BK	R: Place value C: Extending numbers to 10000 : counting, reading, writing, ordering E: Vocabulary	$\begin{gathered} \text { Lesson Plan } \\ 25 \end{gathered}$
Activity 1	Money model Several countries have larger demonination bank notes than we have in the U.K. (T could explain that their basic units of currency have less value than the \mathfrak{f} or pence in the U.K, so they need more of them.) Let's complete the missing items. Ps come to BB to explain diagrams and fill in what is missing. Rest of class writes the equations with words and numbers (no need to draw the money) in Ex. Bks. BB:	Notes Whole class activity BB already prepared with model money drawn or stuck on BB or use enlarged copy master or OHP At a good pace Agreement, praising Feedback for T T points out that when the number of thousands is 2 digits e.g. 10 thousand: it is usually written with a small space (or a comma) after the Th to make the number easier to read: BB: 10000 \uparrow small space but no space is left when it is shown in a place value table!
2	Place value How much is there altogether? Let's write it in different ways. Ps come to BB to count how much there is and to write it as digits in the place value table. Class agrees/disagrees. Let's write it in other ways. T starts each line and Ps come to BB to continue. Class points out errors. Ps write equations in Ex. Bks too. BB: $\begin{aligned} 3524 & =3000+500+20+4 \\ & =3 \mathrm{Th}+5 \mathrm{H}+2 \mathrm{~T}+4 \mathrm{U} \\ & =3 \times 1000+5 \times 100+2 \times 10+4 \times 1 \\ & =\text { three thousand five hundred and twenty four } \end{aligned}$	Whole class activity Drawn on BB or with model money stuck on table, or use enlarged copy master or OHP Reasoning, agreement, praising Class reads number in unison.

BK		Lesson Plan 25
Activity 3	Vocabulary Let's revise the names of the different kinds of values connected with numbers. First let's read the number on the BB. ('5 thousand, one hundred and seventy eight') T points to the row of the table containing the 'thousands, hundreds', etc. A, what kind of value does this row show? (Place value) Come and write it in the table. Who can fill in the names missing from the other two boxes? Ps come to BB. Who agrees? etc.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Number read in unison. Or Ps stick prepared name cards in correct place on digram. Agreement, praising T writes other numbers on BB and points to a digit randomly. What is its digit value (place value, real value)? Praising, encouragment only
4	Writing numbers Write these numbers as digits in your Ex. Bks. T dictates some numbers (e.g. 7403) and wites some numbers in words on BB. (e,g, six thousand, four hundred and eighty two) Review with whole class. Ps come to BB to write as digits. Class agrees/disagrees. P points to a digit and asks what its place (digit, real) value is and chooses another P to answer. 25 min	Individual work, monitored, but class kept together. Ps can say or write the numbers too! Agreement, self-correcting, praising Feedback for T
5	Book 4, page 25 Q. 1 Read: Write each amount in the place-value table and then in the box. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) b) $\begin{array}{\|l\|l\|l\|l\|} \hline 7 & 0 & 5 & 3 \\ \hline \end{array}$ c) $\begin{array}{\|l\|l\|l\|l\|} \hline 4 & 6 & 0 & 8 \\ \hline \end{array}$ Let's write these numbers in increasing order. Ps dictate to T or come to BB. Let's say the inequality.	Individual work, monitored, helped Drawn on BB (or model money stuck to BB) or use enlarged copy master or OHP Agreement, self-correction, praising. BB: $3647<4608<7053$ In unison
6	Book 4, page 25 Q. 2 Read: Write these numbers with words in your exercise book Deal with one row at a time. Review with whole class. Ps read out out what they have written. T uncovers pre-pared BB or SB or OHT. Class points out errors. Let's write them in increasing (decreasing) order. Ps come to BB or dictate to T.	Individual work, monitored, helped Agreement, self-correction of words and spelling, praising Whole class activity

BKK	R: Place value C: Extending numbers to 10000 . Counting, reading, writing, ordering E: Roman numbers. Sequences	$\begin{gathered} \text { Lesson Plan } \\ 26 \end{gathered}$
Activity 1	Tens, hundreds, thousands Let's list: a) the whole tens between 100 and 200 $(110,120,130,140,150,160,170,180,190)$ b) the whole hundreds between 1000 and 2000 $(1100,1200,1300,1400,1500,1600,1700,1800,1900)$ c) the whole thousands between 0 and 10000 [20 000] (1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000) [10 000, $11000,12000,13000,14000, \ldots, 19000]$ 5 min	Notes Whole class activity Ps dictate numbers to T and T writes them on BB . At a good pace Agreement, praising Continue to 20000 if Ps want to try it. Feeedback for T
2	Numbers Write the natural numbers I am describing in your Ex. Bks. What are natural numbers? (positive, whole numbers: $1,2,3, \ldots$) Review orally with whole class after part a) and after part b). Ps dicate numbers and class agrees/disagrees. Mistakes discussed/corrected. 10 min	Individual work, but class kept together T could have descriptions written on SB or BB or OHT At a good pace Agreement, self-correction, praising
3	Sequence Let's start at 1650 and write the next 9 terms if the terms are increasing by 15 . Ps come to BB to write and say a number each. Class points out errors. BB: $1650,1665,1680,1695,1710,1725,1740,1755,1770$, 1785, 1800 Let's write them in Roman numerals. Ps come to BB, explaining reasoning. Class agrees/disagrees. BB: MDCL, MDCLXV, MDCLXXX, MDCXCV, MDCCX, MDCCXXV, MDCCXL, MDCCLV, MDCCLXX, MDCCLXXXV, MDCCC 15 min	Whole class activity At a good pace Agreement, praising Revise Roman numerals first if necessary. T covers up Arabic numbers, P points to a Roman number and chooses a P to read it.
4	How many digits? How many digits would we write if we wrote down all the natural numbers from: a) 1 to 9 (9) b) 10 to 99 (180) Why do you think so? There are $\underline{9}$ tens (as we do not count 0) and for every ten there are 10 possible units (0 to 9), so there are $9 \times 10=\underline{90}$ 2-digit numbers, so the number of digits we would write is $90 \times 2=\underline{180}$.	Whole class activity Ask several Ps what they think and why. T clarifies Ps' ideas and reasoning if necessary, or gives hints to set Ps thinking if nobody knows. Agreement, praising

BKK		Lesson Plan 26
Activity 4	(Continued) c) How many 3-digit numbers are there? (900) Why do you think so? There are $\underline{9}$ hundreds (as we do not use 0) and for every hundred there are 10 possible tens and for every ten there are 10 possible units, so there are $9 \times 10 \times 10=\underline{900}$ 3-digit numbers. How many digits would we write if we wrote them all down? (900 numbers, 3 -digits each, so $900 \times 3=\underline{2700}$ digits)	Notes Ask several Ps what they think. T helps to clarify reasoning, if necessary. or BB: $\frac{H \quad T \quad U}{9 \times 10 \times 10}$ Agreement, praising
5	Book 4, page 26 Q. 1 Read: Write the numbers in the place-value table. What does TTh mean? (Ten Thousands) Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Which number is the greatest (smallest)? $(9064,916)$ Solution: Eight thousand, three hundred and sixty three Nine thousand and sixty four Two thousand, seven hundred and five Six thousand, nine hundred and seventy Nine hundred and sixteen$\begin{aligned} & 4 \times 1000+3 \times 100+8 \times 10+7 \times 1 \\ & 2 \times 1000+9 \times 100+6 \times 10 \\ & 5 \times 1000+4 \times 10+8 \times 1 \\ & 1 \times 1000+5 \times 100+4 \times 1 \\ & 8000+300+40+2 \end{aligned}$TTh Th H T U 8 3 6 3 9 0 6 4 2 7 0 5 6 9 7 0 9 1 6 4 3 8 7 2 9 6 0 5 0 4 8 1 5 0 4 8 3 4 2 - Write the numbers in decreasing order in your Ex. Bks. - Write a number which would have a digit in the ten thousands column. (e.g. 23 671)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, praising For quicker Ps. Ps read their numbers aloud. Agreement, praising
6	Writing numbers Write these numbers as digits in your Ex. Bks. T dictates: a) i) 76 units (76) ii) 65 tens (650) iii) 95 hundreds (9500) iv) 100 hundreds (10000) b) i) 2 thousands and 35 hundreds (5500) ii) 3 thousands and 18 hundreds (4800) iii) 31 hundreds +45 units (3145) iv) 2 thousands +506 tens (7060) Deal with one part at a time. Review with whole class. Ps dictate to T or come to BB. Class agrees/disagrees. Mistakes discussed and corrected.	Individual work, monitored T walks round class while dictating the numbers. (Or whole class activity. T dictates a number and Ps show on scrap paper or slates in unison on command.) Agreement, self-correction, praising

BKT		Lesson Plan 26
Activity 7 Extension	Book 4, page 26 Q. 2 Read: Fill in the missing digits and place values. Deal with part a) first, then part b). Review at BB with whole class. Ps dictate to T or come to BB. Class agrees/disagrees. Mistakes discussed and corrected. What is the real value of the greatest odd digit in each number? Ps come to BB to point to digit, say and write the value. Solution: Ext. a) i) $7312=\underline{7} \mathrm{Th}+\underline{3} \mathrm{H}+\underline{1} \mathrm{~T}+\underline{2} \mathrm{U}$ (7000) ii) $4067=\underline{4} \mathrm{Th}+\underline{0} \mathrm{H}+\underline{6} \mathrm{~T}+\underline{7} \mathrm{U}$ iii) $9304=\underline{9} \mathrm{Th}+\underline{3} \mathrm{H}+\underline{0} \mathrm{~T}+\underline{4} \mathrm{U}$ (9000) b) i) $6018=6 \underline{\mathrm{Th}}+0 \underline{\mathrm{H}}+1 \underline{\mathrm{~T}}+8 \underline{\mathrm{U}}$ ii) $3568=3 \underline{\mathrm{Th}}+5 \underline{\mathrm{H}}+6 \underline{\mathrm{~T}}+8 \underline{\mathrm{U}}$ (500) iii) $2605=2 \underline{\mathrm{Th}}+6 \underline{\mathrm{H}}+0 \underline{\mathrm{~T}}+5 \underline{\mathrm{U}}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Agreement, self-correction, praising Whole class activity At a good pace Agreement, praising Feedback for T
8	Book 4, page 26 Q. 3 Read: In your exercise book, write ten numbers: a) in increasing order, starting at 2478 and counting up 7 at a time. $\begin{aligned} & (2478,2485,2492,2499,2506,2513,2520, \\ & 2527,2534,2541,2548) \end{aligned}$ b) in decreasing order, starting at 5093 and counting down 50 at a time. $(5093,5043,4993,4943,4893,4843,4793$ $4743,4693,4643)$ c) in increasing order, starting at 4803 and counting up 120 at a time. $(4803,4923,5043,5163,5283,5403,5523,$ $5643,5763,5883,6003)$ How could we find the 21 st term in a) without having to write all the terms? $(2478+7 \times 20=2478+140=\underline{2618})$	Individual work, monitored, helped (or whole class activity if time is short) Deal with one part at a time. Review at BB with whole class. Ps dictate to T. Class agrees/ disagrees. Mistakes discussed and corrected. Praising, encouragement only Whole class discussion. Extra praise if Ps remember how to do it.
9	Book 4, page 26, Q. 4 Read: Join up the equal values. Ps come to BB to draw joining lines, explaining reasoning. Class agrees/disagrees. Ps can work in Pbs too if they wish (and can identify equal values by colouring instead of drawing lines). Solution: 45 min	Whole class activity Written on BB or use enlarged copy master or OHP (or values written on cards and stuck to BB. Ps rearrange them in equal value groups) At a good pace Reasoning, agreement, praising In the case of 4 equal numbers, do not expect all 6 lines to be drawn (indirect connections are sufficient) Extra praise if Ps draw all 6!

BK4	R: Mental calculation C: Numbers up to 10000 . Rounding. Number line E: Problems. Divisibility	$\begin{gathered} \text { Lesson Plan } \\ 27 \end{gathered}$
Activity 1	Mental practice How much do I have altogether if I have this amount of money? T sticks or draws model money on BB and Ps show total amount on scrap paper or slates on command. e.g. a) $3 \quad 10 \mathrm{~s}$ Show me . . . now! b) 3100 s Show me . . . now! c) 31000 s Show me . . . now! (3000) d) 3500 s Show me . . . now! Repeat for, e.g. 710 s, 7100 s , 71000 s, 7500 s but this time without using model money. Ps visualise mentally.	Notes Whole class activity At speed Ps who responded correctly explain to those who did not. Agreement, praising Feedback for T
2	Writing numbers a) T dictates numbers and Ps show as digits in unison on command. b) T shows numbers in words (on pre-pared SB or OHT and Ps show as digits in unison on command. c) T describes a number (orally or written on BB) and Ps show as digits in unison on command. e.g. $\begin{aligned} & 8 \mathrm{Th}+3 \mathrm{H}+4 \mathrm{~T}+6 \mathrm{U}=(8346) \\ & 2000+400+20+9=(2429) \\ & 5 \times 1000+6 \times 100+3 \times 10+2 \times 1=(5632), \text { etc. } \end{aligned}$ 10 min	Whole class activity. Responses written on scrap paper or slates. (or individual work in Ex. Bks, or each P has a worksheet for b) and c) prepared by T) At a good pace Agreement, correcting, praising Ps could dictate/write/describe numbers too!
3	Sequences T gives the rule and the first term of a sequence and Ps continue the sequence until T tells them to stop. a) Count down by 10 , starting at $6521,(6511,6501,6491,6481, \ldots)$ b) Count up by 50 starting at 4444 , ($4494,4544,4594,4644, \ldots)$ c) Count up by 1000 starting at $438,(1438,2438,3438,4438,5438, \ldots)$ d) Count down by 200 starting at $5817,(5617,5417,5217,5017,4817, \ldots)$	Whole class activity At speed in order round class If Ps cannot keep previous term in their head, T writes it on BB. If a P makes a mistake, the next P corrects it. Agreement, praising
4	Number line a) Study the number lines carefully. What numbers are marked by the letters on each number line? Ps come to BB to choose a letter and write the missing number in the box. Class agrees/disagrees. BB: a) c)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, correcting, praising b) Ps come to BB to mark a number and class says the number in unison If Ps draw dots between ticks, T asks several Ps what they think the number is. P who drew the dot confirms it.

BK		Lesson Plan 27
Activity 5	Rounding Let's find the next smaller and greater whole tens, hundreds and thousands to these numbers. Ps come to BB or dictate to T. Class agrees/disagrees. If we rounded the number to the nearest $10(100,1000)$ what would it be? T points to each number in turn and class shouts out the rounded value. T highlights it on the BB . BB:	Notes Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Agreement, praising Elicit that $5(50,500)$ rounds up. If problems, draw relevant segments of number line on BB.
6	Book 4, page 27 Q. 1 Read: Which numbers do the letters stand for? Write them in the boxes. Talk about the number lines first. Elicit that in all 3 number lines there are small ticks at every 100. Set a time limit. Review at BB with whole class. Ps come to BB to write missing numbers. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) b) c)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, self-correction, praising What do you notice? (For each letter, the hundreds and tens are the same on each number line; only the thousands are different).
7	Book 4, page 27 Q. 2 Read: Mark with a dot where each letter should be on the relevant number line. Elicit that there is a tick at each unit on both number lines. Ps draw dots and label them with the appropriate letter. Review at BB with whole class. Ps come to BB to draw (stick on) dots. Class agrees/disagrees. Mistakes discussed and corrected. Elicit similarities between number lines. Solution: $a=1965 \quad b=9972 \quad c=1999 \quad d=9981 \quad e=1983 \quad f=9965$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, self-correction, praising

3 K 4		Lesson Plan 27
Activity 8	Book 4, page 27 Q. 3 Read: Write the next smaller and greater whole tens, hundreds and thousands in the boxes. Review at BB with whole class. Ps come to BB or dictate to T. Mistakes discussed and corrected. Read: Colour the nearest ten red, the nearest hundred green and the nearest thousand blue. Review at BB with whole class. T points to a number, class shouts out rounded values. Mistakes discussed and corrected. Solution:	Notes Inidividual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising In unison
9	Book 4, page 27 Q. 4 Read: Write in the boxes the numbers described. Ps read questions themsleves and fill in missing numbers. Review orally with whole class. Mistakes discussed and corrected. Solution: a) The smallest 4-digit: i) number (1000) ii) odd number (1001) b) The greatest 4-digit: i) number (9999) ii) odd number (9999) c) The greatest 4-digit number divisible by: i) 5 (9995) ii) 10 (9990) d) The greatest 4-digit number divisible by 100 which has the same digit in its hundreds and thousands columns.	Individual work, monitored, helped (or whole class activity, with T reading descriptions and Ps showing numbers on scrap paper or slates in unison on command) Discussion, reasoning, agreement, self-correcting, praising Extension Ps tell class descriptions of other 4-digit numbers and class deduces what they are.

BK4	R: Mental calculation C: Numbers up to 10 000. Rounding. Number line E: Inequalities. Divisibility	$\begin{gathered} \text { Lesson Plan } \\ 28 \end{gathered}$
Activity 1	Chain calculations Listen carefully to each step. Do the calculation in your head and show me the final result (on scrap paper or slates) when I say. a) Start with 1500 , add $200, \ldots$ subtract $300, \ldots$ add $800, \ldots$ subtract 900, ... and add 700 . Show me the result . . . now! (2000) P who made a mistake goes through the calculations again with help of class: $\begin{aligned} & 1500+200=1700,1700-300=1400,1400+800=2200, \\ & 2200-900=1300,1300+700=2000 \end{aligned}$ Similarly for b) Start with 6400, subtract $1400, \ldots$ double the result, ... subtract $400, \ldots$ add $300, \ldots$ and subtract 500 . Show me the result . . . now! (9400) P who made a mistake goes through the calculations with Ps' help. Repeat with similar series of calculations if there is time.	Notes Whole class activity Ps nod heads when they are ready for next step. In unison Reasoning, agreement, praising Ps can think of them too.
2	Inequalities Which whole thousands can be written instead of the rectangles? Ps come to BB to list the numbers, explaining reasoning and showing on number lines. Class agrees/disagrees. BB: c) $3200>\square>1900 \quad \square: 2000,3000$	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, agreement, demonstration, praising
Extension	How could we show on the number lines all the numbers (including fractions) which could be written instead of the rectangles? T gives hints if Ps cannot remember from Y2. (Draw circles above the numbers at the extremes of the inequality. If the number is to be included, draw a closed (black) circle above it. If the number is not included, draw an open (white) circle above it. Join up the two circles with a thick horizontal line. All the numbers below the line are possible.) BB: a) $3000<\square \leq 8000$ b) $4285<\square<7940$ c) $3200>\square>1900$	Praise all positive contributions. If Ps have no idea, T explains first inequality, then helps Ps with b) and c). Positions of numbers in b) and c) need only be approximate.

BK4		Lesson Plan 28
Activity 8	Rounding Which digits can be put instead of the letter to make the statement true? Ps come to BB to explain reasoning and to write the possible digits. Class agrees/disagrees. Let's check with the smallest and greatest values. BB: a) It rounds to 5430 as the nearest 10 : b) It rounds to 7800 as the nearest 100 : c) It rounds to 9000 as the nearest 1000:	Notes Whole class activity T has BB or SB or OHT already prepared, or use enlarged copy master or OHP (Ps can have copy on desks if they prefer to try it individually) At a good pace Reasoning, agreement, checking, praising Elicit that f is impossible! If problems, show on relevant segment of number line drawn on BB. Feedback for T

3 K	R: Mental calculation C: Addition and subtraction: up to $\mathbf{1 0} 000$ E: Over 10000	$\begin{gathered} \text { Lesson Plan } \\ 29 \end{gathered}$
Activity 1	Model money Let's write an operation about each diagram. Ps come to BB to write and say additions and subtractions. Class points out errors. BB: a) i) ii) iii) b) i) ii) iii) c) i) ii) iii) d) i) ii) iii) $11000-3000=8000$ 6 min	Notes Whole class activity Drawn on BB, or model money stuck on tables drawn on BB , or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising What do you notice? Ps point out the similarities among the 3 diagrams in each row. Feedback for T
2	Vocabulary T writes an addition and a subtraction on $B B$. Ps come to $B B$ to write results, explaining reasoning. Class agrees/disagrees. What names do we give to the different parts of the operations? Ps come to BB to say and write. Class agrees/disagrees on correct spelling. T helps if necessary. Elicit that: - in addition, the terms can be interchanged, - in subtraction, the reductant and subtrahend cannot be interchanged.	Whole class activity Reasoning, agreement, praising T covers up names and Ps suggest another addition and subtraction. T points to a component and class shouts out its name (sum, difference, term, subtrahend, reductant) e.g. $3+2=2+3$ e.g. $3-2 \neq 2-3$
3	Problems Listen carefully to the problem. Are there any missing or unnecessary data? T reads problem aloud twice. Ps suggest the data which are missing or not needed. Class agrees/disagrees. T reads problem again. Ps note the data, make a plan, do the calculation and write the answer as a sentence in their Ex. Bks. Ps could show numerical part of answer on scrap paper or slates on command. P who responded correctly explains to those who did not. Mistakes discussed and corrected.	Whole class discussion on the data. Agreement, praising Individual work in Ex. Bks, then whole class review and discussion on solution (Or all done as a whole class activity, with Ps helping each other to solve the problems at the BB and T intervening only when necessary)

$\mathrm{B} K 4$		Lesson Plan 29
Activity 3	(Continued) a) There are 240 children at a holiday camp. How many children will there be altogether if another 130 children and 14 adults arrive? Unnecessary data: Number of adults arriving Plan: $240+130=\underline{370}$ Answer: There will be 370 children altogether. b) The 24 pupils in Class 3 collected 140 kg of chestnuts. The 22 pupils in Class 4 collected 150 kg of chestnuts. How many kg of chestnuts did the two classes collect altogether? Unnecessary data: Number of pupils and the class numbers. Plan: $140 \mathrm{~kg}+150 \mathrm{~kg}=\underline{290 \mathrm{~kg}}$ Answer: The two classes collected 290 kg of chestnuts. c) If Bob was given $£ 240$, he would have $£ 600$. How much money does Bob have at the moment? Unnecessary or missing data: none Plan: $£ 600-£ 240=\underline{£ 360}$ (or $360+240=600$) Answer: Bob has $£ 360$ at the moment. d) Kate is 170 cm tall and is 24 years old. She is 15 years older then Henry. How old and how tall is Henry? Missing data: Difference between their heights Plan: $24-15=\underline{9}$ (years) Answer: Henry is 9 years old. We cannot say how tall he is. e) 120 pupils from a primary school went to the circus on Monday but only 80 pupils from the pimary school went to the cinema on Tuesday. How many pupils are in the primary school? Missing data: Number of pupils from the primary school who did not go the circus (or to the cinema) We can only write an inequality for the number of Ps. If the 80 Ps who went to the cinema also went to the circus, there must be at least 120 Ps in the school. If the 80 Ps who went to the cinema did not go the circus, then the school would have at least $120+80=200$ pupils - but there could be Ps who did not attend either event. BB: Let P be the least number of Ps possible: $120 \leq P \leq 200$ Answer: We cannot say exactly from the data given.	Notes Deal with one at a time (T could have questions written on SB or OHT) Discussion, reasoning, agreement, self-correcting, praising T helps Ps to express their reasoning clearly. Extra praise if Ps think of writing the inequality without help from T.

BKK		Lesson Plan 29
Activity 4	Book 4, page 29 Q. 1 Read: Practise addition. Let's see how many of these you can do in 3 minutes! Start . . . now! Review orally with whole class. Ps change to coloured pencils and mark/correct own work. Who had all 16 correct? Who made $1(2,3$, more than 3$)$ mistakes? What kind of mistakes? Who did the same? etc. What did you notice? Ps point out connections. Solution: a) $5+2=\underline{7} \quad 50+20=\underline{70} \quad 500+200=\underline{700} \quad 5000+2000=\underline{7000}$ b) $3+6=\underline{9} \quad 30+60=\underline{90} \quad 300+600=\underline{900} \quad 3000+6000=\underline{9000}$ c) $8+2=\underline{10} \quad 80+20=\underline{100} \quad 800+200=\underline{1000} \quad 8000+2000=\underline{10000}$ d) $3+4=\underline{7} \quad 32+45=\underline{77} \quad 320+450=\underline{770}$ 25 min	Notes Individual work, monitored (helped) Differentiation by time limit Agreement, self-correction, evaluation, praising If problems, write calculations vertically on BB . Elicit that, e.g. $5^{7}+2=2 \stackrel{7}{+} 5$ In addition, the order of terms does not matter; they are interchangeable Feedback for T
5	Book 4, page 29 Q. 2 Read: Practise subtraction. Let's see how many of these you can do in 3 minutes! Start . . . now! Review orally with whole class. Ps change to coloured pencils and mark/correct own work. Who had all 16 correct? Who made $1(2,3$, more than 3$)$ mistakes? What kind of mistakes? Who did the same? etc. What did you notice? Ps point out connections. Solution: a) $8-5=\underline{3} \quad 80-50=\underline{30} \quad 800-500=\underline{300} \quad 8000-5000=\underline{3000}$ b) $90-40=50 \quad 900-400=500 \quad 9000-4000=5000$ $19000-4000=15000$ c) $10-3=\underline{7} \quad 100-30=\underline{70} \quad 1000-300=\underline{700} \quad 10000-3000=\underline{7000}$ d) $7-6=178-64=14$ $740-680=60$ $7800-6400=\underline{1400}$	Individual work, monitored (helped) Differentiation by time limit Agreement, self-correction, evaluation, praising If problems, write calculation vertically, or with place values. Elicit that, e.g. $8-3 \neq 5^{-3} 8$ In subtraction, the order matters; the reductant and subtrahend are not interchangeable Feedback for T
6	Book 4, page 29 Q. 3 Read: Fill in the missing numbers. How many additions and subtractions are there? $(6 \times 3=18)$ Let's see how many you can do in 4 minutes! Start . . . now! Review orally with whole class. Ps change to coloured pencils and mark/correct own work. Who had all 18 correct? Who made $1(2,3,4,5$, more than 5) mistakes? What kind of mistakes? Who did the same? etc. What did you notice? Ps point out connections. Solution: a) $30+\underline{40}=70, \quad 300+\underline{400}=700, \quad 3000+\underline{4000}=7000$ b) $80-\underline{60}=20, \quad 800-\underline{600}=200, \quad 8000-\underline{6000}=2000$ c) $\underline{30}+40=70, \quad \underline{300}+400=700 . \quad \underline{3000}+4000=7000$ d) $80-60=20, \underline{800}-600=200, \underline{8000}-6000=2000$ e) $8+\underline{5}=13, \quad 800+\underline{500}=1300, \quad 8000+\underline{5000}=13000$ f) $\underline{120}-90=30, \underline{1200}-300=900, \underline{12000}-9000=3000$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Agreement, self-correction, evaluation, praising If problems, write calculation vertically on BB , or with place values, e.g. $12 \mathrm{Th}-9 \mathrm{Th}=3 \mathrm{Th}$ Extra praise for correct answers to RH column in e) and f) Feedback for T

BKK		Lesson Plan 30
Activity 4	Addition Daffy Duck has done her additions like this. Can you suggest an easier way to do them? Ps come to BB or dictate to T. Class agrees/disagrees. BB: a) $\begin{aligned} & 1700+830+2300+170 \\ & =2530+2300+170 \\ & =4830+170 \\ & =\underline{5000} \end{aligned}$ b) $\begin{aligned} & 4200+380+2800+620 \\ & =(4200+380)+(2800+620) \\ & =4580+3420 \\ & =\underline{8000} \end{aligned}$ Ps: e.g. $\begin{aligned} & 1700+830+2300+170 \\ & =(1700+2300)+(830+170) \\ & =4000+1000 \\ & =\underline{5000} \end{aligned}$ Ps: e.g. $\begin{aligned} & 4200+380+2800+620 \\ & =(4200+2800)+(380+620) \\ & =7000+1000 \\ & =\underline{8000} \end{aligned}$	Notes Whole class activity Written on BB with Daffy Duck cut out and coloured from enlarged copy master (or use any well-known cartoon character cut out of a magazine) Give several Ps the chance to make a suggestion. Agreement, praising Feedback for T
5	Book 4, page 30 Q. 1 Read: Do the calculations. Colour the equal results in the same colour. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $4600+3900=\underline{8500}$ b) $4600+4000-100=\underline{8500}$ c) $3900+4000+600=\underline{8500}$ Ps compare the equal d) $3900+4000-600=7300$ operations and try to e) $9700-1200=\underline{8500}$ explain why the results f) $9700-1000+200=8900$ are the same. g) $9700-2000+800=\underline{8500}$ h) $10000-1200-300=\underline{8500}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps offer some explanations, e.g. $\begin{aligned} & 4000-100=3900 \\ & 4000+600=4600 \\ & 9700=10000-300 \\ & \text { etc. } \end{aligned}$
6	Book 4, page 30 Q. 2 Read: Calculate the sums as simply as you can. Show your calculations in detail. Set a time limit. Ps can try out calculations in Ex. Bks or on scrap paper first. Review at BB with whole class. Ps come to BB to show their calculations. Who did the same? Who thinks another way is easier? Class agrees on easiest one. Solution: a) $\begin{aligned} 360+4900+4100+40 & =(360+40)+(4900+4100) \\ & =400+9000=\underline{9400} \end{aligned}$	Individual work, monitored (or whole class activity) Written on BB or OHT Discussion, reasoning, agreement, self-correcting (only if result is incorrect), praising Feedback for T

Bk4 Activity 7								Lesson Plan 30
	Book 4, page 30 Q. 3 Read: Do part a) in your exercise book. Use the result to help answer parts b) and c). Set a time limit. Review at BB with whole class. Ps come to BB to explain their solutions and point out relationships which make calculation easier (including changing the pence to $£ s!$) Class agrees/disagrees. Mistakes discussed and corrected. Solution: Ann had 7500 p. How much more did she have than: a) Peter, if Peter had 2300 p? $7500-2300=\underline{5200}$ Ann had 5200 p (=£52) more than Peter. b) John, if John had 2200 p? $\quad(7500-2200=5300)$ or John had 100 p less than Peter so Ann would have 5400 p (= £54) more than John. c) Diane, if Diane had 1300 p? $(7500-1300=6200)$ or Diane had 1000 p less than Peters o Ann would have 6200 p (=£62) more than Diane.							Notes Individual work, monitored helped (or whole class activity) Reasoning, agreement, selfcorrecting, praising Extra praise if Ps reason b) and c) correctly from result of a) without doing the calculations. Otherwise T gives hints to make Ps think. Encourage Ps to use this kind of reasoning in Q. 4
8	Book 4, page 30 Q. 4 Read: Do part a) in your exercise book. Use the result to help answer parts b) and c). Set a time limit. Review at BB with whole class. Ps come to BB to explain their solutions. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Each pupil on a school trip spent 3500 p. How much money did: a) Finlay have left if he took 7000 p? $7000-3500=\underline{3500}$ Finlay had $3500 \mathrm{p}(=£ 35)$ left. b) Emma have left if she took 6800 p? $(6800-3500=\underline{3300})$ Emma took 200 p less than Finlay, so would have 200 p less than Finlat left, i.e. 3300p (=£33) left. c) Lee have left if he took 7300 p? $\quad(7300-3500=\underline{3800})$ Lee took 300 p more than Finlay, so would have 300 p more than Finlay left, i.e. 3800 p $(=£ 38)$ left.							Individual work, monitored helped Reasoning, agreement, selfcorrecting, praising Extra praise if Ps use result of a) to reason b and c). Or Lee took 500 p more than Emma, so had left 500 p more than Emma.
9	Book 4, page 30 Q. 5 Read: Complete the magic squares. The sum of any row, column or diagonal is the same. Set a time limit. Review at BB one at a time. Ps come to BB , explaining reasoning. Class checks all rows, columns and diagonals. Mistakes discussed and corrected. Solution: 							Individual work monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, checking, agreement, self-correcting, praising Ps could finish off puzzles at home if they run out of time.

[^0]

BKK		Lesson Plan 31
Activity 4	Book 4, page 31 Q. 1 Read: Estimate quickly, then calculate the sum. Do part a) with whole class first as a model for Ps to follow. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $2653+1746$ E: $2700+1700=4400$ C: 2 6 5 3 $+\quad 1$ 7 4 6 4 3 9 9 b) $1256+7902$ E: $1300+7900=9200$ C. 1 2 5 6 +7 9 0 2 9 1 5 8 1 c) $5343+2145$ E: 5300+2100 $0=7400$ $C:$5 3 4 3 2 1 4 5 7 4 8 8	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning with place value details, e.g. for a): $\begin{aligned} & 3 \mathrm{U}+6 \mathrm{U}=\underline{9 \mathrm{U}} \\ & 5 \mathrm{~T}+4 \mathrm{~T}=\underline{9 \mathrm{~T}} \\ & 6 \mathrm{H}+7 \mathrm{H}=13 \mathrm{H}=1 \mathrm{Th}+\underline{3 \mathrm{H}} \\ & 2 \mathrm{Th}+1 \mathrm{Th}+1 \mathrm{Th}=\underline{\mathrm{Th}} \end{aligned}$ Agreement, self-correction, praising Feedback for T
5	Book 4, page 31, Q. 2 Read: Complete the additions and then check them. Ps come to BB to fill in a column, explaining reasoning in detail with place values, (e.g. $6 \mathrm{U}+\underline{2 \mathrm{U}}=8 \mathrm{U}$, or $8 \mathrm{U}-6 \mathrm{U}=\underline{2 \mathrm{U}}$). Class points out errors. Ps check by doing the completed addition again. Solution: a) b) c) d)	Whole class activity (or individual work if Ps wish) Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Reasoning details, e.g. d): $\begin{aligned} & 6 \mathrm{U}+\underline{7 \mathrm{U}}=13 \mathrm{U}=\underline{1 \mathrm{~T}}+3 \mathrm{U} \\ & 3 \mathrm{~T}+8 \mathrm{~T}+1 \mathrm{~T}=12 \mathrm{~T}=\underline{1 \mathrm{H}}+\underline{2 \mathrm{~T}} \\ & 7 \mathrm{H}+1 \mathrm{H}+\underline{0 \mathrm{H}}=8 \mathrm{H} \\ & 4 \mathrm{Th}+\underline{3 \mathrm{Th}}=7 \mathrm{Th} \end{aligned}$
6	Book 4, page 31 Q. 3 Read: Estimate first, then calculate the difference. Deal with one part at a time. Do part b) with whole class if necessary, then Ps can do part c) in Ex. Bks. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning in detail (with T's help). Class agrees/ disagrees. Mistakes discussed and corrected. Reasoning details: e.g. b): $\quad 7 \mathrm{U}-2 \mathrm{U}=\underline{5 \mathrm{U}}$ I cannot take 7 T away from 6 T , so I add 10 T to the tens column in the reductant and 1 H to the hundreds column in the subtrahend; $10 \mathrm{~T}+6 \mathrm{~T}=16 \mathrm{~T}$, and $16 \mathrm{~T}-7 \mathrm{~T}=\underline{9 \mathrm{~T}}$, $5 \mathrm{H}+1 \mathrm{H}=6 \mathrm{H}$, but I cannot take 6 H away from 5 H , so I add 10 H to the hundreds column in the reductant and 1 Th to the thousands column in the subtrahend; $10 \mathrm{H}+5 \mathrm{H}=15 \mathrm{H}$, and $15 \mathrm{H}-6 \mathrm{H}=\underline{9 H}$, $1 \mathrm{Th}+1 \mathrm{Th}=2 \mathrm{Th}$, and $4 \mathrm{Th}-2 \mathrm{Th}=\underline{2 \mathrm{Th}}$ The difference is $\underline{2995}$.'	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self correction, praising (or if part b) is done as individual work, part c) can be an extension for quicker Ps)

BKK	R: Mental calculation C: Addition and subtraction to $\mathbf{1 0} 000$ E: Numbers over 10 000. Problems	$\begin{gathered} \text { Lesson Plan } \\ 32 \end{gathered}$
Activity 1	Calculations T has BB already prepared. Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. Ps point out relationships which would make the calculations easier and identify equal operations. BB: e.g.	Notes Whole class activity Written on BB or SB or OHT or use enlarged copy master At a good pace Involve several Ps. Reasoning, agreement, praising Extra praise for noticing relationships (indicated by the arrows). Equal operations ticked.
2	Written exercise Write these numbers one below the other in your $\mathrm{E} x$. Bks. Make sure that the place values line up! Estimate their sum, then do the calculation. Show me the result when I say. Ps who responded correctly explain at BB to those who did not. Mistakes discussed and corrected. How could we check it? (Add in the opposite direction (e.g. \downarrow then \uparrow), compare with estimate.) BB: a) $\begin{aligned} & 2756+623+7+1248 \\ & \approx 2800+600+0+1200 \\ & =4600 \end{aligned}$ b)$\begin{aligned} & 8+4726+160+3509 \\ & \approx 0+4700+200+3500 \\ & =8400 \end{aligned}$Th H T U 2 7 5 6 6 2 3 7 +1 2 4 8 4 6 3 4 1 1 2 Ps could dictate another calculation if time. $\begin{array}{\|c\|c\|c\|c\|} \hline \text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{U} \\ \hline & & & 8 \\ \hline 4 & 7 & 2 & 6 \\ \hline & 1 & 6 & 0 \\ +3 & 5 & 0 & 9 \\ \hline 8 & 4 & 0 & 3 \\ \hline 1 & 1 & 2 \end{array}$ 13 min	Individual work, monitored T dictates numbers while walking round class. Results shown on scrap paper or slates in unison. Reasoning, agreement, selfcorrection, praising Reasoning given with place value details. Feedback for T
3	Problem Listen carefully and solve this problem in your Ex. Bks. Do not miss any steps! Show me the answer when I say. The highest mountian on earth is Mount Everest which is 8848 m above sea level. The highest mountain in Africa is Kilimandjaro which is 5895 m above sea level. How much higher is Mount Everest than Mount Kilimandjaro? Show me . . . now! (2953 m) A, tell us how you worked out the answer. Who agrees? etc. Mistakes discussed and corrected.	Individual work, monitored, helped T could have problem written on SB or OHT. T reads problem, then two Ps read it also. Give Ps time to think and do calculation. Result shown on scrap paper or slates in unison on command.

$B K K$		Lesson Plan 32
Activity 3	(Continued) Solution: Data: ME: 8848 m MK: $5895 \mathrm{~m} \quad$ Check with Plan: $8848 \mathrm{~m}-5895 \mathrm{~m}$ C :$=2900$8 8 10 4 -5 8 8 2 9 5 3 addition and E: $8800-5900=8900-6000$ (m) estimate. Answer: Mount Everest is 2953 m higher than Mount Kilimandjaro. 17 min	Notes Reasoning, agreement, checking, self-correcting, praising T could have pictures of both mountains and show their positions on relevant map. T might tell some prepared interesting facts about each.
4	Missing thousands Which whole thousands make the statements true? Ps come to BB to fill in the numbers, explaining reasoning. Class agrees/disagrees or points out other thousands which would be possible. Show on relevant segments of number line roughly drawn on BB if there are problems. BB: a) $\begin{aligned} & 3758+4000=7758 \\ & 3758+\square<7758 \end{aligned}$ $3000,2000,1000,0,(-1000, \ldots)$ $3758+\square>7758$ 5000, 6000, 7000, 8000, ... c) $9534-\mathbf{3 0 0 0}=6534$ $9534-\square<6534$ 4000, 5000, 6000, ... $9534-\square \geq 6534$ 3000, 2000, 1000, 0 , (-1000, ...) b) $\begin{aligned} & \mathbf{7 0 0 0}+2568=9568 \\ & \square+2568<9568 \\ & \mathbf{6 0 0 0 , 5 0 0 0}, \ldots, \mathbf{1 0 0 0}, \mathbf{0}, \\ & (-\mathbf{1 0 0 0}, \ldots) \\ & \square+2568 \leq 9568 \end{aligned}$ 7000, 6000, ..., 1000, 0 , ($-1000, \ldots$) d) $\mathbf{1 0 0 0 0}-3108=6892$ \square - $3108>6892$ $11000,12000,13000, \ldots$ \square - $3108 \neq 6892$ Any thousand apart from 10000 23 min \qquad	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, agreement, checking, praising Include negative thousands only if Ps suggest them. T reminds Ps how to write long (or never-ending) lists of numbers in a short way, as oppposite, using ellipses (. . .) Elicit that: \leq means the same as \ngtr 'less than or equal to' is the same as 'not more than' and \geq means the same as \nless Feedback for T
5	Book 4, page 32 Q. 1 Read: Do the operations in the correct order. Elicit that operations inside the brackets should be done first. Ps write interim results above operation signs. Calculations done at side of Pbs or in Ex. Bks. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Ps tell class what they noticed, e.g. - in each part, ii) is the same as i); the brackets are not needed; - in a), iii) is less because 1596 is subtracted instead of added; - in b), iii) is greater because 1976 less is subtracted (or 1976 is added instead of subtracted).	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising $\begin{aligned} & (6020-2 \times 1596=\underline{2828}) \\ & (1886+2 \times 1976=\underline{5838}) \end{aligned}$

BK		Lesson Plan 33
Activity 3	b) Listen carefully and think about how you would solve this problem. Alice bought 9 kg of potatoes for $£ 7.20$. How much did 1 kg cost? Ps come to BB or dictate to T. Class agrees/disagrees. e.g. BB: $\quad 9 \mathrm{~kg} \rightarrow £ 7.20=720 \mathrm{p}$ $1 \mathrm{~kg} \rightarrow 720 \mathrm{p} \div 9=\underline{80 \mathrm{p}}$ Check: $80 \mathrm{p} \times 9=720 \mathrm{p}=£ 7.20$ Answer: 1 kg of potatoes cost 80 p . Agree that division is the reverse of multiplication (and subtraction is the reverse of addition).	Notes Whole class activity Reasoning, agreement, checking, praising We could also show it in a diagram like this: BB:
4	Problems Let's think of different ways in which we could solve these problems. a) 6 friends spent the day in London together. They each paid an equal share of the bills for their lunch and dinner. Their lunch bill was $£ 42$ and their dinner bill was $£ 48$. How much did each person pay altogether? Ps come to BB or dictate to T , explaining reasoning. Class agrees/ disagrees. Who can think of a different way to solve it? etc. i) Work out the total amount the 6 people paid, then divide by 6 . $(48+42) \div 6=90 \div 6=60 \div 6+30 \div 6=10+5=\underline{15}$ ii) Work out what each person paid for lunch and for dinner, then add the two amounts together. $48 \div 6+42 \div 6=8+7=\underline{15}$ Answer: Each person paid $£ 15$. b) 8 copies of a book should cost $£ 88$ altogether but the shopkeeper reduced the total price by $£ 16$. How much did the shopkeeper actually charge for each book? Ps come to BB or dictate to T , explaining reasoning. Class agrees/ disagrees. Who can think of a different way to solve it? etc. e.g. i) Work out the reduced price of 8 books then divide by 8 . BB: $\quad(88-16) \div 8=72 \div 8=\underline{9}$ ii) Work out what each book should really cost, then subtract the reduction on each book. BB: $\quad 88 \div 8-16 \div 8=11-2=\underline{9}$ Answer: The shopkeeper charged $£ 9$ for each book.	Whole class activity T reads each problem slowly twice and Ps repeat in own words. Ps suggest plans (with T's help) Reasoning, agreement, praising Elicit that to divide 'difficult' numbers, write it as the sum (difference) of two simpler numbers, then divide each simpler number by the divisor and add (subtract) the two quotients.

BKK		Lesson Plan 33
Activity 5	Book 4, page 33 Q. 1 Read: Write the products. Elicit that there are $6 \times 4=24$ multiplications. Set a time limit. Review orally with whole class. Ps change pencils and mark/ correct own work. Who had all 24 correct? Who had 1 ($2,3,4$ more than 4) mistakes? What was your mistake? etc. Ps point out relationships they have noticed. Solution: a) $3 \times 6=\underline{18}, \quad 30 \times 6=\underline{180}, 3 \times 60=\underline{180}, 30 \times 60=\underline{1800}$ b) $8 \times 4=\underline{32}, \quad 80 \times 4=\underline{320}, 800 \times 4=\underline{3200}, 80 \times 40=\underline{3200}$ c) $9 \times 3=\underline{27}, \quad 90 \times 3=\underline{270}, 9 \times 300=\underline{2700}, 90 \times 30=\underline{2700}$ d) $8 \times 7=\underline{56}, \quad 80 \times 7=\underline{560}, 8 \times 70=\underline{560}, 800 \times 7=\underline{5600}$ e) $6 \times 7=\underline{42}, 60 \times 7=\underline{420}, 600 \times 7=\underline{4200}, 6 \times 700=\underline{4200}$ f) $9 \times 9=\underline{81}, \quad 90 \times 9=\underline{810}, 900 \times 9=\underline{8100}, 90 \times 90=\underline{8100}$ 31 min	Notes Individual work, monitored (helped) Differentiation by time limit Agreement, self-correcting, evaluation, praising Write details of problem calculations on BB. Discuss connections, e.g. if the dividend (divisor) increases by 10 (100) times, the quotient also increases by 10 (100) times. Praise all contributions Feedback for T
6	Book 4, page 33 Q. 2 Read: Fill in the missing numbers. Elicit that the missing factor can be calculated by dividing the product by the given factor and that there are $6 \times 3=\underline{18}$ multiplications. Set a time limit. Review orally with whole class. Ps change pencils and mark/ correct own work. Who had all 18 correct? Who had 1 (2,3, more than 3) mistakes? What was your mistake? etc. Ps point out relationships they have noticed. Solution: a) $8 \times \underline{3}=24, \quad 8 \times \underline{60}=240, \quad 8 \times \underline{300}=2400$ b) $5 \times \underline{9}=45$, $5 \times \underline{90}=450,$ $5 \times \underline{900}=4500$ c) $6 \times \underline{5}=30$, $6 \times \underline{50}=300$, $6 \times \underline{500}=3000$ d) $9 \times \underline{4}=36$, $9 \times \underline{40}=360$, $90 \times \underline{40}=3600$ e) $4 \times \underline{7}=28$, $4 \times \underline{70}=280$, $40 \times \underline{70}=2800$ f) $6 \times \underline{9}=54$, $60 \times \underline{9}=540$ $60 \times \underline{90}=5400$ 35 min	Individual work, monitored, helped Differentiation by time limit Agreement, self-correcting, evaluation, praising Write details of problem calculations on BB , e.g. $\begin{aligned} & 3600 \div 90=360 \div 9=\underline{40} \\ & \text { so } 90 \times \underline{40}=3600 \end{aligned}$ Discuss relationships. Praise all contributions. Feedback for T

D		Lesson Plan 33
Activity 7	Book 4, page 33 Q. 3 Read: Write the products. Remind Ps (or elicit) that difficult numbers can be written as the sum (or difference) of two simpler numbers before multiplying and to look for relationships to help them. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agree/disagrees. Mistakes discussed and corrected. Solution: a) $3 \times 4=\underline{12}$ $30 \times 4=\underline{120}$ $300 \times 4=\underline{1200}$ $13 \times 4=\underline{52}$ $130 \times 4=\underline{520}$ $1300 \times 4=\underline{5200}$ $43 \times 4=\underline{172}$ $430 \times 4=\underline{1720}$ $4300 \times 4=\underline{17200}$ b) $90 \times 2=\underline{180}$ $900 \times 2=\underline{1800}$ $19 \times 2=\underline{38}$ $190 \times 2=\underline{380}$ $1900 \times 2=\underline{3800}$ $89 \times 2=\underline{178}$ $890 \times 2=\underline{1780}$ $8900 \times 2=\underline{17800}$ \qquad	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Agreement, self-correcting, evaluation, praising Write details of problem calculations on BB , e.g. $\begin{aligned} 43 \times 4 & =(40+3) \times 4 \\ & =160+12=\underline{172} \end{aligned}$ Deal with all mistakes and methods of calculation. Feedback for T
Extension	Book 4, page 33 Q. 4 Read: Fill in the missing numbers. Elicit that there are $6 \times 4=\underline{24}$ divisions. How can we work out the missing divisors? (Divide the dividend by the quotient.) Let"s have a competition! Let's see how many you can do correctly in 3 minutes! Start . . . now! . . . Stop! Review at BB with whole class. Ps dictate results to T, explaining reasoning where relevant. Ps change pencils and mark/correct own (or neighbour's) work. Discuss all mistakes. Stand up if you had all 24 correct! Let's give them ' 3 cheers'! Solution: a) $36 \div 6=\underline{6}, 360 \div 6=\underline{60}, 3600 \div 60=\underline{60}, 3600 \div 6=\underline{600}$ b) $72 \div 8=\underline{9}, 720 \div 8=\underline{90}, 7200 \div 80=\underline{90}, 7200 \div 8=\underline{900}$ c) $45 \div 5=\underline{9}, 450 \div 5=\underline{90}, 4500 \div 50=\underline{90}, 4500 \div 5=\underline{900}$ d) $24 \div \underline{8}=3,240 \div \underline{80}=3,240 \div \underline{8}=30,2400 \div \underline{80}=30$ e) $35 \div \underline{7}=5,350 \div \underline{70}=5, \quad 350 \div \underline{7}=50, \quad 3500 \div \underline{70}=50$ f) $24 \div \underline{4}=6,240 \div \underline{40}=6, \quad 240 \div \underline{4}=60, \quad 2400 \div \underline{40}=60$ T sets remainder for homework if Ps would like more practice. g) $\underline{28} \div 7=4, \quad \underline{280} \div 7=40, \underline{280} \div 70=4, \underline{2800} \div 70=40$ h) $\underline{64} \div 8=8, \underline{640} \div 8=80, \underline{640} \div 80=8, \underline{6400} \div 80=80$ i) $\underline{54} \div 9=6, \underline{540} \div 9=60, \underline{540} \div 90=6, \underline{5400} \div 90=60$ 45 min	Individual work, monitored, helped (Or if short of time, do orally round class) Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrecting, evaluation, praising Review at beginning of Lesson 42. (or extension for quicker Ps who finish early)

$3 K 4$	R: Mental calculation C: Multiplication and division up to $\mathbf{1 0} 000$. Written multiplication (1 digit) E: Numbers over 10000 . Problems	Lesson Plan 34
Activity 1	Mental practice T says an operation. Ps say result. a) Addition and subtraction: e.g. $\begin{aligned} & 67+7,158+5,2403+9,67+24,418+34,5249+16, \\ & 4300+1800, \text { etc. } \\ & 72-8,423-7,6519-7,72-28,423-27,6519-20, \\ & 5400-1600, \text { etc. } \end{aligned}$ b) Multiplication and division tables: e.g. $4 \times 5,9 \times 9,5 \times 0,25 \div 5$, $27 \div 3,49 \div 7,2 \div 1,0 \div 10$, etc. Ps can give them too! c) Multiplication and division: e.g. $17 \times 2,43 \times 3,154 \times 2,2320 \times 3,2500 \times 4,5000 \times 2 \text {, etc. }$ $48 \div 2,630 \div 3,420 \div 5,8000 \div 4000, \text { etc. }$ Write difficult operations on BB. e.g. BB: $40 \times 99=40 \times 100-40 \times 1=4000-40=\underline{3960}$	Notes Whole class activity T chooses Ps at random (more difficult calculations to more able Ps) Class points out errors. At speed, in good humour! In order round class, at speed If a P answers incorrectly, next P corrects it. T chooses Ps at random (easier calculations to less able Ps) Praising, encouragement only
2	Revision a) Vocabulary T (or P) writes a multiplication and a division on the BB. Ps come out to BB to write result, explaining reasoning, and to point to and name each component. Class agrees/disagrees. e.g. BB: $30 \times 40=(1200)$ $750 \div 50=(15)$ \times : multiplicant and multiplier (or factors), product \div : dividend, divisor, quotient b) Properties Let's complete these open sentences. Ps come to BB or dictate to T. Class agrees/disagrees. e.g. i) The terms of an addition are inter-changeable. ii) The reductant and subtrahend of a subtraction are not inter-changeble. iii) The factors of a multiplication are inter-changeable. iv) The dividend and divisor of a division are not inter-changeable.	Whole class activity (Names of components could be written on flash cards and stuck to side of BB. Ps point to a component and choose and read the appropriate name card.) Agreement, praising Written on BB or SB or use enlarged copy master or OHP Agreement, praising What else can you tell us about any of the operations? e.g. - subtraction (division) is the reverse of addition (multiplication) - addition of equal numbers can be replaced by \times, etc.
3	Multiplication Who can help me with these multiplications? Ps come to BB to write the products, explaining reasoning. Class points out errors. What do you notice? (The sum of the first 4 products equals the 5th product; the bottom multiplicant is the sum of the first 4 multiplicants.) BB: $\begin{array}{rlrl} \text { a) } 3 \times 4 & =(12) & \text { b) } 5 \times 3=(15) & \text { c) } 5 \times 7=(35) \\ 20 \times 4 & =(80) & 5 \times 80=(400) & 80 \times 7=(560) \\ 400 \times 4 & =(1600) & 5 \times 400=(2000) & 700 \times 7=(4900) \\ \hline 2000 \times 4 & =(8000) \\ \hline 2423 \times 4 & =(9692) & & \frac{5 \times 1000=(5000)}{5 \times 1483=(7415)} \end{array}$ Elicit that the bottom multiplicant has been written as the sum of simpler numbers to make the multiplication easier.	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Agreement, praising Agreement, praising

BKL		Lesson Plan 34
Activity 5	Book 4, page 34 Q. 1 Read: Fill in the missing numbers. Deal with one part at a time [or do part a) first with the whole class, then part b) as individual work]. Ps could estimate the results first by rounding to nearest 1000 . Encourage Ps to think about what they are doing and to try to understand the steps. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning in detail with place values. Mistakes discussed and corrected. Ps read completed steps while T points to the relevant parts of the calculation. Solution: a) b) $4 \times 6 \mathrm{U}=24 \mathrm{U}=2 \mathrm{~T}+\mathbf{4} \mathrm{U}$ $4 \times 5 \mathrm{~T}+2 \mathrm{~T}=\mathbf{2 2} \mathrm{T}=\mathbf{2} \mathrm{H}+\mathbf{2} \mathrm{T}$ $4 \times 7 \mathrm{H}+\mathbf{2} \mathrm{H}=\mathbf{3 0} \mathrm{H}=\mathbf{3} \mathrm{Th}+\mathbf{0} \mathrm{H}$ $4 \times 1 \mathrm{Th}+3 \mathrm{Th}=7 \mathrm{Th}$	Notes Individual work, monitored, helped Written on BB or SB or use enlarged copy master or OHP Discussion reasoning, checking against estimate, agreement, self-correction, praising In unison, or a different P for each step
6	Book 4, page 34 Q. 2 Read: Estimate first, then calculate with addition and with multiplication. Ps can estimate by rounding to nearest 1000 or nearest 100. Agree that rounding to nearest 100 will be closer to real value. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning with place value detail. Mistakes discussed and corrected. Which do you think is easier, addition or multiplication? (Ps most likely will agree that multiplication is easier if lots of the same number have to be added.) Encourage Ps to use the short form of multiplication but only if they understand what they are doing. Solution: 	Individual work, monitored helped Drawn on BB or use enlarged copy master or OHP Initial discussion about estimating Reasoning, checking against estimate, agreement, selfcorrection, praising Show as long multiplication if problems, e.g. Discuss advantages of multiplication over addition. (Quicker, easier if Ps know the \times tables by heart, less writing if short form is used)

BKT		Lesson Plan 34
Activity 7	Book 4, page 34 Q. 3 Read: Which is more? How many more? Write in the missing signs and differences. Deal with one part at a time. How can we do it? (Work out the product for each side, then subtract the smaller from the greater product.) Ps can do the calculations in their Ex. Bks. Review at BB with whole class Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Solution: a) 6 times 1480 3 times 2960 Extra praise if Ps notice that 2960 is twice 1480 8880 \square 8880 without doing calculations. b) 9 times 875 5 times 1420 7875 \square 7100 c) 4 times 3100 7 times 1800 12400 200 12600 d) 8 times 734 2 times 2931 5872 \square	Notes Individual work, monitored, helped (or more complicated multiplications with the whole class) Written on BB or SB or OHT Discussion reasoning, agreement, self-correction, praising Calculations written on BB if problems, e.g. $\begin{array}{\|c\|c\|c\|c\|c\|c:c\|c\|c\|} \hline & 8 & 7 & 5 & 1 & 4 & 2 & 0 \\ \hline 7 & & \times & 9 & & & x & 5 \\ \hline 7 & 8 & 7 & 5 & 7 & 1 & 0 & 0 \\ \hline 6 y y & 4 & & 2 & 1 & \\ \hline \end{array}$ Feedback for T
8	Book 4, page 34, Q. 4 Read: Write these digits in the boxes so that the product is less than 10000 and it is: a) odd b) even c) a 4-digit number. Deal with one part at a time. Let Ps think about it and try it themselves for a minute, or discuss with their neighbout. Then Ps come to BB to write a solution and explain their reasoning, with help of class. T gives hints if Ps have no idea what to do. (e.g in a) units digit and multiplier must both be odd, i.e. 3 or 5 , but the multiplier cannot be 5 , or the product would be >10000; choose the thousands digit by estimation) Solution: 2 3 4 5 6 45 min	Whole class activity (or individual trial first if Ps wish) Digits written or stuck on BB Discussion on strategy for solution. Ps suggest what to do first and how to continue. Encourage logical reasoning, rather than trial and error. Extra praise if Ps find a correct solution without help. If no time to complete during the lesson, the remaining parts could be done for homework.

BKK	R: Mental calculation C: Multiplication and division up to 10000 E: Numbers up to 20 000. Problems	$\begin{gathered} \text { Lesson Plan } \\ 36 \end{gathered}$
Activity 1	Multiplication Let's calculate these products. Ps come to BB to do calculations or dictate to T. Who agrees? Who can think of a better way? Elicit that if an operation contains only multiplications, the order does not matter. You can do the calculations in the easiest order and obtain the same result. BB: a) $7 \times 4 \times 5=28 \times 5=100+40=140$ Or better: $7 \times(4 \times 5)=7 \times 20=140$ b) $9 \times 5 \times 8=45 \times 8=320+40=360$ Or better: $45 \times 8=90 \times 4=360$ Or even better: $9 \times(5 \times 8)=9 \times 40=360$ c) $2 \times 6 \times 10=12 \times 10=120$ Or : $2 \times(6 \times 10)=2 \times 60=120$ d) $\begin{array}{ll} 3 \times 5 \times 8=15 \times 8=80+40=120 \\ \text { Or: } & 15 \times 8=30 \times 4=120 \end{array}$ Or even better: $3 \times(5 \times 8)=3 \times 40=120$ e) $7 \times 5 \times 12=35 \times 12=350+70=420$ Or better: $\quad 35 \times 12=70 \times 6=420$ Or even better: $7 \times(5 \times 12)=7 \times 60=420$ f) $8 \times 4 \times 15=32 \times 15=320+150+10=470+10=480$ Or better: $8 \times(4 \times 15)=8 \times(2 \times 30)=8 \times 60=480$ g) $9 \times 5 \times 20=45 \times 20=800+100=900$ Or: $45 \times 20=90 \times 10=900$ Or even better: $9 \times(5 \times 20)=9 \times 100=900$ 5 min	Notes Whole class activity Initial operations written on BB or SB or OHT At a good pace Reasoning, agreement, praising Exra praise for 'clever' ways. T shows them if Ps do not. In c) Ps decide which is easier. (Show of hands)
2	Book 4, page 36 Q. 1 Read: How many unit cubes have been used to build the cuboids? Calculate the volume in 3 different ways. Deal with one part at a time. Ps first count the unit cubes along each edge and write the number beside it. Then they write the multiplication with the factors in 3 different orders. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) $\begin{gathered} V=8 \times 4 \times 2=32 \times 2=64 \\ V=8 \times 2 \times 4=16 \times 4=64 \\ V=4 \times 2 \times 8=8 \times 8=64 \\ \text { etc. } \end{gathered}$ b) $V=6 \times 7 \times 4=42 \times 4=168$ $V=6 \times 4 \times 7=24 \times 7=168$ $V=7 \times 4 \times 6=28 \times 6=168$ etc.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising Agree that as all operations are multiplications, the order of factors does not matter the result is the same. Extension What is the area of each face? T points to a face and class shouts out its area in unit squares.

R		Lesson Plan 36
Activity 3	Missing numbers Let's fill in the missing numbers. You can do the calculations in your Ex. Bks. first if you wish. Ps come to BB to write numbers, explaining reasoning. Class agrees/disagrees. Extra praise if Ps notice a 'clever' way. BB: $6712 \quad 5034$ a) $1678 \times 4=1678 \times 3+1678$ But no calculation is necessary, as $4 \times n=3 \times n+n$) b) $1905 \times 6=1905 \times 8-380$ But only one calculation is necessary: $1905 \times 2=3810$ as $6 \times n=8 \times n-2 \times n$) 18 min	Notes Whole class aactivity Written on BB or SB or OHT Reasoning, agreement, praising Necessary calculations done at side of BB. If no P notices easy methods, T gives hints. Class applauds P who notices this!
4	Inequalities Which numbers could be written instead of the square to make the inequality true? What should we do first? (Work out the value of each side.) Ps work out values in Ex. Bks. then come to BB to write results as another inequality. Class agrees/disagrees. What numbers would make it true? Class dictates and T writes on BB. BB: a)$\begin{gathered} 3476 \times 5<\square<4346 \times 4 \\ 17380<\square<17384 \\ \square: 17381,17382,17383 \end{gathered}$ 3 4 7 6 \times 5 1 7 3 8 0 2 3 3 4 3 4 6 x 4 1 7 3 8 4 1 1 2 b) $\begin{aligned} 1075 \times 7>\square & \geq 1503 \times 5 \\ 7525>\square & \geq 7515 \end{aligned}$: 7524, 7523, .., 7516, 7515 (10 numbers)	Whole class activity Written on BB or SB or OHT Ps suggest how to solve them, with help of class Reasoning, agreement, checking, praising Check with smallest and greatest values from list. Feedback for T
5	Equal values What do you notice about these operations? (They contain the same numbers and the same two operations.) Which of them do you think are the same? T marks the equations that Ps think have equal results. Let's do the calculations and see whether you are correct. Ps do calculations in Ex. Bks first before coming to BB or dictating to T. Class agrees/disagrees. Mistakes in Ex. Bks corrected. Did you choose the correct equal values? Why did you choose them? BB: $\begin{aligned} & 7200 \div 9-3=800-3=\underline{797} \\ & 7200 \div(9-3)=7200 \div 6=\underline{1200} \\ & 7200 \div 3-9=2400-9=\underline{2391} \\ & (7200-9) \div 3=7191 \div 3=\underline{2397} \\ & 7200-9 \div 3=7200-3=\underline{7197} \\ & 7200 \div 3-9 \div 3=2400-3=\underline{2397} \end{aligned}$ 28 min	Whole class activity Initial discussion and deciding Reasoning, agreement, selfcorrecting, praising Extra praise if correct. Ps explain reason for choice (with T's help if necessary). C: \quad 1 2 0 0 6 7 2 0 0 3 2 4 0 0 3 7 2 0 0 1

BKM	R: Calculations C: Geometry: 1-D, 2-D, 3-D shapes. Angles. Parallel and perpendicular lines E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 37 \end{gathered}$
Activity 1	Geometric shapes 1 Let's remind ourselves about the different kinds of shapes. What can you tell me about these? Ps say what they know. Class agrees/disagrees or suggests other properties or descriptions. T has: - real objects: e.g. rectangular boxes, large dice, ball, pencil, hexagonal and cylindrical tins, briefcase, candle, globe, etc. - pictures: e.g. church, house, pyramid, igloo, tree, wheelbarrow, etc. - line drawings, e.g. BB: Ps might mention, e.g.: - 3-D shapes: size, colour, material, uses, solid, box, sphere, cylinder, cuboid, cube, pyramid, prism, cylinder, curved or plane faces, straight or curved edges, number of vertices, etc. - 2-D (or plane shapes): names of shapes, polygons, straight or curved sides or mixture of the two, number of sides, perimeter, vertices, regular or irregular, closed or open, parallel or perpendicular sides, right angles, etc. - 1-D: lines, straight or curved, horizontal, vertical, slanting, crosses itself or not, etc.	Notes Whole class activity (Or objects could be on a theme, e.g. Christmas) T holds up or points to each in turn and Ps say something about them. Encourage Ps to speak in sentences. Gradually elicit the geometric features. Drawn on BB or use enlarged copy master or OHP Involve the majority of Ps. Praise all contributions. Extra praise for 'clever' features, such as symmetry N.B. Objects, pictures, drawings and features can be limited according to ability of Ps. There is no need to cover everything!
2	Geometric shapes 2 T has various models to show and also drawings of them on BB , e.g. a) What are the geometric names of these solids? T points to each in turn and Ps shout out its name if they know it. T writes it on BB. How many faces (edges, vertices) does it have? [Names: 1: cone; 2: cuboid; 3: cube; 4: prism (triangular-based); 5: sphere; 6: prism (hexagonal-based) ; 7: cylinder; 8: cuboid; 9: pyramid (square-based); 10: cylinder] b) Which of the solids has: i) at least one plane (flat) face $(1,2,3,4,6,7,8,9,10)$ ii) at least one face which is a triangle $(4,9)$ iii) at least one face which is a circle $(1,7,10)$ iv) all its faces plane (flat) (2, 3, 4, 6, 8, 9) v) at least one face which is a rectangle (2, 3, 4, 6, 8, 9) vi) all its faces rectangles $(2,3,8)$ viii) at least one face which is a square viii) all its faces square?	Whole class activity T has set of solids to match those drawn on BB or on enlarged copy master . (If possible, Ps also have a set of solids and/or copies of sheet on desks.) Or T could have names on flash cards stuck to side of BB and Ps come to BB to choose and say the correct name. Discussion on properties. Ps come to BB or dictate to T Class agrees/disagrees In v), elicit that a square is also a rectangle. Praising, encouragement only Feedback for T

BKL		Lesson Plan 37
Activity 5 Extension	Book 4, page 37 Q. 2 Read: Scale: 1 cm on the diagram means 875 cm in real life. a) How far away in real life is i) Bearsden from Antsnest? ii) Cricketfield from Antsnest? b) What distance in real life is the round trip? Ps measure the lines and write lengths on diagram. Review with whole class. Mistakes corrected. Ps work through rest of questions by themselves. Calculations done in Ex. Bks, only results written in Pbs. Set a time limit. Review at BB with whole class. Ps dictate to T or come to BB to write actual distances on diagram. Calculations written on BB if problems. Mistakes discussed and corrected. Elicit that the round trip is the perimeter of the triangle. How far is Bearsden from Cricketfield? $(2 \times 875 \mathrm{~m}=\underline{1750 \mathrm{~m}})$ 35 min	Notes Individual work, monitored, helped Diagram drawn on BB. Reasoning, agreement, selfcorrecting, praising BB: $1 \mathrm{~cm} \rightarrow 875 \mathrm{~cm}$ a) $\begin{aligned} \mathrm{AB}=\mathrm{AC} & =3 \times 875 \mathrm{~m} \\ & =2625 \mathrm{~m} \\ & =\underline{\mathrm{km} 625 \mathrm{~m}} \end{aligned}$ b) $\begin{aligned} P=8 \times 875 \mathrm{~m} & =7000 \mathrm{~m} \\ & =\underline{7 \mathrm{~km}} \end{aligned}$
6	Book 4, page 37 Q. 3 Read: a) Draw 9-unit perimeters which enclose a triangle, a quadrilateral and a pentagon. b) Draw 16-unit perimeters which enclose different rectangles. Deal with one part at a time. Advise Ps to think about it before starting to draw! Ps can discuss it with their neighbour. Review at BB with whole class. Ps come to BB to draw shapes (or T has possible solution already prepared on SB or OHT). Solution: 40 min	Individual (or paired) work, monitored, helped Drawn on BB or use enlarged copy master or OHP (or use squared board or pin-board) Discussion, reasoning, agreement, self-correction, praising Extension - Mark the parallel lines by drawing over them in the same colour (or by drawing arrows). - Mark the perpendicular sides by colouring a square in the corner.

$3 K 4$		Lesson Plan 38
Activity 3	Folding paper Ps have 4 pieces of triangular or circular shaped paper on desks. Fold a piece of paper so that: a) it has 2 parallel sides Show me . . . now! Ps can check by measuring how far apart the sides are at each end. (T demonstrates how rulers should be perpendicular to the sides!) b) it has a pair of perpendicular lines. Show me . . . now! (Elicit that they form a right angle. Ps mark it with a square.) c) it has an angle smaller than a right angle. Show me . . . now! (Elicit/tell that this is called an acute angle.) d) it has an angle greater than a right angle. Show me . . . now! (Elicit /tell that this is called an obtuse angle.) T draws 3 triangles on BB (without labels or markings). Let's compare these triangles with our 3 folded angles. Which triangle has a right angle? Ps come to BB to point and check with their own angle. T (P) marks the right angle with a square. We call this kind of triangle a right-angled triangle. T writes (sticks) the label beneath it. Elicit that its other 2 angles are acute. Repeat for the obtuse-angled triangle. Elicit that only one angle is obtuse and the other 2 angles are acute. Elicit that the 3rd triangle has all its 3 angles acute, so it is called an acute-angled triangle.	Notes Whole class activity but individual folding. (or a roughly torn sheet of paper which has no parallel or perpendicular sides to start with) Paper shown in unison. Ps check neighbour's lines. Mistakes corrected. Agreement, praising (Or already drawn on SB or OHT) Discussion, agreement, praising Ps could draw the 3 triangles in Ex. Bks (using rulers) and label them.
4	Book 4, page 38 Q. 1 Read: In your exercise book, make a plan, estimate, calculate, check and write the answer as a sentence . Deal with one part at a time. Ps read the question themselves and solve it in Ex. Bks. Set a time limit for each question. Review with whole class. Ps come to BB to show their solution, explaining reasoning. Who agrees? Who thinks something else? Who did it a different way? Who made a mistake? What kind of mistake? etc. Solutions: a) The highest mountain in Europe is Mont Blanc which is 4810 m high. It is 4032 m lower than Mount Everest. How high is Mount Everest? Plan: MB: 4810 m ME: $4810+4032 \mathrm{~m}$ E: $\quad 5000+4000=9000$ C: Answer: Mount Everest is 8842 m high. 4 8 1 0 +4 0 3 2 8 8 4 2	Individual work, monitored, helped (T could have relevant maps on hand to show where each place is, and some interesting facts about each in mind, although give Ps the chance to tell class what they know first.) Reasoning, agreement, checking, self- correction, praising Check against estimate, then with a subtraction (or with a calculator). Feedback for T

BIK	R: Calculations C: Shapes. Polygons. Angles E: Problems. Diagonals	$\begin{gathered} \text { Lesson Plan } \\ 39 \end{gathered}$
Activity 1	Calculation practice a) How many congruent (equal) squares are needed to make a cube like this? (T holds up a large cubic box) Show me . . .now! (6) b) How many congruent (equal) squares would be needed to make 1223 such cubes? Show me . . . now! (7338) P who responded incorrectly works through the calculation on BB with help of class. c) How many such cubes could be made from 2394 congruent (equal) squares? Show me . . . now! (399) d) How many such cubes could be made from 2397 congruent (equal) squares? ($399, \mathrm{r} 3$) Same as c), but 3 extra squares.	Notes Whole class activity Ps do necessary calculations in Ex. Bks. first. Responses shown on scrap paper or slates in unison. Reasoning, agreement, praising BB: b) c)\qquad 3 9 9 6 2 3 9 4
2	Pentagons T has BB or OHT already prepared. What kind of shapes are these? (pentagons, because they have 5 straight sides) Who can draw a line through the pentagon to make: a) a triangle and a quadrilateral b) a triangle and a pentagon or e.g. or c) a triangle and a hexagon e.g. or e.g. 10 min	Whole class activity Drawn on BB or SB or OHT Ps can try it out in Ex. Bks first if they wish. Ps come to BB to draw lines. Class checks that they are correct. Who has found another way to do it? etc. Discussion, agreement, praising
3	Diagonals 1 a) A castle has 5 towers. (T points to circles on LH diagram.) Each tower is joined to the towers next to it by a wall. (T points to sides of pentagon.) Each tower is joined to the towers which are not next to it by straight paths. (T points to diagonals.) Let's think of it mathematically. Here is a simpler diagram of the castle. What shape is it? (pentagon) Let's draw a dot at each corner to represent the 5 castles. What is its mathematical name? (vertex) What do we call the lines around the outside? (sides) Let's join up each vertex to all the vertices which are not next to it. Ps come to BB to draw straight lines with BB ruler. Class points out any they have missed. These lines are called diagonals. b) Draw a triangle, a quadrilateral, a pentagon and a hexagon in your Ex. Bks. They need not be regular polygons (i.e. the sides do not have to be the same length). Now draw their diagonals, keep count as you draw them and write the number below your diagram. Review at BB with whole class. T has polygons drawn on BB. Ps come to BB to draw the diagonals. Class agrees/disagrees. Ps add any they missed to diagrams in Ex. Bks. BB: (5) (9)	Whole class activity Diagrams drawn on BB or use enlarged copy master or OHP BB: Castle T writes labels on diagram as each is dealt with,. Individual work, monitored, helped Agreement, self-correcting, praising Elicit that polygons are plane shapes with straight sides.

BK		Lesson Plan 39
Activity 6 Extension	Book 4, page 39 Q. 2 Read: In a dress pattern, there are these different shapes of pocket to choose from. BB: \square List the shapes for which each statement is true. Set a time limit. Review with whole class. P reads each statement and Ps dictate letters to T. Class agrees/disagrees or adds ommissions. Mistakes discussed and corrected Solution: a) It has only straight sides. (A, B, D, F, G, H, J, L) What do we call plane shapes with straight sides? (Polygons) b) It has at least one straight side. (A, B, C, D, E, F, G, H, J, K, L) c) It has only curved lines. d) It is a pentagon. (D, J) e) It has parallel sides. (A, B, D, F, H, J, L) f) It has perpendicular sides. (B, D, E, F H, J, L) g) It is a quadrilateral. (A, B, F, G, L) h) It is a hexagon. (H) i) It is a rectangle. (F, L) j) It is a square. (L) Let's put the shapes into sets. How could we do it? Ps suggest ways and T chooses one. T draws diagrams on BB and Ps suggest labels. Ps come to BB to write letters in appropriate set. BB: e.g.	Notes Individual work, monitored, helped Shapes drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Feedback for T Elicit that: pentagon: a plane shape with 5 straight sides quadrilateral: a plane shape with 4 straight sides hexagon: a plane shape with 6 straight sides square: a regular rectangle Whole class activity Praise all positive contributions. Discussion, agreement, praising
7	Compass points T has a large N stuck to the wall of the classroom which faces North (or if no wall faces north, use the BB wall). Everyone stand up and face North. T gives instructions on how Ps should turn. Through how many right angles have you turned? Class shouts out in unison or T chooses Ps at random. e.g. a) Turn to the right: i) from N to face E (1 right angle) ii) from E to face W (2 right angles) iii) from W to face NW (half a right angle) b) Turn to the left: i) from N to face SW ($1 \frac{1}{2}$ right angles) ii) from SW to face SE (1 right angle) iii) from S to face W (3 right angles) etc. Ps can give instructions too!	Whole class activity Revise compass points first if necessary. At a good pace Agreement, praising In good humour! Ps could also say whether the angle is acute or obtuse where relevant.

$B K K$		Lesson Plan 39
Activity8		Notes
	Book 4, page 39	
	Q. 3 Read: Draw a line through the point given so that it is parallel to the other two lines	Individual work, monitored, helped
	Review at BB with whole class. Ps finished first come to BB to draw their solutions. Who agrees? Who drew a different line?	Drawn on BB or use enlarged copy master or OHP
	Solution: a) b) \qquad c)	Ps should use rulers to draw the lines and check distances at either end by mesuring or counting the grid units.
		Agreement, self-correcting, praising
	Where in the classroom can you see sets of parallel lines?	Elicit that parallel lines need not be equal in length but must be at the same angle, and that they will never meet, however far they are extended.

BKK	R: Calculations C: Shapes, polygons. Angles. Parallel and perpendicular lines E: Problems. Constructions	$\begin{gathered} \text { Lesson Plan } \\ 40 \end{gathered}$
Activity 1	Quadrilaterals T has BB already prepared. How many quadrilaterals and triangles can you count on each diagram? Ps come to BB to point and count and name the shapes if they know them (e.g. square, rectangle, rightangled triangle). Class agrees/disagrees. If problems, T helps by drawing each of the sub-shapes separately. BB: a) b) Q: 2 (both squares) T: 4 Q: 4 (1 rectangle) T: 4 c) Q: 14 (5 rectangles) T: 12 Find the parallel and perpendicular lines. Ps come to BB to mark them. Class points out any they have missed. T helps with notation. \qquad	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Ps can use edges of ruler or folded right angle to check any they are unsure about. Agreement, praising Who can find a pentagon (hexagon) in the diagrams?
2	Compass points and angles Everyone stand up! Let's suppose the BB is North. Everyone face North. a) Follow my instructions then tell me which compass point you are facing. (Ps could write on slates and show on command.) e.g. Turn to the right through 1 right angle. In which direction are you facing? (E) Turn to the right through 2 right angles. (W) Turn to the left through half a right angle. (SW) etc. b) Everyone face North again! Turn to the right to face South. Through how many right angles did you turn? (2) Face N again. Turn to the left to face SW. Through how many right angles did you turn? (1 and a half) etc. 10 min	Whole class activity At a good pace In good humour! Praising, encouragement only Ps can give the instructions too!
3	Solids and shapes a) Which solid could be made from which set of plane shapes? Ps come to BB to join up or write the matching pairs, explaining reasoning. Class agrees/disagrees. BB: d BB: 1-e, 2-d, 3-a, 4-f, 5-c, 6-b Who remembers the names of these solids? [1: cuboid, 2: square-based pyramid, 3: cuboid, 4: triangle-based pyramid, 5: cube (regular cuboid), 6: triangle-based prism]	Whole class activity T could have actual solids to show to class. (If possible, Ps have small-sized set of shapes and solids on desks too, Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising At a good pace Extra praise for Ps who remember the names of 2,4 and 6

R		Lesson Plan 40
Activity 5	Book 4, page 40 Q. 1 a) Read: In each diagram, mark - the right angles in red like this, - angles smaller than a right angle in blue like this, - angles larger than a right angle in green like this. T could do Shape B with the whole class first if necessary. Ps colour remaining shapes. Set a time limit. Review at BB with whole class. Ps come to BB or T points to each angle in turn and Ps say which colour (or what kind of angle) it is. Mistakes corrected. Elicit that the blue angles are acute and the green angles are obtuse angles. Solution: b) Read: List the letters of the shapes for which each statement is true. Set a time limit. Review with whole class. P reads each statement and Ps dictate letters to T. Class agrees/disagrees or adds ommissions. Mistakes discussed and corrected Solution: i) It is a square. (F) (C, F) (A, B, C, F) (D, E, H) (B, C, D, F) (C, F) (A, B, D, E, H) (E) (A, B, G, H) x) All its angles are larger than a right angle.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps check angles they are unsure about with corner of ruler or folded right angles. Agreement, self-correcting, praising. What are the names of the polygons? A and B: quadrilaterals C: rectangle D: right-angled triangle E: acute-angled triangle F: square G: (regular) hexagon H: obtuse-angled triangle Individual work, monitored, helped (or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Agreement, self-correcting, praising

[^0]: © CIMT, Plymouth University

