

$3 K 4$		Lesson Plan 41
Activity 5	Views of an object Ps have squares of paper, scissors and an object to view on desks. T demonstrates each step of how to make the 'viewing tool', referring to diagrams on BB, and Ps follow instructions. (4th square is folded beneath 3rd square.) BB: Ps put their object inside viewing tool and draw what they see from the top, front and side. T chooses Ps to show their drawings and objects to class. Class decides whether the views are roughly correct.	Notes Whole class activity Thas large square of paper for demonstration. Items brought from home or provided by T (e.g. toy car, house, animal, solid shapes) or models built from unit cubes. T should have own diagrams prepared beforehand (or use enlarged copy master or OHP). In good humour throughout! Drawings need only be rough (or Ps draw around the shape) Praising, encouragement only!
6	Book 4, page 41 Q. 1 Read: Calculate the real distances if 1 cm on the diagram means 62 m in real life. Ps first measure distances between the houses and write on the diagram in Pbs. Review with whole class. Ps dictate lengths and T writes on diagram on BB. Mistakes corrected. Set a time limit. Encourage Ps to calculate mentally but necesssary calculations can be written in Ex. Bks (or on slates). Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\mathrm{B} \rightarrow \mathrm{A}$: $62 \mathrm{~m} \times 2=\underline{124 \mathrm{~m}}$ b) $\mathrm{C} \rightarrow \mathrm{B}$: $62 \mathrm{~m} \times 3=\underline{186 \mathrm{~m}}$ c) $\mathrm{D} \rightarrow \mathrm{C}$: $62 \mathrm{~m} \times 4=\underline{248 \mathrm{~m}}$ d) $\mathrm{C} \rightarrow \mathrm{A}$: $62 \mathrm{~m} \times 5=300 \mathrm{~m}+10 \mathrm{~m}=310 \mathrm{~m}$ e) $\mathrm{D} \rightarrow \mathrm{B}$: $62 \mathrm{~m} \times 7=420 \mathrm{~m}+14 \mathrm{~m}=\underline{434 \mathrm{~m}}$ f) $\mathrm{D} \rightarrow \mathrm{A}$: $62 \mathrm{~m} \times 9=540 \mathrm{~m}+18 \mathrm{~m}=558 \mathrm{~m}$	Individual work, monitored Drawn on BB or use enlarged copy master or OHP BB: Scale: $1 \mathrm{~cm} \rightarrow 62 \mathrm{~m}$ Agreement, correcting, praising Reasoning, agreement, selfcorrecting, praising If some Ps used addition, discuss whether it is quicker to add or to multiply. Feedback for T

BKK		Lesson Plan 41
Activity 7	Book 4, page 41 Q. 2 Read: In a dense forest there are some clearings. In which of the clearings could you hide from someone? Write a tick or a cross inside each one. Review at BB with whole class. T points to each shape in turn and Ps show $\boldsymbol{\checkmark}$ or \times on scrap paper or slates. Ps who are wrong come to BB to try to explain where they would hide. BB: b) c) d) In a) and b), two people could not hide from each other. We say that such shapes are convex. In c) and d), two people could hide from each other. We say that such shapes like these are concave. (Remember which is which you can hide in a cave!) In your Ex. Bks, draw 3 different shapes which are convex and 3 different shapes which are concave. Set a time limit. T chooses Ps to draw their diagrams on the BB. Class decides whether they are correct. e.g. BB: Convex (1) 35 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising BB: convex BB: concave Individual work, monitored, helped Agreement, praising Extra praise for creative (but correct) shapes!
A 8	Book 4, page 41 Q. 3 Read: The two lines in each diagram are the diagonals of a quadrilateral. They are perpendicular to one another. Draw the quadrilaterals and measure their sides. Deal with one shape at a time. T elicits (reminds Ps about) the notation for equal sides. (1 short perpendicular line for 1st set, 2 lines for 2 nd set, etc. within a diagram) Ps measure lengths in mm and write on diagrams. Ps finished first draw solutions on BB. Review at BB with whole class. Ps dictate lengths and T writes on BB. Class agrees/disagrees. Mistakes corrected. Is the shape convex or concave? Ps shout out in unison. Solution: a) convex b) convex c) d) - 18 e) What other questions can you think of to ask about the shapes? e.g. Is it symmetrical? Does it have perpendicular or parallel sides? What kind of angles does it have? What is it called? What is the length of its perimeter? What is its area? etc.) T (class) decides which questions to answer.	Individual work, monitored, helped [or part f) done with whole class] Drawn on BB or use enlarged copy master or OHP BB: equal lines Agreement, self-correcting, praising Extra praise if Ps did part f) correctly without help! If disagreement about whether a shape is concave or convex, Ps come to BB to show where 2 people could hide. Whole class activity T might point out that a) is a rhombus (a parallelogram with equal sides). Elicit that a parallelogram is a quadrilateral with its opposite sides parallel.

BKK	R: Calculations. Sequences. Quantities C: Shapes. Properties. Convex and concave shapes E: Problems. Constructions. Nets of solids	$\begin{gathered} \text { Lesson Plan } \\ 42 \end{gathered}$
Activity 1	Mental calculation Follow my instructions, do each calculation in your head and show me the result when I say. a) Start with $40 \ldots$ multiply by 7 (280) ... subtract 110 (170) ... multiply by 10 (1700) . . . add 4500 (6200) . . . divide by 2 (3100) ... and multiply by 3 . Show me the result . . .now! (9300) Ps who respond incorrectly work through the calculations again with help of class. b) I am thinking of a number. If I subtract 100 and multiply by 7, the result will be 1400 . What is the number I am thinking of? Show me . . . now! (300) P who responds correctly explains at BB to Ps who were wrong. BB: e.g. $\begin{aligned} & (x-100) \times 7=1400, \text { so } \\ & x=1400 \div 7+100=200+100=\underline{300} \end{aligned}$ Check: $\quad \underline{300}-100=200,200 \times 7=1400$	Notes Whole class activity Less able Ps can write results of each step on slates or scrap paper. Ps nod heads when they are ready for next step. In unison Reasoning, agreement, praising Less able Ps may do calculation on slates or scrap paper or in Ex. Bks. Reasoning, checking, agreement, praising or $1400 \div 7=200$ $200+100=\underline{300}$
2	Sequences T says first 3 terms of a sequence and Ps continue it, then give the rule. a) $8888,7777,6666,(5555,4444,3333,2222,1111,0,-1111$, -2222,...) (Rule:-111) b) $25,535,1045,(1555,2065,2575,3085,3595,4105,4615$, $5125,5635,6145, \ldots) \quad$ (Rule: + 510) c) $16000,8000,4000,(2000,1000,500,250,125,62$ and a half, 31 and a quarter, . . .) (Rule: $\div 2$) d) $2,6,18,(54,162,486,1458,4374, \ldots) \quad($ Rule: $\times 3)$ 10 min	Whole class activity T chooses Ps at random. Class points out errors. At a good pace Ps may do necessary calculations on scrap paper or slates or in Ex. Bks. Agreement on the rules. (Ps could check large numbers with calculators.)
3	Quantities What do the quantities in a) [b), c)] measure? (capacity, mass, length) Let's change the quantities into other units. Ps come to BB to write missing values, explaining reasoning Class points out errors. BB: a) 1 litre = \square 100 $\mathrm{cl}=$ \square 1000 ml $14 \text { litres }=1400 \mathrm{cl}=14000 \mathrm{ml}$ $\begin{aligned} 4000 \mathrm{ml} & =400 \mathrm{cl}=4 \\ 8500 \mathrm{ml} & =850 \mathrm{cl}=8 \frac{1}{2} \text { litres } \end{aligned}$ b) $\begin{array}{rlrl} 1 \mathrm{~kg} & =4000 \mathrm{~g} & 7000 \mathrm{~g}=\boxed{\mathrm{kg}} \\ 3 \frac{1}{2} \mathrm{~kg} & =3500 \mathrm{~g} & 4300 \mathrm{~g}=4 \mathrm{~kg} 300 \mathrm{~g} \end{array}$ c) $\begin{array}{ll} 1 \mathrm{~m}=400 \mathrm{~cm}=4 \mathrm{~mm} & 1 \mathrm{~km}=4000 \mathrm{~m} \\ 7 \mathrm{~m}=700 \mathrm{~cm}=7000 \mathrm{~mm} & 6 \mathrm{~km}=6000 \mathrm{~m} \\ 2000 \mathrm{~m}=\frac{2}{} \mathrm{~km} & 3800 \mathrm{~m}=\frac{3}{} \mathrm{~km} \quad 800 \mathrm{~m} \end{array}$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning agreement, praising Feedback for T

R1/		Lesson Plan 42
Activity 8	Book 4, page 42 Q. 4 Read: Complete these non-convex shapes so that they become convex shapes. Elicit that the shapes are concave. Set a time limit. Review at BB with whole class. Ps come to BB. Class agrees/ disagrees. Accept any correct solution. Solution: e.g. a) b) c) d) 41 min \qquad	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Ps can discuss solutions with their neighbours Agreement, self-correcting, praising
9	Scale We want to make an open box which is 1 fifth of the size of this box. T has real box to show and also a diagram with real lengths marked. Ps convert to scaled down lengths and come to BB to write them on net. Class agrees/disagrees. What is the scale? (Scale: $1 \mathrm{~cm} \rightarrow 5 \mathrm{~cm}$) If there is time, Ps could draw the reduced net and cut out and fold it to make a box. BB: e.g. 1 fifth of the size 45 min	Whole class activity Drawn on BB or use enlarged copy master or OHP (but measurements will vary according to size of real box) Agreement, praising

BK4	R: Calculations. Measures C: Shapes: parallel and perpendicular lines; convex and concave E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 43 \end{gathered}$
Activity 1	Divisibility T writes an addition on BB. e.g. $342+6 \square$ \square What number could we write for the missing digit so that the sum is: a) divisible by 5 b) divisible by 4 c) divisible by 3 $\begin{aligned} & (342+6 \underline{3}=405 \text { or } 342+6 \underline{6}=410) \\ & (342+6 \underline{2}=404 \text { or } 342+6 \underline{6}=408) \\ & (342+6 \underline{0}=402 \text { or } 342+6 \underline{3}=405 \text { or } \\ & 342+6 \underline{6}=408 \text { or } 342+6 \underline{9}=411) \end{aligned}$ d) divisible by both 5 and 4 (not possible!) e) divisible by both 5 and $3 \quad(342+6 \underline{3}=405)$ f) divisible by neither 5 nor 4 not $3 \quad(342+61=403$ or $342+64=406$ or $342+6 \underline{5}=407)$	Notes Whole class activity At a good pace Ps come to BB or dictate to T Class checks that they are correct by doing the divisions Reasoning, agreement, praising Extra praise if Ps remember that to be divisible by 5 , the number must end in 0 or 5 . Feedback for T
2	Problems Listen carefully, do the calculation in your head or on the back of your slates and show me the result when I say. a) I am thinking of a number. If I add 23 to 5 times my number, the result is 373 . What number am I thinking of? Show me . . . now! (70) P who responds correctly explains at BB to Ps who were wrong. $\begin{array}{ll} \text { BB: e.g. } & x \times 5+23=373 \text {, so } \\ & x=(373-23) \div 5=350 \div 5=\underline{70} \end{array}$ Check: $\quad \underline{70} \times 5+23=350+23=373$ b) If I subtract 400 from half of another number, the result is 1000 . What is the number? Show me . . now! (2800) P who responds correctly explains at BB to Ps who were wrong. BB: e.g. $\begin{aligned} & x \div 2-400=1000, \text { so } \\ & x=(1000+400) \times 2=1400 \times 2=\underline{2800} \end{aligned}$ Check: $\quad \underline{2800} \div 2-400=1000$	Whole class activity but individual calculation T repeats each question slowly to give Ps time to think and do the calculation. Responses shown on scrap paper or slates in unison. Reasoning, agreement, praising Mistakes analysed. Agree that to solve the problems, the reverse operations should be done in the reverse order. Checks can be done with a calculator.

BKK		Lesson Plan 43
Activity 3	Which is more? Which quantity is more and how much more? What should we do first? (Change both sides to the same unit.) Ps come to BB to convert the units, then to fill in missing sign and to calculate the difference, explaining reasoning. Class points out errors. BB: 434 min. 460 min e) 7 hours 14 minutes 1000 minutes - 9 hours	Notes Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Ps can do necessary calculations on scrap paper or slates or in Ex. Bks. Reasoning, agreement, praising Feedback for T $\text { BB: } \begin{aligned} & 1000-9 \times 60 \\ & =1000-540 \\ & =460(\mathrm{~min}) \end{aligned}$
4	Compass directions Ps have square grid on desks (or use page of squared Ex. Bks). Which compass points are missing from this compass? Ps dictate what T should write at each point. Draw a dot on a grid point half-way down your page on the LHS. This is your start point. Now draw straight lines according to my instructions. 1. Move N by 2 units. 2. Turn to face NE and move 2 diagonals. What kind of turn did you make? (half a right angle to the right) 3. Turn to face E and move 3 units. What kind of turn did you make? (half a right angle to the right) 4. Turn to face S and move 2 units. What kind of turn did you make? (a right angle to the right) 5. Turn to face SW and move 2 diagonals. What kind of turn did you make? (half a right angle to the right) 6. Turn to face SE and move 2 diagonals. What kind of turn did you make? (a right angle to the left) 7. Turn to face W and move 5 units. What kind of turn did you make? (1 and a half right angles to the right) 8. Turn to face N and move 2 units. What kind of turn did you make? (a right angle to the right) - What kind of shape have you drawn? (7-sided polygon or heptagon) - Is it convex or concave? (concave) - How many right angles did we turn altogether? T writes on BB , with Ps' help: BB: $\frac{1}{2}+\frac{1}{2}+1+\frac{1}{2}-1+1 \frac{1}{2}+1=4$ (right angles) Who can think of other questions to ask about it? (e.g. Which lines are parallel /perpendicular? What is its perimeter (area)? etc.)	Whole class activity but individual drawing of shape Compass and grid drawn on BB or use enlarged copy master or OHP A also works on BB (hidden from rest of class). A, show us what you drew. Who drew the same? etc. Mistakes corrected. BB: Discussion about the shape. BB: heptagon Elicit that turning to the right is like adding and turning to the left is like subtracting. Agreement, praising

\begin{tabular}{|c|c|c|}
\hline BKK \& \& Lesson Plan 43 \\
\hline \begin{tabular}{l}
Activity \\
5
\end{tabular} \& \begin{tabular}{l}
Book 4, page 43 \\
Q. 1 Read: List the letters of the shapes for which each statement is true. \\
Set a time limit. Ps read statements themselves then list the relevant letters. Ps have rulers and/or folded right angles to help them. \\
Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. \\
Solution: \\
a) It has 2 sides which are equal in length. (B, C, D, E, F, I, J, K) \\
b) All its sides are equal. \\
(E, J, K) \\
c) Its opposite sides are equal. \\
(B, E, I, J, K) \\
d) It has a pair of perpendicular sides. \\
(A, C, E, G, H, I, K) \\
e) It has a pair of parallel sides. \\
(B, E, F, H, I, J, K) \\
f) It is symmetrical. \\
(C, D, E, F, I, J, K) \\
g) There is a right angle at every vertex. \\
(\(\mathrm{E}, \mathrm{I}, \mathrm{K}\)) \\
h) Opposite sides are parallel to each other. (B, E, I, J, K) \\
What word would desctibe all the shapes? (quadrilaterals,)
\end{tabular} \& \begin{tabular}{l}
Notes \\
Individual work, monitored, helped \\
Drawn on BB or use enlarged copy master or OHP \\
Differentiation by time limit. \\
Ps (T) mark the features on diagrams on BB as they are dealt with. \\
Agreement, self-correction, praising \\
At a good pace \\
Ps might tell other names they know, e.g. \\
square (\(\mathrm{E}, \mathrm{K}\)); \\
rectangle (E K, I) \\
parallelogram (B, J) [E, I, K] \\
rhombus (J) [and E, K]
\end{tabular} \\
\hline 6

Extension \& \begin{tabular}{l}
Book 4, page 43 \\
Q. 2 Read: List the statements in Question 1 which are true for all \\
a) rectangles \\
b) squares. \\
Review at BB with whole class. Ps dictate to T. Mistakes discussed and corrected. \\
Solution: \\
a) rectangles: all except b) \\
b) squares: all of them \\
Who can describe a rectangle (square) in one sentence? e.g. \\
'A rectangle is a parallelogram with adjacent sides perpendicular.' (or 'with 4 right angles'). \\
'A square is a rectangle with equal sides.' \\
34 min

 \&

Individual work, monitored, helped \\
Discussion, reasoning, agreement, self-correction, praising \\
Ask several Ps what they think. \\
Praising, encouragement only
\end{tabular} \\

\hline 7 \& | Book 4, page 43 |
| :--- |
| Q. 3 Read: Write the letters of the quadrilaterals in Question 1 in the correct set. |
| Deal with one part at a time. Review meaning of each set first. |
| Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. |
| Solution: | \& | Individual work, monitored, helped |
| :--- |
| Drawn on BB or use enlarged copy master or OHP |
| Reasoning, agreement, selfcorrecting, praising |
| Extension |
| Tell me true (false) statements about the shapes. e.g. |
| 'Each quadrilateral has 2 pairs of parallel sides.' (F) |
| 'There is a quadrilateral which has 2 pairs of parallel sides and no right angles.' (T) | \\

\hline
\end{tabular}

BKL	R: Calculations C: Shapes: properties, angles E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 44 \end{gathered}$
Activity 1	Mental calculation a) T says an addition. Ps say sum. $\text { e.g. } 45+29,23+96,842+199,3005+573,5400+2800 \text {, etc. }$ b) T says a subtraction. Ps say difference. $\text { e.g. } 76-19,728-34,954-260,4300-700,6834-1004 \text {, etc. }$ c) T says a multiplication. Ps say product. $\text { e.g. } 600 \times 8, \quad 12 \times 5,4100 \times 2,35 \times 60,7 \times 220 \text {, etc. }$ d) T says a division. Ps say quotient. $\text { e.g. } 350 \div 5,48 \div 4,720 \div 9,3600 \div 40,4218 \div 6 \text {, etc. }$ 5 min	Notes Whole class activity At speed in order round class. If a P makes a mistake the next P corrects it Agreement, praising In good humour! If problems, write operation on BB. Ps may think of operations too!
2	Secret number I am thinking of a number between 1 and 10000 . You must ask me questions to find what it is but I can answer only Yes or No. e.g. 3817 Does it have more than 2 digits? (Yes) Is it more than 1000? (Yes) Is it less than 5000? (Yes) Is it more than 2500 ? (Yes) Is its thousands digit 3? (Yes) Is it more than 3500 ? (Yes) Is it less than 3750 ? (No) Is its hundreds digit odd? (No) Is it less than 3850 ? (Yes) Is its tens digit even? (No) Is its tens digit more than 1? (No) Is it divisible by 5? (No) Is it more than 3816 ? (Yes) Is its less than 3819 ? (yes) Is its units digit odd? (Yes) It is 3817! (Yes) If time, a P thinks of a number and answers questions (with T's or another P's help if necessary). 10 min	Whole class activity Encourage logical questioning and keep ing in mind clues already given. Ps could make notes on scrap paper or slates or in Ex.Bks. A P (T) could track of important clues on BB, e.g. $\begin{aligned} & 1000<x<5000 \\ & 2500<x<5000 \\ & 3750<x<3850 \\ & 3816<x<3819 \end{aligned}$ Extra praise for clever questions.
3	Time T has a large real or model clock. Ps have model clocks on desks too. Set your hour and minute hands to point to 12 o'clock. a) Turn the minute hand by 1 right angle to the right. To which number is it pointing? (3) How many minutes has it passed? (15 min) b) Now turn the minute hand back to 12 . Through how many right angles will the minute hand turn after 30 minutes? (2 right angles). To which number will the minute hand be pointing? (6) c) Now turn the minute hand back to 12 . Through how many right angles would the minute hand have turned if it is now pointing to 9 ? (3 right angles) How much time has passed? (45 min) d) Now turn the minute hand back to 12 . How many minutes could have gone by if the minute hand turns by less than a right angle? (Accept actual mintues but agree after discussion that it could be more than 0 minutes but less than 15 minutes). How could we write it mathematically? Ps dictate to T. 15 min	Whole class activity Use copy master from Y2 Lesson Plan 83/1 Ps respond by showing clocks or writing on slates and showing in unison on command Elicit that: BB: 1 quarter of a turn $=1 \mathrm{r}$. a. half a turn $=2 \mathrm{r}$. a. 3 quarters of a turn $=3 \mathrm{r}$. a. 1 whole turn $=4 \mathrm{r} . \mathrm{a}$. BB: $0<t<15$ (mi.)

BK		Lesson Plan 44
Activity	Properties of a rectangle and a square Ps each have square and rectangular-shaped pieces of paper on desks. a) Pick up this sheet (\square). Who can tell me something about it? e.g. - It has 4 sides, 4 vertices and 4 angles, so it is a quadrilateral. - Its opposite sides are parallel and equal to each other, so it is also a parallelogram. - Its adjacent sides are perpendicular to each other, so its 4 angles are right angles. - It is a rectangle. T: Fold your paper in half so that one pair of opposite sides meet exactly. Now unfold it. Repeat for the other pair of opposite sides. Unfold it again. What can you tell me? - A rectangle has 2 lines of symmetry (or mirror lines). T: How many diagonals does it have? Draw them in. - A rectangle has 2 diagonals. Are the diagonals lines of symmetry too? (No, because if it is folded along the diagonals, the edges do not meet exactly.) T : What kind of angles do the diagonals make? (2 equal acute angles and 2 equal obtuse angles) T: If you draw only one diagonal, what shapes does it make? (2 congruent right-angled triangles) Ps can cut them to confirm. If you draw both diagonals, what shapes do they make? (4 triangles, opposite triangles are congruent.) What else do you notice about each triangle? (The 2 sides formed by the diagonals are equal in length.) T tells class that a triangle with 2 equal sides is called an isosceles triangle. b) Pick up this sheet (\square). Who can tell me something about it? e.g. - It has 4 sides, 4 vertices and 4 angles. It is a quadrilateral. - Its opposite sides are parallel and equal to each other, so it is also a parallelogram. - Its adjacent sides are perpendicular to each other so its 4 angles are right angles so it is also a rectangle. - All its 4 sides are equal, so it is a square. T: Fold your paper in half in different ways, so that opposite sides meet exactly. Now unfold it. What can you tell me? - A square has 4 lines of symmetry (or mirror lines) and 2 of them are its diagonals. Draw over the diagonals. T : What kind of angles do the diagonals make? (4 right angles) What else can you tell me about the diagonals? (The diagonals are perpendicular and equal to each other.) T: If you draw only one diagonal, what shapes does it make? (2 congruent, right-angled, isosceles triangles) If you draw both diagonals, what shapes do they make? (4 congruent, isosceles, right-angled triangles)	Notes Whole class activity Ps should have 2 or 3 of each shape so that they can be folded or drawn on in different ways. T prompts Ps if necessary. BB: T demonstrates if necessary BB: Discussion, demonstration, agreement, praising isosceles triangle: 2 equal sides Involve as many different Ps as possible. BB: T demonstrates if necessar.y.
4	Properties of a rectangle and a square Ps each have square and rectangular-shaped pieces of paper on desks. a) Pick up this sheet (\square). Who can tell me something about it? e.g. - It has 4 sides, 4 vertices and 4 angles, so it is a quadrilateral. - Its opposite sides are parallel and equal to each other, so it is also a parallelogram. - Its adjacent sides are perpendicular to each other, so its 4 angles are right angles. - It is a rectangle. T: Fold your paper in half so that one pair of opposite sides meet exactly. Now unfold it. Repeat for the other pair of opposite sides. Unfold it again. What can you tell me? - A rectangle has 2 lines of symmetry (or mirror lines). T: How many diagonals does it have? Draw them in. - A rectangle has 2 diagonals. Are the diagonals lines of symmetry too? (No, because if it is folded along the diagonals, the edges do not meet exactly.) T: What kind of angles do the diagonals make? (2 equal acute angles and 2 equal obtuse angles) T: If you draw only one diagonal, what shapes does it make? (2 congruent right-angled triangles) Ps can cut them to confirm. If you draw both diagonals, what shapes do they make? (4 triangles, opposite triangles are congruent.) What else do you notice about each triangle? (The 2 sides formed by the diagonals are equal in length.) T tells class that a triangle with 2 equal sides is called an isosceles triangle. b) Pick up this sheet (\square). Who can tell me something about it? e.g. - It has 4 sides, 4 vertices and 4 angles. It is a quadrilateral. -. Its opposite sides are parallel and equal to each other, so it is also a parallelogram. - Its adjacent sides are perpendicular to each other so its 4 angles are right angles so it is also a rectangle. - All its 4 sides are equal, so it is a square. T: Fold your paper in half in different ways, so that opposite sides meet exactly. Now unfold it. What can you tell me? - A square has 4 lines of symmetry (or mirror lines) and 2 of them are its diagonals. Draw over the diagonals. T : What kind of angles do the diagonals make? (4 right angles) What else can you tell me about the diagonals? (The diagonals are perpendicular and equal to each other.) T: If you draw only one diagonal, what shapes does it make? (2 congruent, right-angled, isosceles triangles) If you draw both diagonals, what shapes do they make? (4 congruent, isosceles, right-angled triangles)	

BKK		Lesson Plan 44
Activity 5 Extension	Book 4, page 44 Q. 1 Read: Draw over the parallel lines in the same colour. Mark the right angles. Ps can show parallel lines with arrowheads if they prefer. Review with whole class. Ps come to BB to mark the features. Class agrees/disagrees. Mistakes corrected Solution: Let's label the shapes A, B, C, and D. What can you tell me about each shape? T asks several Ps. Class agrees/disagrees. e.g. A is a line made up of straight segments (It is not a polygon.) B is made up of 2 rectangles. They are not similar because they are not in proportion to one another. (One side of the bigger rectangle is twice as long and the other side is 1 and a half times as long as the matching sides on the smaller rectangle.) C is made up of 2 similar squares. The inner square is half the size of the outer square. D is made up of 2 quadrilaterals. They are not similar because they are not in proportion to one another. (Two sides of the smaller shape are half as long, another is 3 fifths as long and the fourth is 5 ninths as long as the matching sides on the bigger shape.) They each have 1 pair of parallel sides and 1 pair of equal sides.	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrecting, praising Whole class discussion Ps come to BB to point and explain. Praise all positive contributions. Ps explain why shapes in B and D are not similar and shapes in C are similar. T tells Ps that a quadrilateral with only 1 pair of parallel sides is called a trapezium
\% 6	Book 4, page 44 Q. 2 Read: We labelled the vertices of this pentagon with letters and marked the angles. At which vertex is there: a) a right angle b) an angle smaller than a right angle c) an angle greater than a right angle? Ps use edge of ruler or folded right angles to measure the angles. Ps answer by writing initial letters of vertices. Review at BB with whole class. Ps dictate to T. Class agrees/ disagrees. Mistakes checked again and corrected. Solution: a) D b) A and B c) C and E 1. Let's draw all the diagonals. How many did you draw? Tell me their names. (AD, AC, BE, BD, CE) T explains that, e.g. AB , means the line joining point A to point B, AC means the line joining point A to point C , etc. 2. If we want to name an angle, we say, e.g. 'angle A', or 'angle EAB', which also names the two lines, EA and AB , that make up the angle at A . Ps practise naming angles and pointing to them on the diagram.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP BB: Agreement, self-correcting, praising Individual work, monitored Agreement, praising T shows convention for naming lines and angles. 'angle A' is fine if there is only one angle at A , as in diagram above, but if there are two or more, then the lines should be named too to avoid confusion.

$B K \angle$	R: Calculation C: Shapes: similarity and congruence E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 45 \end{gathered}$
Activity 1	Table 1 Study this table. Think about what the rule could be. Agree on one form of rule (e.g. sum of top and middle rows equals bottom row). Ps come to BB to choose a column and fill in the missing number. Necessary calculations can be done in Ex. Bks first, or at side of BB. Class points out errors. Who can write the rule in a mathematical way? Who agrees? Who can think of another way to write it? etc. BB: Rule: $\quad c=a+b \quad b=c-a \quad a=c-b$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Bold numbers are missing. Feedback for T
2	Table 2 Study this table. Think about what the rule could be. Agree on one form of rule (e.g. product of top and middle rows equals bottom row). Ps come to BB to choose a column and fill in the missing number. Necessary calculations can be done in Ex. Bks first, or at side of BB. Class points out errors. Who can write the rule in a mathematical way? Who agrees? Who can think of another way to write it? etc. BB: Rule: $x \times y=z \quad x=z \div y \quad y=z \div x$ 10 min	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Bold numbers are missing. Feedback for T
3	Triangles Ps have $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm long straws on desks (if possible with corner brackets to fix the straws in place) We are going to make some triangles using the straws as the sides. Listen carefully to my instructions! a) Make a triangle from a 3 cm , a 4 cm and a 5 cm straw. What can you say about it? (It is a right-angled triangle) b) Make different triangles from the $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm straws but do not use more than one straw of each length. What can you tell me about them? (right-angled, acute-angled, obtuse angled triangles) BB: Ps might notice that, e.g. 3, 4,5 and $4,3,5$ sides give congruent triangles (i.e. they cover each other exactly). Elicit that the order of the sides does not matter. Any order will give a congruent triangle, as long as the same lengths are used. Who remembers what the sign for 'congruent' is? P comes to BB .	Paired work, but whole class kept together. If possible, different coloured straws for different lengths Monitored, helped, corrected BB: T allows Ps time to form various triangles, then shows copy master or drawings of some possible triangles. Discussion on the types of triangles, agreement, praising T demonstrates congruency with prepared models if no P has noticed it. $\mathrm{BB}: \cong$ means 'congruent'

Rk		Lesson Plan 45
Activity 3 Extension	(Continued) c) Make different triangles with $4 \mathrm{~cm}, 5 \mathrm{~cm}$ or 6 cm straws but this time you can use as many of each type as you wish. Look out for symmerical triangles while you are doing it. Try to do it logically! Ps come to BB to draw round their triangles and T completes the list if Ps did not find each of the 10 different possibilities. (Class makes sure that there are no congruent triangles.) BB: Which of them are symmetrical? Ps come to BB to point and draw the lines of symmetry. Class agrees/disagrees. Now make a triangle with a 2 cm , a 5 cm and a 7 cm straw. What does it look like? (It is impossible!) Why? (To make a triangle the sum of two of the sides must be greater than the 3rd side.)	Notes Paired work, monitored Set a time limit Ps make as many triangles as they can in the time given. Or have BB already prepared or use enlarged copy master or OHP and Ps come to BB to tick the triangles that they have made. Discussion, agreement, praising Ps could point out isosceles (2 equal sides) and equilateral (3 equal sides) triangles. Agree that each line of symmetry (or mirror line) divides the triangle into two equal parts. In good humour! Extra praise if Ps can explain.
4	Quadrilaterals a) Make different quadrilaterals from the $2 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm straws but do not use more than one straw of each length. Agree that many different quadrilaterals can be formed. Are those on the BB convex or concave? (Convex) b) Let's see if you can make some concave quadrilaterals from the straws, again using not more than one of each type. Ps come to BB to draw round their shapes. Class agrees/disagrees that they are concave. Ps show where 2 people could hide from each other. e.g. BB : c) This time, make a convex polygon from any of the straws. T might ask some Ps to show their polygons to the class and talk about them. (e.g. type of polygon, number of sides, type of angles, length of perimeter, etc.) Repeat for concave polygons.	Paired work, monitored T allows Ps time to form various quadrilaterals, then shows copy master or drawings of some possibilities. Discussion on the types of angles in each Agreement, praising Set a time limit Agreement, praising Demonstration, agreement, praising

BK4		Lesson Plan 45	
Activity 7	Book 4, page 45	Notes Whole class discussion to start revising what 'reflect' means. Let Ps try to explain first. Drawn on BB or use enlarged copy master or OHP	
	Q. 3 a) Read: Reflect the letter N in the given axis (mirror line).		
	What does reflect mean? Imagine that the slashed line is a		
	mirror. What would you see if you looked in the mirror? (A reflection or mirror image). Elicit that each point on the reflection must be the same distance away from the mirror line as the corresponding point on the original image.		
	Let's see if you can draw the reflections without a mirror to help you!	Individual work, monitored, helped (corrected)	
	Review at BB with whole class. Ps come to BB to draw the reflections. Class points out errors. Mistakes discussed and corrected.	Agreement, self-correction, praising	
	Solution:	Elicit that points of the image nearest (furthest away from)	
	$\text { V! } N \\| N$	the mirror are also nearest (furthest away from) the mirror in the reflection	
	b) Read: Stretch the letter N in the direction shown by the arrow. What does 'stretch mean? What does $\times 2, \times 3$, etc. mean?	Discussion on meaning of 'stretch'. Demonstration with various materials.	
	T could demonstrate using printed elasticated material.	Let Ps try to explain first.	
	Imagine that the letter N has been drawn on elastic material and you are pulling it in the direction of the arrow. Let's	Drawn on BB or use enlarged copy master or OHP	
	see if you can draw what it would look like. Review at BB with whole class. Ps come to BB to draw their solutions. Class points out errors. Mistakes discussed and corrected.	Do first stretched image on BB with whole class if necessary.	
	Solution:	Agreement, self-correcting, praising	
Extensions	1. What about if we stretched the letter N in two directions at once? Ps come to BB ro draw the stretched images. Class agrees/disagrees. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP	
		At a good pace	
	2	Agreement, praising	
	2. Is the letter N symmetrical? (It does not have line symmetry but it does have rotational symmetry.) $\mathrm{T}(\mathrm{Ps})$ demonstrate by pinning a letter N to BB and rotating it. It covers itself exactly 2 times in one complete turn, so we say that it has rotational symmetry of order 2 .	Whole class discussion	
		T has letter N already prepared.	
		Praising if Ps remember the concept from Book 2.	

BK4		Lesson Plan 46
Activity 4	Plans and maps a) This is the plan of a garden. What does it show? e.g. BB: What is missing from the plan? (a scale) T writes it above the plan. Which distance shall we measure? (e.g. from the Tree to the Flower bed) Ps come to BB to measure using BB ruler or a pair of compasses which they then hold against a ruler (with T's help). Lengths need only be approximate. What distance would it be in real life? Let's show it in a table. Continue with other measurements suggested by Ps. T could ask questions in the other direction too! e.g. In the real garden there is a fountain in the middle of the lawn. It is 1 and a half metres wide. How wide would it be on the plan? (half a cm or 5 mm) etc. b) T has copy of a real map pinned to BB (or on an OHT) and Ps have copies on desks too if possible. Talk about what the map shows and what the scale is first. Ps come to BB in pairs, choose 2 places on the map and measure the map distance. Class helps them to work out the real distance. T asks questions in both directions. e.g. How far is A from B in real life? If the real distance between C and D is 10 km , how far apart are they on the map? Ps can ask the questions too!	Notes Whole class activity Drawn on BB or items cut from magazines and stuck to BB, or rough plan of T's own garden, or use enlarged copy master or OHP Ps decide which distances to measure. Agreement, praising Ps could think of questions too! Use simple map of local area if possible. (Or Ps work in pairs on maps on desks, choose 2 places, measure the distance and convert to the real life distance Then Ps relate their findings to class. Deal with all cases.)
5	Book 4, page 46 Q. 1 Read: i) Complete the drawings of fish F on the other grids. ii) Colour the fish which is similar to fish F. Ps use rulers to draw the straight lines. Ps count the number of grid units along and up on F before drawing the copies. Review at BB with whole class. Ps come to BB or T has solution already prepared and uncovers each part as it is dealt with. A, which fish did you colour? Who agrees? etc. Solution: Who can write it in a mathematical way? BB: F ~ a a) c) d)	Individual work, monitored, helped, corrected Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising What has been done to fish F to make the other fish? Ps come to BB to point and explain. Class agrees/disagrees Thelps with mathematical terms if necessary. a) enlarged b) enlarged and stretched vertically at the tail end c) stretched horizontally d) enlarged and skewed (pushed over) to the right

BKK		Lesson Plan 47
Activity 3	Tessellation Ps have various sets of congruent shapes on desks. Use the congruent shapes as tiles and fit them together in different ways so that there is no space between any of them. The mathematical name for this is to tessellate. (BB) Deal with one shape at a time. T holds it up and Ps name it and tell what they know about it. See if you can tessellate with these shapes and how many different patterns you can make! Set a time limit. Review at BB with whole class. Ps come to BB to stick on (or draw) their patterns. Class agrees or disagrees whether they are valid (i.e. no spaces between the shapes). (Or T has SB or OHT already prepared.) BB: a) triangle e.g. c) parallelogram e) trapezium or b) rectangle or d) rhombus f) quadrilateral	Notes Paired work, monitored, helped Can use copy master copied on to coloured card and cut out. BB : to tessellate : to tile (relate to tiling a wall or floor) Whole class discussion about each type of shape first. Agreement, praising What can you tell me about the patterns? (e.g.which lines are parallel and which are perpendicular; types of angles; which patterns have horizontal, vertical, or slanting sides, etc.) What has been done to the 1st shape in the pattern to make the others? Ps expalain in own words. T mentions: - reflection vertically or horizontally or diagonally - translation (movement) and demonstrates each on BB.
4	Book 4, page 47 Q. 1 Read: a) List the numbers of the houses which are similar to: House A, House B, House C and House D. b) List the houses which are congruent to one another. Ps can list only the numbers of the houses or write in a mathematical way using the notation \sim and \cong. Review at BB with whole class. Ps come to BB or dicatate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\mathrm{A} \sim 2 \sim 3 \sim 9 \sim 12$ B $\sim 1 \sim 10 \sim 11$ C $\sim 4 \sim 7 \sim 8$ D ~ $5 \sim 6$ b) $\mathrm{A} \cong 12, \mathrm{~B} \cong 11, \mathrm{D} \cong 6$ Elicit that no house is congruent to C . Ps draw one. $(\mathrm{C} \cong 13)$	Individual work, monitored, helped Use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Feedback for T Extension Discuss the ratio of enlargement of similar houses. $\begin{aligned} \text { e.g. } \mathrm{A} & \rightarrow 2(\times 3) \\ \mathrm{A} & \rightarrow 3(\times 2) \\ \mathrm{C} & \rightarrow 7(\times 3) \\ \mathrm{C} & \rightarrow 8(\times 2) \text { etc. } \end{aligned}$ Stress that every side of the shape has been enlarged by this amount of times.

BKK		Lesson Plan 47
Activity 6		Notes
	Book 4, page 47 Q. 3 i) ii) iii) iv)	Individual work, monitored, but class kept together on activities.
	a) Read: Draw over in green the sides of the regular pentagons in i) and ii). b) Read: Colour blue the 5-pointed star in iii).	Drawn on BB or use enlarged copy master or OHP Praising
	c) Read: How many triangles, quadrilaterals and pentagons can you see in iv)?	Individual trial first, then whole class review
	Tell Ps to count only shapes within the solid lines! Ask several Ps for their totals. Ps come to BB to show the outline of the shapes while class keeps count.	Discussion, demonstration, agreement, praising
	Solution: Triangles: 10, quadrilaterals: 10	Draw the individual shapes on BB if there are problems.
	$(5 \text { convex } \forall+5 \text { concave } \measuredangle)$ pentagons: $\underline{6}(1$ convex $\checkmark+5$ concave $)$	Elicit the difference betwen the 2 types of qadrilaterals and pentagons.
	d) Read: Try to make a pentagon from a paper strip like this. Ps have one or two paper strips on desks. T has large model already made up to show to class.	Individual trial, monitored, helped
	When you have done it, colour the pentagon you have made. T (or P who managed it well) demonstrates to class.	Demonstration, praising
	What can you tell me about this pentagon? (e.g. Its 5 sides are equal in length, so it is a regular pentagon.	T gives hints if Ps cannot think of anything.
	It has 5 obtuse angles. It is similar to i) and ii). It is convex.)	Praising, encouragement only!
Extension	What is the connection between the pentagons and the 5 -pointed stars? (The 5 -pointed star in iv) has been made by drawing the diagonals of a pentagon. The 5-pointed star in iii) is the star in iv) with the sides of the middle pentagon deleted.)	Whole class discussion
		Extra praise if Ps think of this without help. BB. decagon
	What mathematical name can you think of for the 5-pointed star? (10-sided polygon, or decagon) What else can you say about it? (All its sides are equal. It has acute and obtuse angles. It is concave.)	BB: decagon 10-sided polygon Praise all positive contributions.

$3 K 4$	R: Calculations C: Revision: angles, parallel/perpendicular, shapes, solids E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 48 \end{gathered}$
Activity 1	Missing quantities 1 Study these quantities. What are they measures of? (length or distance) Quickly revise relationship between units of length. (BB) Let's change the quantities to the units shown. Ps come to BB to fill in missing values, explaining reasoning. Class agrees/disagrees. BB: $\text { a) } \begin{array}{rlrl} 7 \mathrm{~km} \mathrm{300} \mathrm{~m} & =4300 \mathrm{~m} & \text { b) } 5630 \mathrm{~m}=5 \mathrm{~km} 630 \mathrm{~m} \\ 4 \mathrm{~km} 83 \mathrm{~m} & =4083 \mathrm{~m} & 3043 \mathrm{~m} & =3 \mathrm{~km} 43 \mathrm{~m} \\ 3 \mathrm{~km} 120 \mathrm{~m} & =4120 \mathrm{~m} & 9302 \mathrm{~m}=9 \mathrm{~km} 302 \mathrm{~m} \\ 16 \mathrm{~km} \mathrm{9m} & =16009 \mathrm{~m} & 14150 \mathrm{~m} & =14 \mathrm{~km} \quad 150 \mathrm{~m} \end{array}$	Notes Whole class activity Written on BB or use enlarged copy master or OHP BB: $1 \mathrm{~km}=1000 \mathrm{~m}$ $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ $1 \mathrm{~cm}=10 \mathrm{~mm}$ At a good pace Reasoning, agreement, praising Feedback for T (or done as a mental practice and Ps show results on scrap paper or slates on command)
2	Missing quantities 2 Let's round these lengths to the nearest whole metre. Ps come to BB to write missing numbers, explaining reasoning. Class agrees/disagrees. BB: a) $640 \mathrm{~cm} \approx$ \square 6 m b) $398 \mathrm{~cm} \approx 4 \mathrm{~m}$ c) $5 \mathrm{~m} 5 \mathrm{~cm} \approx$ \square m $450 \mathrm{~cm} \approx 5 \mathrm{~m}$ \qquad $287 \mathrm{~cm} \approx 3 \mathrm{~m}$ $5 \mathrm{~m} 50 \mathrm{~cm} \approx$ \square m $530 \mathrm{~cm} \approx 5 \mathrm{~m}$ $438 \mathrm{~cm} \approx 4 \mathrm{~m}$ $6048 \mathrm{~mm} \approx$ \square 6 m $680 \mathrm{~cm} \approx 7 \mathrm{~m}$ $648 \mathrm{~mm} \approx 1 \mathrm{~m}$ $5005 \mathrm{~mm} \approx$ \square 5 m 10 min \qquad	Whole class activity Written on BB or use enlarged copy master or OHP At good pace Reasoning, agreement, praising (or done as a mental practice and Ps show results on scrap paper or slates on command)
3	Missing operations T points to each arrow in turn. What operation is missing from this arrow? Show me . . . now! Ps who respond correctly come to BB to write in the missing number and sign, explaining reasoning. BB: $1 \mathrm{~km} \underset{\times 4}{\stackrel{\circ 4}{\leftrightarrows}} 250 \mathrm{~m}$ c) $40 \mathrm{~cm} \xrightarrow[\substack{\text { c) }}]{\stackrel{\doteqdot 10}{\leftrightarrows}} 40 \mathrm{~mm}$ $40 \mathrm{~cm} \underset{\underset{\div 5}{+5}}{\stackrel{\text { d) }}{\leftrightarrows}} 2 \mathrm{~m}$	Whole class activity but individual feedback on scrap paper or slates. Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising
Extension	T points to a length (distance). Ps show it with hands or in classroom or mention a place locally which is roughly that distance away. (e.g. A is sitting about 2 m away from B. The park is about 1 km from the school.) 15 min	Whole class activity (Estimation practice) Class agrees/disagrees on accuracy of examples.

BK		Lesson Plan 48
Activity 4	Capacity This is a diagram of a fish tank. BB: What shape is it? (cube) a) 100 litres of water have been poured in. What is the depth of the water? (10 cm) Why? (1 m has been divided into 10 equal parts, so there is a tick at every 10 cm) BB: $1 \mathrm{~m}=100 \mathrm{~cm}, 100 \mathrm{~cm} \div 10=10 \mathrm{~cm}$ A, come and show us where the water has reached 10 cm and write the missing quantity in the box. (100 litres) If the level of the water was at each of the other arrows, how much water would be in the tank? Ps come to BB to fill in the missing quantities. Class agrees/disagrees. b) This table shows the how much water there is in the tank at certain levels. Let's complete the table. Ps come to BB to choose a column and fill in the missing value, explaining reasoning. Class agrees/disagrees. Who can write a rule for the table? Who agrees? Who can write it in a different way? etc. BB: 20 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP (If possible, T could have a real cubic fish tank to show.) Discussion on meaning of scale on side of diagram. At a good pace Agreement, praising Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Rule: Let $W=$ water, $L=$ level W (litres) $=10 \times L(\mathrm{~cm})$, $L=W \div 10, W \div L=10$ $(L \div W=1$ tenth $)$
	Information for Ts 100 litres $=1$ hectolitre, $\quad 1 \mathrm{~m}^{3}$ of water $\rightarrow 1000$ litres, $1 \mathrm{~cm}^{3}$ of water $\rightarrow 1 \mathrm{ml}, \quad 1 \mathrm{cl}$ of water $\rightarrow 10 \mathrm{~cm}^{3}$, 1 litre of water $\rightarrow 1000 \mathrm{~cm}^{3}$	
5	Diagonals of rectangles Ps have a 2 shapes on desks, a 3×4 rectangle and a 3×3 square. a) Let's start with the rectangle. i) Draw its diagonals. Are the diagonals also lines of symmetry? Find out by folding your shape diagonally. (No, they are not.) ii) Cut the rectangle along its diagonals. How many polygons did you get? (4) What shapes are they? (isosceles triangles, i.e. 2 sides are equal in length) Are any of the triangles congruent? (There are 2 different pairs of congruent triangles.) b) Repeat all the above with the square. Elicit that: - The 2 diagonals are also lines of symmetry (mirror lines). - The 2 diagonals are perpendicular to one another. - After cutting, there are 4 congruent, right-angled, isosceles triangles.	Individual work, monitored, helped, but class kept together on the tasks. Discussion, agreement, praising Discussion, agreement, praising

B1/		Lesson Plan 49
Activity 3	Puzzles Study each diagram. Think about what the rule could be. When you know it, stand up. T chooses Ps standing to come to BB to fill in a missing number. Class agrees/disagrees. Other Ps gradually stand up when they understand the rule. Who can tell me the rule? Who agrees? Who can say it another way? etc. Ps suggest other pairs of numbers which could have been written in each diagram. BB: a) b) Rules: a) In each segment, the sum of the outer and middle numbers is 3200 . b) In each segment, the difference between the outer number and the middle number is 280 .	Notes Whole class activity Drawn n BB or use enlarged copy master or OHP In good humour! At a good pace Reasoning, agreement, praising Bold numbers (excluding middle numbers) are missing. Feedback for T or a) outer $=3200-$ middle, middle $=3200-$ outer b) middle $+280=$ outer, outer $-280=$ middle
4	Multiplication and division Let's fill in the missing numbers and signs. Ps come to BB to write missing items, explaining reasoning. Class agrees/disagrees. BB: a) d) $12000 \stackrel{+10}{ }$ What is the connection between the top and bottom arrows? \qquad 25 min \qquad	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Elicit that, e.g. $\begin{aligned} & 120 \times 3 \times 10=120 \times 30 \\ & 9600 \div 100 \div 6=9600 \div 600 \end{aligned}$ etc.
5	Book 4, page 49 Q. 1 Read: Write a number in the box so that the statement is true. Let's see how many of these you can do in 3 minutes! Write the results too if you have time. Start . . . now! . . Stop! Review at BB with whole class. Ps come to BB or dictate the missing numbers and give the results too. Class agrees/disagrees. Mistakes discussed and corrected. Solution: b) $\begin{aligned} & 13000 \\ & 130 \times 100=13 \times \mathbf{1 0 0 0} \\ & 19000 \\ & 19 \times 1000=1900 \times \mathbf{1 0} \\ & 16000 \\ & 160 \times 100=10 \times \mathbf{1 6 0 0} \\ & 20000 \\ & 20 \times 1000=100 \times \mathbf{2 0 0} \\ & 17000 \\ & 17 \times 1000=170 \times \mathbf{1 0 0} \end{aligned}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, self-correcting, praising Extra praise if Ps do part b) correctly without help from T

BK4	R: Mental calculation C: Practice: multiplication and division E: Problems	Lesson Plan 50
Activity		Notes
1	Multiplication	Whole class activity
	a) Who can suggest how to calculate the area of this rectangle? What	Rectangles drawn on BB
	units would you use? Elicit that the lengths of the sides 8 units and 21 units, so the area will be in square units,	Discussion about unit
	squares. Agree that we do not need to know the actual unit length (it could be 1 mm or 1 cm or 5 mm , etc.) to work out the area.	volve several P
	BB: If the diagram was this size, would it make any difference to	or this size: $8 \square$
	how we would calculate the area? (No)	Agreement, praising
	21 8 Ps come to BB to work out area, or dictate to T : BB: $A=21 \times 8=20 \times 8+8=160+8=\underline{168 \text { (square units) }}$	Reasoning, agreement, praising
Extension	Who can write an operation for the length of the perimeter? Ps come to BB or dictate to T . Class agrees/disagrees. $\text { BB: e.g. } P=(21+8) \times 2=29 \times 2=30 \times 2-2=\underline{58} \text { (units) }$	Reasoning, agreement, praising
	b) Thas BB or SB already prepared. Imagine that we are working out the areas of other rectangles. Let's do each multiplication in two different ways. Ps come to BB or dictate to T. Class points	Or T shows 1st example and Ps use as model for others. At a good pace
	BB: i) $16 \times 9=10 \times 9+6 \times 9=90+54=\underline{144}$, or $16 \times 9=16 \times 10-16=160-16 \neq 44$	Reasoning, agreement, praising
	ii) $19 \times 9=10 \times 9+9 \times 9=90+81=171$, or $19 \times 9=20 \times 9-9=180-9 \ddagger 71$	
	iii) $106 \times 9=100 \times 9+6 \times 9=900+54=\underline{954}$, or $106 \times 9=106 \times 10-106=1060-106954$	rectangles and the units were the same as in a), which rectangle would be:
	iv) $160 \times 9=100 \times 9+60 \times 9=900+540=\underline{1440}$, or $160 \times 9=160 \times 10-160=1600-160 \ddagger 440$	- almost the same shape as the rectangle in a)? (ii)
	v) $25 \times 8=20 \times 8+5 \times 8=160+40=\underline{200}$, or $25 \times 8=25 \times 10-25 \times 2=250-150=\underline{200}$	- the longest and thinnest? (vi)
	vi) $205 \times 8=200 \times 8+5 \times 8=1600+40=\underline{1640}$, or $205 \times 8=205 \times 10-205 \times 2=2050-410=\underline{1640}$	
2	Division	
	a) How long is the missing side of the rectangle? How can we work it out? Agree that again the actual size of each unit does not matter; the sides are in units and the area is in unit squares.	Whole class activity Drawn on BB or SB or OHT
	BB: $A=112$ 16 Ps come to BB or dictate to T. e.g. $?=112 \div 16=56 \div 8=\underline{7}$ (units) or $112 \div 16=(80+32) \div 16$ $=5+2=\underline{7}$	Discussion, reasoning, agreement, praising
Extension	Who can write an operation for the length of the perimeter? Ps come to BB or dictate to T. Class agrees/disagrees. BB: $\quad P=(16+7) \times 2=23 \times 2=46$ (units)	Agreement, praising

BKK		Lesson Plan 50
Activity 5	Book 4, page 50 Q. 2 Read: Do the calculations in the correct order and compare the results. Deal with one part at a time. Ps do calculations in Ex. Bks and write interim results above operation signs. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Ps point out equal results and try to explain why they are equal. Solution: a) $\begin{aligned} & 1600 \div 8-2=200-2=\underline{198} \\ & 1600 \div(8-2)=1600 \div 6=\underline{266, r} 4 \\ & 1600 \div 2-8=800-8=\underline{792} \\ & (1600-8) \div 2=1592 \div 2=\underline{796} \\ & 1600-8 \div 2=1600-4=\underline{1596} \\ & 1600 \div 2-8 \div 2=800-4=\underline{796} \end{aligned}$ b) $1600 \div 8 \times 2=200 \times 2=\underline{400}$ $1600 \div(8 \times 2)=1600 \div 16$ $=\underline{100}$ $1600 \div 2 \times 8=800 \times 8=\underline{6400}$ $1600 \times 2 \div 8=3200 \div 8=\underline{400}$ $(1600 \div 8) \times 2=200 \times 2=\underline{400}$ $1600 \times 8 \div 2=12800 \div 2=\underline{6400}$ $1600 \times(8 \div 2)=1600 \times 4$ $=\underline{6400}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Whole class discussion Agreement, praising N.B. As intense concentration is needed here, change to whole class work as soon as Ps begin to struggle or become off task. $\text { (or }=1600 \times 4=6400)$
6	Book 4, page 50 Q. 3 Read: Solve the problems in your exercise book. Do not forget any steps! What are the steps? (Read question, write a plan, estimate the result, do the calculation, check it and write the answer as a sentence.) Set a time limit. \mathbf{X}, come and show us how you worked out the answer. Who agrees? Who did it a different way? etc. Mistakes dicussed and corrected. Solution: e.g. a) If there are 7 kg of beans in each box, how many kg of beans are in 1205 boxes? Plan: 1 box: 7 kg C : 1205 boxes: $7 \mathrm{~kg} \times 1205$ E: $\quad 7 \mathrm{~kg} \times 1200=8400 \mathrm{~kg}$ Answer: There are 8435 kg of beans in 1205 boxes. b) How many kg do 405 bricks weigh if each brick weighs 8 kg ? Plan: 1 brick: 8 kg C : 405 bricks: $8 \mathrm{~kg} \times 405$ E: $\quad 8 \mathrm{~kg} \times 400=3200 \mathrm{~kg}$ Answer: 405 bricks would weigh 3240 kg .	Individual work, monitored, helped Or numerical answers shown on scrap paper or slates in unison on command. Ps responding correctly explain to those who were wrong. Reasoning, agreement, selfcorrection, praising Feedback for T

BKK	R: Mental calculation C: Multiplication and division E: Problems	Lesson Plan 51
Activity 1	What is the rule? Study the completed columns in the table. What can the rule be? Ask several Ps what they think. Agree on one form of the rule in words. (e.g. bottom row is 4 times the top row). Let's complete the table. Ps come to BB to chooose a column and write missing number, explaning reasoning. Class agrees/disagrees. Who can write the rule in a mathematical way? Who agrees? Who can write it a different way? etc. a) BB : Rule: $P=4 \times a \quad a=P \div 4 \quad(P \div a=4)$ If I said that the values in the table relate to a polygon, what do you think a and P could be? Ask several Ps what they think. (The polygon is a square with sides a units. P is the perimeter of the square.) Is there a column in the table which is not needed? (Last column on RHS, as if $P=0$, there is no square!) b) BB : $\begin{array}{rlrlrl} \text { Rule: } & P & =2 \times a+2 \times b & P=2 \times(a+b) & & P=(a+b) \times 2 \\ & a & =P \div 2-b & & b=P \div 2-a & \\ (P \div(a+b)=2) \end{array}$ What do you think the values in this table could be? Ask several Ps what they think. (The polygon is a rectangle with shorter side a units and longer side b units. P is the perimeter of the rectangle.) Study the table carefully. What do you notice? (In 3rd column from right, the values relate to a square. In 2nd column from right, $b=0$, so a is only a line, not the side of a rectangle!)	Notes Whole class activity Tables drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Discussion, checking, agreement, praising BB: a \square a Extension What is its area? [$a \times a$ (or a^{2}) unit squares] At a good pace Agreement, praising With T's help in forming the rules Discussion, checking, agreement, praising BB: a \square Extension What is its area? [$a \times b$ unit squares]
2	Sequences These are the first 3 terms of a sequence. BB: 3, $9,27, \ldots$ Let's continue the sequence using a different rule each time. Ps dictate to T or come to BB , explaining reasoning. Class points out errors. a) Rule: Each following term is 3 times the previous term. BB: b) Rule: The difference between the terms is increasing by 12 . BB: c) Rule: Multiply by 3 , then add 18 BB:	Whole class activity Written on BB or use enlarged copy master or OHP Difficult calculations done in Ex. Bks or at side of BB Reasoning, agreement, praising BB: e.g. a) b) (Or T could allow the use of calculators.)

BIT		Lesson Plan 51
Activity 3	(Continued) b) Donna has 130 buttons and Liz has 4 times more. How many buttons does Liz have? Plan: D: 130 buttons L: 130×4 (buttons) C: $\quad 130 \times 4=400+120=\underline{520}$ Answer: Liz has 520 buttons. c) How much money did the owner of the beehive collect if he stored 160 kg , which was 1 sixth of the honey, for feeding the bees during the winter? Plan: Stored: 1 sixth of the honey collected: 160 kg All the honey collected: $160 \mathrm{~kg} \times 6$ C: $\quad 160 \times 6=600+360=\underline{960}(\mathrm{~kg})$ Answer: The owner collected 960 kg of honey.	Notes Check: Check: 1 6 0 6 9 6 0 3
4	Book 4, page 51 Q. 2 Read: Write your plan here. Do the calculation and check the result in your exercise book. Write the answr as a sentence here. Set a time limit. Ps read problems themselves and solve them. Review at BB with whole class. Ps come to BB to show solutions, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Fred's age is 1 fifth of the age of his grandmother. How old is Fred if his grandmother is 65 years old? Data: G: 65 years F: 1 fifth of 65 years Plan: 65 years $\div 5$ $\begin{aligned} C: 65 \div 5 & =50 \div 5+15 \div 5 \\ & =10+3=\underline{13} \end{aligned}$ Answer: Fred is 13 years old. b) Bella has $£ 720$, which is 8 times as much as Paula has. How much does Paula have? Data: B: $£ 720=8 \times \mathrm{P}$ Plan: P: $£ 720 \div 8$ $C: £ 720 \div 8=\underline{£ 90}$ Answer: Paula has $£ 90$. c) The farmer's w ife packed 480 eggs into boxes which could hold 6 eggs. How many boxes did she need? Plan: 480 eggs $\div 6$ eggs $C: 480 \div 6=\underline{80}$ Answer: She needed 80 boxes. d) Diana left the country 210 days ago. How many weeks have gone by since then? Plan: 1 week $=7$ days; 210 days $\div 7$ days $=\underline{30}$ (times) Answer: 30 weeks have gone by.	Individual work, monitored, (helped) Deal with one at a time if Ps are not very able. Reasoning, agreement, selfcorecting, praising Check: $13 \times 5=50+15=65$ Check: $90 \times 8=720$ Check: $80 \times 6=480$ Check: $30 \times 7=210$

BK	R: Mental calculation C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 53 \end{gathered}$
Activity 1	Missing digits Which numbers can be written instead of the letters? Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. BB: a) Rounded to the nearest 10 , it is 5430 . $\begin{array}{lllll} 543 a & 54 b 5 & 5 c 34 & d 428 & 54 e 4 \\ (a: 0,1,2,3,4) & (b=2) & (c=4) & (d=5) & (e=3) \end{array}$ b) Rounded to the nearest 100 , it is 7800 . $\begin{array}{ccccc} 785 a & 78 b 9 & 7 c 52 & d 789 & 77 e 0 \\ (-) & (b: 0,1,2,3,4) & (c=7) & (d=7) & (e: 5,6,7,8,9) \end{array}$ c) Rounded to the nearest 1000 , it is 9000 . $\begin{array}{lcccc} 937 a & 85 b 0 & 9 c 99 & d 500 & e 499 \\ (a: 0 \text { to } 9) & (b: 0 \text { to } 9) & (c: 0,1,2,3,4) & (d=8) & (e=9) \end{array}$	Notes Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Feedback for T Draw relevant segments of the number line for one or two of the numbers.
2	4-digit numbers a) Let's list 4-digit numbers which have 4 as the sum of their digits. Ps come to BB or dictate to T . Class checks that the numbers are correct and that there are no duplications. BB: $1003,1012,1021,1030,1102,1111,1120,1201,1210$, 1300; 2002, 2011, 2020, 2101, 2110, 2200; 3001, 3010, 3100 b) Let's list 4-digit numbers which have 6 as the product of their digits. Ps come to BB or dictate to T. Class checks that the numbers are correct and that there are no duplications. BB: $1116,1161,1611,6111$; 1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211 14 min	Whole class activity Encourage logical listing, e.g. in increasing order, as it makes the task easier. At a good pace Agreement, praising T could have complete list already prepared on SB or OHT to check whether Ps have missed any.
3	Sets Let's put the natural numbers between 2000 and 2020 in the correct set. What is a natural number? (positive, whole number) Ps can do calculations in Ex. Bks first before coming to BB to write a number. Class points out errors. BB: - How many numbers are in Set A but not in Set B? (6) What can you say about them? (They are divisible by 3 but not by 5.) - How many numbers are in Set B but not in Set A? (2) What can you say about them? (They are divisible by 5 but not by 3.) - Where is the intersection of Set A and Set B? P comes out to BB to point. What can you say about the number in it? (It is a multiple of 3 and also of 5.) What other number must it be a multiple of? (15)	Whole class activity Drawn on BB or use enlarged copy master or OHP Or Ps have copies of copy master on desks to try it out first individually, then dictate their results to T . Reasoning, agreement, praising Elicit that only one calculation needs to be done: as every 3 rd number after 2001 must be a multiple of 3 , and multiples of 5 have units digit 5 or 0 .

BK4		Lesson Plan 53
Activity 6	Book 4, page 53 Q. 2 Read: Fill in the missing numbers. Study each equation carefully! Look for an easy way to solve it! Set a time limit. Review at BB with whole class. Ps come to BB to write missing numbers, explaining reasoning. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. Extra praise if Ps deduced answer by noticing connection between LHS and RHS of equations. (e.g. a) 2800 is 1000 less than 3800 , so missing number will be 1000 more than 1500 , i.e. 2500) There is no need to work out the result of each side. Solution: a) $3800+1500=2800+\underline{2500} \quad(=5300)$ b) $7200-3500=6200-\underline{2500} \quad(=3700)$ c) $4700+2600=6700+600 \quad(=7300)$ d) $8100-4700=9100-5700 \quad(=3400)$ e) $1600+6900=2000+\underline{6500} \quad(=8500)$ f) $6400-2800=6000-2400 \quad(=3600)$ 35 min	Notes Individual work, monitored, (helped) Written on BB or SB or OHT Reasoning, agreement, selfcorrecting, praising If no P noticed this, T gives hints about a) and asks Ps to explain the other parts in a similar way.
7	Book 4, page 53 Q. 3 Read: Work out the rule for each diagram. Fill in the missing numbers.. Deal with one part at a time. Elicit one form of the rule in words. Set a time limit. Review at BB with whole class. Ps come to BB to write numbers, explaining reasoning. Class agree/disagrees. Mistakes discussed and corrected. Solution: a) Rule: Outer $\div 3=$ Inner Inner $\times 3=$ Outer Outer \div Inner $=3$ b) Outer $\div 7=$ Inner Inner $\times 7=$ Outer Outer \div Inner $=7$	Individual work, monitored, helped (Or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Elicit other forms of each rule, as shown.

BTK	R: Mental calculation C: Revision and practice: 4 operations, geometry E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 54 \end{gathered}$
Activity 1	Sequences What could the rule be? T asks several Ps. Class checks the rules and decides which to use. Ps continue the sequence by coming to BB or dictating to T (or P). Class points out errors. a) $0,3,8,15,24,(35,48,63,80,99,120, \ldots)$ Rule: Difference is increasing by 2 . $(3,5,7,9,11,13,15,17, \ldots)$ or Square numbers minus 1: $1 \times 1-1=\underline{0}, 2 \times 2-1=\underline{3}, 3 \times 3-1=\underline{8}, \text { etc. }$ b) $1,1,2,3,5,8,13,(21,34,55,89,144,233,377, \ldots)$ Rule: From the 3 rd term, each term is the sum of the 2 previous terms. $(\underline{1}+\underline{1}=\underline{2}, 2+1=\underline{3}, 3+2=\underline{5}, 5+3=\underline{8}, \ldots)$ [T : This is a special sequence named after the man who first used it. It is called the Fibonacci sequence. It is often found in nature, e.g. in the arrangement of leaves on a stem, the petals on a flower, the scales on a cone. T could have examples to show to class.] c) $10,20,40,(80,160,320,640,1280,2560,5120, \ldots)$ Rule: Each following term is twice the previous term. or $(70,110,160,220,290,370,460,560, \ldots)$ Rule: Difference is increasing by 10. or $(50,70,80,100,110,130, \ldots)$ Rule: +10 , then +20 , repeated,	Notes Whole class activity Thelps Ps in expressing the rules. Agreement, checking, praising At a good pace Accept any valid rule! Extra praise for creativity! BB: Fibonacci Sequence $1,1,2,3,5,8,13, \ldots$ Use whichever rule Ps decide on to start with, then ask for other ways to continue the sequence and what the rule is in each case. Praising, encouragement only
2	Plane shapes Ps each have an envelope on desk containing a selection of plane shapes. Thas larger version too for demonstration. a) Empty out the shapes. Lay out the triangles and put the other shapes back in the envelope. Let's classify the triangles by putting them into sets. How could we do it? Ps suggest ways. Let's do it this way. Set A: All its angles are less than a right angle. Put the triangles which belong to this set on LHS of your desk. What do we call these triangles? (acute-angled triangles) Set B: It has a right angle. Put these triangles on the RHS of your desk. What do we call these triangles? (right-angled triangles) Set C: It has an angle more than a right angle. Put these triangles at the side of the desk nearest you. What do we call these triangles? (obtuse-angled triangles) b) Put the triangles in a pile at the top of your desk and empty out the other shapes. This time take out the quadrilaterals and lay them on your desk. (T quickly goes round the class checking them.) How could we group these quadrilaterals? Ps suggest ways. Class decides which criteria to use. e.g. BB: Set A: It has 2 pairs of parallel sides. Set B: It has line symmetry. T draws a Venn diagram on BB and Ps stick T's set of quadrilaterals in correct sets. Class points out errors. (Ps could group shapes on desks too using string or wool to define the sets.)	Whole class activity Use copy master, 1 sheet per P , shapes cut out and put in envelope (or any selection of plane shapes). Discussion, agreement, praising Ps group triangles on desks and Ps stick T's set on BB: Set A: Set B: \qquad Set C: T quickly checks/corrects Ps' arrangements. Drawn on BB: Elicit that shapes which satisfy both criteria go in the intersection of Sets A and B.

\begin{tabular}{|c|c|c|c|c|}
\hline D \& \& \multicolumn{3}{|c|}{Lesson Plan 54} \\
\hline \begin{tabular}{l}
Activity \\
2
\end{tabular} \& \begin{tabular}{l}
(Continued) \\
c) What can you tell me about the shapes which are left? T holds them up one at a time and Ps tell class what they know about it. T gives hints if necessary. e.g. \\
circle \\
convex \\
ctagon convex regular obtuse angles \\
concave \\
hexagon concave \\
pentagon convex
regular regular
obtuse angles
 \\
semi-circle 20 min \(\qquad\)
\end{tabular} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Notes \\
Whole class discussion Involve several Ps Agreement, praise all correct contributions. \\
Write unfamiliar names on BB e.g. crescent (a thin moon)
\end{tabular}} \\
\hline 3 \& \begin{tabular}{l}
Perimeter and area \\
The farmer measured the sides of two of his fields and drew rough diagrams like this. Let's help him work out the perimeter and area of each field. Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. e.g. \\
BB: \\
a)
\[
\begin{aligned}
\& P=100 \mathrm{~m} \times 4=\underline{400 \mathrm{~m}} \\
\& A=100 \times 100=\underline{10000}\left(\mathrm{~m}^{2} \text { or metre squares }\right)
\end{aligned}
\] \\
b)
\[
\begin{aligned}
P \& =(150+100+50+50+100+50) \mathrm{m} \text { or } \\
\& =(250+250) \mathrm{m} \\
\& =\underline{500 \mathrm{~m}} \\
A \& =(150 \times 50+50 \times 50) \mathrm{m}^{2} \text { or }{ }^{150 \mathrm{~m}} \\
\& =(7500+2500) \mathrm{m}^{2} \quad 50 \mathrm{~m} \underbrace{100 \mathrm{~m}}_{50} \\
\& =\underline{10000 \mathrm{~m}^{2}}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Whole \\
Diagr \\
or OH \\
Reaso \\
praisin \\
\(100 \times\)
\[
\begin{aligned}
P \& =1 \\
\& =1 \\
\& =50
\end{aligned}
\]
\[
\begin{aligned}
A \& =1 \\
\& =50 \\
\& =10
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
class activi ms drawn T \\
ning, agreen g
\[
100=10
\]
\[
\begin{aligned}
\& 150+2 \times 10 \\
\& 50+200+ \\
\& 00(\mathrm{~m})
\end{aligned}
\]
\[
\begin{aligned}
\& 100 \times 50+ \\
\& 000+5000 \\
\& 0000\left(\mathrm{~m}^{2}\right.
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
y \\
BB or SB \\
ent, \\
1000 \\
\(0+3 \times 50\) \\
50
\[
100 \times 50
\]
\end{tabular} \\
\hline \multirow[t]{8}{*}{4

Extension} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Book 4, page 54 \\
Q. 1 Read: Measure the different distances as the crow flies on the map. \\
Talk about the map first. Ps suggest what the various places on the map could be, e.g. A (church), B (statue), C (station as beside the railway line), D (Sailing club as beside a lake). \\
What does 'as the crow flies' mean? (In a straight line) \\
Elicit that, e.g. AB in the table means from A to B . \\
Ps measure in mm and write lengths in middle column of table. \\
Review with whole class. Only measurements which are wildly inaccurate need be corrected. \\
Read: Calculate the real distances if they are 1000 times the map measurements. Complete the table. \\
Elicit that scale is: $1 \mathrm{~mm} \rightarrow 1000 \mathrm{~mm}=1 \mathrm{~m}$ \\
Ps complete RH column of table. Review at BB with whole class. Ps dictate to T or come to BB. Mistakes corrected.

} \& \multicolumn{3}{|l|}{

Individual work, monitored, helped but class kept together (or whole class activity) Use enlarged copy master or OHP for demonstration only. Discuss the map, suitable units and how to measure (e.g. edgeto nearest edge). \\
Agreement, self-correcting only if necessary, praising \\
Discussion on the scale. \\
Agreement, self-correcting, praising \\
BB:
\end{tabular}} \\

\hline \& \& Journey \& Distance on map \& Real distance \\
\hline \& \& AB ~ \& 16 mm \& 16 m \\
\hline \& What is the ratio between the real and map distances? (1000:1) \& $\mathrm{AC} \sim$ \& 50 mm \& 50 m \\
\hline \& If the ratio was 2000:1 (500:1) what would the real distances \& AD \& 63 mm \& 63 m \\
\hline \& \& $B C \sim$ \& 32 mm \& 32 m \\
\hline \& \& BD ~ \& 47 mm \& 47 m \\
\hline \& [AB: $32 \mathrm{~m}(8 \mathrm{~m}), \mathrm{AC}: 100 \mathrm{~m}(25 \mathrm{~m}), \mathrm{AD}: 126 \mathrm{~m}(31.5 \mathrm{~m})$, etc.] \& CD ~ \& 10 mm \& 10 m \\
\hline
\end{tabular}

BK	R: Mental calculation C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 56 \end{gathered}$
Activity 1	Compass directions Everyone stand up and face the BB. Think of this direction as North. Follow my instruction and show me in which direction you are facing when I say. Ps write only initial letters on scrap paper or slates. - Turn to the left by 1 right angle. - Turn to the right by 2 right angles. - Turn to the right by 1 right angle. - Turn to the left by half a right angle - Turn to the right by 2 right angles. etc.	Notes Whole class activity T writes N on BB. At a good pace In good humour! Responses given in unison If Ps cope easily, give more complicated instructions, combining several turns. Ps can give instructions too.
2	Parallel lines Ps have 5 mm squared grid sheets (or Ex. Bks.) and rulers on desks. Listen carefully and follow my instructions. a) Draw over a grid line in red and label it e. b) Draw a green line which is 1 cm from e and label it f. Elicit that there are two such lines. Let's label them f_{1} and f_{2}. c) Draw a blue line which is 2 cm from e and 1 cm from f_{2}. Label it g. How many grid units is g from f_{1} ? $(6$ grid units $=3 \mathrm{~cm})$ d) Draw two parallel lines which are 35 mm apart. How many grid units are between them? (7 grid units) Accept any 2 lines 35 mm apart (horizontal or vertical or slanting, both new lines or using one line already drawn). Review after each part. T chooses Ps to show their lines on BB or OHT.	Individual work, monitored, helped T has enlarged grid on BB or OHT for demonstration only BB: e.g. Agreement, (self-correcting), praising
3	Multiples Draw arrows pointing towards the multiples. Ps come to BB to draw arrows, saying, e.g. ' 48 is a multiple of 4 because $4 \times 12=48$ '. Class points out errors or missed arrows. BB: Elicit that, e.g. - 3 is a multiple of 3 ; - 3 is a factor of 3 . If the arrows pointed in the opposite direction, what would they show? (the factors)	Whole class activity Written on BB or SB or OHT T might draw an arrow first if Ps are unsure what to do. At a good pace Reasoning, agreement, praising Extra praise if Ps remember to draw arrows to the number itself without hints from T . Feedback for T
4	Problem 1 Listen carefully, draw a diagram, note the data and do the calculation in your Ex. Bks. Show me the answer when I say. Ps who responded correctly explain at BB to Ps who did not. Mistakes discussed and corrected. a) The area of a rectangle is 8400 unit squares. The length of one of its sides is 80 units. What is the length of the adjacent side? BB: $b=8400 \div 80=840 \div 8=\underline{105}$ (units) Answer: The length of the adjacent side is 105 units.	Individual work, monitored Responses shown on scrap paper or slates in unison. Reasoning, agreement, selfcorrecting, praising BB: e.g. $\begin{gathered}\begin{array}{c}A=8400 \\ \text { unit squares }\end{array} \\ b\end{gathered} \begin{gathered}a=80 \\ \text { units }\end{gathered}$

BK		Lesson Plan 56
Activity 4	(Continued) b) The perimeter of a rectangle is 6500 m . The length of one of its sides is 1500 m What is the length of the adjacent side? BB: $\begin{aligned} & P=2 \times(a+b) \\ & 6500=2 \times(1500+b) \\ & 3250=1500+b \quad(\text { Dividing both sides by } 2) \\ & b=3250-1500=\underline{1750}(\mathrm{~m}) \end{aligned}$ Answer: The length of the adjacent side is 1750 m .	Notes BB: Check: $2 \times(1500+1750)$ $=2 \times 3250=6500$
5	Book 4, page 56 Q. 1 Read: The number in the middle is the sum of the 4 numbers around it. Fill in the missing numbers. Encourage Ps to look for easy ways to calculate mentally. Review at BB with whole class. Ps come to BB to write missing numbers, explaining reasoning. Class agrees/disagrees or points out easier way to calculate. Mistakes discussed and corrected. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP Necessary written calculations done in Ex. Bks. or on scrap paper or slates. Reasoning, checking, agreement, self-correction, praising Details of calculations written on BB if problems.
6	Book 4, page 56, Q. 2 Read: Mr. Silly did his divisions like this. Try to understand Mr. Silly's reasoning. Deal with one part at a time. Allow Ps time to study each calculation, then Ps come to BB to estimate the result, say whether Mr. Silly's result could be correct or not and explain Mr. Silly's working (with T's or other Ps' help where necessary). P circles the mistake and writes the calculation again correctly. Class agrees/disagrees. Solution: e.g. a) $4136 \div 4=$ E: $4000 \div 4=1000$ Correct calculation: b) $9751 \div 3=325 \bigcirc x$ E: $9000 \div 3=3000$ Correct calculation: c) $6375 \div 5=12075$ E: $6000 \div 5=1200$ $\begin{array}{cc}13 & \uparrow \\ 37 & 0 \text { should not be } \\ 25 & \text { there! } \\ 0 & \end{array}$ Correct calculation:	Whole class activity (or individual trial first if Ps wish) Written on BB or SB or OHT Discussion, reasoning, agreement, praising Mr. Silly's reasoning: e.g. a) 4 Th divided by $4=\underline{1 \mathrm{Th}}$ and 0 remains. I write 1 in the answer and 0 below the 4 . 1 H divided by $4=0 \mathrm{H}$ and 1 H remains. I write 0 in the answer and 1 below the $1 \ldots$ BUT Mr Silly forgot to write 0 in the hundreds column in the answer!

BTK	R: Mental calculation C: Contextual problems E: Quantities	$\begin{gathered} \text { Lesson Plan } \\ 57 \end{gathered}$
Activity 1	Quantities Let's write these quantities in increasing order. Change them to the same unit first if it makes the task easier. Ps come to BB to write list (or to rearrange cards), explaining unit conversion where relevant. Class agrees/disagrees. BB: a) $25 \mathrm{~cm} \quad 245 \mathrm{~mm} \quad 2 \mathrm{~m} \quad 210 \mathrm{~cm} \quad 2 \mathrm{~m} 5 \mathrm{~cm}$ $(245 \mathrm{~mm}<25 \mathrm{~cm}<2 \mathrm{~m}<2 \mathrm{~m} 5 \mathrm{~cm}<210 \mathrm{~cm})$ $\text { e.g. } \quad 250 \mathrm{~mm} \quad 2000 \mathrm{~mm} \quad 2050 \mathrm{~mm} \quad 2100 \mathrm{~mm}$ b) 2 and a half $\mathrm{km} \quad 2 \mathrm{~km} 90 \mathrm{~m} \quad 2 \mathrm{~km} 450 \mathrm{~m} \quad 2 \mathrm{~km} 600 \mathrm{~m} \quad 2000 \mathrm{~m}$ d) 3 and a half litres 3 litres 40 cl 3 litres $450 \mathrm{ml} \quad 3$ litres $5 \mathrm{cl} \quad 3005 \mathrm{ml}$ ($3005 \mathrm{ml}<3$ litres $5 \mathrm{cl}<3$ litres $40 \mathrm{cl}<3$ litres $450 \mathrm{ml}<3$ and a half litres) e.g. $\quad 3050 \mathrm{ml} \quad 3400 \mathrm{ml} \quad 3450 \mathrm{ml} \quad 3500 \mathrm{ml}$ e) $5 \mathrm{~kg} \quad 4500 \mathrm{~g} \quad 1500 \mathrm{~g} \quad 25 \mathrm{~kg} \quad 10 \mathrm{~kg}$ $(1500 \mathrm{~g}<4500 \mathrm{~g}<5 \mathrm{~kg}<10 \mathrm{~kg}<25 \mathrm{~kg})$ e.g. $\quad 5000 \mathrm{~g} \quad 10000 \mathrm{~g} \quad 25000 \mathrm{~g}$ 10 min	Notes Whole class activity Written on BB (or on cards stuck to BB for ease of manipulation) Reasoning, agreement, praising Revise relevant units of measure at each part. BB: $\begin{aligned} 1 \mathrm{~m}=100 \mathrm{~cm} & =1000 \mathrm{~mm} \\ 1 \mathrm{~cm} & =10 \mathrm{~mm} \end{aligned}$ $1 \mathrm{~km}=1000 \mathrm{~m}$ $1 \text { litre }=100 \mathrm{cl}=1000 \mathrm{ml}$ $1 \mathrm{cl}=10 \mathrm{ml}$ $1 \mathrm{~kg}=1000 \mathrm{~g}$ Feedback for T
2	Perimeter What name can you give all these shapes? (polygons) How can we work out the perimeter of each polygon? (Measure the length of each side and add the lengths.) Ps measure with rulers, then dictate measures to T to write on BB. (e.g $a=6 \mathrm{~cm}, b=4 \mathrm{~cm}$) Elicit the general rule first, then Ps come to BB to work out the perimeter. What else can you tell me about each shape? (e.g. its name, number of sides/angles/vertices, which sides are equal/parallel/perpendicular, types of angles, regular or irregular, convex or concave, number of diagonals, etc.) T writes some of the information beside the diagram. BB: a) $P=2 \times(a+b)$ d) $a=b=c$ $P=3 \times a$ b) $P=a+b+c$ e) $a=b=c=d$ $P=4 \times a$ c) $P=a+b+c+d+e$ f) $a=b=c=d=e=f$ $P=6 \times a$	Whole class activity Drawn on BB or use enlarged copy master or OHP Ps have copies of copy master and rulers on desks (or Ps measure at BB with BB ruler) Reasoning, agreement, praising Whole class discussion Ps refer to the sides of shapes by letters, e.g. in a): Ps might say: T writes: a is equal to $c, \quad a=c$ d is perpendicular to $a, d \perp a$ a is parallel to $c, \quad a / / c$ etc. Or Ps use the notation shown opposite, with T's help. Praising, encouragement only N.B. Deal only with what Ps suggest. There is no need to cover all possibilities!

BKK		Lesson Plan 57
Activity 5	Book 4, page 57 Q. 2 Read: Solve the problems. Ps read problems themselves, write plans, estimate and do the calculations (in Ex. Bks if they need more space), check and then write the answer as a sentence in Pbs. Set a time limit. Review at BB with whole class. (Ps could show results on scrap paper or slates on command.) Ps who answer correctly explain to those who do not. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Fred gathered 3456 kg of green apples, 9576 kg of red apples and 986 kg of plums from his orchard. How much fruit did Fred gather altogether? Plan: $3456 \mathrm{~kg}+9576 \mathrm{~kg}+986 \mathrm{~kg}$ E: $3000+10000+1000=14000$ Answer: Fred gathered 14018 kg of fruit altogether. b) There were 10482 litres of water in a tank. The farmer used 7856 litres of the water to spray his fields. How much water was left in the tank? Plan: 10482 litres - 7856 litres E: $11000-8000=3000$ $C:$1 0 4 8 8 - 7 8 2 2 2 8 5 6 2 6 2 6 Answer: There were 2626 litres of water left in the tank. 36 min	Notes Individual work, monitored, helped Deal with one at a time. Results shown in unison. Reasoning, agreement, selfcorrecting, praising Check by comparing with estimate and by adding in \uparrow opposite direction. Check by comparing with estimate and by another subtraction or addition, or with a calculator Feedback for T
6	Book 4, page 57, Q. 3 Read: Solve the problems. Listen carefully, do the calulation in your Ex. Bks and show me the result when I say. Ps who answer correctly explain at BB to those who do not. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Draw a diagram if necessary. a) A box full of apples weighs 39 kg . How many kg of apples are there in 80 boxes if an empty box weighs 5 kg ? Plan: B + A: $39 \mathrm{~kg}, \mathrm{~B}: 5 \mathrm{~kg}$; Apples in 1 box: $39-5=34(\mathrm{~kg})$ Apples in 80 boxes: $34 \times 80=340 \times 8=\underline{2720}(\mathrm{~kg})$ Answer: There are 2720 kg of apples in 80 boxes. b) How much do 19 jars of honey cost if each jar costs 680 p? Plan: 1 jar: $680 \mathrm{p} ; 19$ jars: $680 \mathrm{p} \times 19$ C : $\begin{aligned} 680 \times 19 & =680 \times 20-680=6800 \times 2-680 \\ & =13600-680=12920(\mathrm{p})=\underline{£ 129.20} \end{aligned}$ Answer: 19 jars of honey cost $£ 129.20$. c) If 8 metres of material cost 4800 p, how much will 2 metres cost? Plan: $8 \mathrm{~m} \rightarrow 4800 \mathrm{p}$ $\begin{aligned} & 1 \mathrm{~m} \rightarrow 4800 \mathrm{p} \div 8=600 \mathrm{p} \\ & 2 \mathrm{~m} \rightarrow 600 \mathrm{p} \times 2=1200 \mathrm{p}=\underline{£ 12} \end{aligned}$ Answer: 2 metres of material will cost $£ 12$.	Whole class activity but individual calculating Preads each question aloud. Results written on scrap paper or slates and shown in unison on command. Reasoning, agreeement, selfcorrecting, praising or $8 \mathrm{~m} \rightarrow 4800 \mathrm{p}$ $2 \mathrm{~m} \rightarrow 1200 \mathrm{p}(\div 4)$ or $8 \mathrm{~m} \rightarrow £ 48$ $(\div 4)$ $2 \mathrm{~m} \rightarrow £ 12$

BTK	R: Mental and written calculation C: Contextual problems E: Perimeter, sequences	$\begin{gathered} \text { Lesson Plan } \\ 58 \end{gathered}$
Activity 1	Calculation Let's do these calculations. Ps come to BB to work through one calculation at a time, explaining reasoning clearly with place value. (e.g. a): $8 \mathrm{U}+2 \mathrm{U}=10 \mathrm{U}=1 \mathrm{~T}+\underline{0 \mathrm{U}}$. I write 0 in the answer and 1 below the tens column. $7 \mathrm{~T}+5 \mathrm{~T}+1 \mathrm{~T}=13 \mathrm{~T}=1 \mathrm{H}+3 \mathrm{~T}$, etc.) Class points out errors in calculation. Ask for long multiplication in f) and long division in h) as revision. Check with a calculator if there is disagreement. BB: a)1 2 6 7 8 + 8 5 2 1 3 5 3 0 1 1 1 d) \qquad h) i)	Notes Whole class activity Written on BB or use enlarged copy master or OHP Or Ps have copy of copy master on desks (or T dictates numbers and operations and Ps write in Ex. Bks.) and calculate individually before showing results on scrap paper or slates in unison on command. Reasoning, agreement, (selfcorrection), praising Feedback for T
2	Sequences Let's continue the sequence if this is the rule: Each following term is 3 times the previous term minus 2. T writes only first terms on BB. Ps come to BB to continue the sequence or dictate terms to T , explaining reasoning. Class checks and points out errors. (Checking can be done with a calculator.) BB: a) $7,(19,55,163,487,1459,4375,13123,[39367, \ldots])$ b) $2,(4,10,28,82,244,730,2188,6562,19684,[\ldots]$ c) $1,(1,1,1, \ldots)$	Whole class activity Written on BB Ps can do difficult calculations in Ex. Bks before coming to BB or dictating to T . Reasoning, checking, agreement, praising Feedback for T
3	Problem Listen carefully and think how you would solve the problem. T reads problem 2 or 3 times, giving Ps time to think and discuss with their neighbours. Then Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees or suggests alternative method of solution. A rectangular playground is 48 m long by 36 m wide. a) What length of fencing would we need to surround it? BB: $\quad P=(48 \mathrm{~m}+36 \mathrm{~m}) \times 2=84 \mathrm{~m} \times 2=168 \mathrm{~m}$ Answer: We would need 168 m of fencing.	Whole class activity Discussion, reasoning, agreement, praising T intervenes if Ps are having problems or make mistakes not noticed by rest of class. BB:

BTKム	
Activity	
3	(Continued)
	b) How many posts would we need if we want to put them 2 m apa BB: On each long side: $48 \mathrm{~m} \div 2 \mathrm{~m}=24$ (times) On each short side: $36 \mathrm{~m} \div 2 \mathrm{~m}=18$ (times)
	BUT these are the number of 2 m spaces! We need to make sure that there is a post at each end of each side. (Demonstrate with smaller numbers (e.g. 8 m by 6 m) if necessary to illustrate the concept more easily, drawing dots for posts.)
	Elicit that calculation should be:
	BB: Number of posts needed: $25+25+17+17=\underline{84}$ (or $23+23+19+19=\underline{84}$)
	Answer: We would need 84 posts if we put them 2 m apart. c) How many posts would we need if we put them 3 m apart? BB: On each long side: $48 \mathrm{~m} \div 3 \mathrm{~m}=16$ (spaces)
	On each short side: $36 \mathrm{~m} \div 3 \mathrm{~m}=12$ (spaces)
	Number of posts needed: $17+17+11+11=\underline{56}$ (or $15+15+13+13=\underline{56})$

Answer: We would need 56 posts if we put them 3 m apart.
If the question had asked, How many posts would we need for one of the longer sides?, what calculation would we have done?
BB: $48 \div 3+1=16+1=\underline{17}$

Extension	What is the area of the playground?
$\left(A=48 \mathrm{~m} \times 36 \mathrm{~m}=96 \mathrm{~m} \times 18 \mathrm{~m}=192 \mathrm{~m} \times 9 \mathrm{~m}=\underline{1728} \mathrm{~m}^{2}\right)$	

4

Extensions

Book 4, page 58
Q. 1 Read: This sketch shows a park surrounded by 4 streets.

Ps first measure the lengths of each street and write them outside the diagram beside the street names. How can we change them to real lengths? (Multiply by 5 and change the unit to m.) Ps write these real lengths inside the diagram.

Review at BB with whole class. Ps come to BB or dictate to T. Mistakes corrected. (T could draw a table to show the lengths.)

Read: Sarah started at one corner and followed the railings all the way around the edge of the park back to where she started. How far did Sarah walk?
Elicit that Sarah walked around the perimeter of the park.
Ps do calculation in Pbs (or in Ex. Bks if they need more space) and write the answer as a sentence.
Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.

1. What is the ratio of the real distances to the sketch distances?
2. What is the area of the park?

$$
\begin{aligned}
(A= & 190 \times 115=19 \times 1150=20 \times 1150-1150 \\
& =2 \times 11500-1150=23000-150=\underline{21850}\left(\mathrm{~m}^{2}\right)
\end{aligned}
$$

Lesson Plan 58

Notes

Discussion, demonstration, agreement, praising

Simpler example

BB:

Each long side:
$8 \mathrm{~m} \div 2 \mathrm{~m}=4$ (spaces) so 5 posts are needed
Each short side:
$6 \mathrm{~m} \div 2 \mathrm{~m}=3$ (spaces) but only 2 posts are needed, as corner posts are already there on long sides.
(Or if you start with short side: 4 posts are needed; long side would need only 3 posts as corner posts are already there on short sides.)
As a long side is being considered in isolation.
or:

Individual work, monitored, helped
Discuss the scale and elicit how to find the real lengths.
Drawn on BB
Agreement, praising
BB:

Solution:

$$
\begin{aligned}
P & =(190 \mathrm{~m}+115 \mathrm{~m}) \times 2 \\
& =305 \mathrm{~m} \times 2=610 \mathrm{~m}
\end{aligned}
$$

Answer: Sarah walked 610 m.

1. Scale: $1 \mathrm{~mm} \rightarrow 5 \mathrm{~m}$
or $\quad 1 \mathrm{~mm} \rightarrow 5000 \mathrm{~mm}$
Real distance is 5000 times more, so ratio is $5000: 1$

B		Lesson Plan 58
Activity 5	Book 4, page 58 Q. 2 Read: This sketch shows a bicycle route through a wood. Estimate, then measure the length of the route on the sketch with the help of a strip of paper. Ps have thin strips of paper (or pieces of string) on desks. Let's estimate the length of the perimeter and write it inside the diagram. Think of a cm in your head and imagine how many you would need to cover the line. T asks several Ps for their estimate. Let's see who is closest! Ps make a mark on diagram, then curl their strip of paper (or string or thread) around the edge of the diagram, mark the point where it meets itself, then unfurl it and lay it along a ruler. Ps write this length inside the diagram too. (It need only be approximate.) Review at BB with whole class. Ask several Ps what they measured and compare with their estimates. Whose estimate was closer? Class applauds Ps with closest estimate. Read: Calculate the length of the route in real life. How can we do it? (Multiply by 100 and change the unit to m.) T asks one or two Ps to give their sketch length and real distance. Class decides whether they are correct. e.g. Sketch distance: 128 mm . Real distance: $128 \times 100=12800(\mathrm{~m})=\underline{12 \mathrm{~km} 800 \mathrm{~m}}$ 33 min	Notes Paired work in measuring, individual work in estimating and calculating, monitored, helped Route drawn on BB or use enlarged copy master or OHP for demonstration only. T writes estimates on BB. T demonstrates method of measuring.. BB: e..g E: $12 \mathrm{~cm}=120 \mathrm{~mm}$ Actual length: 128 mm Agreement, praising Self-correction only if wildly inaccurate. Reasoning, agreement, selfcorrection, praising BB: $1000 \mathrm{~m}=1 \mathrm{~km}$
6	Book 4, page 58 Q. 3 Read: Make a plan, estimate, calculate, check and write the answer as a sentence. Deal with one part at a time. Set a time limit. Ps can do calculations in Ex. Bks. Review at BB with whole class. Ps come to BB to show solution, explaining reasoning. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. Solutions: a) Bubbletown has 6718 inhabitants, which is 2576 less than Sudsville has. If 1289 people moved from Sudsville to Bubbletown, which town would have more people and how many more? BB: B: Now has: 6718 Would have: $6718+1289=\underline{8007}$ $S: \quad$ Now has: $6718+2576$ Would have: $6718+2576-1289=\underline{8005}$ or Difference now: 2576 (more for S) Change in difference would be: $2 \times 1289=2578$ (more for B) So B will have $2578-2576=\underline{2}$ more than S. Answer: Bubbletown would have 2 more people than Sudsville.	Whole class activity with a), then individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Allow Ps to try to solve it at BB , with T's help. e.g. B S: or Extra praise if Ps suggest the difference method.

\begin{tabular}{|c|c|c|}
\hline BK4 \& \begin{tabular}{l}
R: Calculations \\
C: Problems in context \\
E: Quantities. Puzzles
\end{tabular} \& Lesson Plan 59 \\
\hline \begin{tabular}{l}
Activity \\
1
\end{tabular} \& \begin{tabular}{l}
Puzzle \\
T has additions and subtractions as letters written on BB. The same letters mean the same digits. Which numbers could we write instead of the letters? Ps can discuss with neighbours or try possible numbers on slates or in Ex. Bks. When they have found a solution, they show it on BB. Who agrees? Who found other numbers? etc. \\
If Ps are stuck, T gives hints, as below. \\
BB: \\
a) \\
Hint: e.g. B must be even, \(\mathrm{A}<5\) \\
b) \\
Hint: e.g. A \(>\) B. Advise Ps to try \(\mathrm{A}=7\) \\
c) \\
Hint: e.g. A > B. Advise Ps to try \(\mathrm{A}=9\)
\end{tabular} \& \begin{tabular}{l}
Notes \\
Whole class activity Written on BB or SB or OHT Set a time limit for each, then if nobody has solved it by then, T gives hints. \\
Discuss reasoning for hints: B must be even (2 times C, or 2 times any whole number, results in an even number) \\
A must be \(<5(5+5=10\) but D must be \(<10\) as there are no thousands digits) etc. \\
Possible solutions given but others are possible. \\
Agreement, checking, praising \\
These are difficult problems, so if Ps solve any without help, they deserve a round of applause!
\end{tabular} \\
\hline 2

Extension \& \begin{tabular}{l}
Missing numbers

Study the table. The rule for row c is given. Let's fill in the missing numbers. Encourage mental calculation where possible. Necessary written calculations can be done in Ex. Bks or on scrap paper or slates.

Ps come to BB to choose a column and fill in number, explaining reasoning. Class agrees/disagrees. Elicit other forms of the rule. BB:

Rule: $c=2 \times a+b, \quad b=c-2 \times a, \quad a=(c-b) \div 2$

Ps add other columns to table. Class checks that they are correct.

 \&

Whole class activity

Drawn on BB or use enlarged copy master or OHP

At a good pace

Reasoning, agreement, praising

Feedback for T
\end{tabular}

\hline
\end{tabular}

BKム		Lesson Plan 59
Activity 3	Factorising Let's break down these numbers into their prime factors. Ps come to BB or dictate to T , explaining reasoning, Class agrees/disagrees. BB: a) b) (2) (2) $125=5 \times 5 \times 5$ d) (79) Prime number! $216=2 \times 2 \times 2 \times 3 \times 3 \times 3$ $303=3 \times 101$ When complete, Ps write the number as a product of its prime factors. Let's use the prime factors to help us list all the factors of the number. BB: Number Factors $\underline{216} 1,2,3,4,6,8,9,12,18,24,27,36,54,72,108,216$ $125 \quad 1,5,25,125$ $3431,7,49,343$ 79 1, 79 (prime number - only has factors 1 and itself) $3031,3,101,303$	Notes Whole class activity (Ps can try it in Ex. Bks. or on their slates too if they wish.) Ps suggest the starting pair of factors. At a good pace Reasoning, agreement, praising Ps come to BB or dictate to T Agreement, praising List in pairs, either vertically or horizontally as shown. (1 at LHS and 216 at RHS, 2 after the 1 and 108 before 216, etc.) Agreement, praising
4	Book 4, page 59 Q. 1 Read: Underline the important data. Write a plan here. Do the calculation and check it in your exercise book. Write the answer as a sentence here. Deal with one at a time (or with each step at a time if Ps are not very able). Set a time limit. Review at BB with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly come to BB to show solution, explaining reasoning. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: a) To celebrate the 250th anniversary of a school, $\underline{1260}$ guests were invited to a reception but only 987 attended. How many people did not attend? Plan: 1260-987 Answer: 273 people did not attend.	Individual work, monitored, helped T could review the important data before Ps solve problem. Discussion, reasoning, agreement, self-correction, praising The 250th anniversary is not important for the solution.

BKK		Lesson Plan 59
Activity 4 Erratum In $P b$ 'at least one' should be 'at least once'	(Continued) b) In a primary school, 120 pupils went to at least one workshop on Monday and 80 pupils went to at least one workshop on Tuesday. Each pupil went to a workshop at least once. How many pupils go to this school? We can work out the least and greatest possible number of pupils in the school. Least number: If each of the 80 pupils who attended the workshop on Tuesday also attended the workshop on Monday, then: Least no. of Ps in school is 120. Greatest number: If each of the 80 pupils who attended the workshop on Tuesday did not attend the workshop on Monday, then: Greatest no. of Ps in school is: $120+80=\underline{200}$ Answer: The number of pupils who go to this school is equal to or more than 120 and less than or equal to 200. c) Nine of the same type of machine were put on a weighbridge before being loaded on to a train. The reading on the scale was 8577 kg . The cost of the transport was $£ 71$. What did each machine weigh? Plan: $8577 \mathrm{~kg} \div 9$ Answer: Each machine weighed 953 kg . 30 min	Notes This is best done with the whole class. Agree that there are not enough data to give the exact number of Ps but we can show what we know in a diagram like this. BB: We can show the number as an inequality: BB: $120 \leq n \leq 200$ (where n is the number of Ps in the school) Elicit or explain what a weighbridge is. Agree that cost of transport, $£ 171$, is not important for the solution.
5	Book 4, page 59 Q. 2 Read: Solve these problems in your exercise book. Ps read questions themselves. Set a time limit. Review at BB with whole class. Ps could show results on scrap paper or slates on command. Ps who responded correctly explain to those who did not. Mistakes discussed and corrected. Solution: e.g. a) Charlie bought 6 kg 720 g of apples. Linda bought 7 kg 150 g more than Charlie. What weight of apples did Linda buy? BB: $\quad \mathrm{C}: 6 \mathrm{~kg} 720 \mathrm{~g}=6720 \mathrm{~g}$ L: $7 \mathrm{~kg} 150 \mathrm{~g}+6720 \mathrm{~g}$ $=7150 \mathrm{~g}+6720 \mathrm{~g}$ $=13870 \mathrm{~g}=13 \mathrm{~kg} 870 \mathrm{~g}$ Answer: Linda bought 13 kg 870 g of apples. b) After 5 m 44 cm was cut off a length of ribbon, 6315 mm was left. How long was the ribbon to begin with? BB: Length cut off: $5 \mathrm{~m} 44 \mathrm{~cm}=5440 \mathrm{~mm}$ Length left: 6315 mm Length of ribbon: $5440 \mathrm{~mm}+6315 \mathrm{~mm}$ $=11755 \mathrm{~mm}=\underline{11 \mathrm{~m} 75 \mathrm{~cm} 5 \mathrm{~mm}}$ Answer: The length of the ribbon was 11 m 75 cm 5 mm .	Individual work, monitored, helped Reasoning, agreement, selfcorrecting, praising or Charlie: 6 kg 720 g $+7 \mathrm{~kg} 150 \mathrm{~g}$ Linda: 13 kg 870 g BB: Accept length in mm or cm too.

BKK		Lesson Plan 59
Activity 5	(Continued) c) Alex cycled at the same speed for 7 minutes. How far did he travel if he covered 352 m every minute? BB: 1 minute: 352 m $7 \text { minutes: } \quad 352 \mathrm{~m} \times 7=2464 \mathrm{~m}=\underline{2 \mathrm{~km} 464 \mathrm{~m}}$ Answer: Alex travelled 2 km 464 m . d) The valve on a tank was left open by mistake and 8 litres of water flowed out every second. The tank was empty after 547 seconds but in the final second only 2 litres of water flowed out. How much water was in the tank to begin with? BB: Water lost after 1 second: 8 litres after 546 seconds: 8 litres $\times 546$ $=4368 \text { litres }$ after 547 seconds: $4368+2=\underline{4370}$ (litres) Answer: There were 4370 litres in the tank to begin with. 40 min	Notes T explains what a valve is and talks about the context if necessary. Or after 547 sec : $\begin{aligned} & 8 \text { litres } \times 547-6 \text { (litres) } \\ & =4376-6=\underline{4370} \text { (litres) } \end{aligned}$
6	Book 4, page 59, Q. 3 Read: Is there enough data to answer the question? If there is, solve it. Deal with one part of each question at a time. P reads question aloud. T gives Ps time to think about it. When I say, stand up if you think it can be solved and remain sitting if you think there is not enough data. Show me what you think . . . now! Ps who think it can be solved come to BB to show solution (with help of class). Ps who do not think so explain why not. Solutions: a) Jenny was born on the 1st of May and weighed 3180 g . On the morning of the 25th July she weighed 5 kg 615 g . i) How many days old was she on the 25 th July? From 1st of May to 25 July: $31+30+25=\underline{86}$ (days) Answer: Jenny was 86 days old on the 25 th July. ii) How much weight had she put on since she was born? Weight on 1st May: 3180 g Weight on 25th July: $5 \mathrm{~kg} 615 \mathrm{~g}=5615 \mathrm{~g}$ Weight gained: $5615 \mathrm{~g}-3180 \mathrm{~g}=2435 \mathrm{~g}$ $=2 \mathrm{~kg} 435 \mathrm{~g}$ Answer: Jenny had put on 2 kg 435 g in wieght. b) They let out 2356 litres of water from a dam on Sunday. On Monday they let out 7105 litres. i) How much water did they let out during the 2 days? Amount of water: $2356+7105=\underline{9461}$ (litres) Answer: They let out 9461 litres during the 2 days. ii) How many litres of water are still in the dam? It is impossible to say, as we do not know how many litres were in the dam to begin with.	Whole class activity (or individual work if Ps wish) T has questions written on BB or SB or OHT. In unison Discussion, reasoning, agreement, praising Ps tell class of any young babies they know, how old they are (months, weeks, days) and what their weight is.) (If we assume from the 2nd weight that it is the same year!) (T could have this weight in bags of sugar, etc. to give Ps an idea of how much the baby had grown.) (T could have a picture of a dam to show to class and explain why dams need to be built.) BB: $\left.+\begin{array}{\|l\|l\|l\|} \hline 2 & 3 & 5 \end{array}\right)$ Extra praise for Ps who realise this without help from T.

BK	R: Calculations C: Problems in context E: Factor pairs. Prime numbers	Lesson Plan 60
Activity 1	Sequences Let's continue the sequences in both directions if these are the rules. Ps come to BB to write a number, explaining reasoning. Class agrees/ disagrees. BB: a) Rule: The next term is 1250 more than the previous term. $(\ldots, 3174,4424), 5674,6924,8174,(9424,10674, \ldots)$ b) Rule: The difference is decreasing by 100 . $\begin{gathered} (\ldots, 4992,6154), \mathbf{7 2 1 6}, \mathbf{8 1 7 8},(9040,9802, \ldots) \\ 11621062 \quad 962862 \\ \hline 162 \end{gathered}$	Notes Whole class activity Bold terms already written on BB below rules. Difficult calculations written at side of BB (or in Ex. Bks). Reasoning, agreement, praising In b), check by writing the differences between the terms. Feedback for T
2	Factors Let's list the factors of these numbers. What is a factor of a number? (a number which multiplies another number to make that number, or a number which divides into that number exactly) Ps come to BB to write the factors in pairs vertically or horizontally, or dictate to T. Class agrees/disagrees. Let's underline the prime factors. Who can write the number as the product of its prime factors? Ps come to BB. Class agrees/disagrees. What do you notice? (e.g. each of the non-prime factors is a multiple of the prime factor. A prime number has only 2 factors, itself and 1.) BB:	Whole class activity Numbers written down side of BB. Ps can draw factor trees on slates or in Ex. Bks to help them. At a good pace Reasoning,agreement, checking, praising Revise divisibility, factors and multiples. Elicit that - a factor of a number is a whole number which divides into that number exactly, - a multiple of a number is a whole number which is divisible by that number exactly.
3	Book 4, page 60 Q. 1 Read: Make a plan, estimate, calculate, check, and write the answer in your exercise book. Deal with one question at a time (or set a time limit and review after every 2 or 3 questions if class is very able). Read the question, picture it in your head, solve it in your Ex. Bks. then show me your result when I say. Ps answering correctly explain at BB to those who did not. Mistakes discussed and corrected.	Individual work, monitored, helped [Or could also be used as a test to give Ps practice in working independently] Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising

BK		Lesson Plan 60
Activity 3	(Continued) f) This month, Paul has earned $£ 2145$, which is 1 seventh of the amount that he had in his bank account at the beginning of the month. How much did he have in his bank account at the beginning of the month? BB: 1 seventh of amount: £2145 Whole amount: £2145 $\times 7$ $=\underline{£ 15015}$ Answer: Paul had $£ 15015$ in his bank account at the beginning of the month. g) Chris had saved $£ 16$ 247. He spent 1 seventh of it on a holiday. i) How much money did he spend on his holiday? BB: Had: $£ 16247$ Spent: $£ 16247 \div 7=\underline{£ 2321}$ Answer: Chris spent $£ 2321$ on his holiday. ii) How much money does he have left? BB: e.g. Has left:: £16247-£2321 = £13926 or: Spent: 1 seventh $\rightarrow £ 2321$ Has left: 6 sevenths $\rightarrow £ 2321 \times 6=\underline{£ 13926}$ Answer: Chris has $£ 13926$ left. h) A motorcyclist covered 11064 m in 8 minutes. A cyclist covered $2290 m$ in the same time. How much further did the motorcyclist travel than the cyclist? BB: MC: 11064 m C: 2290 m Difference: $11064 \mathrm{~m}-2290 \mathrm{~m}=\underline{8774 \mathrm{~m}}$ ($=8 \mathrm{~km} \mathrm{774m)}$ Answer: The motorcyclist travelled 8 km 774 m further. 41 min	Notes$-\begin{array}{\|c\|c\|c\|c\|c\|} \hline 1 & 6 & 2 & 4 & 7 \\ \hline & 2_{1} & 3 & 2 & 1 \\ \hline 1 & 3 & 9 & 2 & 6 \\ \hline \end{array}$ 2 3 2 1 \times 6 1 3 9 2 6 1 1 $-\begin{array}{\|c\|c\|c\|c\|c\|} \hline 1 & 1 & 0 & 6 & 4 \\ \hline & 2_{1} & 2_{1} & 9 & 0 \\ \hline & 8 & 7 & 7 & 4 \\ \hline \end{array}$ Agree that the 8 minutes is not needed for the solution.
4	Book 4, page 60, Q. 2 Read: Write T in the box if you think the statement is true and F if you think it is false. T chooses a different P to read each question to class. Ps write T or F in Pbs. Show me what you have written . . now! T chooses 2 Ps with different responses to explain reasoning to class. Class decides who is correct. (T could have sugar, salt, flour, water and scales on hand in case of disagreement.) a) 20 cl of sugar weighs the same as 20 cl of flour. b) 1 litre of water weighs the same as 1 litre of flour. c) 1 kg of salt takes up less space than 1 kg of sugar. d) 1 kg of flour weighs more than 1 kg of salt. e) A 10 cm cube made from wood takes up less space than a 10 cm cube made from marble.	Whole class activity Responses written on scrap paper or slates, or use preagreed actions for T and F . Reasoning, agreement, selfcorrecting in Pbs , praising Reasoning: e.g. a) Sugar is heavier than flour. b) Water is heavier than flour. c) Salt is heavier than sugar, so less is needed for 1 kg . d) They are equal. (Both 1 kg) e) Both have volume $100 \mathrm{~cm}^{2}$.

BKL	R: Mental calculation C: Fractions: including tenths; equivalent fractions E: Models	$\begin{gathered} \text { Lesson Plan } \\ 61 \end{gathered}$
Activity 1	Fractions 1 One day, Freddie Fox stopped to help Arnie and Barnie Bear share a piece of cheese they had found. BB: He did it this way: BB: Arnie and told the bears that now they each had half of the cheese. Was this true? (No, because if they each had half, the 2 pieces would be equal.) Let's pretend that the circle on your desk is the bears' cheese. Cut it into 2 halves and show me them when I say. Show me . . now! BB: P responding correctly explains how he/she did it. (Folding in half so that the 2 edges meet exactly, then cutting along the fold.) Who remembers how to write 1 half without words? T reminds Ps if they have forgotten. T writes on BB, Ps on each half of their 'cheese'. Barnie Bear was crying because Arnie's piece was bigger than his, so what do you think Freddie Fox did then? He ate the extra on Arnie's piece so that both pieces were the same! Freddie Fox said, "Now you both have 2 equal halves of the cheese." Was he right? (No, because Freddie Fox had eaten some of the cheese too, so although the 2 pieces he gave to the bears were equal, they were not halves of the whole cheese!)	Notes Whole class activity Ps have circles of paper and scissors on desks. Drawn or stuck on BB, or use enlarged copy master (or use any cartoon characters and change the context to fit) Discussion, agreement, praising In unison Demonstration, praising Ps who were wrong try again. BB: 1 half $=1 \div 2=\frac{1}{2}$ Ask Ps what they think. BB: Discussion, agreement, praising What a wily fox he was!
2	Fractions 2 One day, Snow White baked a large apple pie BB: and left it on the kitchen table for the 7 dwarfs. Dopey wanted to divide it up like this. BB: What do you think? (It is not fair, as some pieces are bigger than others.) How should he do it? (Divide it into 7 equal parts.) That is just what Doc did. He cut it up like this. BB: BB: BB: Doc went to pick mushrooms in the wood. He took 1 seventh of the pie with him Who can write 1 seventh beside the diagram? Bashful and Happy went to pick flowers. They took 2 sevenths of the pie with them. Who can write 2 sevenths beside the diagram? Sneezy, Dopey, Grumpy and Sleepy went to the forest to chop up wood. They took 4 sevenths of the pie with them. Who can write 4 sevenths beside the diagram? Let's look at this fraction more closely. What do the numbers really mean?	Whole class activity Drawn on BB or use enlarged copy masters or OHP (If possible, T has cartoons of Snow White and the 7 dwarfs stuck to side of BB, or use any other suitable context) Reasoning, agreement, praising Ps come to BB. Class agrees/ disagrees. Praising, encouragement only Discussion on the meaning and name of the parts: $\begin{aligned} & \mathrm{BB}: \\ & \text { fraction line } \longrightarrow \frac{4}{7} \longleftarrow \text { numerator } \\ & \text { denominator } \end{aligned}$ denominator: number of equal parts the whole has been divided into numerator: how many of these parts we take.

BK4		Lesson Plan 61
Activity 3	Fractions 3 Ps each have 5 of these rectangles on their desks. T holds up a rectangle. This is 1 whole unit. Colour red 1 half of the rectangle. Show me . . . now! (Accept any 6 of the 12 grid squares.) e.g. $\frac{1}{2}$ Repeat with other fractions: $\frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{12}$ each in a different colour. Let's compare the parts you have coloured and write them in increasing order.. Ps come to BB or dictate to T. Class agrees/disagrees. BB: $\frac{1}{12}<\frac{1}{6}<\frac{1}{4}<\frac{1}{3}<\frac{1}{2}$ Let's compare the parts which are not coloured and write them in decreasing order. Ps come to BB or dictate to T. Class agrees/disagrees. BB: $\frac{11}{12}>\frac{5}{6}>\frac{3}{4}>\frac{2}{3}>\frac{1}{2}$ \mathbf{A}, come and choose a fraction. Point to the denominator. What does it mean? Point to the numerator. What does it mean? Point to the fraction line. What operation does it mean? (division)	Notes Whole class activity Use copy master, enlarged and cut out. In unison Ps write $\frac{1}{2}$ on coloured part. Ps use a different rectangle to show each fraction. Ps lay rectangles out on desks so that they can decide more easily. Discussion, reasoning, agreement, praising Ps write these fractions on uncoloured part. With T's help if necessary. Reasoning, agreement, praising
 Extension	Book 4, page 61 Q. 1 Read: A strip of paper is 1 unit long. What is the value of each shaded part? Ps can write fractions as words or numbers. Set a time limit. Review at BB with whole class. Ps come to BB, say the fractions and write them with numbers. Class agrees/disagrees. Mistakes discussed and corrected. Solution: T points to 1 sixth in b) on the diagram. Wat other fraction is the same length? (2 twelfths) We can write it like this. BB: $\frac{1}{6}=\frac{2}{12}$ Elicit other equal fractions. e.g. $\frac{1}{4}=\frac{3}{12} ; \quad \frac{1}{3}=\frac{2}{6}=\frac{4}{12} ; \quad \frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{6}{12}$	Individual work. monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction Praising, encouragement only Feedback for T Whole class activity Ps come to BB or dictate to T Agreement, praising Ps point out numerator and denominator. (Remember which is which by thinking of the denominator as down.)

BKK		Lesson Plan 61
Activity 5	Book 4, page 61 Q. 2 Read: Each rectangle is 1 unit. Colour the parts shown and compare them. Deal with one row at a time. Set a time limit. What should you write in the circles? ($<,>$ or $=$) Review at BB with whole class. Ps come to BB to colour and write signs, explaining reasoning. Class agrees/disagrees. Elicit how many grid squares should be shaded. Mistakes discussed and corrected. Solution: e.g. a) b) c) θ \ominus $<$ $\frac{1}{30}$ \ominus \ominus \ominus	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP (Or T has solution already prepared and uncovers each rectangle as it is dealt with.) Reasoning, agreement, selfcorrection, praising Accept any correct shading. (i.e. the correct number of squares but in any position) What do you notice? Elicit that in unit fractions like these (i.e. when the numerator is 1) the greater the denominator, the smaller the part . Extra praise if Ps notice equal fractions.
6	Book 4, page 61 Q. 3 Read: The area of each rectangle is 1 unit. Colour the parts shown and compare them. Deal with one row at a time. Set a time limit. Review at BB with whole class. Ps come to BB to colour and write signs, explaining reasoning. Class agrees on how many grid squares should be shaded. Mistakes discussed and corrected. Draw Ps attention to equal fractions (as below). Solution: e.g. a) b) c) d) $<$ $<$ \ominus (<) $<$ $\frac{4}{9}$ < $<$ $\frac{2}{4}$ $\frac{1}{4}$ \ominus $\frac{2}{8} \quad 11$ \ominus \ominus	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP (Or T has solution already prepared and uncovers each rectangle as it is dealt with.) Reasoning, agreement, selfcorrection, praising Accept any correct shading. Ps come to BB to choose a fraction, say it aloud, write it in words, point out the numerator and denominator and say what they mean. Which rows of rectangles are the same? [c) and d)] What do you notice? e.g. $\frac{4}{4}=\frac{8}{8} ; \quad \frac{3}{4}=\frac{6}{8} ; \text { etc. }$ Extra praise if Ps notice that numerator and denominator have been multiplied by 2 .

BKK	R: Mental calculation C: Fractions: equivalent fractions; number line. E: Models	$\begin{gathered} \text { Lesson Plan } \\ 62 \end{gathered}$
Activity 1	Comparing fractions T has lines drawn (or stuck) on BB. The horizontal line is 1 unit. Where would $\frac{1}{2}$ and $\frac{2}{3}$ of a unit be? Ps come to BB to label them, explaining reasoning. Class agrees/disagrees and labels their units too. BB: For which of the other lines are these statements true? Ps come to BB to set a pair of BB compasses or mark on a paper strip the relevant fraction of the unit, then hold against each vertical line in turn to see if it satisfies the statement. Class shouts 'yes' or 'no'. T writes it as an inequality on BB . a) Its length is greater than $\frac{1}{2}$. $\left(\mathrm{s}, \mathrm{u}, \mathrm{v}>\frac{1}{2}\right)$ b) Its length is not greater than $\frac{1}{2}$. $\left(\mathrm{p}, \mathrm{r}, \mathrm{t} \leq \frac{1}{2}\right)$ c) Its length is less than $\frac{2}{3}$. $\left(\mathrm{p}, \mathrm{r}, \mathrm{t}<\frac{2}{3}\right)$ d) Its length is not less than $\frac{2}{3}$. $\left(\mathrm{s}, \mathrm{u}, \mathrm{v} \geq \frac{2}{3}\right)$ e) Its length is greater than $\frac{1}{2}$ but less than $\frac{2}{3}$. (none)	Notes Whole class activity Drawn/written on BB or use enlarged copy master or OHP Ps could have copies of copy master on desks too. Agreement, praising Ps could use rulers or a paper strip to compare the lines on their desks as a check. (Actual lengths are unimportant, just whether they are more, than, less than or equal to the relevant fraction.) Agreement, checking praising
2	Modelling fractions a) Let's show parts of a unit in different ways. T says the fraction and Ps come to BB to write it with words and numbers, then draw a shape and colour the relevant part of it. Who agrees? Who can think of another way to show it? etc. T helps if Ps are stuck for ideas. $B B$: e.g. i) 1 half $=\frac{1}{2}$: ii) 2 thirds $=\frac{2}{3}$: iii) 4 sevenths $=\frac{4}{7}$:	Whole class activity (Or Ps could draw shapes on scrap paper or slates and show in unison on command. T chooses one or two Ps to draw their shapes on BB.) T could suggest the line segment if Ps do not think of it. Agreement, praising Extra praise for creative shapes. If class is not very able, T has shapes already drawn on BB or OHT and Ps come to BB to colour the fraction required. (Or use enlarged copy master or OHP)

BTK		Lesson Plan 622
Activity 2	(Continued) iv) 3 halves $=\frac{3}{2}$ b) Let's show these fractions are on the number line. BB: $\frac{1}{2}, \frac{2}{3}, \frac{3}{2}$ Ps come to BB to write fractions above relevant 'tick' Class agrees/ disagrees. What other fractions could we write above the same tick? We call these equivalent fractions (fractions which are equal to each other). BB: c) Let's count from 0 to 2 (2 to 0) in sixths (thirds, halves). \qquad 16 min \qquad	Notes Extra praise if Ps show this fraction without help! Drawn on BB or use enlarged copy master or OHP Agreement, praising BB: equivalent fractions e.g. $\frac{1}{2}=\frac{3}{6} ; \frac{2}{3}=\frac{4}{6}$, etc. Extra praise if Ps notice the connection between the fractions (i.e. numerator and denominator multiplied by the same amount) In unison. Praising
3	Fractions of a quantity This 10 cm strip has been divided into 2 parts in different ways. Let's measure the parts, then write each part as a fraction of 10 cm . Ps measure the length of each part with rulers, then dictate what T should write on BB . What fraction of 10 cm is it ? Ps come to BB or dictate to T, explaining reasoning. (e.g. 9 cm is 9 tenths of 10 cm because 10 cm has been divided into ten equal parts and we have tkaken 9 of them.) Class agrees/disagrees. BB: $10 \mathrm{~cm} \div 10=1 \mathrm{~cm}, 1 \mathrm{~cm} \times 9=9 \mathrm{~cm}$ BB: a) How long is $\frac{3}{10}$ of 10 cm ? $\quad(3 \mathrm{~cm})$ b) How long is $\frac{3}{10}$ of a 20 cm strip of paper? $(6 \mathrm{~cm})$ Who can explain it? T helps with reasoning or explains if no P knows. BB: $\frac{1}{10}$ of $20 \mathrm{~cm}=20 \mathrm{~cm} \div 10=2 \mathrm{~cm}$ $\frac{3}{10} \text { of } 20 \mathrm{~cm}=2 \mathrm{~cm} \times 3=\underline{6 \mathrm{~cm}}$	Whole class activity Drawn on BB or use enlarged copy master or OHP (for demonstratino only) Ps have copy on desks too (either as whole diagram, or cut into strips) At a good pace T helps with reasoning. Agreement, praising Ps write the fractions on their own strips too. Ps could show on scrap paper or slates (or T asks several Ps what they think). Elicit again what the different components of a fraction mean. Reasoning, agreement, praising

BKK		Lesson Plan 62
Activity 6	(Continued) Solution: e.g. a) 1 unit $=\frac{2}{2}=\frac{8}{8}$ b) 1 unit $=\frac{3}{3}=\frac{9}{9}$ c) $\frac{1}{4}=\frac{3}{12}\left[=\frac{6}{24}\right]$ 1 unit $=\frac{4}{4}=\frac{12}{12}\left[=\frac{24}{24}\right]$ d) e) g) 2 units 1 unit f) \square 3 units 1 unit $\frac{2}{4}=\frac{1}{2}=\frac{3}{6}\left[=\frac{6}{12}\right]$ 1 unit $=\frac{4}{4}=\frac{2}{2}=\frac{6}{6}\left[=\frac{12}{12}\right]$ 40 min h) $\frac{3}{2}\left[=\frac{6}{4}\right]$ \square 1 unit $=\frac{2}{2}\left[=\frac{4}{4}\right]$	Notes Only mention the fractions in straight brackets if a P suggests them or if the class is very able. Fractions in straight brackets obtained by dividing each grid square into 2 equal triangles. Deal with all cases. Accept any arrangement of the correct number of grid squares.
7	Book 4, page 62, Q. 4 Read: Write additions about the diagrams. Each strip is 1 unit. What part of it is shaded and what part is not shaded? Who would like to try to write an addition about it? (Or T could write the first addition as a model for Ps to follow.) Stress that the denominator shows the number of parts the whole strip has been divided into, so it does not change (unless we divide the strip into more parts). Only the numerator changes according to how many of these parts are taken. P comes to BB to write each addition, explaining reasoning (with T's help). Ps write addition in Pbs too. Let's read it out together. Solution: a) $\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$ b) $\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1$ c) $\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1$ d) $\frac{1}{5}+\frac{4}{5}=\frac{5}{5}=1$ e) $\frac{1}{6}+\frac{5}{6}=\frac{6}{6}=1$ 45 min	Whole class activity Drawn on BB or use enlarged copy master or OHP Consolidation of numerator and denominator and their meanings. Reasoning, agreement. praising In unison. T points to the parts. Extension Ps come to BB to point out equivalent fractions. e.g. $\frac{1}{2}=\frac{2}{4}=\frac{3}{6} ; \quad \frac{2}{3}=\frac{4}{6}$ Ps can use BB ruler to line up the equal fraction lines

BKK	R: Calculation C: Fractions: equivalent fractions, number line E: Models. Fractions of quantities.	$\begin{gathered} \text { Lesson Plan } \\ 63 \end{gathered}$
Activity 1	Operations with fractions Let's make true statements about the diagrams. Ps dictate their statements and T writes on BB with words and fraction notation. Who agrees? Who can think of another one? etc. a) BB : 1 unit e.g. \square 1 quarter +1 quarter +1 quarter +1 quarter $=4$ quarters $=1$ (unit) $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1$ 1 quarter +3 quarters $=4$ quarters $=1$ (unit) $\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1$ 1 quarter $\times 4=4$ quarters $=1$ (unit) $\quad \frac{1}{4} \times 4=\frac{4}{4}=1$ 2 quarters +2 quarters $=4$ quarters $=1$ (unit) $\frac{2}{4}+\frac{2}{4}=\frac{4}{4}=1$ 1 half +1 half $=2$ halves $=1$ (unit) $\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$, etc. b) BB : 1 unit e.g. 2 sevenths +5 sevenths $=7$ sevenths $=1$ (unit) $\frac{2}{7}+\frac{5}{7}=\frac{7}{7}=1$ 7 sevenths -3 sevenths $=4$ sevenths $\quad \frac{7}{7}-\frac{3}{7}=\frac{4}{7}$, etc. c) BB : 1 unit e.g. 1 tenth $\times 10=10$ tenths $=1$ (unit) $\quad \frac{1}{10} \times 10=\frac{10}{10}=1$ 7 tenths +3 tenths $=10$ tenths $=1$ (unit) $\frac{7}{10}+\frac{3}{10}=\frac{10}{10}=1$ 8 tenths -3 tenths $=5$ tenths $=1$ half $\frac{8}{10}-\frac{3}{10}=\frac{5}{10}=\frac{1}{2}$ etc.	Notes Whole class activity Rectangles drawn on BB or SB or OHT Agreement, praising Extra praise for correct but unexpected statements. T might give hints if Ps keep suggesting only one type of operation N.B. This is not meant to be an exercise where Ps learn how to add, subtract, multiply or divide fractions, but just to familiarise Ps with notation of fractions and with what operations using fractions look like. Keep referring to the diagrams and occasionally ask Ps to explain the meaning of the components of the fractions in their statements.
2	Modelling fractions T draws on BB (or holds up) this rectangle: Draw 1 unit if this rectangle is worth: a) i) $\frac{1}{2}$ ii) $\frac{2}{2}$ iii) $\frac{3}{2}$ b) i) $\frac{1}{4}$ ii) $\frac{2}{4}$ iii) $\frac{3}{4}$ c) i) $\frac{1}{3}$ ii) $\frac{2}{3}$ iii) $\frac{3}{3}$ Ps come to BB or OHP to draw shapes on square grid, explaining reasoning. Class agrees/disagrees.	Whole class activity T should have BB prepared with a square grid or draw grid on an OHT. Reasoning, agreement, praising (or Ps draw individually on large grid sheets and show in unison on command) Feedback for T

BK4		Lesson Plan 63
Activity 3	Fractions of $1 \mathbf{k m}$ How many metres are in 1 km ? (1000 m) BB: $1 \mathrm{~km}=1000 \mathrm{~m}$ Write on your slates (or scrap paper) how many metres you think are in these parts of a km and show me when I say. Ps responding correctly explain reasoning to rest of class. T helps them to write it as an operation on BB. How many metres are in: a) i) half of 1 km (500 m) ii) 2 halves of $1 \mathrm{~km}(1000 \mathrm{~m})$ iii) 3 halves of 1 km (1500 m) b) i) 1 tenth of $1 \mathrm{~km}(100 \mathrm{~m})$ ii) 2 tenths of 1 km (200 m) iii) 7 tenths of 1 km (700 m) iv) 12 tenths of $1 \mathrm{~km}(1200 \mathrm{~m})$ c) i) 1 hundredth of $1 \mathrm{~km}(10 \mathrm{~m})$ ii) 5 hundredths of $1 \mathrm{~km}(50 \mathrm{~m})$ iii) 50 hundredths of $1 \mathrm{~km}(500 \mathrm{~m})$ d) i) 1 thousandth of $1 \mathrm{~km}(1 \mathrm{~m})$ ii) 10 thousandths of $1 \mathrm{~km}(10 \mathrm{~m})$ iii) 800 thousandths of $1 \mathrm{~km}(800 \mathrm{~m})$ iv) 1000 thousandths of a $\mathrm{km}(1000 \mathrm{~m})(=1 \mathrm{~km})$ 22 min	Notes Whole class activity Ps show results in unison on command. Reasoning, agreement, praising Show details on BB. e.g. $\begin{aligned} \frac{1}{2} \text { of } 1 \mathrm{~km} & =1000 \mathrm{~m} \div 2 \\ & =\underline{500 \mathrm{~m}} \\ \frac{1}{10} \text { of } 1 \mathrm{~km} & =1000 \mathrm{~m} \div 10 \\ & =\underline{100 \mathrm{~m}} \\ \frac{7}{10} \text { of } 1 \mathrm{~km} & =1000 \mathrm{~m} \div 10 \times 7 \\ & =100 \mathrm{~m} \times 7 \\ & =\underline{700 \mathrm{~m}} \end{aligned}$
4	Book 4, page 63 Q. 1 Read: Each large square is 1 unit. What part of the unit is shaded? Is it more or less than 1 half, or equal to 1 half? Write the fraction and the missing sign. Elicit that the whole unit has been divided into 16 grid squares, so each grid square is 1 sixteenth of the whole unit. Deal with one part at a time. Do part a) with whole class first as a model for Ps to follow if Ps are unsure what to do. Review at BB with whole class. Ps come to BB to write fractions and signs, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) b) c) e) f) $\frac{8}{16}=\frac{1}{2}$ $\frac{6}{16}<\frac{1}{2}$ $\frac{7}{16}<\frac{1}{2}$ $\frac{10}{16} \square \frac{1}{2}$ $\frac{9}{16}>\frac{1}{2}$ $\frac{8}{16} \square \frac{1}{2}$	Individual (or paired) work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps can discuss with their neighbours if they wish. Discussion, reasoning, agreement, self-correcting, praising Agree that: $\frac{1}{2} \text { of } 16=16 \div 2=\underline{8}$ (grid squares)

BKK		Lesson Plan 63
Activity 5	Book 4, page 63 Q. 2 Read: Each shape is 1 unit. Colour the fraction shown above each unit. Deal with one part at a time. Set a time limit. Review at BB with whole class. Ps dictate how many grid squares should be coloured and why. Class agrees/disagrees. T could have a solution already prepared and uncover each shape as it is dealt with. Mistakes discussed and corrected. Solution: e.g. a) b) c)	Notes Individual (or paired) work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps can discuss solutions with their neighbours. Reasoning, agreement, self-correcting, praising Discuss equivalent (equal) fractions. Allow Ps to suggest them if they can, by counting the grid squares within each unit e.g. $\frac{1}{2}=\frac{3}{6} ; \frac{2}{2}=\frac{6}{6}=1$, etc. and as shown in the solution. or $\frac{16}{10}=\frac{8}{5}=1+\frac{3}{5}$
6	Book 4, page 63, Q. 3 Read: Join up each fraction to the matching point on the number line. Elicit that each unit on the number line has been divided into 4 equal parts, so each part is 1 quarter. Ps come to BB to choose a fraction and join it to the number line, explaining reasoning. Class agrees/disagrees. Ps work in Pbs too. T explains that: 1 and a half $=1+\frac{1}{2}=1 \frac{1}{2} ; 2 \frac{3}{4}=2+\frac{3}{4}=2$ and three quarters Who notices any equal fractions? Ps come to BB to point and write. Class agrees/disagrees. T shows some if Ps are unsure. e.g. Solution:	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Reiterate what the components of each fraction mean. e.g. $\frac{3}{4}: 4$ is the denominator; it shows the number of equal parts 1 unit has been divided into. 3 is the numerator; it shows how many of these parts we are taking.

BKK		Lesson Plan 63
Activity 7		Notes
	Book 4, page 63	Individual work, monitored, helped (or whole class activity if time is short or Ps are unsure)
	What kind of measures are these? (Capacity - how much liquid a container can hold). Elicit the relationship between units. (BB)	
	Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show calculations in detail if problems.	Written on BB or use enlarged copy master or OHT
		BB:
	Solution:	$\begin{aligned} 1 \text { litre }=100 \mathrm{cl} & =1000 \mathrm{ml} \\ 1 \mathrm{cl} & =10 \mathrm{ml} \end{aligned}$
	$\frac{1}{2} \text { litre }=\underline{50} \mathrm{cl}=\underline{500} \mathrm{ml} \quad \frac{1}{5} \text { litre }=\underline{20} \mathrm{cl}=\underline{200} \mathrm{ml}$	Reasoning, agreement, selfcorrection, prraising
	$\frac{5}{2} \text { litre }=\underline{250} \mathrm{cl}=\underline{2500} \mathrm{ml} \frac{1}{10} \text { litre }=\underline{10} \mathrm{cl}=\underline{100} \mathrm{ml}$	Details: e.g.
	$\frac{3}{10} \text { litre }=\underline{30} \mathrm{cl}=\underline{300} \mathrm{ml} \quad \frac{1}{100} \text { litre }=\underline{1} \mathrm{cl}=\underline{10} \mathrm{ml}$	$\frac{1}{2} \text { litre }=100 \mathrm{cl} \div 2=\underline{50 \mathrm{cl}}$
	$\frac{8}{100} \text { litre }=\underline{8} \mathrm{cl}=\underline{80} \mathrm{ml} \quad \frac{70}{100} \text { litre }=\underline{70} \mathrm{cl}=\underline{700} \mathrm{ml}$	$\frac{5}{2} \text { litre }=50 \mathrm{cl} \times 5=\underline{250 \mathrm{cl}}$
Extension	a) How many litres $(\mathrm{cl}, \mathrm{ml})$ are in 2 hundred hundredths of a litre (BB: $\frac{200}{100}$ litre $=\underline{2}$ litres $\left.=\underline{200} \mathrm{cl}=\underline{2000} \mathrm{ml}\right)$	Discussion, reasoning, agreement, praising
	b) How many litres $(\mathrm{cl}, \mathrm{ml})$ are in 1 thousandth of a litre? $\left(\mathrm{BB}: \frac{1}{1000} \text { litre }=\underline{1 \mathrm{ml}} \quad[1000 \mathrm{ml} \div 1000=1 \mathrm{ml}]\right)$	Agree that there are not enough ml in 1 thousandth of a litre to make either a cl or a litre.

BKム	R: Calculations C: Fractions: equivalent fractions; number line E: Models. Problems	$\begin{gathered} \text { Lesson Plan } \\ 64 \end{gathered}$
Activity 1	Fractions 1 Let's make true statements about the diagrams. For each diagram, elicit how many equal parts the whole unit has been divided into and what each part is called. Ps dictate statements to T. Class agrees/disagrees. T writes on BB in words and with fraction notation. Class reads it aloud from the words, then from the numbers. BB: e.g. a) b) $\begin{array}{cc} 2 \text { fifths }+3 \text { fifths }=5 \text { fifths }=1 & 1 \text { fifth }+4 \text { fifths }=5 \text { fifths }=1 \\ \frac{2}{5}+\frac{3}{5}=\frac{5}{5}=1 & \frac{1}{5}+\frac{4}{5}=\frac{5}{5}=1 \\ 1-\frac{2}{5}=\frac{3}{5} & 1-\frac{1}{5}=\frac{4}{5} \\ \text { (or, e.g. } 5 \times \frac{1}{5}=\frac{5}{5}=1,1 \div 5=\frac{1}{5} \text {, etc.) } \end{array}$	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Agreement, praising In unison Extra praise for unexpected but correct statements T need only write the first equation in b) in words. T gives hints if Ps only think of addition.
2	Fractions 2 What part of the square has been shaded? Ps come to BB to count the grid squares in each large square and say what part each grid square is of the whole square. How many of them are shaded? If Ps are stuck, T helps by pointing out grid squares which can be combined to make a more manageable section, as below. BB: a) 1 half $\frac{2}{4}=\frac{1}{2}$ 2 out of 4 shaded b) 4 ninths $\frac{4}{9}$ 4 out of 9 shaded c) 10 sixteenths $\frac{10}{16}$ 10 out of 16 shaded d) 8 sixteenths $\frac{8}{16}\left(=\frac{1}{2}\right)$ e) 17 twenty-fifths $\frac{17}{25}$ 17 out of 25 shaded	Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Discussion on strategy for determining how many shaded grid squares there are. T has the various parts already cut out and shaded appropriately to lay on top of diagram, then remove and combine them to make easier sections (see copy master) Extra praise if Ps notice equivalent fractions
Extension	What part is not shaded? a) $\frac{1}{2}$ b) $\frac{5}{9}$ c) $\frac{6}{16}$ d) $\frac{8}{16}=\frac{1}{2}$ e) $\frac{8}{25}$	T asks Ps at random. Reasoning, agreement, praising

BKK		Lesson Plan 64
Activity 3	Fractions of time Let's change the quantities to different units. Ps come to BB to write missing numbers and explain reasoning. Class agrees/disagrees. Show some calculations in detail on BB. $\mathrm{BB}: 1$ hour $=60$ minutes a) $\frac{1}{4}$ of an hour $=\underline{15}$ minutes $\frac{3}{4}$ of an hour $=\underline{45}$ minutes b) $\frac{1}{2}$ an hour $=\underline{30}$ minutes $\frac{2}{2}$ of an hour $=\underline{60}$ minutes c) $\frac{1}{3}$ of an hour $=\underline{20}$ minutes $\frac{4}{3}$ of an hour $=\underline{80}$ minutes d) $\frac{1}{6}$ of an hour $=\underline{10}$ minutes $\frac{9}{6}$ of an hour $=\underline{90}$ minutes e) $\frac{1}{5}$ of an hour $=\underline{12}$ minutes $\frac{3}{5}$ of an hour $=\underline{36}$ minutes 22 min	Notes Whole class activity Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Details: e.g. $\begin{aligned} \frac{1}{5} \text { of an hour } & =60 \mathrm{~min} . \div 5 \\ & =12 \mathrm{~min} . \\ \frac{3}{5} \text { of an hour } & =12 \mathrm{~min} \times 3 \\ & =36 \mathrm{~min} . \end{aligned}$ Feedback for T
4	Book 4, page 64, Q. 1 Read: Each hexagon is 1 unit. What part of the unit is shaded? Is it more or less than 2 thirds, or equal to 2 thirds? Write the fraction and the missing sign. How many equal parts has the hexagon been divided into? (24 equal triangles) What is the value of each triangle? (1 twenty-fourth) How many triangles are in 1 third of the hexagon? $(24 \div 3=8)$ How many triangles are in 2 thirds of the hexagon? $(8 \times 2=\underline{16})$ Ps come to BB to count the shaded triangles, write them as a fraction of the whole hexagon, then compare with 2 thirds of it (i.e. 16 triangles). Class points out errors or suggests equivalent fractions. Solution: a) b) c) d) $\left.\begin{array}{llllllllll} \frac{16}{24} & =\frac{18}{3} & \frac{18}{24} & > & \frac{10}{3} & \frac{10}{24} \ll \frac{2}{3} & \frac{16}{24} & =\frac{2}{3} & \frac{14}{24} \ll \frac{2}{3} & \frac{17}{24} \end{array}>\frac{2}{3}\right)$	Whole class activity (or individual work after initial discussion if Ps wish) Drawn on BB or use enlarged copy master or OHP Discussion about the unit hexagon. Involve several Ps. Reasoning (with T's help) agreement, praising Ps work in Pbs too. Extra praise for equivalent fractions. What can you say about all the designs? (They are all symmetrical.) This is a difficult problem. Thelps Ps throughout!

R1,		Lesson Plan 64
Activity 5	Book 4, page 64 Q. 2 Read: Write the fraction marked by each dot below the number line. Elicit that all 4 number lines show the same whole numbers but that the numbers have been divided into different fractions on each number line. Deal with one number line at a time. Elicit what each tick shows. Set a time limit. Ps write fractions in any form. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees or suggests equivalent fractions. T makes Ps count along the number line, pointing to each 'tick' and saying the appropriate fraction. a) b) c) d)	Notes Individual work, monitored, helped (or whole class activity if Ps are unsure) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Class could count in unison too
6	Book 4, page 64 Q. 3 Read: Each rectangle is 1 unit. Colour the fraction of the unit shown. Deal with parts a) and b) separately. Set a time limit. Review at BB with whole class. Ps dictate how many grid squares should be shaded and why. T could have a solution already prepared and uncover each as it is dealt with. Mistakes discussed and corrected. What do you notice about parts i) and ii)? (Both fractions have the same numbers but in different positions.) Reiterate what the numerator and denominator of a fraction mean. Solution: a) i) ii) b) i)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Discussion, agreement

$\mathrm{B} K 4$		Lesson Plan 64
Activity		Notes
7	Book 4, page 64, Q. 4	
	Read: Change the quantities. Fill in the missing numbers.	Whole class activity
	T divides class into 2 teams of 8 Ps each. Team A has to complete part a) and Team B part b). I will give you 2 minutes! Start . . now!	Choose teams of roughly equal ability, the weakest P in each going first.
	back to touch the next person in their team, etc. Ps who are not in either team fill in the numbers in their Pbs so that they can check the	Teams should not be able to see the other's responses.
	teams' responses. . . . Stop! Review wwith whole class. T points to each response in turn. Do you agree? Class shouts Yes or No. If No, a P not in a team corrects it, explaining reasoning..	If a P does not know the answer, he must run back and next P completes or corrects it but misses his own turn.
	Let's give the winning team a round of applause!	In good humour!
	Solution: a) $\frac{1}{2} \mathrm{~kg}=500 \mathrm{~g} \quad \frac{3}{2} \mathrm{~kg}=1500 \mathrm{~g} \quad \frac{1}{4} \mathrm{~kg}=250 \mathrm{~g} \quad \frac{1}{10} \mathrm{~kg}=100 \mathrm{~g}$	Reasoning, agreement, correcting, praising
	$\frac{1}{5} \mathrm{~kg}=200 \mathrm{~g} \quad \frac{3}{5} \mathrm{~kg}=600 \mathrm{~g} \quad \frac{1}{100} \mathrm{~kg}=10 \mathrm{~g} \quad \frac{75}{100} \mathrm{~kg}=750 \mathrm{~g}$ $\text { b) } \begin{aligned} \frac{1}{2} \mathrm{~km} & =500 \mathrm{~m} \quad \frac{3}{2} \mathrm{~km}=1500 \mathrm{~m} \quad \frac{3}{5} \mathrm{~km}=600 \mathrm{~m} \frac{1}{10} \mathrm{~km}=100 \mathrm{~m} \\ \frac{4}{10} \mathrm{~km} & =400 \mathrm{~m} \frac{3}{100} \mathrm{~km}=40 \mathrm{~m} \frac{60}{100} \mathrm{~km}=600 \mathrm{~m} \frac{523}{1000} \mathrm{~km}=523 \mathrm{~m} \end{aligned}$	(Or done as individual work, monitored, helped and reviewed at BB with whole class)

