mm}$ h) $1905 \mathrm{~mm}=\underline{1} \mathrm{~m} \underline{90} \mathrm{~cm} \underline{5} \mathrm{~mm}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correcting, praising Feedback for T
5	Book 4, page 17 Q. 2 Read: Fill in the missing numbers and units. What kind of measures are these? (capacity) Set a time limit. Review at BB with whole class. Ps dictate results to T or come to BB, explaining reasoning. Mistakes discussed and corrected. Solution: a) 3 litres $42 \mathrm{cl}=\underline{342} \mathrm{cl}$ b) 6 litres $58 \mathrm{cl}=658 \underline{\mathrm{cl}}$ c) $824 \mathrm{cl}=\underline{8}$ litres $\underline{24} \mathrm{cl}$ d) $703 \mathrm{cl}=7 \underline{\text { litres }} 3 \mathrm{cl}$ e) 1 litre $63 \mathrm{cl} 5 \mathrm{ml}=\underline{1635 \mathrm{ml}}$ f) 1 litre $4 \mathrm{cl} 8 \mathrm{ml}=1048 \mathrm{ml}$ g) $1546 \mathrm{ml}=\underline{1}$ litre $\underline{54} \mathrm{cl} \underline{6} \mathrm{ml}$ h) $1038 \mathrm{ml}=\underline{1}$ litre $\underline{3} \mathrm{cl} \underline{8} \mathrm{ml}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correcting, praising Feedback for T

BKK	R: Calculations C: Measures: (length, capacity,mass, time). Numbers up to 2000 E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 18 \end{gathered}$
Activity 1	Estimating length Imagine these things in real life. Estimate their lengths. BB: (a) book (b) rubber (c) house (d) car (e) table $\begin{gathered} 1 \mathrm{~m}<\boxed{\mathbf{e}}<2 \mathrm{~m} \quad 2 \mathrm{~cm} \quad \boxed{\mathbf{b}}<3 \mathrm{~cm} \\ 10 \mathrm{~cm}<\boxed{\mathbf{a}}<20 \mathrm{~cm} \quad 4 \mathrm{~m}<\boxed{\mathbf{d}}<5 \mathrm{~m} \\ 10 \mathrm{~m}<\boxed{\mathbf{c}}<20 \mathrm{~m} \end{gathered}$ Ps come to BB to write letter of item in appropriate inequality. Class agrees disagrees. If problems, check against real measures.	Notes Whole class activity (T could have some real items to show to class) Inequalities written on BB or use enlarged copy master or OHP At a good pace Agreement, praising Feedback for T
2	Estimating capacity Imagine these things in real life. Estimate their capacity BB: © jug (b) bucket (C) tank (d) spoon (e) glass (f) bottle $\begin{array}{ll} 1 \text { litre }<\mathbf{f} & <2 \text { litres } \\ 10 \mathrm{ml}<\mathbf{d}<20 \mathrm{ml} & 80 \text { litres }<\boxed{\mathbf{c}}<100 \text { litres } \\ 100 \mathrm{ml}<\boxed{\mathbf{e}}<200 \mathrm{ml} \\ 800 \mathrm{ml}<\mathbf{a}<1000 \mathrm{ml} \\ 1000 \mathrm{cl}<\boxed{\mathbf{f}}<2000 \mathrm{cl} \\ 5 \text { litres }<\mathbf{b}<10 \text { litres } & 80 \mathrm{cl}<\mathbf{a}<1 \text { litre } \end{array}$ Ps come to BB to write letter of item in appropriate inequality. Class agrees disagrees. Extra praise if Ps notice that 2 inequalities are the same as two others (see joining lines).	Whole class activity (T could have some real items to show to class.) Inequalities written on BB or use enlarged copy master or OHP At a good pace Discussion, agreement, praising T points to other inequalities Ps say them using other units, $\text { e.g } 10 \mathrm{cl}<\mathbf{e}<20 \mathrm{cl}$
3	Estimating mass Imagine these things in real life. Estimate their mass (weight). BB: (a) 1 litre of milk (b) apple (c) teacher (d) loaf of bread (e) Y4 boy (f) egg $\begin{array}{rlrl} 900 \mathrm{~g} & <\mathbf{a} & <1100 \mathrm{~g} & 20 \mathrm{~kg}<\mathbf{e}<40 \mathrm{~kg} \\ 50 \mathrm{~g} & <\mathbf{f} & <100 \mathrm{~g} & 50 \mathrm{~kg}<\mathbf{c}<1000 \mathrm{~kg} \\ 500 \mathrm{~g} & <\mathbf{d}<1000 \mathrm{~g} & 100 \mathrm{~g}<\mathbf{b}<200 \mathrm{~g} \end{array}$ Ps come to BB to write letter of item in appropriate inequality. Class agrees disagrees.	Whole class activity (T could have real items to show to class.) Inequalities written on BB or use enlarged copy master/OHP At a good pace Discussion, agreement, praising Extension Ps suggest another item and class agrees on an inequality for it. Check with real weight.

BKK		Lesson Plan 18
Activity 4	Time What standard units of time do we use? Ps tell what they know. (e.g. seconds, minutes, hours, days, weeks, months, seasons, years) Let's fill in the missing units. Ps come to BB or dictate to T. BB: $\begin{aligned} & 1 \text { year }=\boxed{4} \text { seasons } \quad 1 \text { year }=52 \boxed{\text { weeks }}+1 \text { or } 2 \boxed{\text { days }} \\ & 1 \text { year }=12 \boxed{\text { months }} \\ & 1 \text { year }=365 \text { or } 366 \text { days } \\ & 1 \text { hour }=\mathbf{6 0} \text { minutes } \\ & 1 \text { week }=7 \text { days } \\ & 1 \text { minute }=60 \boxed{\text { seconds }} \end{aligned}$ T informs class (or elicits if T thinks Ps might know): - Leap years have an extra day (February 29th) so have 366 days. - Years divisible by 4 are leap years, except the whole hundred years when only every fourth hundred is a leap year. When is the next leap year? (2004, as the next year divisible by 4) - In a non-leap year, 1 January and 31 December are on the same day of the week. - The year 2000 was the last year of the second millennium (or second thousand years), or the last day of the 20th century. - 2001 is the first year of the third millennium (or third thousand years), or the first year of the 21st century. What was the first day of the 21 st century? (1 January 2001, or $01 / 01 / 2001$)	Notes Whole class activity T has clock and large calendar on the wall. Written on BB or use enlarged copy master or OHP At a good pace Agreement, praising BB: $52 \times 7=350+14$ $=364$ Feedback for T Discussion. Involve several Ps. e.g. 2000 was a leap year but 2100 will not be. T refers to calendar where appropriate. BB: 1 century = 100 years 1 millennium $=1000$ years Remind Ps of different ways of writing the date.
5	What is the time? a) T sets a real or model clock and Ps read the time. Encourage other Ps to express the times in different ways. e.g. 12 o'clock, 12:00 or 00:00, mid-day (noon) or midnight 4 o'clock, 4.00 pm or $4.00 \mathrm{am}, 04: 00$ or 16:00 2 minutes to nine, 8.58 am or $8.58 \mathrm{pm}, 8: 58$ or 20:58 A quarter to $12,11.45 \mathrm{am}$ or $11.45 \mathrm{pm}, 11: 45$ or $23: 45$, etc. b) T (or P) dictates times in different ways. Ps set their model clocks and show to T on command.	Whole class activity T chooses Ps at random. Class points out errors. Remind Ps that 12 o'clock is neither am nor pm. Agreement, praising Ps can set the time too! Use copy master from Y2 LP 83/1. Agreement, praising
(6	Book 4, page 18 Q. 1 Read: Join up the quantities to the tools you would use to measure them. Review at BB with whole class Ps come to BB to draw joining lines. Class agrees/disagrees. Mistakes discussed and corrected. Solution: T points to a quantity and Ps express it in another way.	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrecting, praising Feedback for T e.g. $3 \mathrm{~kg} 480 \mathrm{~g}=3480 \mathrm{~g}$ Agreement, praising

BKK4		Lesson Plan 18
Activity 7 Extension	Book 4, page 18 Q. 2 Read: Join up the measures to the matching units. Review at BB with whole class Pscome to BB to draw joining lines. Class agrees/disagrees. Mistakes discussed and corrected. Solution: What other units could be used for each type of measure? 33 min \qquad	Notes Individual work, monitored Written on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrecting, praising Feedback for T e.g. capacity: ml (pint, gallon)
8	Book 4, page 18 Q. 3 Read: Fill in the missing numbers and units. Elicit that there are 14 equations. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Ps mark/correct own work and write how many correct out of 14 . Who had 14 correct? Who made 1 mistake ($2,3,4$, more than 4) mistakes? What was your mistake? Who did the same? Who made a different mistake? etc. Solution: a) $439 \mathrm{~cm}=\underline{4} \mathrm{~m} \underline{39} \mathrm{~cm}$ $12 \mathrm{~m} 6 \mathrm{~cm}=\underline{1206} \mathrm{~cm}$ b) $1831 \mathrm{~mm}=1 \underline{\mathrm{~m}} 83 \mathrm{~cm} 1 \mathrm{~mm}$ $1 \mathrm{~m} 67 \mathrm{~mm}=1067 \mathrm{~mm}$ c) $1210 \mathrm{~g}=\underline{1 \mathrm{~kg} \underline{210} \mathrm{~g}}$ $1 \mathrm{~kg} \mathrm{340} \mathrm{g}=1340 \mathrm{~g}$ d) $1942 \mathrm{ml}=1$ litre 942 ml 1 litre $86 \mathrm{ml}=1086 \mathrm{ml}$ e) 11 minutes $=\underline{660}$ seconds $4 \mathrm{hrs} 27 \mathrm{~min}=\underline{267} \mathrm{~min}$ f) 372 seconds $=\underline{6} \mathrm{~m} \underline{12} \mathrm{sec}$ $10 \mathrm{~min} 40 \mathrm{sec}=640 \mathrm{sec}$ g) January $=\underline{4}$ weeks $\underline{3}$ days June $=4$ weeks $2 \underline{\text { days }}$ 40 min	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Evaluation. Class applauds Ps with all (most) correct. Feedback for T
9	Book 4, page 18 Q. 4 Read: Write in the missing numbers. (They need only be approximate.) Ps fill in what they can during the rest of the lesson. They can finish it at home if they run out of time. T chooses Ps to read out their details. Class decides whether their estimates are realistic or not. Solution: e.g. Today's date: 16 / 10 / 2001 My height: $134 \mathrm{~cm}=1 \mathrm{~m} 34 \mathrm{~cm}$ My weight: 32 kg My age: 8 years 3 months I go to bed at: 9.00 pm I get up at: 8.00 am Length of my step: 60 cm Length of my span: 12 cm Length of my foot: 14 cm I sleep for: 11 hours per day 45 min	Individual work, monitored Ps have rulers on desks. T should have bathroom scales and a height measure against the classroom wall. T might need to explain what a 'span' is (from tip of thumb to tip of little finger when hand is stretched out flat) Ps can help each other to find the measures they do not know. Agreement, self-correcting, praising, encouragement only In good humour!

$B K$		Lesson Plan 19
Activity 2	Construction a) Draw a rectangle in your Ex. Bks with sides 4 cm 5 mm and 8 cm . T draws a rough diagram on BB but Ps measure (or count) accurately in Ex. Bks or on grid. Mistakes discussed and corrected. Thelps throughout. 4 cm 5 mm Solution: by calculating in either mm or cm (or by counting) $\begin{aligned} & P=2 \times(45 \mathrm{~mm}+80 \mathrm{~mm})=2 \times 125 \mathrm{~mm}=250 \mathrm{~mm}=\underline{25 \mathrm{~cm}} \\ & \text { or } P=2 \times(4.5 \mathrm{~cm}+8 \mathrm{~cm})=2 \times 12.5 \mathrm{~cm}=\underline{25 \mathrm{~cm}} \\ & A=45 \mathrm{~mm} \times 80 \mathrm{~mm}=\underline{3600 \mathrm{~mm}^{2}}, \text { or } \\ & A=4.5 \mathrm{~cm} \times 8 \mathrm{~cm}=(32+4) \mathrm{cm}^{2}=\underline{36 \mathrm{~cm}^{2}} \quad \frac{4.5 \times 8}{4} \times \end{aligned}$	Notes Individual work in Ex. Bks (or on 0.5 cm square grid) monitored, helped Perimeter found individually but area could be done with the whole class. Reasoning, agreement, selfcorrection, praising Elicit that: $45 \mathrm{~mm}=4.5 \mathrm{~cm}$ $\begin{aligned} 4.5 & =4 \text { and } 5 \text { tenths } \\ & =4 \text { and a half } \end{aligned}$ BB: $1 \mathrm{~mm} \times 1 \mathrm{~mm}=1 \mathrm{~mm}^{2}$ $10 \mathrm{~mm} \times 10 \mathrm{~mm}=100 \mathrm{~mm}^{2}$ $=1 \mathrm{~cm}^{2}$
3	Missing numbers and units Let's see how quickly we can fill in the missing items! Ps come to BB to write numbers and units, explaining reasoning and to say completed equation. Class checks mentally whether they are correct. BB: a) $780 \mathrm{~m}+\mathbf{2 2 0} \mathbf{m}=1 \mathrm{~km}$ $2 \mathrm{~km}-\mathbf{5 0 0}$ $\mathrm{m}=1500 \mathrm{~m}$ $1260 \mathrm{~m}+\mathbf{7 4 0 \mathrm { m }}=2 \mathrm{~km}$ 1 km - \square 560 $\mathrm{m}=440 \mathrm{~m}$ b) \square $550 \mathrm{~g}=1 \mathrm{~kg}$ 1 kg - $20 \mathrm{~g}=$ \square 980 g $1350 \mathrm{~m}+\mathbf{6 5 0} \mathrm{g}=2 \mathrm{~kg}$ $2 \mathrm{~kg}-840 \mathrm{~g}=\mathbf{1 1 6 0} \mathrm{g}$ c) $330 \mathrm{ml}+670 \mathrm{ml}=1$ litre 1 litre - \square 590 $\mathrm{ml}=410 \mathrm{ml}$ $1600 \mathrm{ml}+400 \mathrm{ml}=2$ litres \square $\mathrm{ml}-1$ litre $=310 \mathrm{ml}$ \qquad	Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace Reasoning, e.g. $' 780 \mathrm{~m}+\underline{220 \mathrm{~m}}=1 \mathrm{~km}$ because $1 \mathrm{~km}-780 \mathrm{~m}=\underline{220 \mathrm{~m}^{\prime}}$ Agreement, praising
4	Book 4, page 19 Q. 1 Read: Fill in the missing numbers. Set a time limit or deal with one row at a time. Review at BB with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $1500 \mathrm{~m}=\underline{1} \mathrm{~km} \underline{500} \mathrm{~m}$ $1 \mathrm{~km} 480 \mathrm{~m}=\underline{1480} \mathrm{~m}$ b) $1300 \mathrm{~g}=1 \mathrm{~kg} 300 \mathrm{~g}$ $1 \mathrm{~kg} 290 \mathrm{~g}=\underline{1290} \mathrm{~m}$ c) $1640 \mathrm{~mm}=\underline{1} \mathrm{~m} \underline{640} \mathrm{~mm}$ $1 \mathrm{~m} 517 \mathrm{~mm}=\underline{1517} \mathrm{~mm}$ d) $1240 \mathrm{ml}=1$ litre $\underline{240} \mathrm{ml}$ 1 litre $804 \mathrm{ml}=\underline{1804} \mathrm{ml}$ e) 640 minutes $=10 \mathrm{hrs} 40 \mathrm{~min}$ $10 \mathrm{hrs} 56 \mathrm{~min}=656 \mathrm{~min}$ f) 90 days $=\underline{12}$ weeks $\underline{6}$ days 50 wks 6 days $=\underline{356}$ days	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Feedback for T

BKL		Lesson Plan 19
Activity 5	Book 4, page 19 Q. 2 Elicit that there are $3 \times 4=\underline{12}$ additions and subtractions. Ps can calculate horizontally in Pbs or vertically in Ex. Bks. Deal with one block at a time. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\begin{aligned} & 340 \mathrm{~m}+460 \mathrm{~m}=740 \mathrm{~m}+60 \mathrm{~m}=800 \mathrm{~m} \\ & 950 \mathrm{~m}+320 \mathrm{~m}=1250 \mathrm{~m}+20 \mathrm{~m}=1270 \mathrm{~m}=1 \mathrm{~km} \mathrm{270m} \\ & 1 \mathrm{~km} \mathrm{50m}+406 \mathrm{~m}=1 \mathrm{~km} \mathrm{456m} \\ & 1 \mathrm{~km} 240 \mathrm{~m}-1040 \mathrm{~m}=1240 \mathrm{~m}-1040 \mathrm{~m} \geq 00 \mathrm{~m} \end{aligned}$ b) $\begin{aligned} & 810 \mathrm{ml}+190 \mathrm{ml}=1000 \mathrm{ml}=\underline{1 \text { litre }} \\ & 450 \mathrm{ml}+870 \mathrm{ml}=1320 \mathrm{ml}=\underline{1 \text { litre } 320 \mathrm{ml}} \\ & 1 \text { litre } 310 \mathrm{ml}+440 \mathrm{ml}=\underline{1 \text { litre } 750 \mathrm{ml}} \\ & 1 \text { litre } 50 \mathrm{ml}-200 \mathrm{ml}=1050 \mathrm{ml}-200 \mathrm{ml} 850 \mathrm{ml} \end{aligned}$ c) $\begin{aligned} & 157 \mathrm{~g}+243 \mathrm{~g}=357 \mathrm{~g}+43 \mathrm{~g}=400 \mathrm{~g} \\ & 630 \mathrm{~g}+510 \mathrm{~g}=1140 \mathrm{~g}=\underline{1 \mathrm{~kg} 140 \mathrm{~g}} \\ & 1 \mathrm{~kg} 40 \mathrm{~g}+350 \mathrm{~g}=1 \mathrm{~km} \mathrm{390g} \\ & 1 \mathrm{~kg} 210 \mathrm{~g}-430 \mathrm{~g}=1210 \mathrm{~g}-430 \mathrm{~g} \nexists 80 \mathrm{~g} \end{aligned}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Deails of vertical calculations written on BB if needed, e.g. c) 1 2 1 0 - 4 3 0 7 8 0
6	Book 4, page 19, Q. 3 Read: Fill in the missing numbers to show how much time has passed. How could we do it? (e.g. using a model clock) Ps come to front of class to set the initial time on the model clock and then to move it forward to the finish time. Class counts the hours and minutes. P writes the time passed on the BB and Ps in Pbs. What other way could we have worked it out? (subtraction) Who would like to show it on the BB? Ps writes subtraction, wi th T's help. BB: a) 12 hours $15 \mathrm{~min}-7$ hours $45 \mathrm{~min} \quad \mathrm{~T}$ shows another model: $\begin{array}{lr} =5 \text { hours } 15 \mathrm{~min}-45 \mathrm{~min} & 12 \mathrm{hrs} 15 \mathrm{~min} \rightarrow \quad 11 \mathrm{hrs} 75 \mathrm{~min} \\ =5 \text { hours }-30 \mathrm{~min} & -\underline{7 \mathrm{hrs} 45 \mathrm{~min}}-\underline{7 \mathrm{hrs} 45 \mathrm{~min}} \\ =4 \text { hours } 30 \mathrm{~min} & \underline{4 \mathrm{hrs} 30 \mathrm{~min}} \end{array}$ Ps come to BB to use whichever method they prefer to work out the missing times, explaining reasoning (with T's help if necessary). Class points out errors or easier ways to calculate. Solution: T points to a time and Ps express it in another way.	Whole class activity (if some Ps wish to try it individually, let them) Written on BB or SB or use enlarged copy master or OHT Discussion on methods of solution (e.g. practically, or 'counting on' or subtraction) Ps might start vertical subtraction, then need T"s help to complete it. Reasoning, agreement, praising c) $2.40 \mathrm{pm} \rightarrow 14 \mathrm{hrs} 40 \mathrm{~min}$ $6.30 \mathrm{am} \rightarrow 6 \mathrm{hrs} 30 \mathrm{~min}$ Difference: 8 hrs 10 min d) $\begin{array}{r} 15 \mathrm{hrs} 10 \mathrm{~min} \rightarrow \begin{array}{r} 14 \mathrm{hrs} \mathrm{7} \mathrm{7} \mathrm{~min} \\ -8 \mathrm{hrs} 40 \mathrm{~min} \end{array} \\ \hline-\frac{8 \mathrm{hrs} 40 \mathrm{~min}}{6 \mathrm{hrs} 30 \mathrm{~min}} \end{array}$ f) if both are am or both pm !

BK		Lesson Plan 20
Activity 6	Book 4, page 20 Q. 3 Read: A train travels at a speed of 20 m per second on average. Complete the table. Discuss what 'on average' means. (The train might slow down in places and speed up in others but if we take the total distance for each journey and divide it by the total time taken, then we get an average speed, as if the train was travelling at the same speed every second.) Deal with one table at a time. (Results from table a) will help with table b)). Necessary calculations done in Ex. Bks. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Extra praise if Ps notice connections in and between tables to make calculations easier. Solution: a) b) 38 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Initial whole class discussion Ps explain what they think and T repeats in a clearer way if necessary. Reasoning, agreement, selfcorrection, praising. Connections: e.g. 1 minute $=2 \times 30$ seconds, 1 and a half minutes $=1$ minute +30 seconds, 45 seconds $=30$ seconds + half of 30 seconds, etc. T points to a time or distance and Ps express it in another way, e.g. $100 \mathrm{sec} .=1 \mathrm{~min} .40 \mathrm{sec}$. $1800 \mathrm{~m}=1 \mathrm{~km} 800 \mathrm{~m}$, $45 \mathrm{sec} .=3$ quarters of a min.
7 ${ }^{7}$	Book 4, page 20, Q. 4 Read: One litre of oil has mass 900 g . Complete the table. Elicit that: BB: 1 litre $=100 \mathrm{cl}=1000 \mathrm{ml}$ Ps come to BB to choose a column and work out the missing quantity, explaining reasoning in detail. Difficult calculations done at side of BB if necessary. Class agrees/disgrees or suggests an easier way to calculate. Ps complete table in Pbs too. Solution: What is the rule? Check with easy values from the table. Note how the equations change according to the units used.	Whole class activity (or individual work if Ps wish, reviewed with whole class) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Extra praise if Ps notice connections between columns which make the calculations easier. Rule: e.g. $\begin{aligned} & M(\mathrm{~g})=C(\mathrm{cl}) \times 9 \\ & C(\mathrm{cl})=M(\mathrm{~g}) \div 9 \\ & C(\mathrm{ml})=M(\mathrm{~g}) \div 9 \times 10 \end{aligned}$

BKK		Lesson Plan 21
Activity 4	Number line a) Let's join up each number to its approximate position on the number line. Ps come to BB to say the number, point to its place on the number line and and draw joining line. Class agrees/disagrees. b) Let's write the next smaller and greater units, tens and hundreds for each number. Ps come to BB or dictate to T. Class points out errors. c) T points to each original number in turn. What is this number rounded to the nearest 10 (100)? Ps come to BB or dictate to T. Class points out errors. (Numbers could be coloured or starred.) BB:	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Agree that 5 rounds up What do you notice? (e.g. 591 rounds down to nearest ten but rounds up to nearest 100; 408 rounds to 400 as the nearest 10 and the nearest 100) Feedback for T
5	Book 4, page 21 Q. 2 Read: a) Join up the numbers to their approximate position on the number line. b) Write the next smaller and greater whole tens and hundreds in the boxes. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. For each middle number, colour the nearest ten red and the nearest hundred yellow. Review with whole class. Solution: a) b)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising Or done orally with whole class Ps tell what they notice. Who had them all correct? The person nearest them give them a pat on the back!

$B K \subset$	R: Mental calculation C: Sequences. Revision and practice of calculations (up to 2000) E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 22 \end{gathered}$
Activity 1	Mental calculation If you were doing these calculations in your head, how would you do them? Ps come to BB or explain to T who writes on BB . Who agrees? Who would do it another way? Which is easier? If you could write it down, how would you do the calculation? Ps come to BB or dictate to T . Do you think it is quicker to write it down or do it mentally? BB: e.g. a) $\begin{aligned} & 48+37=(85) \\ & (48+30+7)\end{aligned}$ $(48+30+7)$ b) $64-26=(38)$ ($64-20-6$) d) $\begin{gathered} 87 \div 4=(21, r 3) \\ (80 \div 4+7 \div 4) \\ =20+1, r 3 \end{gathered}$ $\begin{array}{ll} 348+37=(385) & 348+437=(785) \\ (348+30+7) & (348+400+30+7) \\ 764-26=(738) & 764-226=(538) \\ (764-20-6) & (764-200-20-6) \end{array}$ $249 \times 3=(747)$ $(200 \times 3+40 \times 3+9 \times 3)$ $=600+120+27$ ($250 \times 3-1 \times 3$) $=750-3$ $\begin{aligned} & 432 \div 6=(72) \\ & (420 \div 6+12 \div 6) \\ & =70+2 \end{aligned}$	Notes Whole class activity Operations written on BB or SB or OHT Discussion, reasoning, agreement, checking, praising BB: Agree that in general written calculations are simpler.
2	Sequences In each sequence, the difference between any two adjacent numbers is the same. Let's fill in the missing numbers. Ps come to BB to write the numbers above the lines, explaining reasoning. Class checks that they are correct. BB: a) $\underline{300}, \underline{294}, \underline{288}, \mathbf{2 8 2}, \mathbf{2 7 6}, \mathbf{2 7 0}, \underline{264}, \underline{258}, \underline{252}$ Rule: -6 b) $\underline{590}, \underline{610}, \underline{630}, 650,670,690, \underline{710}, \underline{730}, \underline{750}, \underline{770}$ Rule: +20 c) $805, \underline{822}, \underline{839}, \mathbf{8 5 6}, \mathbf{8 7 3}, \mathbf{8 9 0}, \underline{907}, \underline{924}, \underline{941}, \underline{958}$ Rule: +17	Whole class activity Thas bold numbers written in middle of BB or SB or OHT and horizontal lines drawn for the other terms. At a good pace Reasoning, agreement, praising
3	Book 4, page 22 Q. 1 Read: Practise addition. You may do the calculations mentally or write them in your $E x$. Bks. Let's see how many you can do in 3 minutes! Start . . . now! . . . Stop! Review with whole class. Ps change pencils and mark/correct their own work. Ps dictate answers, explaining reasoning. Class points out errors. Who had all 9 correct? Who made a mistake? What was your mistake? etc. Deal with all cases. Solution: a) $56+18=\underline{74}$ $556+18=\underline{574}$ $556+418=\underline{974}$ b) $43+29=\underline{72}$ $243+29=\underline{272}$ $243+929=\underline{1172}$ c) $37+48=\underline{85}$ $937+48=\underline{985}$ $937+548=\underline{1485}$	Individual work, monitored (less able Ps helped and they might only be expected to do the first two columns) Differentiation by time limit Reasoning, agreement, selfcorrection, praising Feedback for T

BK	R: Mental calculation C: Revision and practice of calculations (up to 2000) E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 23 \end{gathered}$
Activity 1	Products $\begin{array}{lllll}\text { Let's choose from these digits } & 1 & 2 & 3 & 5\end{array}$ a 3-digit number by a 1 -digit number, so that the product is: a) the greatest possible, BB : b) the smallest possible, $\begin{array}{\|l\|l\|l\|l\|l} 2 & 3 & 5 & \times & 1 \\ \hline 2 & 3 & 5 & & \\ \hline \end{array}$ c) an even number, $\begin{array}{\|l\|l\|l\|l\|} \hline 1 & 3 & 2 & \times \\ \hline 6 & 6 & 0 & \\ \hline \end{array}$ $\begin{array}{\|l\|l\|l\|l\|} \hline 3 & 1 & 5 & \times 2 \\ \hline 6 & 3 & 0 \\ \hline \end{array}$ $\begin{array}{\|l\|l\|l\|l\|} \hline 3 & 5 & 1 \\ \hline 7 & 0 & 2 & \times 2 \\ \hline \end{array}$ d) an odd number.2 5 1 $\times 3$ 7 5 3	Notes Whole class activity Numbers written on BB or number cards stuck to BB Ps come to BB to rearrange numbers and do calculations, explaining reasoning Class checks that they are correct or suggests alternative multiplications. At a good pace Agreement, praising
2	Problem Listen to the problem and picture it in your head. Write the data and do the calculation in your Ex. Bks. Show me the answer when I say. The human skull is made up of 29 bones, the spinal column has 26 bones, each arm has 32 bones, each leg has 31 bones and the remaining part of the body has 25 bones. How many bones make up a human skeleton? Show me . . now! (206) P who responded correctly explains to those who did not. Mistakes discussed and corrected. BB: $\begin{aligned} & 29+26+32+32+31+31+25 \\ & =180+26 \\ & =\underline{206} \text { (bones) } \end{aligned}$ or Answer: The human skeleton is made from 206 bones. Would any of you like to be a doctor or nurse when you grow up? Why? Why not?	Whole class activity T repeats question slowly and Ps repeat in own words. Responses written on scrap paper or slates and shown in unison. Reasoning, agreement, selfcorrection, praising Ps say answer as a sentence in unison. Short discussion involving as many Ps as possible.
 Extension	Find the mistakes Pete is a year 4 pupil in another school. He is unsure of his units, so he has written several answers. Let's help him choose the correct one. Ps come to BB to cross out unrealistic data and say why they cannot be correct. Class agrees/disagrees. BB: $\begin{array}{lllll}\text { a) Pete's height is: } & 13 \mathrm{~m} & 13 \mathrm{~nm} & 13 / 0 \mathrm{~m} & 130 \mathrm{~cm} \\ \text { b) Pete's handspan is: } & 160 \mathrm{~mm} & 160 \mathrm{~cm} & 1600 \mathrm{~cm} & \\ \text { c) Length of Pete's step is: } & 46 \mathrm{~m} & 46 \mathrm{~cm} & 460 \mathrm{~mm} & \end{array}$ d) Pete's age is: 103 years 103 days 103.weeks 103 months What other data could be written down? Ps suggest criteria and Ps estimate their own data. (e.g. weight, how far away from school they live, length of little finger, how high (long) they can jump, etc.)	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising In good humour! Extra praise for creative suggestions.

BKム		Lesson Plan 23
Activity 4	Book 4, page 23 Q. 1 Read: Solve the problems in your exercise book. Deal with one part at a time. Ps read the question themselves, make a plan, do the calculation and write the answer as a sentence in Ex. Bks. Review with whole class. Ps come to BB to show their solution, explaining reasoning. Who agrees? Who thinks something else? Who did it a different way? Who made a mistake? What kind of mistake? etc. Solutions: a) An athlete won a high jump competition with a jump of 236 cm . A dolphin can leap out of the water and into the air to a height which is 374 cm above that reached by the high jumper. How high can this dolphin jump? BB: A: $236 \mathrm{~cm} \quad$ D: $236 \mathrm{~cm}+374 \mathrm{~cm}=\underline{610 \mathrm{~cm}}$ Answer: This dolphin can jump to a height of 610 cm . b) A milk churn contained 7 litres 5 cl of milk. The farmer's wife used 2 litres 18 cl of the milk to feed some newborn lambs. How much milk was left in the churn? BB: Had: $\quad 7$ litres $5 \mathrm{cl}=705 \mathrm{cl}$ Used: 2 litres $18 \mathrm{cl}=218 \mathrm{cl}$ Had left: $705 \mathrm{cl}-218 \mathrm{cl}=487 \mathrm{cl}=4$ litres 87 cl Answer: There was 4 litres 87 cl of milk left in the churn.	Notes Individual work, monitored, helped (Ps could show answers on scrap paper or slates in unison on command.) Reasoning, agreement, selfcorrecting, praising Feedback for T
5	Factors and products Study the diagrams. Note how do the factors and products change. Let's fill in the missing numbers and signs. Ps come to BB to fill in missing items, explaining reasoning. Class agrees/disagrees. What do you notice? (If a factor is increased by a certain number of times, the product also increases by that number of times.) BB: a) b)	Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Feedback for T
6	Book 4, page 23 Q. 2 Read: Look at how the factors and products change. Fill in the missing numbers and signs. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) b)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising

BKK		Lesson Plan 23
Activity 7	Book 4, page 23, Q. 3 Read: Look at how the dividends, divisors and quotients change. Fill in the missing numbers and signs. Ps work out the divisions first in Ex. Bks. Ps come to BB to fill in missing quotients. Class agrees/disagrees. Then Ps fill in missing operations. Class checks mentally. What do you notice? (e.g. If the dividend increases by a certain number of times, the quotient also increases by that number of times; if the divisor decreases by a certain number of times, the quotient increases by that number of times) Solution: a) b)	Notes Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising T repeats what Ps have noticed more clearly if necessary.
8	Book 4, page 23 Q. 4 Read: Solve the problems in your exercise book. Give Ps a set time to read questions themselves and do the calculations in Ex. Bks. Check that the amounts add up to 1200 ! Review with whole class. T (or a P) reads each question and Ps show results on scrap paper or slates on command. Ps who responded correctly explain to those who did not. Mistakes discussed and corrected. Solutions: Flora has collected 12001 p coins and she wants to put them in two piggy banks. How many coins should she put in each piggy bank so that there is: a) twice as much money in one piggy bank as in the other? BB: $1200 \div 3=400 ; \quad\left(\mathrm{PB}_{1}: \underline{400}\right.$ and $\left.\mathrm{PB}_{2}: \underline{800}\right)$ b) half as much money in one piggy bank as in the other? BB: $1200 \div 3=400 ; \quad\left(\mathrm{PB}_{1}: \underline{400}\right.$ and $\left.\mathrm{PB}_{2}: \underline{800}\right)$ c) three times as much money in one piggy bank as in the other? BB: $1200 \div 4=300 ; \quad\left(\mathrm{PB}_{1}: \underline{300}\right.$ and $\left.\mathrm{PB}_{2}: \underline{900}\right)$ d) 1 third as much money in one piggy bank as in the other? BB: $1200 \div 4=300 ; \quad\left(\mathrm{PB}_{1}: \underline{300}\right.$ and $\left.\mathrm{PB}_{2}: \underline{900}\right)$ e) five times as much money in one piggy bank as in the other? BB: $1200 \div 6=200 ; \quad\left(\mathrm{PB}_{1}: \underline{200}\right.$ and $\left.\mathrm{PB}_{2}: \underline{1000}\right)$ f) 1 fifth as much money in one piggy bank as in the other? BB: $1200 \div 6=200 ; \quad\left(\mathrm{PB}_{1}: \underline{200}\right.$ and $\left.\mathrm{PB}_{2}: \underline{1000}\right)$ g) 1 seventh as much money in one piggy bank as in the other? BB: $1200 \div 8=150$ $\left(\mathrm{PB}_{1}: \underline{150}\right.$ and $\left.\mathrm{PB}_{2}: \underline{1050}\right)$	Individual work, monitored, to start, then whole class review (or all done as a whole class activity, one at a time) Piggy Banks drawn on BB or use enlarged copy master Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps realise that a) and b), c) and d), etc. are really the same question, e.g. - twice as much in PB2 is the same as half as much in PB1 - 3 times as much in PB2 is the same as 1 third as much in PB1. T could show solution like this: Let $s=$ smaller amount a) $\mathrm{PB}_{1}: s, \mathrm{~PB}_{2}: 2 \times s$ $\begin{aligned} & s+2 \times s=3 \times s=1200 \\ & s=1200 \div 3=400 \end{aligned}$ So $\mathrm{PB}_{1}: \underline{400}$ and $\mathrm{PB}_{2}: 2 \times 400=\underline{800}$ c) $\mathrm{PB}_{1}: s, \mathrm{~PB}_{2}: 3 \times s$ $\begin{aligned} & s+3 \times s=4 \times s=1200 \\ & s=1200 \div 4=300 \end{aligned}$ So $\mathrm{PB}_{1}: 300$ and $\mathrm{PB}_{2}: \overline{3 \times 300}=\underline{900}$ etc.

[^0]: © CIMT, Plymouth University

