

BKK		Lesson Plan 65
Activity 5	Book 4, page 65 Q. 2 Read: What part of the ribbon is grey and what part is white? Write an addition and a subtraction about each ribbon. If Ps are unsure, do part a) with the whole class first as a model for Ps to follow. Set a time limit. Review at BB with whole class. Ps come to BB, explaining reasoning. Class agrees/disagrees or suggests alternative solutions (e.g. b) ii): $1-5$ sixths $=1$ sixth). Mistakes discussed/corrected. Solution: a) ii) $1-\frac{\boxed{1}}{3}=\frac{2}{3}$ c) i) $\frac{4}{10}+\frac{\boxed{6}}{10}=\frac{\boxed{10}}{10}=1$ ii) $1-\frac{\boxed{6}}{10}=\frac{4}{10}$ b) $\frac{\boxed{5}}{6}+\frac{\boxed{1}}{\boxed{6}}=\frac{\boxed{6}}{\boxed{6}}=1$ ii) $1-\frac{\boxed{1}}{\boxed{6}}=\frac{\boxed{5}}{\boxed{6}}$ d) i) $\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1$ ii) $1-\frac{3}{4}=\frac{\boxed{1}}{4}$	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Discuss equivalent fractions. BB: e.g. c) ii) $1-\frac{3}{5}=\frac{2}{5}$ d) ii) $1-\frac{6}{8}=\frac{2}{8}$ Extra praise if Ps suggest them without T's help Elicit that if the numerator and denominator of a fraction are divided or multiplied by the same amount, the value of the fraction does not change.
6	Book 4, page 65 Q. 3 Read: Fill in the missing fractions. Deal with one row at a time. Set a time limit. Review at BB with whole class. Ps come to BB to fill in missing fractions, explaining reasoning. Class agrees/disagrees and points out simpler equivalent fractions where relevant. Mistakes discussed and corrected. Model the fractions on the BB if there are problems. Solution: a) $\frac{1}{5}+\frac{4}{5}=1 \quad \frac{2}{5}+\frac{3}{5}=1$ $\frac{6}{5}-\frac{1}{5}=1 \quad \frac{9}{5}-\frac{4}{5}=1$ b) $\frac{3}{8}+\frac{5}{8}=1$ $\frac{0}{8}$ or 0$+\frac{8}{8}=1$ $\frac{10}{8}-\frac{2}{8}=1$ $\frac{16}{8}$ or 2$-\frac{8}{8}=1$ c) $\frac{7}{10}+\frac{3}{10}=1$ $\frac{5}{10}+\frac{5}{10}=1$ $\frac{20}{10}-\boxed{\frac{10}{10}}=1$ $\frac{15}{10}-\frac{5}{10}=1$ or $\frac{1}{2}+\frac{1}{2}=1$ or $2-1=1$ or $1 \frac{1}{2}-\frac{1}{2}=1$	Individual work, monitored, helped (or whole class activity if Ps are unsure) Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Discuss other forms, e.g. b) $\frac{10}{8}-\frac{2}{8}=1 \frac{2}{8}-\frac{2}{8}=1$ c) $\frac{5}{10}+\frac{5}{10}=\frac{1}{2}+\frac{1}{2}=1$ or as shown in solution. Feedback for T

BKL	R: Concept of a fraction. Calculations C: Fractions. Addition and subtraction (equal denominators) E: Fractions of quantities and numbers	Lesson Plan 66
Activity 1	Making fractions What is a fraction? (part of a whole) Who can come and write a fraction on the BB? What is the bottom number called? (denominator) What does it mean? (Number of equal parts that the whole has been divided into) What is the top number called? (numerator) What does it mean? (How many of these parts are taken) Look at these diagrams. Let's think of fractions we could write about them. Ps come to BB to write fractions (using words or numbers) and explain reasoning (with T's help if necessary). Class agrees/disagrees or suggests equivalent fractions. BB: a) b) c) e.g. a) Shaded: 3 ninths $=1$ third, $\frac{3}{9}=\frac{1}{3}$ White: 6 ninths $=2$ thirds, $\frac{6}{9}=\frac{2}{3}$ b) Shaded: 8 twenty-fourths $=4$ twelfths $=2$ sixths $=1$ third $\frac{8}{24}=\frac{4}{12}=\frac{2}{6}=\frac{1}{3}$ White: 16 twenty-fourths $=8$ twelfths $=4$ sixths $=2$ thirds $\frac{16}{24}=\frac{8}{12}=\frac{4}{6}=\frac{2}{3}$ c) Shaded: 5 sixteenths $=10$ thirty-seconds, $\frac{5}{16}=\frac{10}{32}$ White: 11 sixteenths $=22$ thirty-seconds, $\quad \frac{11}{16}=\frac{22}{32}$	Notes Whole class activity BB: e.g. $\begin{aligned} \frac{3}{5} & \leftarrow \text { numerator } \\ & \leftarrow \text { denominator } \end{aligned}$ Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising Reasoning: e.g. a) 'The large triangle has been divided into 9 equal parts, so each part is 1 ninth of the whole. 3 of the parts are shaded, so the fraction shaded is 3 ninths.' BB: Equivalent fractions $\text { e.g. } \frac{3}{9}=\frac{1}{3}$ T or P could highlight the thirds, etc. on the diagram. In c), only mention 'thirtyseconds' if a P suggests it.
2	Addition and subtraction Let's do these additions and subtractions. T says the addition and also writes it on the BB. Ps come to BB to write the sum or dictate what T should write, explaining reasoning. Class agrees/disagrees. How can we write it in a shorter way? (Using initial letters and/or numbers.) BB: a) 82 tables +53 tables +200 tables $=\underline{335}$ tables or $82 t+53 t+200 t=\underline{335 t}$ b) 31 pens +54 balls +24 pens -32 balls $=55$ pens +22 balls or $31 p+54 b+24 p-32 b=55 p+22 b$ c) 1 eighth +1 eighth +1 eighth +1 eighth +1 eighth $=1$ eighth $\times 5$ or $1 \mathrm{e}+1 \mathrm{e}+1 \mathrm{e}+1 \mathrm{e}+1 \mathrm{e}=1 \mathrm{e} \times 5=\underline{5 \mathrm{e}} \quad=\underline{5 \text { eighths }}$ or $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8} \times 5=\frac{5}{8}$ d) 5 ninths +3 ninths -4 ninths +7 ninths $=11$ ninths $=1$ and 2 ninths or $\frac{5}{9}+\frac{3}{9}-\frac{4}{9}+\frac{7}{9}=\frac{11}{9}=1 \frac{2}{9}$ e) 2 fifths +3 tenths +1 fifth -2 tenths +3 tenths $=\underline{3 \text { fifths }+4 \text { tenths }}$ or $\frac{2}{5}+\frac{3}{10}+\frac{1}{5}-\frac{2}{10}+\frac{3}{10}=\frac{3}{5}+\frac{4}{10}=\frac{6}{10}+\frac{4}{10}=1$	Whole class activity Ps can do calculations in $E x$. Bks. or on slates if necessary. Discussion, reasoning, agreement, praising If problems, Ps draw diagrams on BB to show the fractions. BB: e.g. d) $5 n+3 n-4 n+7 n=\underline{11 n}$ e) $2 \mathrm{f}+3 \mathrm{t}+1 \mathrm{f}-2 \mathrm{t}+3 \mathrm{t}=3 \mathrm{f}+4 \mathrm{t}$ 1 $\begin{aligned} & \text { Show } \\ & \text { that: }\end{aligned} \frac{3}{5}=\frac{6}{10}$ \qquad or $\frac{4}{10}=\frac{2}{5}$, so $\frac{3}{5}+\frac{2}{5}=1$

$3 K 4$		Lesson Plan 66
Activity 3	Fractions on the number line Let's show jumps along the number line by fractions of a unit. Ps come to BB to follow instructions from the T. e.g. a) Elicit that there is a tick at every 1 tenth of a unit. Start at 0 . Move 3 tenths to the right (3 tenths), than another 5 tenths to the right (8 tenths), then 2 tenths to the left (6 tenths), then 9 tenths to the right (15 tenths), then 4 tenths to the right. Where have you ended up? (1 and 9 tenths or 19 tenths) Let's write the moves as a calculation with fractions. Ps dictate to T or come to BB. T reminds Ps of the steps if necessary. BB: $\quad 0+\frac{3}{10}+\frac{5}{10}-\frac{2}{10}+\frac{9}{10}+\frac{4}{10}=\frac{19}{10}=1 \frac{9}{10}$ b) Elicit that this number line has a tick at every 1 seventh of a unit. Ps give instructions to another P who shows the moves along the number line, while another P (or T) writes the operations on the BB.	Notes Whole class activity Number lines drawn on BB or use enlarged copy master or OHP (Ps could have copies on desks too and follow the instructions on their own number lines.) T gives instructions. P shows moves with finger or pointer and says the number reached after each step. Class points out errors. Ps read the operation in unison. Discussion, agreement, praising BB: e.g. $\frac{2}{7}+\frac{5}{7}-\frac{1}{7}+\frac{6}{7}=\frac{12}{7}=1 \frac{5}{7}$ Ps label any missing relevant fraction.
4	Book 4, page 66 Q. 1 Read: Each diagram is 1 unit. Write an addition and subtraction about each diagram. Elicit that the rectangles are congruent and that each has been divided up into $4 \times 5=\underline{20}$ equal parts, so each grid square is 1 twentieth of the large rectangle. Do part a) with the whole class first as a model for Ps to follow. Rest done as individual work. Deal with one at a time. Review at BB with whole class. Ps come to BB or dictate their operations to T. Class agrees/disagrees or suggests a simpler form of the fraction where relevant. Mistakes discussed and corrected. Solution: a) b) c) d) e) $\frac{14}{20}+\frac{6}{20}=1$ $\frac{7}{20}+\frac{13}{20}=1$ $\frac{10}{20}+\frac{10}{20}=1$ $\frac{12}{20}+\frac{8}{20}=1$ $\frac{9}{20}+\frac{11}{20}=1$ $1-\frac{6}{20}=\frac{14}{20}$ $1-\frac{13}{20}=\frac{7}{20}$ $1-\frac{10}{20}=\frac{10}{20}$ $1-\frac{8}{20}=\frac{12}{20}$ $1-\frac{11}{20}=\frac{9}{20}$	Individual work, monitored, helped (or continue as a whole class acitvity if Ps are unsure) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Discuss equivalent fractions e.g. $\frac{14}{20}=\frac{7}{10}$ or $\frac{7}{20}=\frac{14}{40}$ (if each grid square is divided into 2 equal triangles)

BKK		Lesson Plan 66
Activity 5	Book 4, page 66 Q. 2 Read: Write the additions and subtractions with fractions in your exercise book and calculate the result. Set a time limit. Ps can draw diagrams in Ex. Bks to help them if they wish. Review at BB with whole class. Ps come to BB or dictate results to T , explaining reasoning. Class agrees/disagrees or points out simpler equivalent fractions where relevant. Ask Ps to model the operations on the BB. Solution: a) $\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ b) $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}=1 \frac{1}{2}$ c) $\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ d) $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$ e) $\frac{5}{6}-\frac{4}{6}=\frac{1}{6}$ f) $\frac{1}{7}+\frac{3}{7}-\frac{4}{7}=\frac{0}{7}=\underline{0}$ g) $\frac{3}{8}+\frac{10}{8}-\frac{5}{8}=\frac{8}{8}=\underline{1}$ h) $\frac{8}{9}-\frac{3}{9}=\frac{5}{9}$ i) $\frac{10}{10}-\frac{7}{10}+\frac{2}{10}=\frac{5}{10}=\frac{1}{2}$ i) $\frac{10}{10}-\frac{8}{10}-\frac{1}{10}=\frac{1}{10}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising T helps with drawing the diagrams. BB: e.g. a) b) c) d) e) f) Extra praise ${ }_{\text {etf }}$ Ps draw diagrams and explain reasoning without help.
6	Book 4, page 66 Q. 3 Read: Calculate the sums and differences. Set a time limit. Ps can draw diagrams on slates or in Ex Bks. if necessary. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Draw diagrams on BB if there is disagreement. Solution: a) $\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$ b) $\frac{3}{5}+\frac{1}{5}=\frac{4}{5}$ c) $\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$ d) $\frac{3}{4}-\frac{2}{4}=\frac{1}{4}$ e) $\frac{4}{5}-\frac{4}{5}=\frac{0}{5}=0$ f) $\frac{6}{6}+\frac{1}{6}=\frac{7}{6}=1+\frac{1}{6}=1 \frac{1}{6}$ g) $\frac{7}{10}-\frac{4}{10}=\frac{3}{10}$ h) $\frac{3}{20}+\frac{0}{20}=\frac{3}{20}$	Individual work, monitored, helped (or whole class activity if T thinks Ps are still unsure) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Feedback for T. h) Elicit that $\frac{0}{20}=0$

$B K \angle$		Lesson Plan 66
Activity		Notes
7	Book 4, page 66, Q. 4 Read: Hedgehog lives 400 m away from Squirrel.	Whole class activity (or individual work if Ps wish)
	One day, Squirrel went to visit Hedgehog. In the first minute, Squirrel covered 2 fifths of the route.	Diagram drawn on BB or use enlarged copy master or OHP
	In the second minute, Squirrel covered another 2 fifths of the route. How many metres did Squirrel still have to go?	BB: $400 \mathrm{~m} \sum^{5}$
	Elicit that the 400 m has been divided into 5 equal parts and that each part is 1 fifth. Ps come to BB to show on the diagram how far Squirrel had gone after the 1st and 2nd minutes. What part of the journey did he still have to do? (1 fifth)	$\underbrace{1 \quad 1}_{\text {2nd minute }} \underbrace{1}_{\text {1st minute }}$ Discussion, reasoning, agreement, praising
	How can we write it as an operation? Ps come to BB or dictate to T . Class agrees/disagrees.	Or Ps might suggest finding 2 fifths of the distance first.
	BB: S had gone: $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$ of the journey S still had to go: $\quad 1-\frac{4}{5}=\frac{5}{5}-\frac{4}{5}=\frac{1}{5}$ of the journey	$\begin{aligned} & \text { BB: } 1 \text { fifth of } 400 \mathrm{~m} \\ & =400 \mathrm{~m} \div 5=80 \mathrm{~m} \\ & \begin{aligned} 2 \text { fifths of } 400 \mathrm{~m} & =80 \mathrm{~m} \times 2 \\ & =160 \mathrm{~m} \end{aligned} \end{aligned}$
	How many metres is this? P comes to BB or dictates to T.	S had gone:
	BB: $\frac{1}{5}$ of $400 \mathrm{~m}=400 \mathrm{~m} \div 5=\underline{80 \mathrm{~m}}$	S still had to go:
	Answer: Squirrel still had to go 80 metres.	400 m - $320 \mathrm{~m}=\underline{80 \mathrm{~m}}$

BK	R: Fractions. Fractions of quantities C: Addition and subtraction of fractions E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 67 \end{gathered}$
Activity 1	Fractions of quantities. Listen carefully, do the calculation in your head or in you Ex. Bks and show me the answer when I say. Remember to write the unit of measure too! Ps responding correctly explain at BB to those who did not. Who did the same? Who did it a different way? What mistakes did you make? etc. If problems, ask Ps to show calculations in detail and to draw digrams on the BB. a) What is: i) 1 third of 96 m $(96 \mathrm{~m} \div 3=\underline{32 \mathrm{~m}})$ ii) 1 fifth of 2400 kg $(2400 \mathrm{~kg} \div 5=\underline{480 \mathrm{~kg}})$ iii) 3 fifths of 820 litres $(820 \text { litres } \div 5 \times 3=164 \text { litres } \times 3$ $=\underline{492} \text { litres) }$ iv) 8 tenths of 9200 km $\begin{aligned} (9200 \mathrm{~km} \div 10 \times 8 & =920 \mathrm{~km} \times 8 \\ & =\underline{7360 \mathrm{~km})} \end{aligned}$ v) 7 quarters of $£ 6000$? $\begin{aligned} (£ 6000 \div 4 \times 7 & =£ 1500 \times 7 \\ & =£ 10500) \end{aligned}$ b) What is the whole quantity if: BB: i) 40 m is half of it $\text { (1 half } \rightarrow 40 \mathrm{~m},$ $2 \text { halves } \rightarrow 40 \mathrm{~m} \times 2=\underline{80 \mathrm{~m}})$ ii) 80 kg is 2 thirds of it? $\text { (2 thirds } \rightarrow 80 \mathrm{~kg} \text {, }$ $3 \text { thirds } \rightarrow 80 \mathrm{~kg} \div 2 \times 3$ $=40 \mathrm{~kg} \times 3=\underline{120 \mathrm{~kg})}$ (or 2 thirds $\rightarrow 80 \mathrm{~kg}$, 1 third $\rightarrow 80 \mathrm{~kg} \div 2=40 \mathrm{~kg}$ [Direct proportion] $3 \text { thirds } \rightarrow 40 \mathrm{~kg} \times 3=\underline{120 \mathrm{~kg})}$	Notes Whole class activity Answers written on scrap paper or slates and shown in unison on command. Reasoning, agreement, praising BB: e.g v) b) ii) Accept any correct method and diagram.
2	Fractions of a shape Let's draw the whole shape if the shaded parts are the fractions shown. Ps come to BB to count the grid squares in the shaded part, calculate how many grid squares would be in the whole shape, then draw it. Class agrees/disagrees. BB: e.g. d) $\frac{6}{5}$ $12 \div 6 \times 5=10$ (squares)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising or Reasoning: e.g. b) 3 quarters is 12 squares, 1 quarter is 4 squares, 4 quarters is $\underline{16}$ squares Feedback for T

BK4		Lesson 67
Activity 3	Addition and subtraction of fractions Let's draw diagrams to help us work out the answers. T could do part a) first (but allowing Ps to dictate what to draw or write) as a model for Ps to follow. Can we add halves and quarters? (No, as they have different denominators.) What should we do? (Change the half to 2 quarters) etc. Ps come to BB, draw a diagram, decide on the number of parts to divide it up into (i.e. the smallest multiple common to both denominators) with T's help if necessary, convert the fractions and do the additions or subtractions, explaining reasoning. Class agrees/disagrees . Ask Ps to show each operation on the relevant segment of the number line. (drawn on BB or OHT or use copy master). BB: a) $\frac{1}{2}+\frac{1}{4}=\left(\frac{2}{4}+\frac{1}{4}=\frac{2+1}{4}=\frac{3}{4}\right)$ e.g. $\frac{1}{2} \frac{1}{4} \frac{1}{2}=\frac{2}{4}$ b) $\frac{3}{4}-\frac{2}{3}=\left(\frac{9}{12}-\frac{8}{12}=\frac{1}{12}\right)$ \square $=$ $\frac{1}{12}$ c) $\frac{5}{8}-\frac{1}{4}=\left(\frac{5}{8}-\frac{2}{8}=\frac{3}{8}\right)$ \qquad	Notes Whole class activity Written/drawn on BB or use enlarged copy master for the number line segements. At a good pace Discussion, reasoning, agreement, praising Feedback for T
[${ }^{4}$	Book 4, page 67 Q. 1 Read: Join up the equal numbers. Discuss equivalent fractions. Elicit that if the numerator and denominator are multiplied or divided by the same number, the fractions have the same value, i.e. they are equal or equivalent fractions. Ps can draw diagrams on scrap paper or slates or in Ex.Bks if necessary. Set a time limit. Review at BB with whole class. Ps come to BB to draw joining lines, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Draw diagrams on BB if there are problems or disagreements. Solution: Who can think of numbers to join to $\frac{5}{2}$? (e.g. $\frac{10}{4}, 2 \frac{1}{2}$) Compare the fractions to 1,2 or 3 . Ps write inequalities about them. e.g. $\frac{2}{5}<\frac{5}{10}<1,2<\frac{5}{2}<3$, etc.	Individual work, monitored helped (or whole class activity if Ps are still unsure) Written on BB or use enlarged copy master or OHP BB: Equivalent fractions $\text { e.g. } \frac{1}{3}=\frac{2}{6}$ Reasoning, agreement, selfcorrection, praising Diagrams: e.g. Feedback for T

BKK		Lesson Plan 67
Activity 5	Book 4, page 67 Q. 2 Read: Each rectangle is 1 unit. Colour the parts given. Deal with one row at a time. Set a time limit. Review at BB with whole class. Ps come to BB to colour diagrams or T has a solution already prepared and uncovers each rectangle as it is dealt with. In either case, Ps explain their reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Agree on the number of squares which should be shaded but also that they can be in any position. Which fractions are equivalent (equal)? Solution: e.g. b) 35 min	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Reasoning: e.g. $\begin{aligned} \frac{4}{8} \text { of } 24 & =24 \div 8 \times 4 \\ & =3 \times 4=\underline{12} \end{aligned}$ Equivalent fractions: a) $\frac{1}{2}=\frac{2}{4}=\frac{4}{8}$; b) All 4 are equivalent Agree that multiplying or dividing the numerator and denominator by the same amount does not change the value of a fraction.
6	Book 4, page 67 Q. 3 Read: Complete the diagrams to match the problems. Deal with one part at a time. Ps read the question themselves and write the missing numbers on the dotted lines. Make sure that Ps realise that they should write a fraction on the lines labelled 'part'. Remind Ps to check that the two parts and the two distances add up to the whole distance. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) The distance between two cities is 369 km . A family drove 1 third of the distance before lunch and completed the journey after lunch. How far did they drive: i) before lunch ii) after lunch? Morning: 1 third of $369 \mathrm{~km}=369 \mathrm{~km} \div 3=\underline{123 \mathrm{~km}}$ Afternoon: 2 thirds of $369 \mathrm{~km}=123 \mathrm{~km} \times 2=\underline{246 \mathrm{~km}}$ b) Some men are laying a pavement. They have already paved 120 m , which is 2 thirds of the pavement. i) How much do they still have to do? Done: $\quad 2$ thirds $\rightarrow 120 \mathrm{~m}$ Still to do: 1 third $\rightarrow 120 \mathrm{~m} \div 2=\underline{60 \mathrm{~m}}$ ii) How long will the finished pavement be? Finished pavement: 3 thirds $\rightarrow 60 \mathrm{~m} \times 3=\underline{180 \mathrm{~m}}$	Individual work, monitored, helped (or whole class activity if Ps are unsure) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising BB: Check: $\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1$ $123+246=369(\mathrm{~km})$ Check: $\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1$ $120+60=180(\mathrm{~m}) \boldsymbol{V}$

BK	R: Fractions and fraactions of quantities C: Addition and subtraction of fractions E: Problems	Lesson Plan 68
Activity 1	Addition and subtraction of fractions Study the diagram. What can you tell me about it? BB: (It is a circle; it has been divided into 8 equal parts; each part is 1 eighth) a) Let's write additions and subtractions about it. Ps come to BB to write operations, explaining reasoning. Class agrees/disagrees or suggests simpler equivalent fractions. BB: e.g. $\begin{aligned} & \frac{1}{8}+\frac{2}{8}+\frac{3}{8}=\frac{6}{8}=\frac{3}{4} \quad\left(=\frac{1}{8}+\frac{1}{4}+\frac{3}{8}\right) \\ & \frac{8}{8}-\frac{3}{8}-\frac{2}{8}-\frac{1}{8}=\frac{2}{8}=\frac{1}{4}, \quad 1-\frac{3}{8}=\frac{5}{8}, \quad \text { etc. } \end{aligned}$ To save time writing all the ' 8 's as the denominators, we can write just one ' 8 ' as the common denominator, eighths, and write how many eighths we are dealing with above the fraction line. $\text { e.g. } \frac{8}{8}-\left(\frac{3}{8}+\frac{2}{8}+\frac{1}{8}\right)=\frac{8-(3+2+1)}{8}=\frac{8-6}{8}=\frac{2}{8}=\frac{1}{4}$ b) Let's compare the fractions. Who can write an inequality about the diagram? Ps come to BB or dictate to T. Class agrees/disagrees. e.g. $\frac{3}{8}>\frac{1}{8}, \frac{1}{4}<\frac{3}{8}, \frac{3}{4}+\frac{1}{8}<1$, etc. c) Ps suggest word problems for one or two of the operations on the BB. Class decides whether they are valid.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHT At a good pace Reasoning, agreement, praising Extra praise if Ps write the equivalent fractions without help from T. T demonstrates the 'quick' way of calculating with fractions, explaining each step. (Ps are not expected to learn it yet, just to become familiar with it.) Reasoning, agreement, praising Accept any correct statement. Extra praise for creative, correct contexts
2	Comparing fractions Which is more and how much more? Ps come to BB to write missing signs and differences, explaining reasoning. Class agrees/disagrees. Ask Ps to draw diagrams too. T might need to help with b) iv). a) Let's compare these fractions to 1 . BB: e.g. i) $\frac{3}{5}$ ii) $\begin{array}{cc}\frac{5}{3} &$$>$ \end{array} iii)$\frac{11}{10}$ $>$ 1 $\frac{1}{10}$ iv)$\frac{10}{11}$ $<$ 1 11 \square b) Let's compare these fractions to a half. i) $\begin{aligned} \frac{5}{8} & \boxed{>} \\ & \frac{1}{2} \\ & \boxed{\frac{1}{8}} \\ & \end{aligned}$ ii) $\frac{4}{10} \frac{\square}{\frac{1}{2}} \frac{1}{2}$ $\frac{1}{2}=\frac{4}{8}$ $\frac{1}{2}=\frac{5}{10}$ $\frac{1}{2}=\frac{7}{14}$ $\frac{10}{22}<\frac{11}{22}$	Whole class activity Written on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Agree that: $1=\frac{5}{5}=\frac{3}{3}=\frac{10}{10}=\frac{11}{11}$ Reasoning, agreement, praising Discussion on how many eighths, tenths, etc. make 1 half. iv) Agree that half of 11 elevenths $=5$ and a half elevenths (or 11 twenty-seconds)

BKK		Lesson Plan 68
Activity 3	Mental practice Ps stand up. T throws a ball to a P, saying a fraction, e.g. T: 'half of 4'; P throws ball back to T saying the number, e.g. P : ' 2 '. Class points out errors. Ps who are correct sit down. Ps who are incorrect stay standing and later are asked a simpler question. e.g. half of 10 (5); 1 third of 21 (7); 3 quarters of 8 (6); 2 fifths of 20 (8) 3 halves of $50 \mathrm{~m}(75 \mathrm{~m}) ; 7$ sevenths of $£ 213$ (£213); 0 fifths of $100(0)$, 3 elevenths of 22 acorns (6 acorns); 12 sixths of 1 hour (2 hours), etc. If problems, Ps show details of calculations on BB. e.g. 3 quarters of $8=8 \div 4 \times 3=2 \times 3=6$ 18 min	Notes Whole class activity T walks round class, choosing Ps at random At speed but in good humour! Praising, encouragement only Ps can ask the questions too. [Catching and throwing the ball gives Ps a little more time to think.]
4	Sequences a) T writes first 2 terms of a sequence on the BB and gives the rule. Ps come to BB to continue the terms (or dictate terms to T), explaining reasoning. Class points out errors. Ps point out those fractions which could be written in another way. i) This sequence is increasing by 1 sixth. $\begin{aligned} & \text { BB: } 0, \frac{1}{6},\left(\frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{6}{6}, \frac{7}{6}, \ldots\right) \\ & \text { or } \end{aligned} \quad \frac{1}{3} \frac{1}{2} \frac{2}{3} \quad 1 \quad 1 \frac{1}{6}, \text { etc. } \quad . ~ l$ ii) This sequence is decreasing by 3 tenths. $\begin{aligned} & \text { BB: } 4 \frac{5}{10}, 4 \frac{2}{10},\left(3 \frac{9}{10}, 3 \frac{6}{10}, 3 \frac{3}{10}, 3,2 \frac{7}{10}, 2 \frac{4}{10}, 2 \frac{1}{10}, \ldots\right) \\ & \text { or } 4 \frac{1}{2} 4 \frac{1}{5} \end{aligned}$ b) T writes the first 4 terms of a sequence on the BB . Ps think of a rule, then continue the sequence. Again Ps point out fractions which could be written in another way. BB: $\frac{3}{7}, \frac{7}{7}, \frac{11}{7}, \frac{15}{7},\left(\frac{19}{7}, \frac{23}{7}, \frac{27}{7}, \frac{31}{7}, \frac{35}{7}, \frac{39}{7}, \frac{43}{7}, \ldots\right)$ $\begin{array}{llllllll} 1 & 1 & \frac{4}{7} & 2 \frac{1}{7} & 2 \frac{5}{7} & 3 \frac{2}{7} & 3 \frac{6}{7} & \text { etc. } \quad \text { Rule }:+\frac{4}{7} \end{array}$	Whole classs activity Written on BB Reasoning, agreement, praising At a good pace T decides when to stop. Continue to negative numbers if Ps are able. $\ldots, 0,-\frac{3}{10},-\frac{6}{10}, \ldots$ Discussion on the rule. Extension If the sequence started before 3 sevenths, what would the 2 terms before it be? $\ldots .,-\frac{5}{7},-\frac{1}{7}, \frac{3}{7}, \ldots$ Show on a number line.
5	Book 4, page 68 Q. 1 Read: Solve the problem. Do the calculations in your Ex. Bk. Ps read the problem themselves, solve it in their Ex. Bks and write the answers in their Pbs. Set a time limit Review with the whole class. T could read each part and Ps show answers on scrap paper or slates on command. P who responds correctly explains to those who do not. Mistakes discussed and corrected. Solution: a) What kind of tree does he have most of? (Equal numbers) b) i) How many plum trees does Sam have? ii) What fraction of all Sam's trees are they? (1 quarter)	Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising BB: a) $\frac{2}{8}=\frac{4}{16}=\frac{1}{4}$ b) $1-\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{4}$ $\begin{equation*} \frac{1}{4} \text { of } 80=80 \div 4=\underline{20} \tag{20} \end{equation*}$ Sam has 20 of each type of tree.

BKK		Lesson Plan 68
Activity 6	Book 4, page 68 Q. 2 Read: Use the number lines to help you do the additions and subtractions. Deal with one part at a time. Set a time limit. Ps may draw other models if necessary in their Ex. Bks. Review at BB with whole class. Ps come to BB to complete the operations and explain their reasoning, showing the jumps along the number line. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{1}{2}+\frac{3}{4}+\frac{1}{2}=1+\frac{3}{4}=1 \frac{3}{4}$ or $\frac{2}{4}+\frac{3}{4}+\frac{2}{4}=\frac{7}{4}=1 \frac{3}{4}$ b) $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$ c) $\frac{5}{6}+\frac{2}{6}-\frac{4}{6}=\frac{7}{6}-\frac{4}{6}=\frac{3}{6}=\frac{1}{2}$	Notes Individual work, monitored, helped Written/drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Discuss equivalent fractions where relevant. BB:
7	Book 4, page 68 Q. 3 Read: Solve the problems in your exercise book. Remember to convert the units. Set a time limit. Ps can draw diagrams to help them visualise the problem. Review at BB with whole class Ps could show answers on scrap paper or slates on command. Ps responding correctly explain at BB to those who did not. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) Mum bought a loaf which weighed 3 quarters of a kg . Rob ate 1 fifth of it. How much bread did Rob eat? Whole loaf: $\frac{3}{4}$ of $1 \mathrm{~kg}=\frac{3}{4}$ of 1000 g $\frac{3}{4}$ of $1000 \mathrm{~g}=1000 \mathrm{~g} \div 4 \times 3=250 \mathrm{~g} \times 3=750 \mathrm{~g}$ Amount eaten: $\frac{1}{5}$ of $750 \mathrm{~g}=750 \mathrm{~g} \div 5=\underline{150 \mathrm{~g}}$ Answer: Rob ate 150 g of bread b) Diane spent $£ 616$, which was 2 fifths of her money. How much money did Diane have before? Spent: $\frac{2}{5} \rightarrow £ 616$, (so $\frac{1}{5} \rightarrow £ 616 \div 2=£ 308$) Had before: $\frac{5}{5} \rightarrow £ 616 \div 2 \times 5=£ 308 \times 5=\underline{£ 1540}$ Answer: Diane had $£ 1540$ before.	Individual work, monitored, helped (or whole class activity if Ps are still unsure) Responses shown in unison. Reasoning, agreement, selfcorrection, praising Draw diagrams on BB if necessary. BB: e.g. BB: e.g. Feedback for T

BTK	R: Mental and written calculation C: Review and practice: whole numbers and fractions E: Problems	Lesson Plan 69
Activity 1	Sequences T says first 3 or 4 terms of a sequence and writes them on the BB. When you have worked out the rule, stand up! T chooses Ps at random from those standing to continue the sequence and writes Ps' terms on BB. Class agrees/disagrees. A, what rule did you use? Who agrees? etc. Let's check it. a) $3500,3360,3220,3080,(2940,2800,2660,2520,2380$, $2240,2100,1960, \ldots$) Rule: - 140 b) $2,202,502,902,(1402,2002,2702,3502,4402,5402, \ldots)$ $200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \quad 1000 \quad$... Rule: The difference between the terms is increasing by 100 . c) $12800,6400,3200,(1600,800,400,200,100,50,25$, $\left.\left[12 \frac{1}{2}, 6 \frac{1}{4}, 3 \frac{1}{8}, \ldots\right]\right) \quad \text { Rule: } \div 2$ d) $\begin{aligned} & \frac{1}{5}, \frac{2}{5}, \frac{3}{5},\left(\frac{4}{5}, \frac{5}{5}=1, \frac{6}{5}=1 \frac{1}{5}, \frac{7}{5}=1 \frac{2}{5}, \frac{8}{5}=1 \frac{3}{5}, \frac{9}{5}=1 \frac{4}{5}\right. \\ & \left.\frac{10}{5}=2, \frac{11}{5}=2 \frac{1}{5}, \ldots\right) \\ & \text { Rule: }+\frac{1}{5} \end{aligned}$ e) $3 \frac{8}{10}, 3 \frac{3}{10}, 2 \frac{8}{10},\left(2 \frac{3}{10}, 1 \frac{8}{10}, 1 \frac{3}{10}, \frac{8}{10}, \frac{3}{10},\left[-\frac{2}{10}, \ldots\right)\right.$	Notes Whole class activity (Or individual work in Ex. Bks. T dictates the first few terms, Ps copy into Ex. Bks., then continue the sequence under a time limit. Review at BB with whole class.) Written on BB or SB or OHT At a good pace T decides when to stop Checking, agreement, praising Extra praise for Ps who can cope with whole numbers and fractions or negative fractions . Show the fractions on the number line if problems. Revise meanings of numerator and denominator. e) Rule: $-\frac{5}{10} \quad\left(=\frac{1}{2}\right)$ Feedback for T
2 Extension	Book 4, page 69 Q. 1 Read: Continue the sequence for 3 more terms. What rule did you use? Set a time limit. Encourage mental calculation. Ps do parts a) and b), then parts c) and d). Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Discussion/agreement on each rule. Who can continue the sequence for more terms? Solution: a) $(740,900,1060,1220,(1380,1540,1700)$, [1860, 2020, 2180, 2340, ..] Rule: +160 b) $6561,2187,729,243,(81,27,9$, $\left[3,1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, .\right] \quad \text { Rule: } \div 3$ c) $8900,7900,7000,6200,(5500,4900,4400$, $)$ [4000, 3700, 3500, 3400, 3400, 3500, 3600, ...] Rule: Difference between terms is decreasing by 100 . d) $\frac{2}{9}, \frac{3}{9}, \frac{4}{9}, \frac{5}{9},\left(\frac{6}{9}, \frac{7}{9}, \frac{8}{9},\right)\left[\frac{9}{9}, \frac{10}{9}, \frac{11}{9}, \frac{12}{9}, \ldots\right]$ $\begin{array}{llllll}\frac{1}{3} & \frac{2}{3} & 1 & 1 \frac{2}{9} & 1 \frac{3}{9} & 1 \frac{3}{9}\end{array}$	Individual trial, monitored, helped Written on BB or use enlarged copy master or OHP (or c) and d) done with the whole class) Discussion, reasoning, agreement, self-correction, praising c) Sequence of differences: - 1000, - 900, - 800, (- 700 $-600,-500),[-400,-300$, - 200, - 100, - $0,+100, \ldots$ d) Rule: $+\frac{1}{9}$ Ps might give other forms of some of the fractions (as shown)

BKK		Lesson Plan 69
Activity 5	Book 4, page 69 Q. 3 Let's have a calculation competition! When I tell you to start, do the calculation in your Ex. Bk, check the result and write it in your $P b$. You can draw a diagram if it will help you. Stand up when you have done it. Start . . . now! T waits until majority of class are standing before choosing one of the quickest Ps to come to BB to explain reasoning to class. Class agrees/disagrees. Who made a mistake? What was your mistake? Who did the same? etc. Ps correct their mistakes or complete the calculation. Repeat for the other calculations. Stand up if you had all 10 calculations correct (or 1,2 mistakes if nobody has them correct). Let's give them a round of applause! Solution: a) $4100+810+70+2400=4980+2400$ $=\underline{7380}$ b) $5210-2300=\underline{2910}$ c) 3 8 5 00 f) g) 2 sixths +3 sixths $=\underline{5 \text { sixths }} \quad$ or $\quad \frac{2}{6}+\frac{3}{6}=\frac{5}{6}$ h) 7 eighths -3 eighths $=\underline{4 \text { eighths }}$ or $\frac{7}{8}-\frac{3}{8}=\frac{4}{8}=\frac{1}{2}$ i) $\frac{5}{12}+\frac{1}{12}+\frac{3}{12}=\frac{9}{12}=\frac{3}{4}$ j) $\frac{9}{10}-\frac{3}{10}=\frac{6}{10}=\frac{3}{5}$	Notes Individual work, monitored (helped) Written on BB or OHT Deal with one part at a time unless class is very able. (Some Ps might not need to use their Ex. Bks.) In good humour! Reasoning, agreement, selfcorrecting, praising Ps explain calculations in detail or draw models on BB to show the fractions if there are problems. Use different Ps to explain each time. Stars, stickers, etc. awarded

\begin{tabular}{|c|c|c|}
\hline BKK \& \& Lesson Plan 70 \\
\hline \begin{tabular}{l}
Activity \\
2
\end{tabular} \& \begin{tabular}{l}
(Continued) \\
b) Deal with this inequality in a similar way, elicit ing that: \\
- other fractions can be included in the list too; \\
- 3 fourteenths should be included in the list, so the circle above it is coloured black. \\
BB:
\[
\frac{3}{14} \leq \square<\frac{9}{14}
\]
\(: \frac{3}{14}, \frac{4}{14}, \frac{5}{14}, \frac{6}{14}, \frac{7}{14}, \frac{8}{14}\) \\
(If only fourteenths are used)
\end{tabular} \& \begin{tabular}{l}
Notes \\
Discussion, reasoning, agreement, praising
\[
\text { BB: e.g. } \frac{6}{28} \leq \frac{17}{28}<\frac{18}{28}
\] \\
Ps suggest other possible fractions and show their rough position on the number line. \\
Discuss equivalent fractions (some given in the diagram).
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
Book 4, page 70 \\
Q. 1 Read: Write an equation and calculate the missing number in your exercise book. \\
Set a time limit. Ps read questions themselves and solve and check them in Ex. Bks. \\
Review at BB with whole class. (Ps could show each result on scrap paper or slates in unison on command. P responding correctly explains to those who did not.) Mistakes discussed and corrected. \\
Solution: (e.g. using a square for the unknown number) \\
a) We thought of a number. If we added 420 we would get 3150. Which number were we thinking of?
\[
\square+420=3150, \square=3150-420=\underline{2730}
\] \\
b) We thought of a number. If we subtracted 200 from it we would get 5002. Which number were we thinking of?
\[
\square-200=5002, \quad \square=5002+200=\underline{5202}
\] \\
c) We thought of a number. If we multiplied it by 7 we would get 203. Which number were we thinking of?
\(\times 7=203\)
\[
=203 \div 7=\underline{29}
\] \\
d) We thought of a number. If we divided it by 7 we would get 203. Which number were we thinking of?

$$
\div 7=203 \quad \square=203 \times 7=\underline{1421}
$$ \\

22 min

 \&

Individual work, monitored, helped \\
(Or as a whole class activity. P reads a question aloud, Ps solve it in Ex. Bks and show the result on T's command.) \\
Ps check by doing reverse operations. \\
Discussion, reasoning, selfcorrection, praising \\
Show details of calculations on BB if problems. e.g. \\
a)

$$
\begin{array}{|l|l|l|l|}
\hline 3 & 1 & 5 & 0 \\
- & 4 & 2 & 0 \\
\hline 2 & 7 & 3 & 0 \\
\hline
\end{array}
$$ \\

c) \\
d)
\end{tabular} \\

\hline 4 \& | Book 4, page 70 |
| :--- |
| Q. 2 Read: Fill in the missing numbers. |
| Set a time limit. Ps can do calculations in Ex.Bks. |
| Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who did it another way? etc. |
| Solution: |
| a) $438+\underline{562}=1000$ |
| b) $7400-4500=2900$ |
| c) $8200-\underline{5400}=2800$ |
| d) $\frac{3}{8}+\frac{4}{8}=\frac{7}{8}$ |
| e) $\frac{13}{15}-\frac{2}{15}=\frac{11}{15}$ |
| f) $1-\frac{3}{7}=\frac{4}{7}$ | \& | Individual work, monitored (helped) |
| :--- |
| Written on BB or use enlarged copy master or OHP |
| Reasoning, agreement, selfcorrecting, praising |
| Details of reasoning: |
| a) \square $=1000-438=\underline{562}$ |
| b) \square $=2900+4500$ $=\underline{7400}$ |
| c) \square $=8200-2800$ $=\underline{5400}$ etc. | \\

\hline
\end{tabular}

$B<\square$		Lesson Plan 70
Activity 5	Book 4, page 70 Q. 3 Read Fill in the missing numbers. Set a time limit. Ps do calculations in Ex. Bks and write only the results in Pbs. Review at BB with whole class. Ps come to BB or dicatate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations on BB if problems. Solution: a) $9 \times \underline{43}=387$ (as $387 \div 9=43$) b) $\underline{3483} \div 9=387$ (as $387 \times 9=3483$) c) $378 \div \underline{54}=7$ (as $378 \div 7=54$) d) $\frac{1}{3} \times 3=\frac{3}{3}(=1)$ (as $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1$) e) $\frac{4}{5} \div 2=\frac{2}{5}$ (as $\frac{2}{5} \times 2=\frac{4}{5}$) f) $\frac{5}{8} \div \underline{5}=\frac{1}{8} \quad$ (as $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8} \times 5=\frac{5}{8}$) 34 min	Notes Individual work, monitored, helped Written on BB or SB or OHT (Or deal with one row at a time and do d), e) and f) with the whole class) Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps do d), e) and f) without T's help. Details: e.g.
6	Book 4, page 70, Q. 4 a) Read: Complete the table if this is the rule. $B=2$ thirds of A Write the rule in a different way. Ps come to BB to choose a column and write the missing number, explaining reasoning. Class agrees/disagrees. T might need to help with the columns which have fractions. Draw a diagram to help Ps understand the relationship between A and B. Who can write the rule in a different way? Who agrees? Who can think of another way? etc. Check with values from the table. Solution: Rule: $B=\frac{2}{3}$ of A or $B=A \div 3 \times 2$, $A=3 \text { halves of } B \text { or } A=B \div 2 \times 3 \text { or } A=B+(B \div 2)$ b) Read: Find a rule and complete the table. Write the rule in different ways. Ask several Ps what they think the rule could be. Decide on one form in words. Ps come to BB to choose a column and write the missing number, explaining reasoning Class agrees/disagrees. Ps think of their own values for the last 3 columns. Who can write the rule in a mathematical way? Who agrees? Who can write it another way? Check with values from the table. Solution: Rule: $Y=X-\frac{3}{5}, \quad X=Y+\frac{3}{5}, \quad X-Y=\frac{3}{5}$	Whole class activity (or some items individually if Ps wish) Tables drawn on BB or use enlarged copy master or OHP BB: e.g. A \square B \square Reasoning, agreement, praising Discussion on the rule, agreement, checking, praising Discussion, agreement on the rule, e.g. 'Each number in the top row is three fifths more than the number in the bottom row'. Ps come to BB in pairs to write values for the last 3 columns. Class checks that they are correct. Extra praise if Ps notice that some fractions can be written as mixed numbers.

BK4	R: Mental and written calculations C: Review and practice. Whole numbers and fractions E: Problems. Quantities	$\begin{gathered} \text { Lesson Plan } \\ 71 \end{gathered}$
Activity 1	Rounding to nearest metre Who can tell me the units of length? ($\mathrm{km}, \mathrm{m}, \mathrm{cm}, \mathrm{mm}$) What is their relationship to each other? (BB) Let's round these lengths to the nearest whole metre. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/ disagrees. BB: a) $670 \mathrm{~cm} \approx(7 \mathrm{~m})$ b) $\quad 1515 \mathrm{~cm} \approx(15 \mathrm{~m})$ c) $850 \mathrm{~cm} \approx(9 \mathrm{~m})$ d) $6040 \mathrm{~cm} \approx(60 \mathrm{~m})$ e) $449 \mathrm{~cm} \approx(4 \mathrm{~m})$ f) $7100 \mathrm{~cm}=(71 \mathrm{~m})$ g) $5492 \mathrm{~mm} \approx(5 \mathrm{~m})$ h) $8920 \mathrm{~mm} \approx(9 \mathrm{~m})$ i) $26 \mathrm{~cm} \approx(0 \mathrm{~m})$ j) $1 \frac{1}{2} \mathrm{~m} \approx(2 \mathrm{~m})$	Notes Whole class activity Written on BB or SB or OHT BB: $1 \mathrm{~km}=1000 \mathrm{~m}$ $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ $1 \mathrm{~cm}=10 \mathrm{~mm}$ At a good pace Reasoning, agreement, praising Elicit that: values $<50 \mathrm{~cm}$ round down values $\geq 50 \mathrm{~cm}$ round $\underline{\text { up }}$ Feedback for T
2	Capacity What is capacity? (How much liquid a container can hold) Who can tell me the units of capacity? (litre, cl, ml) What is their relationship to one another? (BB) Which unit of capacity is missing from these sentences? Ps come to BB to write the missing units and to read the whole sentence aloud. Who agrees? Who thinks it should be another unit? Why? etc. BB: a) A large bucket can hold 12 .(litres). of water when it is full. b) 12 . (cl). . of water will fill a small glass. c) A tablespoon can hold 12 . (ml) . of water. \qquad 10 min \qquad	Whole class activity BB: $\begin{aligned} 1 \text { litre }=100 \mathrm{cl} & =1000 \mathrm{ml} \\ 1 \mathrm{cl} & =10 \mathrm{ml} \end{aligned}$ Written on BB or SB or OHT Agreement, praising (T could have such items to show to class.) Feedback for T
3	Rounding to nearest litre T says a capacity and writes it on the BB. Ps round it to the nearest whole litre and show on scrap paper or slates on command. Ps who answered correctly explain to those who did not. BB: a) $432 \mathrm{cl} \approx$ (4 litres) b) $\quad 350 \mathrm{cl} \approx$ (4 litres) c) $996 \mathrm{cl} \approx(10$ litres $)$ d) $2546 \mathrm{ml} \approx$ (3 litres) e) $1200 \mathrm{ml} \approx(1$ litre $)$ f) $2500 \mathrm{ml} \approx$ (3 litres) g) $25 \mathrm{cl} \approx(0$ litres $)$ h) $96 \mathrm{ml} \approx(0$ litres $)$ i) $760 \mathrm{ml} \approx(1$ litre $)$ j) $1 \frac{3}{4}$ litres $\approx(2$ litres $)$ 15 min	Whole class activity In unison Reasoning, agreement, praising Elicit that: values < 50 cl (or 500 ml) round down values $\geq 50 \mathrm{cl}$ (or 500 ml) round up Feedback for T

BTK	R: Mental and written calculations C: Review and practice: Whole numbers and fractions E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 72 \end{gathered}$
Activity 1	Factors Let's factorise these numbers and write them as a product of their prime factors. We can then use the prime factors to help us list all the factors of each number. Ps come to BB to draw the factor trees and write a multiplication. Class points out errors. Then the class dictates the factor pairs, using the prime factors to help them (see example in c) below). If Ps do not dictate the factors in order, T makes sure that they are written in order on the BB, either horizontally or vertically. BB: e.g.	Notes Whole class activity First elicit what a factor and a prime factor are. (A factor of a whole number divides into that number exactly, or multiplies another whole number to make that number. A prime factor is a factor which is a prime number, i.e. it has 2 factors, itself and 1.) Note 1 is not a prime number as it has only 1 factor, 1 . Ps could list the prime numbers orally at speed in order round class: $\begin{aligned} & 2,3,5,7,11,13,17,19,23 \\ & 29,31,37,41,43,47, \ldots \end{aligned}$ At a good pace Agreement, praising (Ps could use a calculator to check the factor pairs.)
2	Problem 1 Listen carefully, picture the story in your head and solve the problem in your Ex. Bks. Drawing a diagram might help you. Show me the answer when I say. I had a piece of ribbon which measured 3 halves of a metre. I cut 3 tenths of a metre from one end. What length of ribbon do I have left? Show me . . . now! (On scrap paper or slates) (120 cm) P who responded correctly comes to BB to show solution, explaining reasoning. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. BB: e.g. Had: 3 halves of a metre $=100 \mathrm{~cm} \div 2 \times 3=150 \mathrm{~cm}$ Cut off: 3 tenths of a metre $=100 \mathrm{~cm} \div 10 \times 3=30 \mathrm{~cm}$ Had left: $150 \mathrm{~cm}-30 \mathrm{~cm}=\underline{120 \mathrm{~cm}}$ or $\frac{3}{2}-\frac{3}{10}=\frac{15}{10}-\frac{3}{10}=\frac{12}{10}=1 \frac{2}{10}(\mathrm{~m})=\underline{120 \mathrm{~cm}}$	Individual work, monitored, helped (or whole class activity) T repeats problem slowly and writes fractions on BB. Had: $\frac{3}{2} \mathrm{~m} \quad$ Cut off: $\frac{3}{10} \mathrm{~m}$ Reasoning, agreement, selfcorrection, praising Answer: I had 120 cm left.

BK		Lesson Plan 72
Activity 7	Book 4, page 72 Q. 3 a) Read: How many small squares are needed to cover this rectangle? Stand up when you know it! First P to stand gives the total and explains how he got it so quickly (e.g. $4 \times 9=\underline{36}$) b) Read: Draw a rectangle which needs i) half ii) 2 thirds iii) 3 quarters iv) 5 ninths of this number of small squares to cover it. Ps calculate first (in Ex. Bks or on slates if necessary), then draw the rectangle and write the number of squares inside it. Review at BB with whole class. Ps dicatate the number of squares and come to BB to draw a rectangle (or T has a solution already prepared and uncovers each rectangle as it is dealt with). Elicit that the number of squares is its area. Solution: a) 36 small squares b) iv) $\frac{5}{9}$ $36 \div 2=18$ $36 \div 3 \times 2=24$ $36 \div 4 \times 3=27$ $36 \div 9 \times 5=20$ What fraction of the 36 small squares could make a larger square?	Notes Individual work, monitored, helped Grids drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Elicit other possible rectangles e.g. i) $6 \times 3,18 \times 1$ ii) $8 \times 3,2 \times 12,24 \times 1$ iii) 27×1 iv) $2 \times 10,20 \times 1$ but some cannot fit on the given grids. 1 quarter, 1 ninth, 4 ninths $(3 \times 3) \quad(2 \times 2)(4 \times 4)$
8	Book 4, page 72, Q. 4 Read: Complete the table to show different parts of the total number of walnuts. T could have some real walnuts to show to class. How are they grown? Where do they come from? etc. Who has never tasted a walnut? (T cracks one open and lets such Ps taste the kernel.) How many walnuts are in the picture altogeher? $(3 \times 4=\underline{12})$ Let's complete the table. Ps come to BB to choose a column and fill in the missing number, explaining reasoning. Class agrees/disagrees. Ps complete the table in their Pbs too. Solution:	Whole class activity (or individual work if Ps wish) Drawn on BB or use enlarged copy master or OHP [e.g.Walnuts grow on trees in America, SE Europe and Asia; the wood from the trunk is used to make furniture] At a good pace Reasoning, agreement, praising
Extension	If these 12 walnuts were not the whole amount but were the fractions shown in the table, what would the whole amount be? T points to each fraction in turn and class shouts out the whole amount. BB:	Whole class activity Or Ps come to BB to fill in table, explaining reasoning. At speed Agreement, praising Ps point out equivalent fractions where relevant.

BK4	R: Whole numbers C: Fractions and decimals. Decimal notation E: Place value analysis	Lesson Plan 73
Activity	Place values What do the columns in the place-value table mean? T writes the actual values above the letters, as dictated by Ps. (Tth: 10000 , etc.) Let's write these numbers in the place value table. T does part a), with help of class if possible, as a model for Ps to follow. Ps come to BB to do the rest, explaining reasoning. Class points out errors. BB: a) $8076=(8 \times 1000+0 \times 100+7 \times 10+6 \times 1)$ b) $3405=(3 \times 1000+4 \times 100+0 \times 10+5 \times 1)$ c) $10007=(1 \times 10000+0 \times 1000+0 \times 100+0 \times 10+7 \times 1)$ d) $2220=(2 \times 1000+2 \times 100+2 \times 10+0 \times 1)$ T points to, e.g. the '7' in 8076. What is its digit value? (7) What is its place value? (7T) What is its real value? (70) Ps choose other digits and give the 3 values. Class agrees/disagrees.	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T
2	Units of length Elicit the relationship between cm and mm (m and cm). (BB) Lets write these lengths in the tables. Ps come to BB to write the lengths in the correct columns in the table and then to write them in a different form. Class points out errors.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising [Preparation for : a) 1 decimal place b) 2 decimal places] T (Ps) shows some of the lengths in real life. Ps think of other lengths to put in each table.
3	Missing items Let's fill in the missing items. Ps come to BB or dictate to T, explaining reasoning. Class points out errors. BB: a) i) $1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$ ii) $3 \mathrm{~mm}=\frac{3}{10} \mathrm{~cm}$ iii) $12 \mathrm{~mm}=1 \mathrm{~cm} 2 \mathrm{~mm}=\frac{12}{10} \mathrm{~cm}=1 \frac{2}{10} \mathrm{~cm}$ b) i) $1 \mathrm{~cm}=\frac{1}{100} \mathrm{~m}$ ii) $5 \mathrm{~cm}=\frac{5}{100} \mathrm{~m}$ iii) $62 \mathrm{~cm}=\frac{62}{100} \mathrm{~m}$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Agreement, praising Class says each equation loudly in unison after it has been completed.

BKK							
Activity							
5	Book 4, page 73, Q. 1						
	Read: Change the quantities to the units required and write them in the table. For each part, first elicit what the Units column means, then what the other columns mean. [e.g. in a), the Units column shows single cm , the Tens column shows groups of 10 cm , etc.] T could do the first row in each part as a model for Ps to follow. Ps come to BB to fill in the other rows, explaining reasoning. Class agrees/disagrees. Ps complete the table in Pbs too. Solution:						
	(Done later - see below)	$\begin{array}{\|c\|} \hline \mathrm{H} \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathrm{T} \\ 10 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{U} \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{t} \\ \frac{1}{10} \\ \hline \end{array}$	h	
	a) $35 \mathrm{~cm} 6 \mathrm{~mm}=356 \mathrm{~mm}(=35.6 \mathrm{~cm})$		3	5	6		(cm)
	$1 \mathrm{~m} 20 \mathrm{~cm} \mathrm{4} \mathrm{mm}=1204 \mathrm{~mm}$ ($=120.4 \mathrm{~cm}$)	1	2	0	4		
	$3208 \mathrm{~mm}=3 \mathrm{~m} 20 \mathrm{~cm} 8 \mathrm{~mm}(=320.8 \mathrm{~cm})$	3	2	0	8		
	$\text { b) } \begin{aligned} & 1 \mathrm{~m} \mathrm{6} \mathrm{~cm}=163 \mathrm{~cm}(=1.63 \mathrm{~m}) \\ & 28 \mathrm{~m} \mathrm{40cm=2840cm(=28.40m)} \\ & 605 \mathrm{~cm}=6 \mathrm{~m} 5 \mathrm{~cm}(=6.05 \mathrm{~m}) \end{aligned}$			1	6	3	(m)
			2	8	4	0	
				6	0	5	
	$\text { c) } \begin{aligned} & £ 870 \mathrm{p}=870 \mathrm{p}(=£ 8.70) \\ & £ 415 \mathrm{p}=4105 \mathrm{p}(=£ 41.05) \\ & £ 120 \mathrm{15} \mathrm{p}=12015 \mathrm{p}(=£ 120.15) \\ & 3648 \mathrm{p}=£ 3648 \mathrm{p}(=£ 36.48) \end{aligned}$			8	7	0	
			4	1	0	5	(£)
		1	2	0	1	5	
			3	6	4	8	

Let's think about what the numbers in the table really mean! T points to 1 st row. What does this number mean? (35 whole cm and 6 tenths of a cm) Who can write it as a mixed number? P comes to BB.

We could also write it as a decimal number. Who knows how to do it? If no P knows, T writes it on BB . (35.6)

We have replaced this thick line in the table (T points) with a dot. We call this dot the decimal point. It separates the whole units from the parts of a unit.

Who knows how to read this decimal number? T reads it if no P knows. ('Thirty-five point six') Let's all read it together. (In unison) T writes another decimal number on BB (e.g. 1.63). Let's all read it together. (one point six three) Who can tell us what it means? What would it be as a mixed number (i.e. a whole number and a fraction)?

Let's write the other quantities in the table as decimal numbers. T points to each in turn and chooses a P to explain what it means, then another to come to the BB to write it as a decimal. Class reads it in unison.

Whole class discussion
BB: Mixed Decimal number number

$$
35 \frac{6}{10}=35.6
$$

decimal point

BB: $1.63=1+\frac{6}{10}+\frac{3}{100}$

$$
=1 \frac{63}{100}
$$

T helps where necessary, e.g. 'twenty-eight point four zero' 'forty-one point zero five'

Individual work, monitored, helped
Table drawn on BB or use enlarged copy master or OHP
Reasoning, agreement, selfcorrection, praising

Whole class activity
At a good pace
Praising, encouragement only

BKK		Lesson Plan 73
Activity 6	(Continued) Solution: a) $5 \times 10+3 \times 1+2 \times \frac{1}{10}$ b) $3 \times 100+4 \times 10+7 \times 1+5 \times \frac{1}{10}$ c) $6 \times 1+8 \times \frac{1}{10}+4 \times \frac{1}{100}$ d) $9 \times \frac{1}{10}+2 \times \frac{1}{100}$ e) $6 \times 10+0 \times 1+3 \times \frac{1}{10}$	Notes Thelps where necessary. e.g. c) 6.84 is read as 'six point eight four' d) 92 hundredths $=\underline{0} .92$ If there are no whole units in a decimal number, we put a zero in the units column and read the decimal as 'zero point nine two' e) 60.3 is 60 whole units and 3 tenths of a unit and is read as 'sixty point 3 '
7	Book 4, page 73 Q. 3 Read: Write the quantities in different forms in your exercise book. Deal with one row at a time. Do part i) on BB with the whole class first (with help of Ps) as a model for Ps to follow. Rest done as individual work. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. (Accept any correct form.) a) i) $£ 4.99=499 \mathrm{p}=£ 499 \mathrm{p}=£ 4+£ \frac{99}{100}=£ 4 \frac{99}{100}$ ii) $£ 41.05=£ 415 \mathrm{p}=£ 41+£ \frac{5}{100}=£ 41 \frac{5}{100}\left(=£ 41 \frac{1}{20}\right)$ iii) $£ 204.50=£ 20450 \mathrm{p}=£ 204+£ \frac{50}{100}=£ 204 \frac{50}{100} \rightarrow$ b) i) $4.3 \mathrm{~cm}=43 \mathrm{~mm}=4 \mathrm{~cm} 3 \mathrm{~mm}=4 \frac{3}{10} \mathrm{~cm}$ ii) $63.5 \mathrm{~cm}=635 \mathrm{~mm}=63 \mathrm{~cm} 5 \mathrm{~mm}=63 \frac{5}{10} \mathrm{~cm}$ iii) $8.24 \mathrm{~m}=824 \mathrm{~cm}=8 \mathrm{~m} \mathrm{24} \mathrm{cm}=8 \frac{24}{100} \mathrm{~m}$ iv) $57.06 \mathrm{~m}=5706 \mathrm{~cm}=57 \mathrm{~m} 6 \mathrm{~cm}=57 \frac{6}{100} \mathrm{~m}$	Whole class activity to start, then individual work, monitored, helped (Or continue as a whole class activity if Ps are unsure) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising If problems, show in a place-value table. Extra praise if Ps think of the numbers in brackets $\begin{aligned} & \left(=£ 204 \frac{1}{2}\right) \\ & \left(=63 \frac{1}{2} \mathrm{~cm}\right) \\ & {\left[=\left(8+\frac{2}{10}+\frac{4}{100}\right) \mathrm{m}\right]} \end{aligned}$ Feedback for T
8	Pb4b, page 73 Q. 4 a) Read: Draw these lines with a ruler in your exercise book and label them. Remind Ps how to draw and measure lengths accurately. Set a time limit. When Ps have drawn the lines, ask them to give the lengths in different forms. T writes on BB. b) Read: Measure the length of these line segments and write it in different forms. Set a time limit.. Review at BB with whole class. Ps come to BB or dictate to T . Class agrees/disagrees.	Individual work, monitored, (helped) corrected Agreement, praising e.g. $87 \mathrm{~mm}=8 \mathrm{~cm} 7 \mathrm{~mm}=$ $8.7 \mathrm{~cm}=8$ and 7 tenths cm Agreement, self-correction, praising, i) $43 \mathrm{~mm}=4.3 \mathrm{~cm}$, etc. ii) $118 \mathrm{~mm}=11.8 \mathrm{~cm}$, etc.

BTK	R: Whole numbers. Calculations C: Fractions and decimals E: Measures. Number line	$\begin{gathered} \text { Lesson Plan } \\ 74 \end{gathered}$
Activity 1	Number line Start with a number line which has only 0 and 1 labelled. What does each 'tick' show? (tenths, because the unit is divided into 10 equal parts) T labels the first 4 ticks with decimals above the line and fractions below it. Who can label the next tick? Ps comes to BB in pairs, one to say and write the next fraction and the other the next decimal. Class agrees/ disagrees. Ps at BB choose the next pair of Ps. Discuss simpler equivalent fractions and mixed numbers as appropriate. 8 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Remind Ps that, e.g. . 1 is always written as 0.1 and is read as 'zero point 1' Elicit that it means no whole units +1 tenth of a unit. At a good pace Agreement, praising $\mathrm{T}(\mathrm{P})$ points to a fraction or a decimal and class reads it aloud in unison. Praising, encouragement only
2	Sequences Let's continue the sequences. a) Its first term is 0.7 and it is increasing by 0.2 . Ps dictate the terms and T lists them on the BB . Class points out errors. BB: $\quad 0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5,2.7, \ldots$ Let's show the sequence as jumps along the number line. P comes to BB to mark and label the starting number (0.7) and explain its meaning. (No whole units +7 tenths of a unit) Other Ps draw the jumps, and label and say the numbers landed on. BB: b) Its first term is 12.5 and it is decreasing by 0.3 . [As for part a)]. BB: $12.5,12.2,11.9,11.6,11.3,11,10.7,10.4,10.1,9.8, \ldots$	Whole class activity Number lines drawn on BB or use enlarged copy master or OHP Agreement, praising Or Ps show the jumps at the BB and class shouts out the numbers landed on in unison. Elicit that: - $0.0=0,1.0=1$, $2.0=2,11.0=11$, etc. - If a sequence is increasing (decreasing), it is moving to the right (left) along the number line.
 Extension	Place-value table What do the letters in the table really mean? T writes the values dictated by Ps below the letters in the column headings. What does the thick line mean? (It separates the whole units from the parts of a unit.) Let's write the numbers in the table in a different way. T starts and Ps come to BB to continue the pattern, explaining reasoning. BB: Class agrees/disagrees. $\begin{aligned} & 2 \times 100+0 \times 10+8 \times 1=\underline{208} \\ & 2 \times 10+0 \times 1+8 \times \frac{1}{10}=20 \frac{8}{10}=\underline{20.8} \\ & 2 \times 1+0 \times \frac{1}{10}+8 \times \frac{1}{100}=2+\frac{8}{100}=2 \frac{8}{100}=\underline{2.08} \\ & 5 \times 10+4 \times 1+3 \times \frac{1}{10}+6 \times \frac{1}{100}=54+\frac{3}{10}+\frac{6}{100}=54+\frac{36}{100}=\underline{54.36} \\ & 7 \times 1+9 \times \frac{1}{10}+0 \times \frac{1}{100}=7+\frac{9}{10}=7 \frac{9}{10}=\underline{7.9} \end{aligned}$ Ps could think of their own numbers to add to the table.	Whole class activity Table drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Point out that: $7.90=7.9$ 2.08 is read as 'two point zero eight' T points to a number in the table and chooses Ps to read it as a mixed number or as a decimal.

BTK		Lesson Plan 74
Activity 7	Book 4, page 74 Q. 2 Read: Complete the table and the equations. Follow the pattern. If some Ps are unsure, ask a P who understands to explain the task using the row already completed. Set a time limit. Ps finished quickly can be given an extra number to deal with. (e.g. 98.30) Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: (Items inside boxes were missing.) $\begin{array}{r} 2 \times 10+5 \times 1+1 \times \frac{1}{10}+8 \times \frac{1}{100}=25+\frac{18}{100}=25.18 \\ \begin{array}{r} 1 \times 100+0 \times 10+4 \times 1+3 \times \frac{1}{10}=104+\frac{3}{10}=104.3 \\ 6 \times 1+5 \times \frac{1}{10}+7 \times \frac{1}{100}=6+\frac{57}{100}=6.57 \\ 8 \times 100+0 \times 10+3 \times 1+4 \times \frac{1}{10}= \\ 203+\frac{4}{10}=803.4 \\ 2 \times 10+6 \times 1+7 \times \frac{1}{10}=26+\frac{7}{10}=26.7 \\ 1 \times 10+0 \times 1+0 \times \frac{1}{10}+5 \times \frac{1}{100}=10+\frac{5}{100}=10.05 \\ 9 \times 10+8 \times 1+3 \times \frac{1}{10}+0 \times \frac{1}{100}=98+\frac{30}{100}=98.30 \\ \text { or } \end{array}=98 \frac{3}{10}=98.3 \end{array}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiaton by time limit Reasoning, agreement, selfcorrection, praising Agree that $98.30=98.3$ T covers up (or rubs out) the details on the BB, points to a number in the table and chooses Ps to read it as a decimal and as a mixed number.
8	Book 4, page 74 Q. 4 Read: Convert the quantities. Follow the pattern. Fill in the missing numbers. What does convert mean? (Change to a different unit.) If Ps are unsure what to do, T (or P who understands) explains at BB using the completed rows. Set a time limit. Review at BB with whole class. Ps dictate to T or come to BB, explaining reasoning. Class agrees/disagrees. Mistake discussed and corrected. Solution: $\begin{aligned} \text { a) } 5 \mathrm{~cm} 8 \mathrm{~mm} & =5 \frac{8}{10} \mathrm{~cm}=5.8 \mathrm{~cm} & (=58 \mathrm{~mm}) \\ 36 \mathrm{~cm} \mathrm{5mm} & =\left(36 \frac{5}{10} \mathrm{~cm}=36.5 \mathrm{~cm}\right) & (=365 \mathrm{~mm}) \end{aligned}$ b) $8 \mathrm{~m} 63 \mathrm{~cm}=863 \mathrm{~cm}=8 \frac{63}{100} \mathrm{~m}=8.63 \mathrm{~m}$ $\begin{aligned} & 1 \mathrm{~m} 24 \mathrm{~cm}=\left(124 \mathrm{~cm}=1 \frac{24}{100} \mathrm{~m}=1.24 \mathrm{~m}\right) \\ & 25 \mathrm{~m} 70 \mathrm{~cm}=\left(2570 \mathrm{~cm}=25 \frac{70}{100} \mathrm{~m}=25.70 \mathrm{~m}=25.7 \mathrm{~m}\right) \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT BB: $1 \mathrm{~cm}=10 \mathrm{~mm}$ $1 \mathrm{~m}=100 \mathrm{~cm}$ Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising
Extensions	1. Round the quantities to the nearest whole cm or m as appropriate. 2. T says an amount of money in $£ s$ and pence. Ps convert the amount to $£ \mathrm{~s}$, giving a mixed number or a decimal. $\begin{array}{lll} \text { e.g. } & £ 485 \mathrm{p} & (=£ 4 \text { and } 85 \text { hundredths }=£ 4.85) \\ & £ 105 \mathrm{p} & (=£ 10 \text { and } 5 \text { hundredths }=£ 10.05) \\ & £ 1050 \mathrm{p} & (=£ 10 \text { and } 50 \text { hundredths }=£ 10.50=£ 10.5 \end{array}$	Whole class activity, done orally round class $\begin{aligned} & \text { e.g. } 5.8 \mathrm{~cm} \approx 6 \mathrm{~cm} \\ & 1.24 \mathrm{~m} \approx 1 \mathrm{~m} \\ & \left(=£ 10 \frac{1}{2}\right) \end{aligned}$

BKK	R: Mental calculation C: Addition E: Numbers up to 2000	$\begin{gathered} \text { Lesson Plan } \\ 75 \end{gathered}$
Activity 1	Ordering numbers Let's put these numbers in increasing order. Ps come to BB to write the numbers again, crossing out each one from the original list as it is dealt with (or to rearrange the cards). Class points out errors. BB: a) $2,4301,529,0,38,3946,79$ $\text { Ps: } 0<2<38<79<529<3946<4301$ b) $\begin{aligned} & \frac{5}{20}, \frac{17}{20}, \frac{30}{20}, \frac{1}{20}, \frac{9}{20}, \frac{0}{20}, \frac{21}{20} \\ & \text { Ps: } \frac{0}{20}<\frac{1}{20}<\frac{5}{20}<\frac{9}{20}<\frac{17}{20}<\frac{21}{20}<\frac{30}{20} \\ & 0 \\ & \frac{1}{4} \end{aligned}$ c) $0.7,2.1,5.0,0.01,0.25,5,2,3,0.1$ $\text { Ps: } 0.01<0.1<0.25<0.7<2<2.1<3<5=0.5$	Notes Whole class activity Numbers written on BB or on number cards stuck to BB. At a good pace Agreement, praising If problems, show on the relevant segment of the number line drawn on BB. In b) Ps give equivalent fractions where relevant and point out which fractions are less than (more than) 1 . In c), elicit that, e.g. $2=2.0$, $0.01=1$ hundredth, etc.
2	Equal numbers Let's join the equal numbers in a chain. Ps come to BB to draw joining lines, explaining reasoning. Agree that if the numerator and denominator of a fraction are divided (multiplied) by the same number, the value of the fraction remains the same. BB:	Whole class activity Written on BB (or on number cards stuck to BB) or use enlarged copy master or OHP Use a different colour for each chain. At a good pace Reasoning, agreement, praising Show the equal numbers on a prepared number line (as opposite) or use other models. Ps think of true statements about the numbers, e.g. $\begin{gathered} 0.20<0.25<0.30 \\ 0.2<0.25<0.3 \\ \frac{1}{4} \text { is half of } \frac{1}{2} \end{gathered}$ 0.25 is half of 0.50 , etc.)
3	Comparison Which is more? How much more? How can we show it? How can we write it? Ps suggest different ways (might include drawing a diagram). a) $\frac{3}{10}$ and $0.4 \quad$ e.g. $\frac{3}{10} \underset{\frac{1}{10}}{<} \frac{4}{10}$ or $0.3<0.4$ so $\frac{3}{10}<0.4$ b) $\frac{27}{100}$ and 0.31 e.g. $\frac{27}{100}<\frac{31}{\frac{4}{100}} \frac{3}{100}$ or $0.27<0.31$ so $\frac{27}{100}<0.31$ c) $\frac{1}{2}$ and $\frac{2}{5} \quad$ e.g. $\frac{5}{10}>\frac{4}{\frac{1}{10}} \frac{\text { so } \quad \frac{1}{2}>\frac{2}{5} \quad \text { etc. }}{\text {. }}$	Whole class activity Written on BB or SB or OHT T gives hints if Ps are stuck. Discussion, reasoning, agreement, praising BB: e.g. b)

BKK		Lesson Plan 75
Activity 4	Problem Listen carefully, write the data in your Ex. Bks. and think how you would solve it. Bob Bunny ate 2 fifths of 2 kg of carrots and Sue Bunny ate 0.8 of 1 kg of carrots. Who ate more carrots? How much more? A, how would you solve it. Who agrees? Who would do it another way? etc. Draw a diagram if Ps do not suggest it. BB: e.g. Bob: $\frac{2}{5}$ of $2 \mathrm{~kg}=2000 \mathrm{~g} \div 5 \times 2=400 \mathrm{~g} \times 2=\underline{800 \mathrm{~g}}$ Sue: $\quad 0.8$ of $1 \mathrm{~kg}=\frac{8}{10}$ of $1000 \mathrm{~g}=1000 \mathrm{~g} \div 10 \times 8$ $=100 \mathrm{~g} \times 8=\underline{800 \mathrm{~g}}$ Answer: They both ate 800 g of carrots.	Notes Whole class activity T repeats slowly to give Ps time to think. Reasoning, agreement, praising BB: e.g. $\frac{2}{5}$ of $2 \mathrm{~kg}=\frac{4}{10}$ of 2 kg \square $\} 1 \mathrm{~kg}$ 0.8 of $1 \mathrm{~kg}=\frac{8}{10}$ of 1 kg
5	Book 4, page 75 Q. 1 Read: Fill in the missing numbers and write the quantities in the place-value table using the units given. Who can explain what the thick vertical line in the table means? (It separates the whole units from the parts of a unit.) What other symbol does the same thing? (The decimal point in a decimal number) Set a time limit. Review at BB with the whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $15 \mathrm{~m}+\frac{1}{10} \mathrm{~m}+\frac{8}{100} \mathrm{~m}=$ \square 15 m 18 \square cm b) $300.45 \mathrm{~m}=$ \square 300 \square cm c) $7 \frac{8}{100}$ litres $=$ \square 7 litres \square cl d) $£ 106.80=£$ \square 106 \square p e) $28.5 \mathrm{~kg}=$ \square kg \square g	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Revise relationship between the units of measure if necessary. BB: $1 \mathrm{~m}=100 \mathrm{~cm}$ 1 litre $=100 \mathrm{cl}$ $£ 1=100 \mathrm{p}$ $1 \mathrm{~kg}=1000 \mathrm{~g}$ T points to a number in the table and Ps read it as a decimal or a mixed number.
6	Book 4, page 75 Q. 2 Read: Write the numbers in increasing order in your exercise book. Set a time limit. Deal with one part at a time if the class is not very able (or do part c) with the whole class). Review at BB with whole class. Ps come to BB or dictate to T. Class points out errors. Mistakes discussed and corrected. Show on the relevant segment of the number line if problems. Solution: a) $3<71<452<460<683<2009<2015<9999$ b) $\frac{1}{15}<\frac{3}{15}<\frac{4}{15}<\frac{11}{15}<\frac{14}{15}<\frac{16}{15}<\frac{20}{15}<\frac{30}{15}$ c) $0.08<0.3<0.32<0.4<3.1<6.9<7.0$ (= 7)	Individual work monitored, helped Written on BB or SB or OHT Reasoning, agreement, self-correction, praising BB: e.g. Ps suggest what else could be done with the numbers, e.g. a) rounding (to $10,100,1000$) b) give equivalent fractions and mixed numbers c) give as fractions

BKK		Lesson Plan 75
Activity 7	Book 4, page 75 Q. 3 Read: Compare the pairs of numbers and fill in the missing signs. Use the diagrams to help you. What have the diagrams to do with the fractions? Elicit that: - the strip shows 1 unit divided into tenths, - the 10×10 square shows 1 unit divided into hundredths. Set a time limit. Review at BB with whole class. Ps come to BB or dictate inequality to T. Class agrees/disagrees. Mistakes discussed and corrected. Convert fractions to decimals or vice versa as a check. Show on relevant diagrams if problems. Solution: a) $\frac{2}{10}<\frac{7}{10}$, $\frac{8}{10}<0.9$ $0.6>0.3$ b) $\frac{15}{100}<\frac{72}{100}$, $\frac{43}{100}<0.70$, $0.52>0.49$ c) $0.04<0.1$, $\frac{2}{10}>\frac{18}{100}$, $0.27<0.3$ d) $\frac{1}{5}=0.2$, $\frac{2}{5}>0.3$, $\frac{3}{10}<0.6$ e) $\frac{1}{5}>\frac{17}{100}$, $\frac{3}{10}<0.51$, $\frac{78}{100}>0.53$	Notes Individual work monitored, helped [or parts d) and e) done with the whole class] Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, checking, self-correction, praising BB: e.g. a) $0.9=\frac{9}{10}$ b) $\frac{43}{100}=0.43$ c) $\frac{4}{100}<\frac{10}{100}, \frac{2}{10}=\frac{20}{100}$ d) $\frac{1}{5}=\frac{2}{10}=0.2$ e) $\frac{1}{5}=\frac{20}{100}, \frac{78}{100}=0.78$, etc.
8	Book 4, page 75, Q. 4 Read: Calculate the quantities and compare each pair. Write $<.>$ or $=$ in the boxes . Ps come to BB to work out LHS and RHS of inequality, explaining reasoning. Class agrees/disagrees or suggests an easier way of calculating. e.g. in c): $0.5=\frac{5}{10}=\frac{1}{2}$; in d): $0.25=\frac{25}{100}=\frac{5}{20}=\frac{1}{4}$ Which is more? How much more? Ps come to BB to write missing signs and differences. Thelps where necessary. Solution: e.g. a) $\quad \frac{1}{5}$ of $450 \mathrm{~m}=450 \mathrm{~m} \div 5$ $<$ $=\underline{90 \mathrm{~m}}$ $\begin{aligned} 0.28 \text { of } 1 \mathrm{~km} & =1000 \mathrm{~m} \div 100 \times 28 \\ & =10 \mathrm{~m} \times 28=\underline{280 \mathrm{~m}} \end{aligned}$ b) $\begin{aligned} 0.6 \text { of } 150 \text { litres } & =150 \text { litres } \div 10 \times 6 \quad \square \\ & =15 \text { litres } \times 6 \quad \frac{7}{10} \\ & =\underline{90 \text { litres }} \end{aligned}$ c) $\frac{1}{4}$ of $28 \mathrm{~kg}=28 \mathrm{~kg} \div 4=\underline{7 \mathrm{~kg}}$ \square 0.5 of $14 \mathrm{~kg}=14 \mathrm{~kg} \div 2=\underline{7 \mathrm{~kg}}$ d) 0.25 of $£ 220=£ 220 \div 4=\underline{£ 55}$ $<$ or $£ 220 \div 100 \times 25$ $\frac{3}{4}$ $\frac{3}{4}$ of $£ 90=£ 90 \div 4 \times 3$ $=220 \mathrm{p} \times 25=5500 \mathrm{p}=\underline{£ 55}$ $£ 12.50$ $=£ 22.50 \times 3$ $=£ 66+£ 1.50=\underline{£ 67.50}$	Whole class activity (or a) and b) individually if Ps wish) Written on BBor use enlarged copy master or OHP Discussion, reasoning, agreement, (self-correcting), praising, encouragement only Extra praise if Ps think of easier ways to calculate, as shown in solution and below. e.g. $\text { d) } \begin{aligned} 220 \times 25 & =110 \times 50 \\ =1100 & \times 5=\underline{5500}(\mathrm{p}) \\ £ 90 \div 4 & =£ 90 \div 2 \div 2 \\ & =£ 45 \div 2 \\ & =£ 22 \text { and a half } \\ & =\underline{£ 22.50} \end{aligned}$ Feedback for T

BKK	R: Calculations C: Fractions and decimals E: Quantities. Word problems	$\begin{gathered} \text { Lesson Plan } \\ 76 \end{gathered}$
Activity 1	Fractions and decimals Let's convert (change) the fractions to decimals and the decimals to fractions. Ps come to BB or dictate what T should write. Class agrees/disagrees. Use a model if necessary (e.g. diagram on BB or coloured multilink cubes) BB: a) $\frac{1}{2}=(0.5), \frac{2}{2}=(1), \frac{3}{2}=(1.5), \frac{4}{2}=(2), \frac{5}{2}=(2.5)$, etc. b) $\begin{aligned} & \frac{1}{4}=(0.25), \frac{2}{4}=(0.5), \frac{3}{4}=(0.75), \frac{4}{4}=(1) \\ & \frac{5}{4}=(1.25), \\ & \frac{6}{4}=(1.5), \frac{7}{4}=(1.75), \frac{8}{4}=(2), \text { etc. } \end{aligned}$ c) $\begin{aligned} & \frac{1}{5}=(0.2), \frac{2}{5}=(0.4), \frac{3}{5}=(0.6), \frac{4}{5}=(0.8), \frac{5}{5}=(1) \\ & \frac{6}{5}=(1.2), \frac{7}{5}=(1.4), \frac{8}{5}=(1.6), \frac{9}{5}=(1.8), \frac{10}{5}=(2), \text { etc. } \end{aligned}$ d) $\begin{aligned} & 0.3=\left(\frac{3}{10}\right), 0.4=\left(\frac{4}{10}=\frac{2}{5}\right), 0.5=\left(\frac{5}{10}=\frac{1}{2}\right), \\ & 0.6=\left(\frac{6}{10}=\frac{3}{5}\right), \quad 1.1=\left(\frac{11}{10}=1 \frac{1}{10}\right), \quad 4.5=\left(\frac{45}{10}=4 \frac{5}{10}=4 \frac{1}{2}\right) \end{aligned}$ e) $0.10=\left(\frac{10}{100}=\frac{1}{10}\right), 0.60=\left(\frac{60}{100}=\frac{6}{10}=\frac{3}{5}\right), 0.31=\left(\frac{31}{100}\right)$ $2.40=\left(2 \frac{40}{100}=2 \frac{4}{10}=2 \frac{2}{5}\right), 0.25=\left(\frac{25}{100}=\frac{5}{20}=\frac{1}{4}\right)$	Notes Whole class activity Written on BB or SB (built up gradually) Agreement, praising BB: e.g. $\frac{5}{2}=2.5$ Note the connections, e.g. Feedback for T
2	Quantities Let's convert these quantities to other units of measure. Ps come to BB or dictate to T. Class agrees/disagrees. BB: e.g. a) $\begin{array}{ll} \frac{1}{2} \text { of a } \mathrm{km}=\underline{500 \mathrm{~m}} & \frac{1}{3} \text { of an hour }=\underline{20 \mathrm{minutes}} \\ \frac{1}{5} \text { of a litre }=\underline{20 \mathrm{cl}} & \frac{1}{10} \text { of a } \mathrm{kg}=\underline{100 \mathrm{~g}} \end{array}$ b) 0.5 of a metre $=\underline{50 \mathrm{~cm}}(=\underline{500 \mathrm{~mm}}) \quad 0.25$ of a $\mathrm{kg}=\underline{250 \mathrm{~g}}$ 0.2 of a litre $=\underline{20 \mathrm{cl}}(=\underline{200 \mathrm{ml}})$ c) $\frac{3}{4}$ of a $\mathrm{m}=\underline{75 \mathrm{~cm}}\left(=\underline{750 \mathrm{~mm})} \quad \frac{1}{5}\right.$ of an hour $=\underline{12 \text { minutes }}$ $\frac{1}{10}$ of an hour $=\underline{6 \text { minutes }}$ $\begin{aligned} 1 \frac{1}{4} \text { hours } & =(60+15) \text { minutes } \\ & =75 \text { minutes } \end{aligned}$ d) 0.2 of an hour $=12$ minutes $4.7 \mathrm{~kg}=4700 \mathrm{~g}$ $\begin{aligned} 1.37 \mathrm{~m} & =\underline{137 \mathrm{~cm}}(=\underline{1370 \mathrm{~mm}}) \\ 3.5 \text { hours } & =(180+30) \text { minutes } \\ & =\underline{210 \text { minutes }} \end{aligned}$	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Reasoning: e.g. $\begin{aligned} & \frac{1}{3} \text { of an hour }=\frac{1}{3} \text { of } 60 \mathrm{~min} \\ & =60 \mathrm{~min} \div 3=\underline{20 \mathrm{~min}} . \end{aligned}$ $\frac{3}{4}$ of a $\mathrm{m}=\frac{3}{4}$ of 100 cm $=100 \mathrm{~cm} \div 4 \times 3$ $=25 \mathrm{~cm} \times 3=75 \mathrm{~cm}$ etc.

$3 K 4$		Lesson Plan 76
Activity 4	Book 4, page 76 Q. 1 Read: Convert the fractions to decimals and the decimals to fractions. Deal with one row at a time. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $\frac{1}{2}=\underline{0.5}$ $\frac{2}{2}=\underline{1} \quad \frac{5}{2}=\underline{2.5}$ $6 \frac{1}{2}=\underline{6.5} \frac{1=\frac{10}{10}}{\square \cdot \operatorname{lin}}$ b) $0.1=\frac{1}{10} \quad 0.2=\frac{2}{10}=\frac{1}{5}$ $0.5=\frac{5}{10}=\frac{1}{2}$ $0.9=\frac{9}{\underline{10}}$ $1=\frac{100}{100}$ c) $\frac{1}{4}=\underline{0.25}$ $\frac{3}{4}=\underline{0.75}$ $2 \frac{1}{4}=\underline{2.25}$ $\frac{19}{4}=\underline{4.75}$ $2.1=2 \frac{1}{10}$ $6.5=\underline{6 \frac{1}{2}}$ e) $1.2=1 \frac{2}{10}=1 \frac{1}{5} \quad 3.80=3 \frac{80}{100}=3 \frac{8}{10}=3 \frac{4}{5}$ $12.05=12 \frac{5}{100}=12 \frac{1}{20} \quad 0.75=\frac{75}{100}=\frac{3}{4}$	Notes Individual work, monitored, helped (or more difficult items done with the whole class) Written on BB or use enlarged copy master or OHT Discussion, reasoning, agreement, self-correction, praising. Details: e.g. $\frac{19}{4}=4 \frac{3}{4}=\underline{4.75}$ Refer to the 10 -strip or 100 -square if disagreement. Accept any correct form of fraction but elicit the simplest form where relevant.
5	Book 4, page 76 Q. 2 Read: Fill in the missing numbers. Quickly revise the relationship between the units of measure. Calculations can be done in Ex. Bks if necessary. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $\frac{1}{2}$ litre $=\underline{500 \mathrm{ml}}$ ii) $\frac{1}{4} \mathrm{~m}=\underline{25} \mathrm{~cm}=\underline{250} \mathrm{~mm}$ iii) $\frac{1}{5} \mathrm{~kg}=\underline{200} \mathrm{~g}$ iv) $\frac{1}{10} \mathrm{~km}=\underline{100} \mathrm{~m}$ b) i) $\frac{3}{4} \mathrm{~m}=\underline{75} \mathrm{~cm}=\underline{750} \mathrm{~mm}$ ii) $\frac{2}{5}$ litre $=\underline{400} \mathrm{ml}$ iii) $2 \frac{1}{2} \mathrm{~km}=\underline{2500} \mathrm{~m}$ iv) $\frac{3}{10}$ hour $=\underline{18}$ minutes c) i) $0.1 \mathrm{~km}=\underline{100} \mathrm{~m}$ ii) 0.2 litre $=\underline{200} \mathrm{ml}$ iii) $0.3 \mathrm{~m}=\underline{30} \mathrm{~cm}=\underline{300} \mathrm{~mm}$ iv) $0.7 \mathrm{~kg}=\underline{700} \mathrm{~g}$ d) i) $1.3 \mathrm{~kg}=\underline{1300 \mathrm{~g}}$ ii) $2.5 \mathrm{~km}=\underline{2500} \mathrm{~m}$ iii) $5.6 \mathrm{~m}=\underline{560} \mathrm{~cm}=\underline{5600} \mathrm{~mm}$ iv) 6.25 litres $=\underline{6250} \mathrm{ml}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentitain by time limit Reasoning, agreement, selfcorrection, praising Show details of calculations on BB if problems, e.g. $\begin{aligned} & \frac{3}{10} \text { hour }=\frac{3}{10} \text { of } 60 \mathrm{~min} . \\ & =60 \mathrm{~min} . \div 10 \times 3 \\ & =6 \mathrm{~min} . \times 3=\underline{18 \mathrm{~min}} . \end{aligned}$ etc. Feedback for T

BKK	R: Calculations C: Addition/subtraction of decimals (1 decimal place) E: 2 decimal places	$\begin{gathered} \text { Lesson Plan } \\ 77 \end{gathered}$
Activity 1	Modelling decimals a) This rectangle is 1 unit. Who can show us 1 tenth of its area? P comes to BB to show it. Class agrees/disagrees. How could we write it as a decimal? BB: $\frac{1}{10}=0.1$ b) Who can show us 1 tenth of 1 tenth of the area? P comes to BB to show it (with T's help). What fraction of 1 unit is it? (1 hundredth) Who could write a statement about it using fractions (decimals)? c) Who can show us 5 hundredths of the area? P comes to BB to colour it. How could we write it as a decimal? BB:	Notes Whole class activity Drawn on BB or SB or OHT (T could have 'ticks' along top and bottom to help Ps divide it up equally.) Agreement, praising BB: $\frac{1}{10}$ of $\frac{1}{10}=\frac{1}{100}$ 0.1 of $0.1=0.01$ BB: $\frac{5}{100}=0.05$
2	Missing numbers a) Let's fill in the missing numbers. Ps come to BB to write as decimals or fractions, explaining reasoning. Class agrees or disagrees. Also elicit from the class the form not given. BB: b) We measured the length of a line segment as 76 mm , using 1 mm as 1 unit. Who could write its length using these units? i) 1 cm as 1 unit: BB: $76 \mathrm{~mm}=7 \frac{6}{10} \mathrm{~cm}=7.6 \mathrm{~cm}$ ii) 1 m as 1 unit: BB: $76 \mathrm{~mm}=$ \square 0.076 $\mathrm{m}=$ \square $\frac{76}{1000}$ cm 10 min	Whole class activity Written on BB or SB or OHT Reasoning (with T's help), agreement, praising Reasoning, eg $' 1 \mathrm{~mm}$ is $\frac{1}{1000}$ of a metre because $1 \mathrm{~m}=1000 \mathrm{~mm}$.' etc. Extra praise if Ps cope with thousandths without help from T Have no expectations! Feedback for T
3	Problem 1 Listen carefully, note down the important data and think how you would solve the problem. Nick decided to dig a trench at the bottom of his garden in preparation for planting a hedge. On the first day, he dug $2 m 70 \mathrm{~cm}$, on the second day he dug 3.8 metres, on the third day he dug 4 metres and on the fourth day he dug 3 and 6 tenths metres. How long was the trench altogether? Ps suggest methods of solution. Thelps with layout and reasoning and shows the methods Ps did not think of.	Whole class activity T reads slowly 2 or 3 times to give Ps time to think. T has tables already prepared and shows each as it is dealt with. Discussion, reasoning, agreement, praising

BKK		Lesson Plan 77
Activity 6	Book 4, page 77 Q. 2 Read: Subtract the quantities in the different units. Write the subtractions in the table. Deal with one part at a time. Set a time limit. Review at BB with whole class. Ps come to BB to BB to write addtions and fill in the table, explaining reasoning. Class points out errors. Mistakes discussed and corrected. Solution: a) $\quad 4.73 \mathrm{~m}-210 \mathrm{~cm}$ b) $\quad 18.6$ litres -7900 ml	Notes Individual trial, monitored, helped (Or part a) with whole class first, b) as individual work) Written on BB or use enlarged copy master or OHP Discussion, reasoning, self-correcting, praising T points to each answer in turn and chooses Ps to read it aloud, saying the appropriate unit too. In good humour!
7	Book 4, page 77, Q. 3 Read: Calculate with fractions and decimals. Follow the example. a) Ps come to BB to complete the next two rows, explaining reasoning (with T's help if necessary). Class agrees/disagrees. Now let's do the additions. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Ps work in Pbs too. Solution: b) Let's see if you can do this subtraction in the same way in your Ex. Bks! Set a time limit. (If Ps are having difficulty, stop them and continue as a whole class activity.) Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected Solution: $\begin{aligned} 6.81 & =6+\frac{8}{10}+\frac{1}{100}=6+\frac{81}{100}=6.81 \\ -2.7 & =2+\frac{7}{10}=2+\frac{70}{100}=\frac{1.70}{4+\frac{11}{100}}=\frac{4.11}{4.11} \end{aligned}$	Whole class activity (or individual work if Ps wish) Written on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, (self-correcting), praising Agree that $4.9=4.90$ Stress the importance of keeping the same place values lined up vertically. Individual trial, monitored, helped (or whole class activity if Ps are still unsure) Reasoning, agreement, selfcorrecting, praising Agree that $2.7=2.70$ Extra praise for Ps who did part b) correctly without help. Feedback for T

BK		Lesson Plan 78
Activity 2	Sequences T says the first few terms of a sequence. Ps say the following terms. Class points out errors. What is the rule? Who agrees? etc. a) $4.3,5.0,5.7,(6.4,7.1,7.8,8.5,9.2,9.9,10.6,11.3,12, \ldots)$ Rule: Increasing by $0.7(+0.7)$ b) $8.7,7.6,6.5,(5.4,4.3,3.2,2.1,1,(-0.1,-1.2,-2.3, \ldots)$ Rule: Decreasing by 1.1 (-1.1) c) $0.2,0.3,0.5,0.8,(1.2,1.7,2.3,3,3.8,4.7,5.7,6.8,8, \ldots)$ Rule: The difference between terms is increasing by 0.1 . 16 min	Notes Whole class activity T chooses Ps at random (or in order round class) At a good pace T decides when to stop. Discussion, checking, agreement on the rule. Write this sequence on BB and show the difference sequence: $0.1,0.2,0.3,0.4,0.5, \ldots$
3	Equal numbers Let's join up the equal numbers. Ps come to BB to draw joining lines. Class agrees/disagrees. BB: Ps think of decimals equal to the two numbers which are not joined up. 20 min \qquad	Whole class activity Written on BB or SB or OHT Reasoning, agreement, praising $(3.4,3.40 ; 3.8,3.80)$
4	Adding and subtracting decimals Let's read the addition (subtraction) first. Who can give me an estimate of the result? Who agrees? etc. Ps come to BB to fill in the place-value table, explaining reasoning. Class points out errors. Who can do the calculation without the table? Ps come to BB to write the addition (subtraction), explaining what they are doing. Class agrees/disagrees. BB: a)$\begin{aligned} & 7.3+6.81=(\underline{14.11}) \\ & (\approx 7+7=14) \end{aligned}$$+$$T$ U t h 7 3 6 8 1 1 4 1 1 1 b)$\begin{aligned} & 22.8-13=(9.8) \\ & (\approx 23-13=10) \end{aligned}$$-$T U t h 2 ${ }^{10} 2$ 8 1_{1} 3 9 8 $-$$2: 2.8$ 1_{1} $3 .(0)$ 9.8 If these values were in metres (cm), what would they be in $\mathrm{cm}(\mathrm{mm})$? a) $7.3 \mathrm{~m}+6.81 \mathrm{~m}=730 \mathrm{~cm}+681 \mathrm{~cm}=1411 \mathrm{~cm}$ $7.3 \mathrm{~cm}+6.81 \mathrm{~cm}=73 \mathrm{~mm}+68.1 \mathrm{~mm}=141.1 \mathrm{~mm}$ b) $22.8 \mathrm{~m}-13 \mathrm{~m}=2280 \mathrm{~cm}-1300 \mathrm{~cm}=980 \mathrm{~cm}$ $22.8 \mathrm{~cm}-13 \mathrm{~cm}=228 \mathrm{~mm}-130 \mathrm{~mm}=98 \mathrm{~mm}$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, checking against estimate, praising or BB:

BK		Lesson Plan 78
Activity 5	Book 4, page 78 Q. 1 Read: Continue each sequence for the next 5 terms. Write down the rule you used. Set a time limit. Review at BB with whole class. Ps come to BB or dictate terms to T, saying the rule too. Who did the same? Who used another rule? etc. Deal with all cases. Mistakes discussed and corrected. Solution: a) $0.2,0.4,0.6,0.8,(1,1.2,1.4,1.6,1.8) \quad,[+0.2]$ c) $12.1,11.8,11.5,11.2,(10.9,10.6,10.3,10,9.7),[-0.3]$ d) $1,1.1,1.3,1.6,2,2.5,(3.1,3.8,4.6,5.5,6.5$,) $\begin{array}{llllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$ Rule: Difference between terms is increasing by 0.1 . 30 min	Notes Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection, praising (Accept any rule which is reasoned correctly.) Show the difference sequence on the BB.
6	Book 4, page 78 Q. 2 Read: Calculate these quantities. Write the operation, then give the result in cm and m. Follow the example. T (or a P) explains part a) to whole class first if necessary. Set a time limit. Ps can do calculations in Ex. Bks. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. What do you notice? Solution: a) $\frac{1}{4}$ of $3 \mathrm{~m}=300 \mathrm{~cm} \div 4 \quad=75 \mathrm{~cm}=0.75 \mathrm{~m}$ b) $\frac{3}{4}$ of $1 \mathrm{~m}=100 \mathrm{~cm} \mathrm{~cm} \div 4 \times 3=75 \mathrm{~cm}=0.75 \mathrm{~m}$ c) $\frac{1}{5}$ of $2 \mathrm{~m}=200 \mathrm{~cm} \div 5 \quad=40 \mathrm{~cm}=0.40 \mathrm{~m}=0.4 \mathrm{~m}$ d) $\frac{2}{5}$ of $1 \mathrm{~m}=100 \mathrm{~cm} \div 5 \times 2=40 \mathrm{~cm}=0.40 \mathrm{~m}=0.4 \mathrm{~m}$ e) $75 \mathrm{~cm}+40 \mathrm{~cm}=115 \mathrm{~cm}=1.15 \mathrm{~m}$ or $\frac{3}{4}+\frac{2}{5}=\frac{75+40}{100}=\frac{115}{100}=1 \frac{15}{100}(\mathrm{~m})$	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement. selfcorrection, praising Elicit that: $\frac{1}{4}$ of $3=\frac{3}{4}$ of 1 $\frac{1}{5}$ of $2=\frac{2}{5}$ of 1 Ps think of other examples, e.g. $\frac{1}{8}$ of $3=\frac{3}{8}$ of 1 , etc. Feedback for T

BKK	R: Calculations C: Addition and subtraction of decimals E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 79 \end{gathered}$
Activity 1	Fractions and decimals I will say a number. Show me it as a fraction, then as a decimal, when I say. e.g. f) Ninety-eight and twenty-five hundredths $98 \frac{25}{100} \quad 98.25$ etc.	Notes Individual work but class kept together Responses shown on scrap paper or slates in unison on command Agreement, praising Ps who were correct explain to those who were wrong. Show on a diagram or number line if problems. Feedback for T Ps can ask the numbers too!
2	Completing to 1 T says a number. Ps say an addition or subtraction to result in 1 . Other Ps are at BB to write it. Class points out errors. e.g. T: 0.7, $\mathrm{P}_{1}: ~ ' 0.7+\underline{0.3}=1$ '; T: 5 twelfths, P_{2} : ' 5 twelfths + 7 twelfths $=1$ '; T: $0.97, \mathrm{P}_{3}:{ }^{\prime} 0.97+\underline{0.03}=1^{\prime} ;$ $\mathrm{T}: 10$ hundredths, $\mathrm{P}_{4}:$ ' 10 hundredths $+\underline{90 \text { hundredths }=1 ' ; ~}$ $\mathrm{T}: 13$ tenths. P_{5} : 13 tenths minus $\underline{3 \text { tenths }}=1$ ', etc. Ps can give the starting number instead of the T. \qquad 11 min \qquad	Whole class activity At speed Agreement, praising Show on number line or other model if problems. Feedback for T
3	Rounding Let's round these decimals. Ps come to BB or dictate what T should write. Class agrees/disgrees. BB: a) Round to the nearest whole number: $\begin{aligned} & 0.3 \approx(0), \quad 0.5 \approx(1), \quad 0.49 \approx(0), \quad 0.51 \approx(1), \quad 0.7 \approx(1) \\ & 1.3 \approx(1), \quad 4.1 \approx(4), \quad 5.6 \approx(6), \quad 5.49 \approx(5), 5.51 \approx(6) \end{aligned}$ b) Round to the nearest tenth: $\begin{aligned} & 0.71 \approx(0.7), \quad 0.75 \approx(0.8), \quad 0.06 \approx(0.1), \quad 0.18 \approx(0.2) \\ & 3.14 \approx(3.1), \quad 15.06 \approx(15.1), \quad 4.38 \approx(4.4), \quad 7.25 \approx(7.3), \\ & \text { etc. } \end{aligned}$	Whole class activity Written on BB or SB or OHT At a good pace Show on relevant segment of the number line drawn on BB if problems. Agree that 0.5 rounds up to next whole unit. 1.0 Agree that $0.0 \underline{5}$ rounds up to next whole tenth, 0.1 or $15.06 \approx 15.10$, $7.25 \approx 7.30$
4	Mental practice T throws a ball to a P saying an addition or subtraction involving decimals. P throws ball back to T saying result. e.g. $\begin{aligned} & 0.2+0.3=\underline{0.5}, 0.9-0.4=\underline{0.5}, 1.3+2.4=\underline{3.7}, 4.1-0.7=\underline{3.4}, \\ & 1-0.7=\underline{0.3}, 1+2.5=\underline{3.5}, \text { etc. } \end{aligned}$	Whole class activity At speed Class points out errors. Praising, encouragement only

3 K		Lesson Plan 79
Activity 5	Book 4, page 79 Q. 1 Read: Calculate the sums and differences in different ways. Use at least 2 different ways. If you need more room, do the calculations in your Ex. Bks. Review at BB with whole class. T chooses Ps to show their methods on the BB. Who did it another way? etc. Deal with all cases. Mistakes discussed and corrected. Solution: e.g. a) $6.8+4.7=6+4+0.8+0.7=10+1.5=\underline{11.5}$, or $6 \frac{8}{10}+4 \frac{7}{10}=10+\frac{15}{10}=10+1 \frac{5}{10}=11 \frac{5}{10}\left(=11 \frac{1}{2}\right)$ b) $2 \frac{1}{10}+3 \frac{4}{10}=5+\frac{5}{10}=5 \frac{5}{10}\left(=5 \frac{1}{2}\right) ; 2.1+3.4=\underline{5.5}$ c) $5.2-1.6=4.2-0.6=\underline{3.6} ; 5 \frac{2}{10}-1 \frac{6}{10}=4-\frac{4}{10}=3 \frac{6}{10}$ d) $6 \frac{8}{10}-1 \frac{7}{10}=\frac{68}{10}-\frac{17}{10}=\frac{51}{10}=5 \frac{1}{10} ; 6.8-1.7=\underline{5.1}$ e) $4 \frac{3}{10}+11.8=4.3+11.8=15+1.1=\underline{16.1}$; $4 \frac{3}{10}+11 \frac{8}{10}=15+\frac{11}{10}=15+1 \frac{1}{10}=16 \frac{1}{10}$ f) $7.2-\frac{3^{6}}{10}=7.2-3.6=4.2-0.6=\underline{3.6}$; $7 \frac{2}{10}-3 \frac{6}{10}=6 \frac{12}{10}-3 \frac{6}{10}=3 \frac{6}{10}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Allow Ps to think of own ways of calculating. T notes interesting methods while monitoring. Accept any correct method Reasoning given in detail (with T's help) Agreement, self-correction, praising or, e.g. using place value tables or vertical addition or subtraction, e.g. a) 6.8 c) 5.2 $+4.7$ - 1.6 11.5 3.6 Extra praise if Ps point out: $\frac{6}{10}=\frac{3}{5}$
6	Book 4, page 79 Q. 2 Let's see how many of these you can do in 4 minutes! Remember to check your results! Start . . . now! ... Stop! Review at BB with the whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Who had all 6 correct? Let's give them a round of applause! Solution: a) d) b) $\text { e) } \begin{array}{\|c\|c\|c\|c\|} \hline 1 & 0 & 5 & \\ \hline & 4 & 6 & 5 \\ +2 & 3 & 1 & 7 \\ \hline 3 & 8 & 3 & 2 \\ \hline \end{array}$ c)1 1 1 1 2 3.6 1 7.2 4 9 5.8 6 3 6.6 f)1 3 0.9 + 3.0 3.0 5 1 6.9 5	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Checking by adding in opposite direction (or could also be done with a calculator) T points to a result and chooses a P to read it aloud.

Br	R: Mental calculation C: Addition and subtraction of decimals E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 80 \end{gathered}$
Activity 1	Models of fractions and decimals Study each diagram. What part of it is shaded? What part is not shaded? Ps come to BB to write the parts as fractions and decimals, simplifying the fractions where possible. Class agrees/disagrees. BB: a) 1 unit b) 1 unit c) 1 unit Shaded: $\quad \frac{2}{8}=\frac{1}{4}=0.25$ $\frac{7}{10}=0.7$ $\frac{3}{4}=0.75$ Unshaded: $\frac{6}{8}=\frac{3}{4}=0.75$ $\frac{3}{10}=0.3$ $\frac{1}{4}=0.25$ d) 1 unit e) 1 unit Shaded: $\quad \frac{1}{2}=0.5$ $\frac{2}{5}=0.4$ $\frac{2}{4}=\frac{1}{2}=0.5$ Unshaded: $\frac{1}{2}=0.5$ $\frac{3}{5}=0.6$ $\frac{2}{4}=\frac{1}{2}=0.5$	Notes Whole class activity Drawn onBB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising (Ps might begin to remember equivalent fractions and decimals for quarters, fifths and eighths) If Ps question whether the parts in f) are equal, T assures them that they are equal, but that we will prove it in a later lesson.
2	Inequalities Which decimal is more? How much more? Ps come to BB to write the missing signs and calculate the differences. Class agrees/disagrees. Show on number line if problems, expecially the negative decimal. BB: a) $0.21 \quad 0.8(0.80)$ b) 4.2 \square 2.9 c) 1.03 \square 1.3 (1.30) (0.59) (1.3) (0.27) d) 0.2 \square 0 e) 1.5 \square 2 f) $0.2 \square-0.5$ (0.2) (0.5) (0.7)	Whole class activity. Written on BB or SB or OHT Discussion, reasoning, agreement, praising Elicit that: $0=0.0 \text { and } 2=2.0$ Who can explain what -0.5 means? Show on number line as opposite or use a context, e.g. owing someone 50 p , (i.e. $-£ 0.5$ in debt)
3	Comparing decimals Let's draw arrows pointing towards a number which is 2.3 more. Ps come to BB to draw arrows. Class agrees/disagrees. BB: What operation could we write above the arrows? (+2.3) If the arrows pointed in the opposite direction, what would they mean? (-2.3)	Whole class activity. Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Feedback for T

BK		Lesson Plan 80
Activity 4	Mental practice I will ask you some questions. Do the calculation in your head and show me the result on scrap paper or slates when I say. a) What should we add to 1.2 to get 1.7? Show me . . . now! (0.5) BB: $1.2+\underline{0.5}=1.7$ or $1.7-1.2=\underline{0.5}$ b) What should we add to 2.6 to get 2.60? Show me . . . now! (0) BB: $2.6=2.60$, because $2 \frac{6}{10}=2 \frac{60}{100}$ c) What should we subtract from 4.5 to get 1.9? Show me . . . now! (2.6) BB: $4.5-\underline{2.6}=1.9$ or $4.5-1.9=\underline{2.6}$ etc.	Notes Whole class activity (Less able Ps can do the calculations in Ex. Bks or on slates.) Responses shown in unison. Ps responding correctly come to BB to explain reasoning. Agreement, praising
5	Book 4, page 80 Q. 1 Read: How much of each shape has been shaded? Join up the fractions to the matching diagrams. Set a time limit. Review with whole class. Ps come to BB to draw joining lines, explaining reasoning. Class agrees/disagrees Mistakes discussed and corrected. Solution: What part of each shape is not shaded? T points to each diagram in turn and class says the unshaded part. 25 min	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, self-correcting, praising Agree that there are no diagrams which have $0.6,0.7$ or 3 quarters shaded. At a good pace Class points out errors. Praising
6	Book 4, page 80 Q. 2 Read: Which number is more? How much more? Write the missing signs and differences. Ps can do calculations in Ex. Bks if necessary. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. T asks Ps to say the inequalities using tenths or hundreds. (e.g. a): 70 hundredths is 38 hundredths more than 32 hundredths) Solution: a) $0.7>0.32$ b) $5.8<7.1$ c) $2.5>2.05$ 0.38 1.3 0.45 d) $0.50=0.5$ e) $3.2<4$ f) $0.6<0.66$ 0 0.8 0.06	Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, self-correcting, praising T chooses Ps at random. Class points out errors. Praising, encouragement only

BKL		Lesson Plan 80
Activity 7	Book 4, page 80 Q. 3 Read: Solve the problem in your exercise book. Ps read problem themselves, draw a digram, write a plan, do the calculation, check it and write the answer as a sentence. Set a time limit. Ps discuss it with their neighbours if they wish. Review with whole class. Ps could show result on scrap paper or slates on command. P answering correctly explains at BB to those who were wrong. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: e.g. The sides of a rectangular play area are 54.8 m wide and 23.6 m long. How much fencing is needed to surround the play area if the gate is 1.8 m wide? BB: Perimeter: $2 \times(54.8 \mathrm{~m}+23.6 \mathrm{~m})=2 \times 78.4 \mathrm{~m}=\underline{156.8 \mathrm{~m}}$ Gate: 1.8 m Fencing: $156.8 \mathrm{~m}-1.8 \mathrm{~m}=\underline{155 \mathrm{~m}}$ Answer: The length of fencing needed is 155 metres. 35 min	Notes Individual work, monitored helped T might review the steps for solution before Ps start (or if class is not very able, draw the diagram on BB first) Discussion, reasoning, agreement, self-correction, praising BB:
8	Book 4, page 80 Q. 4 Read: Which numbers can be written instead of the letters? Deal with one row at a time. Set a time limit. Calculations can be written in Ex. Bks if necessary but encourage Ps to do it mentally if they can. Remind Ps to check mentally by inserting their value for the letter in the operation. Review at BB with whole class. Ps could show answers on scrap paper or slates on command. Ps answering correctly explain to those who were wrong. Mistakes discussed and corrected. Solution: a) $a+3.4=5.6$ b) c) $c+2.7=10$ $a=\underline{2.2}$ $\begin{gathered} b-3.1=0 \\ b=\underline{3.1} \end{gathered}$ $c=\underline{7.3}$ d) $\begin{aligned} & 7.8+d=12.3 \\ & d=\underline{4.5} \end{aligned}$ e) $\begin{aligned} & 8.2-e=6.4 \\ & e=\underline{1.8} \end{aligned}$ f) $f-1.9=6.3$ $f=\underline{18.2}$ g) $\begin{aligned} & g+g+5.4=10 \\ & g+g=4.6 \\ & g=\underline{2.3} \end{aligned}$ h) $\begin{aligned} & 0.4+h=0.8-h \\ & h+h=0.8-0.4=0.4 \\ & h=\underline{0.2} \end{aligned}$ i) $\begin{aligned} & \frac{2}{5}+i=1.3 \\ & i=1.3-0.4 \\ & i=\underline{0.9} \end{aligned}$ j) $j-0.8=\frac{5}{10}$ j) k) $\frac{3}{4}-k=0.07$ $j=1.5+0.8$ $0.75-k=0.07$ $j=\underline{2.3}$ $k=0.75-0.07$ $k=0.68$	Individual work, monitored, helped (or g) to f) as whole class activity if class is not very able or time is short) Written on BB or use enlarged copy master or OHP At a good pace Discussion, reasoning, agreement, checking, selfcorrection, praising Show on diagrams or on number line drawn on BB if problems. h) Accept trial and error but show on number line. i) 1.3 k) 0.75 $-\frac{0.4}{0.9}$ $-\underline{0.07}-\frac{0.68}{}$

BK4		Lesson Plan 81
Activity 4	Missing quantities Ps come to BB to choose a column and calculate the missing number, explaining reasoning. (Calculations written at side of BB.) Class agrees/disagrees or suggests alternative ways of writing the amount. BB:	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Bold numbers are missing Reasoning, agreement, praising Feedback for T
5	Book 4, page 81 Q. 1 Read: Write a plan, estimate, calculate and check in your exercise book. Write the answer here. Deal with one at a time. Set a time limit. Ps read question themselves and solve it in Ex. Bks, then write the answer in Pbs. Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Mistakes discussed and corrected. Solution: a) Helen spent $£ 8.40$, Jane spent $£ 3.90$ and Lisa spent $£ 5.20$. How much did they spend altogether? Plan: $8.40+3.90+5.20(\mathfrak{£})$ E: $£ 8+£ 4+£ 5=£ 17$ Answer: They spent $£ 17.50$ altogether. b) Frank and Barry each dug up 2 fifths of the vegetable plot. i) What part of the vegetable plot did they dig up altogether? $\text { Plan: } \mathrm{F}+\mathrm{B}: \frac{2}{5}+\frac{2}{5}=\frac{4}{5}$ Answer: They dug up 4 fifths of the plot altogether. ii) What part did they still have to dig? Plan: Still to dig: $1-\frac{4}{5}=\frac{5}{5}-\frac{4}{5}=\frac{1}{5}$ Answer: They still have 1 fifth of the plot to dig. c) Polly bought 1.5 kg of apples and 5 tenths of a kg less of bananas. i) How many kg of bananas did she buy? Plan: B: $1.5 \mathrm{~kg}-\frac{5}{10}$ of $1 \mathrm{~kg}=1.5 \mathrm{~kg}-0.5 \mathrm{~kg}=\underline{1 \mathrm{~kg}}$ Answer: Polly bought 1 kg of bananas. ii) How much fruit did she buy altogether? Plan: A + B: $1.5 \mathrm{~kg}+1 \mathrm{~kg}=2.5 \mathrm{~kg}$ Answer: Polly bought 2.5 kg of fruit altogether.	Individual work, monitored, helped Allow time for majority of Ps to complete it. (Or T chooses P to explain at BB. Who agrees/disagrees? etc.) Reasoning, agreement, checking, self-correction, praising Check by adding in opposite direction or with a calculator. BB: F B or $1500 \mathrm{~g}-500 \mathrm{~g}=1000 \mathrm{~g}$ $=1 \mathrm{~kg}$

BKK		Lesson Plan 81
Activity 6	Book 4, page 81 Q. 2 Read: Draw a diagram to help you solve the problem. Kate wants to cut a 2.4 m length of ribbon into two pieces, so that one piece is twice as long as the other piece. What will be the length of each piece? Set a time limit. Ps draw a diagram and solve it in Pbs. Review with whole class. Ps could write both lengths on scrap paper or slates on command. Ps with correct responses explain to Ps who were wrong. Mistakes discussed and corrected. Solution: If one piece is twice as long as the other piece, we need to mark the ribbon into 3 equal parts. Each part is 1 third. $B B$: e.g. Shorter piece: $\frac{1}{3}$ of $2.4 \mathrm{~m}=240 \mathrm{~cm} \div 3=80 \mathrm{~cm}=\underline{0.8 \mathrm{~m}}$ Longer piece: $\frac{2}{3}$ of $2.4 \mathrm{~m}=80 \mathrm{~cm} \times 2=160 \mathrm{~cm}=\underline{1.6 \mathrm{~m}}$ Answer: One piece will be 0.8 m and the other will be 1.6 m . 40 min	Notes Individual work, monitored, helped (Or whole class activity, with Ps suggesting what to do and how to continue. T intervenes only if necessary.) In unison Reasoning, agreement, selfcorrection, praising Check: $0.8 \mathrm{~m}+1.6 \mathrm{~m}=2.4 \mathrm{~m}$
7 Extension	Book 4, page 81 Q. 3 Read: Divide up the shapes into 4 congruent parts so that the sum of the numbers in each part is 2. What does congruent mean? (exactly the same size and shape) T gives Ps a few minutes to think about the problem, discuss it with their neighbours if they wish, and try out shapes. Elicit that there are 24 squares in each diagram, so each part will contain 6 squares and will have total value 20 tenths. Ps come to BB to show their shapes. Class checks the number of squares and tenths. Solution: a) b) What can you say about the shape of each part? (e.g. plane shape, hexagon, right angles at vertices, opposite sides parallel, concave, which shapes are reflexions, which are transformations, etc.)	Individual or paired work, monitored (or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Ps could have spare copies on desks for trials. BB: $24 \div 4=6,2=\frac{20}{10}$ Discussion, reasoning, agreement, checking, selfcorrecting, praising When Ps have checked their shapes, they colour them in their Pbs in different colours. Whole class activity Praise all positive contributions.

BKK	R: Mental calculation with natural numbers C: Fractions and decimals in context. Measures E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 82 \end{gathered}$
Activity 1	Mental practice a) T says an addition or subtraction of whole hundreds or tens. Ps say the sum or difference. (Items could be written on BB too.) $\begin{aligned} & \text { e.g. } 2400+5300(=7700) ; 6700-5100(=1700-100=1600) ; \\ & \quad 480+270(=680+70=750) ; \\ & \quad 3500-1900(=1500+100=1600) ; \text { etc. } \end{aligned}$ b) T says a multiplication or division (up to 10×10). Ps say result. c) Extended multiplication and division: e.g. $50 \times 3(=150)$; $7 \times 800(=5600) ; 40 \times 60(=2400) ; 13 \times 9(=90+27=117)$; $8600 \div 2(=4300) ; 4400 \div 400(=11) ; 480 \div 4(=120)$; etc. \qquad 12 min \qquad	Notes Whole class activity At speed in order round class Ps calculate loudly in steps. Class points out mistakes. Agreement, correcting, praising Feedback for T (or $130-13=17)$
2	Missing numbers What do you think the rule for these puzzles could be? (The sum of any two adjacent numbers is the number directly above them.) Ps come to BB to fill in the missing numbers, explaining reasoning. Class agrees/disagrees. BB: a) b) 20 min	Whole class activity Drawn on BB or use enlarged copy master or OHP Ps decide where to start and how to continue. Agreement, praising Bold numbers are given.
3	Fractions of an amount Study the diagram. Think of a question involving a fraction which you could ask the class. Ps put up their hands when they have thought of one. T chooses \mathbf{A} to ask his/her question. Other Ps write answer on scrap paper or slates and show to \mathbf{A} on \mathbf{A} 's command. A chooses a P who responded correctly to come to BB to explain, referring to diagram. A agrees/disagrees. Repeat for other Ps who have thought of questions. BB: a) e.g. How many rectangles are in: i) 2 fifths of the diagram? ii) 3 quarters of the diagram? How many stars are in i) 1 third of the digram? ii) 5 sevenths of the diagram? etc. Or, e.g. What part of the diagram are 11 stars? $\left(\frac{11}{21}\right)$, etc.	Whole class activity Drawn on BB or use enlarged copy master or OHP (Or T chooses several Ps to ask questions and Ps write answers in Ex. Bks. Review at BB with whole class.) BB: i) $\frac{2}{5}$ of $40=40 \stackrel{8}{\div}+5 \times 2=\underline{16}$ ii) $\frac{3}{4}$ of $40=40 \stackrel{10}{\div} 4 \times 3=\underline{30}$ i) $\frac{1}{3}$ of $21=21 \div 3=\underline{7}$ ii) $\frac{5}{7}$ of $21=21 \stackrel{3}{\div} 7 \times 5=\underline{15}$ Extra praise for clever questions.

BK4		Lesson Plan 82
Activity		Notes
4	Book 4, page 82	
	Q. 1 Read: Write a plan, estimate, calculate and check the result in your exercise book. Write the answer in a sentence here.	Individual work, monitored, helped
	Set a time limit. Ps read questions themselves and solve in $E x$. $B k s$, then write the answers in Pbs.	Allow time for majority of Ps to complete it.
	Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain at BB to those who were wrong. Mistakes discussed and corrected.	(Or T chooses P to explain at BB. Who agrees/disagrees? etc.)
	Solution: a) If I were to give you $£ 6.40$, you would have $£ 25.80$. How much do you have?	Reasoning, agreement, checking, self-correction, praising
	Plan: $£ 25.80-£ 6.40$ $($ or $x+£ 6.40=£ 25.80)$ E: $£ 26-£ 6=£ 20$$\quad$2	Check against estimate and with mental addition.
	Answer: I have $£ 19.40$.	
	b) After gathering another 1 and 2 fifths kg of mushrooms, I have 2 and 1 fifth kg of mushrooms altogether. How many kg of mushrooms did I have at first?	
	Plan: $2 \frac{1}{5} \mathrm{~kg}-1 \frac{2}{5} \mathrm{~kg} \quad$ E: $2 \mathrm{~kg}-1 \mathrm{~kg}=1 \mathrm{~kg}$	(but E not very informative)
	$C: 2 \frac{1}{5}-1 \frac{2}{5}=\frac{11}{5}-\frac{7}{5}=\frac{4}{5}(\mathrm{~kg})$	$2 \frac{1}{5}-1 \frac{2}{5}=1 \frac{6}{5}-1 \frac{2}{5}=\frac{4}{5}$
	Answer: I had 4 fifths of a kg of mushrooms at first.	
	c) What length is the perimeter of this rectangle?	BB: \square $1 \frac{1}{4} \mathrm{~cm}$
	Plan: P: $\left(1 \frac{1}{4}+2.5\right) \times 2(\mathrm{~cm}) E:(1+3) \times 2=8(\mathrm{~cm})$ Convert the decimal to a fraction: eg.	BB: $2.5=2 \frac{1}{2}$
	Convert the decimal to a fraction: e.g. $P:\left(1 \frac{1}{-} \times 2\right)+\left(2 \frac{1}{-} \times 2\right)=2 \frac{2}{-}+4 \frac{2}{-}=2 \frac{1}{-}+5=7 \frac{1}{-}(\mathrm{cm})$	$1 \frac{1}{4}=1.25$
	Or convert the fraction to a decimal: e.g.$P:\left(1 \frac{1}{1}+2.5\right) \times 2=(1.25+2.5) \times 2=3.75 \times 2=7.50(\mathrm{~cm})$	C: 2.50 3.7
		+3.7
	$P:\left(1 \frac{1}{4}+2.5\right) \times 2=(1.25+2.5) \times 2=3.75 \times 2=7.50(\mathrm{~cm})$	3.75

31		Lesson Plan 82
Activity 5	Book 4, page 82, Q. 2 Let's try to solve the problems together. a) Read: Divide 20.3 kg into three parts so that the lightest part is half the weight of the middle-sized part and the middlesized part is half the weight of the heaviest part. T gives Ps a minute to think about it and discuss with neighbours if they wish. Into how many equal parts do we need to divide the 20.3 kg ? T asks several Ps what they think. (7) We can explain it like this. Let x be the lightest part. Then: BB: $\quad x+(x+x)+(x+x+x+x)=7 \times x=20.3 \mathrm{~kg}$ So what part of the 20.3 kg is x ? (1 seventh) Now let's divide it into the 3 parts asked for. Ps dictate what T should write or come to BB , explaining reasoning. Class agrees/disagrees. Lightest part: $x=20.3 \mathrm{~kg} \div 7=20300 \mathrm{~g} \div 7=2900 \mathrm{~g}=\underline{2.9 \mathrm{~kg}}$ Middle-sized part: $x+x=2.9 \mathrm{~kg}+2.9 \mathrm{~kg}=\underline{5.8 \mathrm{~kg}}$ Heaviest part: $(x+x) \times 2=5.8 \mathrm{~kg}+5.8 \mathrm{~kg}=\underline{11.6 \mathrm{~kg}}$ How can we check that we are correct? (The sum of the 3 parts should be 20.3 kg). b) Read: Which is more and how much more: 2 thirds of 1200 litres or 4 fifths of 1000 litres? Write it as an inequality. Let's write the parts of the inequality we know first. Ps dictate to T. (BB) What should we do now? (Work out the value of each side.) Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. BB: LHS: $\frac{2}{3}$ of 1200 litres $=1200$ litres $\div 3 \times 2=\underline{800 \text { litres }}$ BB: RHS: $\frac{4}{5}$ of 1000 litres $=1000$ litres $\div 5 \times 4=\underline{800 \text { litres }}$ What sign should we write in the box? (=) BB: $\quad \underset{\sim}{\frac{2}{3}} \underset{(800 \text { litres })}{\text { of } 1200 \text { litres }} \quad \boxed{=} \quad \frac{4}{5}$ of 1000 litres 41 min	Notes Whole class activity Diagram drawn on BB or SB or OHT Allow Ps to suggest what to do first, and how to continue. If Ps have no ideas, T gives hints or explains with Ps' help. BB: Discussion, reasoning, agreement, checking, praising Ps write in Pbs too. C : Whole class activity (or individual work in Ex. Bks, monitored, with missing sign shown on scrap paper or 'slates' on command) Discussion, reasoning, agreement, (self-correcting) praising (Gradually built up as more information is acquired)
6	Book 4, page 82, Q. 3 Read: Fill in the missing numbers. What do you think we have to do in this puzzle? P explains task. Ps come to BB to choose an arrow, say the addition and write the result. Class agres/disagrees. T might need to help when a conversion is needed. Solution:	Whole class activity (or some items as individual work, monitored, helped) Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, (selfcorrecting), praising BB: $\text { e.g. } \begin{aligned} \frac{3}{4}+\frac{1}{3} & =\frac{9}{12}+\frac{4}{12} \\ & =\frac{13}{12}=1 \frac{1}{12} \end{aligned}$

BK	R: Mental calculation with natural numbers C: Fractions and decimals. Measures E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 83 \end{gathered}$
Activity 1	Mental addition and subtraction T says an addition or subtraction. Ps give result. (Ps can answer in steps or just give the final answer.) e.g. $67+25(=87+5=92), 420-180(=320-80=240)$, $5200+4100(=9200+100=9300) ; 399+401(=799+1=800)$ etc. Ps can think of operations too! or $(=801-1=800)$	Notes Whole class activity T chooses Ps at random. Class points out mistakes. At a good pace. In good humour! Praising, encouragement only
2	Mental multiplication and division T says a multiplication or division. Ps give result (in steps if necessary). $\begin{aligned} & \text { e.g. } 3 \times 4(=12), 40 \div 5(=8), 70 \times 9(=630), 600 \div 30(=20) \text {, } \\ & 350 \times 8(=700 \times 4=2800), 12 \times 8(=80+16=96), \\ & 40 \times 99(=4000-40=3960), 1000 \div 4(=500 \div 2=250) \text {, etc. } \end{aligned}$ (T writes some of the operations on BB.) Ps can think of operations too! 10 min	Whole class activity At speed, in order round class Differentiaton by question. Class points out mistakes. At a good pace Praising, encouragement only
3	Sequences T says first few terms of a sequence and also writes them on the BB. Ps continue the sequence, coming o BB or dictating to T . Class points out errors. What is the rule we are using? a) $0.1,0.2,0.4,(0.8,1.6,3.2,6.4,12.8,25.6,51.2,102.4, \ldots)$ Rule: e.g. Each following term is twice the previous term. [$\times 2$] b) $0.1,0.3,0.7,1.5,(3.1,6.3,12.7,25.5,51.1,102.3, \ldots)$ $\begin{array}{llllllllll}0.2 & 0.4 & 0.8 & 1.6 & 3.2 & 6.4 & 12.8 & 25.6 & 51.2 & \ldots\end{array}$ Rule: Difference between terms is increasing by 2 times. Ps might notice the relationship with the sequence in a). e.g. - Difference sequence is the same as sequence a) but starting at 0.2 ; - The terms in sequence b) are 0.1 less than in sequence a). - T points out: 0.1 in $b)=0.1$ in a), 0.3 in $b)=0.1+0.2$ in a), 0.7 in $b)=0.1+0.2+0.4$ in a), 1.5 in b) $=0.1+0.2+0.4+$ 0.7 in a), etc. c) $25 \frac{1}{3}, 24 \frac{2}{3}, 24,23 \frac{1}{3}\left(22 \frac{2}{3}, 22,21 \frac{1}{3}, 20 \frac{2}{3}, 20,19 \frac{1}{3}, \ldots\right)$ Rule: Terms are decreasing by $\frac{2}{3} \cdot\left[-\frac{2}{3}\right]$ 18 min	Whole class activity At a good pace Reasoning, agreement, praising (If a P says an unexpected term, ask him/her to explain the rule they are using. Accept any correctly reasoned rule and rerms!) Discussion on the rule. T repeats in a clearer way if necessary. T draws Ps' attention to the two sequences if no P notices anything.
4	Subtraction practice Let's fill in the missing numbers. Ps come to BB to write numbers, explaining calculation in detail. Class points out errors. BB: What do you notice? We could have written it as one subtraction! $(3049-3048=1)$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T

BKK		Lesson Plan 83
Activity 7	Book 4, page 83 Q. 2 Read: How can the butterfly get to the flower? Calculate the length of the possible routes. How many routes are possible? (4) You can work out the length of each route in fractions or decimals. Set a time limit. Review at BB with whole class. Ps come to BB to show their route on the diagram and then to calculate its total length. Class points out errors. Mistakes corrected. Who found another one? etc. Deal with all cases. Stand up if you found all 4 routes correctly. Lets give them 3 cheers! Which route would you take if you were the butterfly? Why? Solution: 1) $10.3 \mathrm{~m}+8 \mathrm{~m} 50 \mathrm{~cm}=10.3 \mathrm{~m}+8.5 \mathrm{~m}=18.8 \mathrm{~m}$ 2) $10.3 \mathrm{~m}+220 \mathrm{~cm}+9.1 \mathrm{~m}=10.3 \mathrm{~m}+2.2 \mathrm{~m}+9.1 \mathrm{~m}=\underline{21.6 \mathrm{~m}}$ 3) $11 \frac{4}{10} \mathrm{~m}+220 \mathrm{~cm}+8 \mathrm{~m} 50 \mathrm{~cm}=11.4+2.2+8.5(\mathrm{~m})$ $=22.1 \mathrm{~m}$ 4) $11 \frac{4}{10} \mathrm{~m}+9.1 \mathrm{~m}=11.4 \mathrm{~m}+9.1 \mathrm{~m}=\underline{20.5 \mathrm{~m}}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising But also praise all Ps who calculated a route correctly! Ask several Ps. In good humour!
8	Book 4, page 83 Q. 3 Read: Three boys are giving each other clues about their heights. How tall is each boy? Ps read the clues themselves and do any necessary calculations in Ex. Bks. Heights written in Pbs. Set a time limit. Review at BB with whole class. Ps could show heights on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Mistakes discussed and corrected. Solution: e.g. A: My height is 2 thirds of 180 cm . $\frac{2}{3} \text { of } 180 \mathrm{~cm}=180 \mathrm{~cm} \div 3 \times 2=60 \mathrm{~cm} \times 2=\underline{120 \mathrm{~cm}}$ B: My height is 8 tenths of 160 cm . $\frac{8}{10} \text { of } 160 \mathrm{~cm}=160 \mathrm{~cm} \div 10 \times 8=16 \mathrm{~cm} \times 8=\underline{128 \mathrm{~cm}}$ C: Three fifths of my height is 72 cm . $\begin{aligned} & \frac{3}{5} \rightarrow 72 \mathrm{~cm} \\ & \frac{1}{5} \rightarrow 72 \mathrm{~cm} \div 3=60 \mathrm{~cm} \div 3+12 \mathrm{~cm} \div 3=24 \mathrm{~cm} \\ & \frac{5}{5} \rightarrow 72 \mathrm{~cm} \div 3 \times 5=24 \mathrm{~cm} \times 5=\underline{120 \mathrm{~cm}} \end{aligned}$	Individual work, monitored, helped (or whole class activity with 3 boys at front of class to read 'their' clues and explain their heights.) Reasoning, agreement, selfcorrecting, praising Draw diagrams on BB if necessary, e.g. Who is taller than whom? Who can write it in a mathematical way? $\mathrm{BB}: \mathrm{A}=\mathrm{C}<\mathrm{B}$

$B K \angle$		Lesson Plan 83
Activity		Notes
9	Book 4, page 83	Individual work, monitored,
	Q. 4 Read: Work out the rule and fill in the missing numbers.	helped
	Elicit the rule with the whole class first. (8 and 4 fifths is the sum of the numbers in the middle and outer rings in the same	(Or whole class activity if time is short)
	segement.) Set a time limit. Review at BB with whole class. Ps come to BB to write missing	Drawn on BB or use enlarged copy master or OHP
	numbers or T points to a space and Ps dictate the number, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Write calculations on BB if problems.	Reasoning, agreement, selfcorrecting, praising
	Solution:	Extension
		What would the numbers be as decimals?
		$\text { e.g. } 8 \frac{4}{5}=8 \frac{8}{10}=8.8$
		$7 \frac{3}{5}=7 \frac{6}{10}=7.6$

BK4	R: Mental and written calculations with natural numbers C: Fractions and decimals. Measures E: Problems. Puzzles	Lesson Plan 84
Activity 1	Mental calculation a) T says an addition or a subtraction. Ps say the result (in steps if necessary). e.g. $150+280(=350+80=430)$, $4500-2900(=1500+100=1600), 137+54(=187+4=191)$ $5403-36(=5373-6=5367), \text { etc. }$ b) Multiplication and division tables relay (up to 10×10) T says a multiplication or division, e.g. $5 \times 9, \mathrm{P}$ says result $(=45)$ and says another multiplication or division to next P , and so on. Class points out errors or duplications. c) T says a multiplication or division, P says result (in steps if necessary). e.g. $64 \div 4(=16), 42 \times 3(=126), 210 \div 7(=30)$, $500 \times 3(=1500), 81 \times 40(=324 \times 10=3240)$, etc. Ps can think of operations for a) and c) too!	Notes Whole class activity T chooses Ps at random for a) and c), but in order round class for b) Operations for a) and c) could be written on BB if T thinks it is necessary. At speed. In good humour! Agreement, praising Class points out mistakes. Write steps of some operations on BB if problems.
2	Mental questions T asks a question. Ps calculate mentally and show result on slates or scrap paper on command. P responding incorrectly come to BB to write the operation on BB and do the calculation (with help of class). a) Which number should we add to 45 to get 80? Show me ...now! (35) (BB: $80-45=40-5=\underline{35}$, or $45+\underline{35}=80$) b) Which number should we subtract from 120 to get 72 ? Show me ...now! (48) (BB: $120-72=50-2 \underline{48}$, or $120-\underline{48}=72$) c) How many 61 s are in 183? Show me . . . now! (3) (BB: $183 \div 61=3$, as $\underline{3} \times 61=183$)	Whole class activity T repeats the question slowly to give Ps time to think. (T might allow less able Ps to write the calculation on scrap paper or slates.) Responses shown in unison. Reasoning, agreement, praising BB: $\begin{gathered} : 61+61=122 \\ 122+61=183 \end{gathered}$
3	Mental addition/subtraction of fractions and decimals Tell me the number which is: a) $\frac{2}{5}$ more than: $\frac{1}{5}\left(\frac{3}{5}\right) ; \quad \frac{4}{5}\left(\frac{6}{5}=1 \frac{1}{5}\right) ; 1 \frac{3}{5}\left(1 \frac{5}{5}=2\right)$; etc. b) $\frac{3}{8}$ less than: $\frac{7}{8}\left(\frac{4}{8}=\frac{1}{2}\right) ; 1\left(\frac{5}{8}\right) ; 4 \frac{3}{8}(4) ; 2 \frac{1}{8}\left(1 \frac{6}{8}=1 \frac{3}{4}\right)$; etc. c) 0.4 more than: $0.3(0.7) ; 1.9(2.3), 4.6(5)$. etc. d) 2.1 less than: $8.9(6.8) ; 2.1(0), 10(7.9)$, etc. Ps can think of questions to ask too.	Whole class activity T chooses Ps at random At speed. In good humour! Agreement, praising Class points out errors. Ps write operation on BB if problems. Feedback for T

BK4		Lesson Plan 84
Activity 4 Extension	Book 4, page 84 Q. 1 Read: Change the quantities. Elicit that $1 \mathrm{~cm}=10 \mathrm{~mm}$ and $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ (BB) Let's see how many of these you can do in 3 minutes! Start . . . now! . . . Stop! Ps sit up with arms folded when finished. Ps dictate results and T writes on BB (or T has solution already prepared and uncovers each answer as it is dealt with). Ps mark and correct own (or neighbour's) work. Who had all 8 correct (1 mistake)? Let's give them a pat on the back! What kind of mistakes did you make? Deal with all cases. Solution: a) $40 \mathrm{~cm}=\underline{400} \mathrm{~mm}$ b) $30 \mathrm{~mm}=\underline{3} \mathrm{~cm}$ $508 \mathrm{~cm}=\underline{5080} \mathrm{~mm}$ $8060 \mathrm{~mm}=\underline{806} \mathrm{~cm}=\underline{8} \mathrm{~m} \underline{6} \mathrm{~cm}$ $70 \mathrm{~m}=\underline{7000} \mathrm{~cm}$ $7800 \mathrm{~cm}=\underline{78} \mathrm{~m}$ $68 \mathrm{~m}=\underline{6800} \mathrm{~cm}$ $520 \mathrm{~cm}=\underline{5} \mathrm{~m} \underline{20} \mathrm{~cm}=\underline{5200} \mathrm{~mm}$ How could we write 5200 mm using only metres? (5.2 m)	Notes Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising
Extension	Book 4, page 84 Q. 2 Read: Change the quantities. Elicit that 1 litre $=100 \mathrm{cl}=1000 \mathrm{ml}$ and $1 \mathrm{~kg}=1000 \mathrm{~g}(\mathrm{BB})$ Let's see if you can do better this time! (Quicker or more accurate) Start . . . now! ... Stop! Ps put hands on heads when finished. Ps dictate results and T writes on BB (or uncovers each answer on a prepared solution as it is dealt with). Ps mark and correct own (or neighbour's) work. Who had all 8 correct or did better than last time? Let's give them a clap! What kind of mistakes did you make? Deal with all cases. Solution: a) 73 litres $=\underline{7300} \mathrm{cl}$ b) $40 \mathrm{ml}=\underline{4} \mathrm{cl}$ $57 \mathrm{cl}=570 \mathrm{ml}$ $93 \mathrm{ml}=\underline{9} \mathrm{cl} \underline{3} \mathrm{ml}=\underline{9.3} \mathrm{cl}$ $6.2 \mathrm{~kg}=\underline{6200} \mathrm{~g}$ $1800 \mathrm{~g}=1 \mathrm{~kg} \underline{800} \mathrm{~g}=\underline{1.8} \mathrm{~kg}$ 5.8 litres $=580 \mathrm{cl}$ $450 \mathrm{cl}=\underline{4}$ litres $\underline{50} \mathrm{cl}=\underline{4.5}$ litres How could we write 4 cl using only litres? (0.04 of a litre)	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Ask several Ps what they think. Agreement, praising
6	Book 4, page 84 Q. 3 Read: Fill in the missing numbers. What do you think the arrows show? (Results of the operations) Set at ime limit. Review at BB with whole class. Ps come to BB or dicate to T , explaining reasoning. Class agrees/disagrees. Solution: BB: e.g. $\begin{aligned} 82-60 \theta^{2} & =22-\frac{2}{3} \\ & =21 \frac{1}{3} \end{aligned}$	Individual work, monitored, helped (or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Initial discussion on the 'rule' Reasoning, agreement, self-correction, praising Calculations written in detail on BB if problems.

BKK	R: Calculations, polygons C: Perimeter, area, volume (with fractions and decimals) E: Problems	Lesson Plan 85
Activity 1	Sequences What is a natural number? (A positive whole number) Let's continue these sequences but with certain conditions! T starts and Ps continue. a) Say 'boom' instead of the natural numbers divisible by 4 : $1,2,3$, boom, $5,(6,7$, boom, $9,10,11$, boom, ...) b) Say 'boom' instead of the multiples of 6: $83,82,81,(80,79, \text { boom, } 77,76,75,74,73, \text { boom, } \ldots)$ c) Say 'boom' instead of the natural numbers: $\frac{1}{5}, \frac{4}{5}, 1 \frac{2}{5}, \text { boom }, 2 \frac{3}{5},\left(3 \frac{1}{5}, 3 \frac{4}{5}, 4 \frac{2}{5}, \text { boom }, 5 \frac{3}{5}, \ldots\right)$ d) Say 'boom' instead of the natural numbers: $17.6,16.9,16.2,15.5,(14.8,14.1,13.4,12.7$, boom, 11.3, ...)	Notes Whole class activity At speed in order round class Agreement on the rule: a) +1 b) -1 c) $+\frac{3}{5}$ d) -0.7 The terms for c) and d) could be written on BB if necessary. In good humour! (Ps could choose a different word to say in each part.)
2	Combinatorics a) How many different ways are there to climb up 4 stairs if you may climb $1,2,3$, or 4 stairs at a time? Let's show them. Ps come to BB to demonstrate/draw the different ways (with T's help if necessary). Class agrees/disagrees and points out missed ways. BB: b) How many different ways are possible if we can climb only 1 or 2 stairs at a time? T asks several Ps what they think and why. (5)	Whole class activity Discussion, agreement, praising (If possible, T has set of steps for Ps to demonstrate.) Or Ps could write on scrap paper or slates and show in unison on command.
3	Revision of Polygons T says the name of a plane shape and Ps draw it in Ex. Bks. then think of statements to describe their shape. T quickly checks every P's drawing, then chooses Ps to show different versios on BB (or T has diagrams already drawn on BB or OHT and shows them as necessary). Elicit what Ps know about the shapes, both general and specific. T gives hints if necessary. Elicit the names if Ps know them. a) Draw a triangle. e.g. General: It has 3 straight sides, 3 vertices, 3 angles. It is convex. It has no diagonals. Specific: Each of its angles is acute (it has a right angle and 2 acute angles or it has an obtuse angle and 2 acute angles) b) Draw a quadrilateral. e.g. General: It has 4 straight sides, 4 vertices, 4 angles, 2 diagonals. Specific: It is regular (not regular). It has parallel (perpendicular, equal) sides. It is convex (concave). etc. c) Draw a rectangle. (It is a quadrilateral which has opposite sides parallel and equal. Its adjacent sides are perpendicular. It has two diagonals which are equal and halve each other. It is convex. etc. d) Draw a square. (Regular rectangle, i.e. its 4 sides are equal in length. Its 2 diagonals cross at right angles. It is convex.) Discuss how to name certain angles and sides (using letters). T writes letters on the rectangle and points to a side or an angle. Ps name it.	Individual work in drawing diagrams in Ex. Bks (or on sheets of squared paper) Ps should use a ruler.. Whole class discussion on general and specific properties. Praise all positive contributions. Extra praise for clever statements, (e.g. equilateral, symmetrical, irregular) BB: e.g. a) b) etc. c) \square Parallelogram d) Ps can use mathematical notation to show some properties.

BKK		Lesson Plan 85
Activity 7 Extension	Book 4, page 85 Q. 4 Read: Calculate the area and the perimeter of this rectangle. Ps may use any method they like (including drawing the rectangle accurately on 1 mm grids if they wish). Set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. Solution: $\begin{aligned} & P=(0.9 \mathrm{~cm}+2.4 \mathrm{~cm}) \times 2=3.3 \mathrm{~cm} \times 2=\underline{6.6 \mathrm{~cm}} \text { or } \\ & P=(9 \mathrm{~mm}+24 \mathrm{~mm}) \times 2=33 \mathrm{~mm} \times 2=\underline{66 \mathrm{~mm}} \\ & A=0.9 \mathrm{~cm} \times 2.4 \mathrm{~cm}=9 \mathrm{~mm} \times 24 \mathrm{~mm} \\ &=(180+36)=216(\mathrm{~mm} \text { squares }) \\ &\left(=216 \mathrm{~mm}^{2}=2.16 \mathrm{~cm}^{2}\right) \end{aligned}$ Who can think of questions to ask about the rectangle? e.g. Which side is parallel to AB ? (DC) Which side is equal to AD ? (BC) Which side is perpendicular to AB ? (AD and BC) What are the names of its diagonals? (AC and BD) Which angle is a right angle? (angle DAB , angle ABC , angle BCD , angle ADC)	Notes Individual work, monitored, helped Ps have 1 mm grids on desks. Digrams drawn on BB. BB: D Discussion, reasoning, agreement, self-correction, praising. Whole class activity T could start and Ps continue. T (P) chooses Ps to answer. Practice in using letters to identify sides and angles in shapes. Praising, encouragement only
8	Book 4, page 85, Q. 5 Read: How can the fishing lake be enlarged to twice its area without moving the 4 oak trees? How can we do it? Ps discuss it with their neighbours for a minute and then make suggestions. If no P has a good idea, T might give a hint about drawing the diagonals. Elicit that the square has 4 congruent triangles, so an enlargement to twice its size will need 8 congruent triangles. T could have 2 congruent squares, one stuck to the $B B$, the other folded along both diagonals and the triangles formed cut out and stuck on the sides of the original square as shown. (This should all be done with help of Ps.) Solution: 45 min	Whole class activity (or individual or paired trial first if Ps wish) Ps could have 2 congruent squares on desks too. Discussion, reasoning, agreement, demonstration, praising BB: Square: $A=\underline{4}$ unit triangles Enlargement:: $A=4 \times 2=\underline{8}$ (unit triangles)

	R: Calculations C: Natural numbers, fractions and decimals E: Problems	Lesson Pla
Activity	Mental practice a) Listen carefuly and try to do the calculations in your head. Nod your head when you have done each step and show me the final result when I say. Start with 0.9 , add 1 (1.9) . . subtract 0.3 (1.6) . . . add 2.7 (4.3), ... and subtract 0.3. Show me that result . . now! (4) Let's show the steps on the number line. Ps come to BB to demonstrate the jumps as T reads them again. b) I thought of a number. If I add 5 eighths to it the result will be 2 . What was the number I first thought of? Show me ...now! (Accept $\frac{11}{8}$ or $1 \frac{3}{8}$) Ps who answered correctly come to BB to explain their reasoning. Class agrees/disagrees. Mistakes discussed. e.g. BB: $\square+\frac{5}{8}=2$, so $\square=2-\frac{5}{8}=\frac{16}{8}-\frac{5}{8}=\frac{11}{8}=1 \frac{3}{8}$	Notes Whole class activity but individual calculations Less able Ps can note the results of each step in Ex. Bks. or on slates. Give Ps time to calculate. In unison Number line drawn on BB or use enlarged copy master or OHP Agreement, praising In unison Reasoning, agreement, praising or $2-\frac{5}{8}=1 \frac{8}{8}-\frac{5}{8}=1 \frac{3}{8}$
2	Factorisation Let's factorise these numbers and write them as a product of their prime factors. Then we will use them to list all the factors in order. Ps come to BB to draw the factor trees (with help of class if necessary), to write the products and to list the factors in pairs. BB: [Elicit that 1 is not a prime number as it has only one factor, itself]	Whole class activity First elicit the meaning of a factor and a prime factor, e.g. 'A factor of a number divides into that number exactly.' 'A prime factor is a factor which is a prime number. 'A prime number has only two factors, itself and 1' Ps not at BB could draw the factor trees in Ex. Bks. or on slates. At a good pace Reasoning, correcting, agreement, praising
		Note for Ts only To find how many factors a number has, add 1 to the power of each of its prime factors, then calculate the product. e.g. $\begin{aligned} & \mathbf{5 6}=2^{3} \times 7^{1} ; \\ & (3+1) \times(1+1)=4 \times 2=\underline{8} \end{aligned}$ So 56 has 8 factors. $\begin{aligned} & \mathbf{6 0 0}=2^{3} \times 3^{1} \times 5^{2} \\ & (3+1) \times(1+1) \times(2+1) \\ & =4 \times 2 \times 3=\underline{24} \text { (factors) } \end{aligned}$

BK		Lesson Plan 86
Activity 4	(Continued) d) Read: Which are the middle data? Show me . . . now! (134 cm and 135 cm) If a P responds with 135.5 cm , ask him or her to explain their thinking. Otherwise agree that the number of data items is even, so there is no middle height in the set of data. What should we do? (Find the height which is halfway between 134 cm and 135 cm) Elicit that the middle number is 134.5 cm by referring to a number line drawn on BB or a height chart. We call the middle value in a set of data the median and this is how we calculate it if the number of values in the set is even. BB: $\underline{\text { median: }}:(134 \mathrm{~cm}+135 \mathrm{~cm}) \div 2=269 \mathrm{~cm} \div 2$ $\begin{aligned} & =134 \mathrm{~cm}+1 \mathrm{~cm} \div 2 \\ & =134 \mathrm{~cm}+\frac{1}{2} \mathrm{~cm} \\ & =134.5 \mathrm{~cm} \end{aligned}$ What is the median of this set of data? BB: i) $11,11,12,13,14$ (12, as odd number of values) ii) $10,11,12,13,15,15$ (12.5, as even number of values) What is the mode? i) 11 ; ii) 15	Notes In unison Discussion, reasoning, agreement, praising BB: T starts the calculation and Ps continue it. Ps shout out in unison. Agreement, praising Feedback for T
5	Book 4, page 86 Q. 3 Let's see how many of these you can do in 4 minutes! Stand up when you have finished! Start . . . now! . . . Stop! Review at BB with whole class. Ps dictate results, giving details of reasoning where needed. Ps mark and correct own (or neighbour's) work. Who made a mistake? What kind of mistake? etc. Stand up if you had them all correct. Let's give them a clap! Solution: 	Individual work, monitored Written on BB or use enlarged copy master or OHP Differentiation by time limit. T notes Ps who are quickest. Agreement, self-correcting, evaluating, praising Special praise for quickest, most accurate P . Feedback for T
6	Book 4, page 86 Q. 4 Let's see if you can be more accurate and quicker this time! Start . . . now! . . . Stop! Review at BB with whole class as in a). Class applauds the most improved score or time. Solution: a)2 1 3 \times 3 6 3 9 5 5 5 x 6 3 3 3 0 3 3 b) 2 1 2 4 8 4 8 3 0 1 2 3 9 0 3 6 6 0 7 6 3 6 4 2 1 2 6 r 6 7 8 8 8 1 4 6 	Individual work, monitored Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, self-correcting, evaluating, praising Show as long multiplication or division if problems. Feedback for T

BK4		Lesson Plan 87
Activity 4	Number sets T has some numbers written on the BB. Let's put them in the correct place in this Venn diagram. First elicit (or explain if Ps do not know) the meaning of the label on each set. - Numbers means all numbers, - Integer Numbers means all whole numbers (positive and negative) - Natural numbers means all positive, whole numbers. Ps come to BB to choose a number, point to where they think it should go and say why. Class agrees/disagrees. Elicit that in the case of, e.g. $(1.3+2.7)$, Ps should work out its value first (i.e. 4) then decide in which set to write the number. BB: (4) (6) $\left(2 \frac{1}{5}\right) \quad\left(407 \frac{3}{10}\right)$ $0.9,1.3+2.7,-2,0,5016,7 \frac{3}{4}-1 \frac{3}{4}, 4-9,2+\frac{1}{5}, 408-\frac{7}{10}$ Venn diagram	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion/revision of the classification of numbers At a good pace Reasoning, agreement, praising Agree that all natural numbers, all negative whole numbers and zero are integers. If there is time, Ps can think of other numbers to add to the diagram. Feedback for T
5	Book 4, page 87 Q. 1 Read: Write true statements about each diagram in your Ex Bk. Do part a) with the whole class first if Ps are unsure what to do, or elicit just one example of a possible statement for a). Set a time limit. Review at BB with whole class. Ps dictate to T who writes statements on BB. Class points out errors or suggests missed statements. Deal with all cases. T helps with missing types. Solution: e.g. Part shaded is: a) b) c) \square 1	Individual work, monitored, helped (or whole class activity if class is not very able) Drawn on BB or use enlarged copy master or OHP Agreement, self-correcting, praising Make sure that Ps understand that, e.g. $\frac{2}{3} \text { of } \frac{3}{4}=\frac{3}{4} \text { of } \frac{2}{3}$ by referring to the diagram. Reiterate that multiplying (dividing) the numerator and denominator of a fraction by the same amount does not change its value. Accept statements about the unshaded parts too!

RK		Lesson Plan 87
Activity 8	Book 4, page 87 Q. 4 Read: These were the fruit that 20 children in a class brought for their lunch. Ask Ps to make a tally first by drwing a vertical line for each piece of frut inside the box and then colouring it to show that it has been counted. Demonstrate on BB if necessary. Review totals for each type of fruit. Ps with incorrect totals check and correct them. Now let's answer the questions. A P reads each question aloud, then class shows the answer on scrap paper or slates on command. Ps responding correctly explain to those who were wong. Mistakes discussed and corrected. Solution: a) What fraction of the fruit were apples? $\quad\left(\frac{10}{20}=\frac{1}{2}\right)$ b) What fraction of the fruit were oranges? $\left(\frac{6}{20}=\frac{3}{10}\right)$ c) What fraction of the fruit were bananas? $\left(\frac{4}{20}=\frac{1}{5}\right)$ d) Which was the most popular fruit? (apple) Which was the least popular fruit? (banana)	Notes Individual work, imonitored, helped Fruit drawn (or stuck) on BB or use enlarged copy master/OHP Quick revision on how to make a tally if necessary. Agreement, self-correcting, praising Whole class activity Reasoning, agreement, praising
Extension	Sometimes we can give a part of a whole by thinking of the whole as 100 equal parts. Each of these 100 parts is called a percentage. We say that 1 out of 100 is 1 per cent. 'Per cent' comes from the old Roman language, Latin, and means 'out of 100 ', so 1 percent means 1 out of 100 or 1 hundredth. What percentage would the whole be? (100 per cent, i.e. 100 hundredths or 100 out of 100) Who knows how to write the mathematical symbol for 'per cent'? T shows it if no P knows. (\%) How many percentages would be in 1 half? (50) Who can come and write it on the BB? Who agrees? etc. Repeat for each of the other fractions in the answers above. [This is meant to familiarise Ps with percentage but do not expect Ps to learn it yet.]	Whole class discussion Allow Ps to tell what they know about percentages. If no P can explain, T does so. BB: Percentage (part of 100) per cent means out of 100 $\begin{aligned} & 1=\frac{100}{100}=100 \% \\ & \frac{1}{2}=\frac{50}{100}=50 \% \\ & \frac{3}{10}=\frac{30}{100}=30 \% \\ & \frac{1}{5}=\frac{2}{10}=\frac{20}{100}=20 \% \end{aligned}$

BK	R: Calculations C: Natural numbers, fractions and decimals E: Problems. Cube, cuboid, solids	$\begin{gathered} \text { Lesson Plan } \\ 88 \end{gathered}$
Activity 1	Solids These are the ground plans of two solids. (BB) Build them with unit cubes then count their volume and surface area. T chooses Ps to show their solids to class (or T has large models already prepared). What is the volume (surface area) of this solid? Ps show on scrap paper or slates on command, or T chooses Ps to give the volume and surface area and class agrees/disagrees. BB: a) $V=5$ unit cubes $A=22$ unit squares b) $\begin{aligned} & V=9 \text { unit cubes } \\ & A=32 \text { unit squares } \end{aligned}$	Notes Individual (or paired) work, monitored, helped Ps have unit cubes on desks. Agreement, praising Feedback for T
2	Comparing volume and area of cuboids T has large cubes for demonstration and Ps have cm cubes on desks if possible. T has table drawn on BB and Ps have a copy on desks too. T (or a P) explains what each row of the table means, using a 1 cm cube and filling in the first column in the table. ($L=$ length of the horizontal edge, $A=$ area of its surface in cm squares, $V=$ volume in cm cubes) Now let's make a cuboid with horizontal edge of length 2 cm . Agree that the width and height are still 1 cm but the length has increased by 1 cm Let's fill in the 2nd column in the table. Ps come to BB or dictate to T. Class checks by counting the squares and cubes. If Ps have no cm cubes, continue in this way as a whole class activity, dealing with one column at a time and with Ps filling in their tables too. Otherwise, Ps work individually (or in pairs), building the cuboids of increasing horizontal length and filling in the appropriate columns in their table. In the latter case, set a time limit and review at BB with the whole class. Ps come to BB or dictate their results. Class agrees/disagrees. Mistakes corrected. BB: What do you notice? Is there a rule for the table? Elicit that for a cuboid with height and width of 1 unit, but a different length $V=L \text { and } A=L \times 4+2$ Who can explain it? (Volume is the number of 1 cm cubes used, which is the same number as the horizontal length. Area of surface consists of 4 faces [top, bottom, front, back] which are lengthening but the two end faces stay as 1 cm squares) If I made a cuboid with 100 (1000) cm cubes laid end to end, what would its length (volume, surface area) be?	Whole class activity to start, then individual (paired) work, monitored, helped Table drawn on BB or use enlarged copy master or OHP, with copies for Ps. etc. (Cuisennaire rods could be used instead of cm cubes if class has them.) At a good pace Demonstration, reasoning, agreement, self-correction, praising Discussion, checking, agreement, praising Extra praise if Ps noticed the relationships while completing the table. $\begin{aligned} & L=100(1000) \mathrm{cm} \\ & V=100(1000) \mathrm{cm} \text { cubes } \\ & A=100 \times 4+2=402\left(\mathrm{~cm}^{2}\right) \\ & {\left[1000 \times 4+2=4002\left(\mathrm{~cm}^{2}\right)\right]} \end{aligned}$

BK		Lesson Plan 88
Activity 5	Book 4, page 88 Q. 2 Read: Imagine the cuboid which has this net. Calculate its surface area and volume. Complete the table. If possible, Ps have copies of the net on desks to fold into the cuboid as a check, and/or T has a large demonsration model already folded to show to class. What do the letters in the table stand for? (a, b and c are the length, width and height [in units] of the cuboid and this time they are all different lengths. A is the surface area [in unit squares] and V is the volume [in unit cubes]) Ps find the values of a, b and c in the diagram by counting the grid squares, then calculate the area and volume in Ex. Bks. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Mistakes discussed and corrected. Solution: $\begin{array}{cl} a \quad & A \end{array}=2 \times(3 \times 5+3 \times 2+5 \times 2)$ $V=3 \times 5 \times 2=3 \times 10=\underline{30} \text { (unit cubes) }$	Notes Individual work. monitored, helped Drawn on BB or use enlarged copy master or OHP (Copied onto card and cut out for Ps to fold and make up.) Discussion, agreement Set a time limit. Ps can check their calculated area by counting the grid squares on the net. Reasoning, agreement, selfcorrection, praising Elicit by referring to the made-up model that for a cuboid with a different length, width and height: $\begin{aligned} & A=2 \times(a \times b+a \times c+ \\ &b \times c) \\ & V=a \times b \times c \end{aligned}$
6	Book 4, page 88, Q. 3 The children in a class were allowed to choose which game they would like to play during their physical education lesson. They could choose from basketball, football or tennis. Read: The pie chart shows which part of the class chose which game to play. Why do you think this kind of diagram is called a pie chart? (It looks like a pie cut into slices.) What does the whole circle or 'pie' stand for? (the whole class) What does this part stand for? T points and Ps explain. Which was the most (least) popular sport? (basketball, tennis) Read: a) Write each part as a fraction. T asks several Ps what they think. How can we check that they are correct? (Divide the circle into 8 equal parts and count how many are shaded in the different colours.) T uses BB ruler to mark the circle. Read: b) How many children chose each game if there were 24 pupils in the class? Ps come to BB to do calculations and explain reasoning. Class points out errors. Solution: $\begin{aligned} & \text { B: } 24 \div 8 \times 5=3 \times 5=\underline{15} \text { (pupils) } \\ & \text { F: } 24 \div 8 \times 2=3 \times 2=\underline{6} \text { (pupils) } \\ & \text { T: } 24 \div 8=\underline{3} \text { (pupils) } \end{aligned}$	Whole class activity Pie chart drawn on BB or use enlarged copy master or OHP BB: Basketball Football Tennis Discussion, agreement. praising BB: F: $\frac{2}{8}$ B: $\frac{5}{8}$ T: $\frac{1}{8}$ Whole class activity (or individual work in Ex. Bks and Ps show results on scrap paper or slates on command). Reasoning, agreement, (selfcorrecting,) praising Check: $15+6+3=24$

$3 K 4$		Lesson Plan 88
Activity 7	Book 4, page 88 Q. 4 Read: Solve the equations. Let's see how many of these you can do in 3 minutes! Start . . . now! . . . Stop! Review at BB with whole class. Ps dictate to T, saying the whole equation. T writes on BB. Class agrees/disagrees. Ps mark/correct own work. Only ask for details of reasoning if there is disagreement. Who made a mistake? What was your mistake? Deal with all cases. Who did not finish them? Stand up if you had them all correct! Let's give them 3 cheers! Solution: $\begin{array}{lll} \text { a) } & \text { i) } 3+\mathbf{8}=11 & \text { ii) } \\ \begin{array}{lll} \mathbf{1 8 0}+820 & =1000 & \text { iii) } \\ \frac{3}{7}+\boxed{\mathbf{3}} \mathbf{7} & =\frac{6}{7} \\ \text { iv) } \frac{\mathbf{7}}{\mathbf{9}}+\frac{2}{9}=1 & \text { v) } 2.3+\mathbf{1 . 7}=4 & \text { vi) } 0 \mathbf{0 . 4}+0.6=1 \\ \text { b) } & \text { i) } 7-\mathbf{5}=2 & \text { ii) } \mathbf{1 8 2 0}-820=1000 \end{array} & \text { iii) } \frac{8}{9}-\frac{\mathbf{6}}{\mathbf{9}}=\frac{2}{9} \\ \text { iv) } \frac{\mathbf{2}}{\mathbf{3}}-\frac{1}{3}=\frac{1}{3} & \text { v) } 4.3-\mathbf{1 . 2}=3.1 & \text { vi) } \mathbf{1}-0.6=0.4 \end{array}$	Notes Individual work, monitored Written on BB or use enlarged copy master or OHP Or T could have solution already prepared and uncover each answer as it is dealt with. Agreement, self-correction, evaluation, praising Feedback for T Let's give the whole class 3 cheers for working so hard!

