BKK	Calculations Revision and practice: Geometry Geometric games. Problems							$\begin{gathered} \text { Lesson Plan } \\ 113 \end{gathered}$
Activity 1	Factorisation a) Let's factorise 140 and 141. Ps come to BB or dictate to T, drawing factor tree if needed and checking possible prime divisors BB: $\quad 140=2 \times 2 \times 5 \times 7 ; \quad 141=3 \times 47$ b) Who can tell me all the factors of 140 and 141 ? Ps dictate to T, using the prime factors to help them. Class agrees/disagrees. BB: $\quad 140: 1,2,4,5,7,10,14,20,28,35,70,140$; 141: 1, 3, 47, 141							Notes Whole class activity Reasoning, agreement, praising At a good pace Ps may use a calculator. Ps could join up the factor pairs.
2	Calculation relay T says a multiplication or division. Ps say result (in steps if necessary). Start with practice in multiplication and division facts, e.g. 6×9, $49 \div 7$, then gradually move on to more difficult operations. e.g. $\begin{aligned} & 14 \times 13(=140+30+12=170+12=\underline{182}) \\ & 28 \times 7(=140+56=\underline{196}), \quad 350 \times 11(=3300+550=3850) \\ & \frac{1}{5} \times 5, \quad 2.7 \times 10, \quad 3400 \div 5(=600+80=680), \quad \frac{100}{10} \div 10, \\ & 257 \div 4\left(=50+10+4+\frac{1}{4}=64 \frac{1}{4}, \text { or } 64, \text { r } 1\right), \text { etc. } \end{aligned}$ Ps can think of multiplications and divisions too. \qquad 12 min							Whole class activity T chooses Ps at random. Allow Ps to write interim steps on scrap paper or slates or, in difficult cases, to write the whole calculation. Emphasis should be on quick calculation, done mentally if possible. At a good pace Class points out errors. Praising, encouragement only
3	Written exercises T dictates the operations and Ps write them down vertically in Ex. Bks. a) $130870-1308$ b) $428.3-60.2$ c) 4752×4 d) 444×21 e) $651.28+207.43+1040.05+99.99$ f) $17253 \div 8$ g) $19605 \div 17$ Let's see how many you can do in 5 minutes! You can use any method you wish. Remember to check your results. Start . . . now! . . . Stop! Review at BB with whole class. Ps come to BB or dictate results to T, explaining reasoning loudly and with place values. Class points out errors. Mistakes discussed and corrected. BB: a) $\begin{aligned} & : \\ & \begin{array}{\|c\|c\|c\|c\|c\|} \hline 1 & 3 & 10 & 10 \\ \hline & 3 & 0 & 8 & 7 \\ \hline & 1_{1} & 3 & 0_{1} & 8 \\ \hline \mathbf{1} & \mathbf{1} & \mathbf{7} & \mathbf{7} & \mathbf{9} \\ \hline \end{array} \end{aligned}$ d) e) f) g)							Individual work, monitored, d) to g) helped (Write vertically on BB or use enlarged copy master for review and for less able Ps.) Differentiation by time limit (Or deal with one at a time if class is not very able.) Reasoning, agreement, selfcorrecting, praising Check with reverse operations (or with a calculator). Feedback for T

3 B		Lesson Plan 113
Activity	Book 4, page 113 Q. 1 Read: i) Colour the shapes which are symmetrical and draw the lines of symmetry. ii) Write the perimeter length (in grid units) below each shape. Elicit what 'symmetrical' and 'line of symmetry' mean. (If you folded the shape in half, one half would cover the other exactly. The line of symmetry is the fold line or is some times called the mirror line, as one half of the shape is a mirror image of the other half.) Set a time limit. Review at BB with whole class. Ps come to point to each shape in turn, say whether it is symmetrical, draw the lines of symmetry where appropriate and write its perimeter length. Class agrees/disagrees. Mistakes discussed and corrected. Solution: What do you notice about all the shapes? (They all have an area of 6 grid squares.) What is the name of each shape? a), b): rectangles c): hexagon (plane shape with 6 straight sides) d), e), g), h), j) , k): octagons (plane shape with 8 straight sides) f) and i) dodecagon (plane shape with 12 straight sides)	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Revision of symmetry. Allow Ps to explain if they can. Ps might point out symmetrical shapes in the classroom. Elicit that the unit of measure for the perimeters is the side of a grid square. Differentiation by time limit. Reasoning, agreement, selfcorrection, praising Feedback for T Whole class activity Agreement, praising Extra praise if Ps remember the name dodecagon.
5	Book 4, page 113 Q. 2 Read: These shapes are congruent. What has been done to Shape 1 to make Shape 2, Shape 2 to make Shape 3, and so on? Write it in your exercise book. Elicit what 'congruent' means. (exactly the same shape and size) Revise the vocabulary for transforming shapes first. T manipulates a cardboard shape on BB and elicits the name for the movement. rotation: turning around a central point, reflection: forming a mirror image, i.e. flipping the shape over, Discuss the form of what Ps should write in Ex. Bks. Ps should draw the mirror line in $P b s$ if it is a reflection. Review at BB with whole class. Elicit by how much the shape has been turned if it is a rotation. T should have cut-out shapes to demonstrate on BB. Mistakes discussed and corrected.	Individual trial first, monitored, after introductory whole class discussion (or continue as a whole class activity) Drawn on BB or use enlarged copy master or OHP Discussion and demonstration BB : reflection rotation e.g. S1 \rightarrow S2: reflection Encourage Ps to use a ruler. Discussion, reasoning, agreement, self-correction, praising Feedback for T

BTK4		Lesson Plan 113
Activity 5 Extension	(Continued) Solution: What can you tell me about the shape? (e.g. octagon, $P=12$ units, $A=6$ square units) 31 min	Notes Feedback for T Elicit that - half a turn $=2$ right angles - quarter of a turn $=1$ right angle
6	Book 4, page 113 Q. 3 Read: What has been done to Shape A to make Shape B, Shape B to make Shape C, and so on? Write it in your exercise book. First discuss the form of what Ps should write in Ex. Bks. e.g. A \rightarrow B: rotation Set a time limit. Review at BB with whole class. Ps dictate findings . T helps with vocabulary. Elicit that to make bigger in all directions is to enlarge (and to make smaller is to reduce); to make bigger in only one direction is to stretch. Class agrees/ disagrees with solutions. Mistakes discussed and corrected. Solution: $\mathrm{A} \rightarrow \mathrm{B}$: rotation (by quarter of a turn, or a right angle, or 90°) $\mathrm{B} \rightarrow \mathrm{C}$: stretch horizontally (to twice its length) $\mathrm{C} \rightarrow \mathrm{D}$: rotation (by a right angle or quarter of a turn, or 90°) $\mathrm{D} \rightarrow \mathrm{E}$: stretch horizontally (to twice its length) Which shapes are congruent? Which shapes are similar? Read: Write the area inside each shape and the perimeter below. Ps count the grid squares and parts of grid squares for the area. (This is not too difficult, as Ps can find parts which combine to make a complete square, but accept approximations.) It is difficult to find the perimeter in grid units, so Ps should measure a slanting side with rulers (to the nearest mm) and as the side of each grid square is 5 mm , the total perimeter can be calculated. e.g. A: $P \approx 6 \times 5 \mathrm{~mm}+4 \times 7 \mathrm{~mm}=30 \mathrm{~mm}+28 \mathrm{~mm}=58 \mathrm{~mm}$ Solution: $=5.8 \mathrm{~cm}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correcting, praising Extra praise if Ps remember the vocabulary. Whole class activity $B B: A \cong B, C \cong D$ $\mathrm{A} \sim \mathrm{~B} \sim \mathrm{E} ; \mathrm{C} \sim \mathrm{D}$ Whole class activity (or individual work if Ps wish, after initial discussion on units of measure) Discussion, reasoning, agreement, (self-correction), praising Area given in grid squares. Perimeter given in mm, but Ps could then convert to cm

BKK4		Lesson Plan 113
Activity 7 Extension	Shapes T has shapes drawn (or stuck) on BB. What has been done to the previous shape to make the next one? BB: Ps come to BB or dictate to T. Class agrees/disagrees. T should have cut-out versions of the small and large shape so that Ps can demonstrate rotation or measure and compare the length of the sides. Solution: $\mathrm{A} \rightarrow \mathrm{B}$: rotation (by 1 sixth of a turn) $\mathrm{B} \rightarrow \mathrm{C}$: enlargement (to twice its size) $\mathrm{C} \rightarrow \mathrm{D}:$ rotation (by 1 sixth of a turn) $\mathrm{D} \rightarrow \mathrm{E}: \quad$ reduction (to half its size) $\mathrm{E} \rightarrow \mathrm{F}: \quad$ rotation (by 1 sixth of a turn) $\mathrm{F} \rightarrow \mathrm{G}: \quad$ enlargement (to twice its size) Which shapes are congruent (similar)? What is their area (perimeter)?	Notes Whole class activity Use copy master or OHP, shapes enlarged and cut out (or draw on triangular grid) Ps could have copy of copy master on desks too. Discussion, reasoning, agreement, praising Elicit that the shape is a hexagon with one of the 6 segments cut out, so rotating it by one segment will be 1 sixth of a turn. $B B: A \cong B \cong E \cong F ;$ $C \cong D \cong G$ e.g. A ~ C, etc.
8	Book 4, page 113, Q. 4 Read: Barry Bear is planning his route to visit Piggy, then Rabbit, then Goat. He draws the possible paths he could take. Who can explain the diagram? (The letters stand for each of the animals and the dots are their houses The lines are the possible paths.) a) Read: How many routes are possible? T asks several Ps what they think and why (or Ps could write number on scrap paper or slates and show on command.) Agree that for each of the 4 different paths from B to P, there are 5 different paths from P to R and for each of these, there are 3 different paths from R to G, i.e. there are: BB: $4 \times 5 \times 3=20 \times 3=\underline{60}$ possible routes. b) Read: What chance has Goat of guessing Barry's route? T asks several Ps what they think and why (or Ps could show on scrap paper or slates on command). BB: 1 out of 60 or $\frac{1}{60}$ (Unless Barry Bear had a favourite route and Goat knew it.)	Whole class activity but individual calculating Diagram drawn on BB or use enlarged copy master or OHP BB: Discussion, reasoning, agreement, praising Reasoning, agreement, praising Extra praise if a P points this out without hint from T.

B	R: Calculations C: Revision and practice: Geometry E: Geometric game. Problems	Lesson Pla
Activity	Factorisation a) Let's factorise 142. Ps come to BB or dictate to T, drawing factor tree if needed and checking possible prime divisors. BB: $\quad 142=2 \times 71$; b) Who can tell me all the factors of 142 ? Ps dictate to T , using the prime factors to help them. Class agrees/disagrees. BB: 142: 1, 2, 71, 142	Notes Whole class activity Reasoning, agreement, praising At a good pace Ps may use a calculator to check the divisors.
2	Numbers a) Let's call a natural number a perfect number if it equals the sum of all its natural factors except for itself. Who can tell me a perfect number? Who agrees? Let's check it. Who can think of another perfect number? Class checks it.	Whole class activity Agreement, checking, praising BB: Perfect numbers e.g. $\underline{6}=1+2+3$ $\underline{28}=1+2+4+7+14$ T could have more ready in case Ps wish to know them.
	To Ts only: Perfect numbers are rare and only 39 such numbers are known but we do not know if there are others. The first 3 perfect numbers: 6,28 and 496 were known to the ancent mathematicians since the time of Pythagoras (C500 BC) All even perfect numbers are of the form $2^{n} \times\left(2^{n+1}-1\right)$: $\underline{6}=2^{1} \times\left(2^{2}-1\right) ; \underline{28}=2^{2} \times\left(2^{3}-1\right) ; \underline{496}=2^{4} \times\left(2^{5}-1\right) ;$ $\underline{8128}=2^{6} \times\left(2^{7}-1\right)$, then $2^{10} \times\left(2^{11}-1\right), 2^{12} \times\left(2^{13}-1\right), \ldots$ but note that the formula works only if 2^{n+1} is a prime number. We do not know if odd perfect numbers exist, as none have been found yet. (See http:home1.pacific.net.sg/~novelway/MEW2/)	
	b) Let's call a natural number a nice number if it equals the product of all its factors except for 1 and itself. Who can tell me a nice number? Who agrees? Let's check it. Who can think of another nice number? Ps try out other numbers and tell class when they have found one. Class checks it. 10 min	BB: Nice numbers $\text { e.g. } \quad \underline{6}=2 \times 3$ $\begin{aligned} & \underline{10}=2 \times 5, \quad \underline{15}=3 \times 5 \\ & \underline{14}=2 \times 7, \underline{22}=2 \times 11 \\ & \underline{33}=3 \times 11, \underline{35}=5 \times 7 \end{aligned}$ 142 is also a nice number.. Have no expectations!
3	Problem 1	Whole class activity Drawn on BB or use enlarged copy master or OHP Thas large model (and if possible Ps make own model using yellow (5 cm long) Cuisennaire rods or strips of multi-link 1 cm cubes) Ps show answers on scrap paper or slates in unison. Reasoning, agreement, praising
	Ps answering correctly explain reasoning to class. a) How many unit cubes did I use to make it? ($4 \times 5=\underline{20}$ unit cubes) b) How many unit squares cover its surface? (82) By counting, or by calculation: $\begin{aligned} 4 \times(4 \times 5+2 \times 1)-3 \times 2 & =4 \times 2-6 \\ (6 \text { squares cover } & =88-6 \\ \text { each other, so cannot } & =\underline{82 \text { (unit squares) }} \begin{aligned} \text { be seen) } \end{aligned} \end{aligned}$	

BKK		Lesson Plan 114
Activity 4 Extension	Book 4, page 114 Q. 1 Read: How many unit cubes are needed to build each cuboid? Colour the cubes which are similar. Elicit that the number of unit cubes is the volume of the cuboid and that it is calculated by: length \times width \times height. Ps can do calculations in Ex. Bks. or on slates if they need to but encourage mental calculation if possible. Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $a=3$ units $b=2$ units $c=4$ units b) $a=8$ units $b=2$ units $c=8$ units c) $a=6$ units $b=4$ units $c=8$ units What is the surface area of the cuboids? Ps come to BB or dictate to T . Class points out errors. a) $\begin{aligned} A & =2 \times(3 \times 2+3 \times 4+2 \times 4) \\ & =2 \times(6+12+8)=2 \times 26=\underline{52} \text { (unit squares) } \end{aligned}$ b) $\begin{aligned} A & =2 \times(8 \times 2+8 \times 8+2 \times 8) \\ & =2 \times(16+96+16)=2 \times 128=\underline{256} \text { (unit squares) } \end{aligned}$ a) $\begin{aligned} A= & 2 \times(6 \times 4+6 \times 8+4 \times 8) \\ = & 2 \times(24+48+32)=2 \times 104=\underline{208} \text { (unit squares) } \\ & 26 \mathrm{~min} \underline{ } \end{aligned}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP (or T has large models already made up) Reasoning, agreement, selfcorrection, praising BB: a) $V=3 \times 2 \times 4=\underline{24}$ b) $V=8 \times 2 \times 8=\underline{128}$ c) $V=6 \times 4 \times 8=\underline{192}$ (unit cubes) a) ~ c) (same shape but twice the size) i.e. each edge of a) has been enlarged by 2 times to make c) Note that the lengths are twice as long but the volume is 8 times more: $192=8 \times 24$ Reasoning, agreement, praising Extra praise if Ps notice that the diagrams hve not been drawn to scale!
5	Book 4, page 114 Q. 2 Read: Find the points and join them up. Colour the shapes you make. Who can explain to us what the numbers in the brackets mean? Ps come to BB to point and explain (The first number is the x coordinate and refers to the horizontal numbers on the x-axis in the diagram. The 2 nd number is the y coordinate and refers to the vertical numbers on the y-axis.) If Ps are still unsure, T (or P) P could demonstrate how to find the first point by moving two fingers along the grid lines until they meet and drawing a dot. Set a time limit. Review with whole class. T has solution already prepared but keeps covered until Ps have said what they have drawn. (Ps in unison: Mickey Mouse) T confirms it. Solution: T gives coordinates for a point on LHS (e.g. 3, 6) and Ps say the coordinates of the corresponding point on the RHS (e.g. 11, 6).	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Initial discussion on meaning of coordinates. Involve several Ps. Differentiation by time limit. (Ps can finish it at home if they wish.) Thas solution already prepared from enlarged copy master or on an OHT Agreement, praising Ps can choose the coordinates too. In good humour!

BKK		Lesson Plan 114
Activity 6	Book 4, page 114 Q. 3 Read: A group of children are standing in a circle to play a game. Each child has been given a number in order round the circle. If the child numbered 6 stands opposite the child numbered 15 , how many children are playing the game? Ps to try to solve it using their own methods. Set a time limit. Review with whole class. Ps who have found a solution could show on scrap paper or slates in unison on command. Ps responding correctly explain at BB to rest of class. Who did the same? Who did it a different way? etc. Deal with all methods. Possible methods of solution: 1) Draw a diagram: or 3) From 6 to 1 we could move 5 steps back. 5 steps back from 15 is 10 , so the number opposite 1 is 10 . Therefore the greatest number must be opposite 9 . As the difference between opposite numbers is $9, \quad(15-6=9)$ the greatest number must be $9+9=\underline{18}$ or 4) $15-6=9$ is half of the children, so there are $2 \times 9=\underline{18}$ children altogether.	Notes Individual (or paired) work, monitored, helped (Or whole class activity if time is short) Ps can discuss strategies with their neighbours. Discussion, reasoning, agreement, self-correcting, praising Accept any valid method which is reasoned correctly (including real-life demonstration with Ps a front of class holding number cards)
7 ${ }^{7}$	Book 4, page 114 Q. 4 Read: The Rabbit family grow their yearly supply of carrots in a rectangular garden. Its area is $180 \mathrm{~m}^{2}$. How long is the garden if it is 15 m wide? Ps solve the problem in Ex. Bks under a time limit. Review with whole class. Ps could show result on scrap paper or slates on command. Ps answering correctly come to BB to explain their reasoning. Mistakes discussed and corrected. Solution: $A=a \times b=180 \mathrm{~m}^{2}, \quad b=15 \mathrm{~m}$ So $a=180 \div b=180 \div 15$ or Answer: The garden is 12 m long. - What is the perimeter of the garden? Ps come to BB or dictate to T. Class agrees/disagrees. BB: $\quad P=2 \times(15+12)=30+24=\underline{54}(\mathrm{~m})$ - What is wrong with the question? $(15 \mathrm{~m}>12 \mathrm{~m}$, so 15 m should be the length and 12 m should be the width.)	Individual work, monitored, (helped) Discussion, reasoning, agreement, self-correction, praising $\begin{aligned} & \text { BB: } \\ & b=15 \mathrm{~m} \underbrace{A=180 \mathrm{~m}^{2}}_{a} \end{aligned}$ Whole class activity Reasoning, agreement, praising Agree that usually the longer side of a rectangle is its length and the shorter side is its width.

BKK		Lesson Plan 115
Activity 4	Book 4, page 115 Q. 1 Read: Snow White is painting a picture of the seven dwarfs. The area of the rectangular canvas is $4500 \mathrm{~cm}^{2}$. How long is the canvas if its width is 500 mm ? What should you do first? (Change the width to cm .) Set a time limit. Ps write a plan, do the calculation and write the answer as a sentence in Pbs. Review with whole class. Ps could show result on scrap paper or slates on command. Ps who answered correctly explain at BB. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. BB: $\quad A=4500 \mathrm{~cm}^{2} \quad W=500 \mathrm{~mm}=50 \mathrm{~cm}$ Plan: $L=A \div W=4500 \div 50=450 \div 5=\underline{90}$ (cm) Answer: The canvas is 90 cm long. 25 min	Notes Individual work, monitored, helped T could show a real canvas. BB: $A=4500 \mathrm{~cm}^{2} \quad W=500 \mathrm{~mm}$ $L=\text { ? }$ Reasoning, agreement, selfcorrection, praising Extension (for quick Ps) What is the perimeter of the canvas? $P=2 \times(50+90)=\underline{280}(\mathrm{~cm})$
5	Book 4, page 115 Q. 2 Read: Measure the sides of each polygon. Calculate the perimeter and the area. Deal with the measurements first to ensure that Ps have the correct values before they do the calculations. Calculations can be done in Ex. Bks and only the results writen in Pbs. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes dicussed and corrected. Solution: a) $\begin{aligned} P=2 \times(5+3) & =2 \times 8 \\ & =\underline{16}(\mathrm{~cm}) \\ A=(5 \times 3) \mathrm{cm}^{2} & =\underline{15 \mathrm{~cm}^{2}} \end{aligned}$ $P=(3.5+2+1.5+1+5+3) \mathrm{cm}$ $=\underline{16 \mathrm{~cm}}$ $A=3.5 \times 3+1.5 \times 1$ $=10.5+1.5=\underline{12}\left(\mathrm{~cm}^{2}\right)$ Why are the perimeters equal? Ps come to BB to explain. 30 min \qquad	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP for demonstration only. Discussion on how to find the area of b). Reasoning agreement, selfcorrection, praising or $\begin{aligned} A & =5 \times 3-1.5 \times 2 \\ & =15-3=\underline{12}\left(\mathrm{~cm}^{2}\right) \end{aligned}$ Reasoning, agreement
6	Book 4, page 115 Q. 3 Read: How many right angles are the angles shown by the arrows? What is a right angle? (1 quarter of a turn or 90°) Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes corrected. Solution: b) c) d) 3 right angles $\frac{1}{2}$ a right angle $1 \frac{1}{2}$ right angles $3 \frac{1}{2}$ right angles	Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Ps could stand up and turn by a right angle to the left. Reasoning, agreement, selfcorrection, praising Elcit that: 1 turn $=4$ right angles $=360^{\circ}$

BK		Lesson Plan 115
Activity 7 Extension	Book 4, page 115 Q. 4 Read: A cuboid is built from 72 unit cubes. How many units long can the edges be? First factorise 72, then show the possibiities in the table. What do the circles and rectangles mean in the diagram? (The rectangles are factors which are not prime numbers and the circles are prime factors.) What do the letters in the table represent? (the length, width and height of the cuboid) Set a time limit. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Agree that there are 12 different combinations. If you think of the values of a, b and c as being interchangeable how many possibilities will there be then? $\text { BB: } \begin{aligned} 3+6+6+6+6+6+3+640 \operatorname{mntn}^{3}+6 & =4 \times 3+8 \times 6 \\ & =12+48 \\ & =\underline{60} \text { cases } \end{aligned}$	Notes Individual work, monitored, helped (or whole class activity if time is short) Drawn on BB or use enlarged copy master or OHP Initial discussion on meaning of diagram and table. Differentiation by time limit Reasoning, agreement, selfcorrection, praising At a good pace Whole class discussion, reasoning, agreement Extra praise if a P points this out without help from T .
8	Book 4, page 115 Q. 5 Read: Try to divide a square into 6 smaller squares. Ps measure the given square and use their rulers to draw smaller squares. T might give a hint before Ps start, or if Ps are having difficulties, e.g. Into how many congruent squares could we divide the square? (4,916 , etc., i.e. square numbers) But 6 is not a square number, so what can you say about the 6 squares? (They are not all an equal size.) If Ps finds a solution, they come to BB to show it. If not, T shows it. Or T could leave the question open and Ps try to solve it at home or in Lesson 145. Solution: 51 cm squares 12 cm square	Individual trial first, monitored, helped Drawn on BB or SB or OHT Reasoning, agreement Discussion. Ps show their findings. Elicit that the length of each side is 3 cm . Agreement, (self-correction), praising

BKK	R: Calculations C: Geometric games, puzzles E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 116 \end{gathered}$
Activity 1	Factorising a) Find the prime factors of 144 in your Ex. Bks. and write it as the product of its prime factors. b) List all its factors using the prime factors to help you. Set a time limit. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. BB: a) $144=2 \times 2 \times 2 \times 2 \times 3 \times 3$ T could show this quick way too. b) $1,2,3,4,6,8,9,12,16,18,24,36,48,72,144$ (15 factors) What kind of number is 144 ? (It is a square number as $144=12 \times 12$ $=12^{2}$) 5 min	Notes Individual work in Ex. Bks. monitored, helped Reasoning, agreement, selfcorrection, praising Ps may use a calculator to work out all the factors. Ps might use it in future if they like it. Extra praise for BB: Ps who remember the name.
2	Missing numbers Study these equations. Which numbers are missing? When you come to the BB, first say the equation as a word problem, then explain how you will solve it. Then do the calculation at the side of the BB , explaining your reasoning. BB: a) $645+8357=9002$ e.g. How much is added to 654 to get 9002 ? We get the unknown term of a sum if we take away the known term from the sum. b) $7318-4772=2546$ e.g. How much is subtracted from 7318 to get 2546 ? We get the unknown subtrahend if we subtract the difference from the reductant. c) $11879-7608=4271$ e.g. How much is 7608 taken away from to get 4271 ? We get the reductant of a subtraction if we $\text { C: } \begin{array}{r} 7608 \\ +4271 \\ \hline 11879 \\ \hline \end{array}$ add the subtrahend and the difference. d) $4 \times 3827=15308$ e.g. What is multiplied by 4 to get 15308 ? We get the unknown factor of a product if we divide the product by the known factor.	Whole class activity Written on BB or SB or OHT At a good pace T helps with wording if necessary. Revise the mathematical terms if required. At a good pace Reasoning, agreement, agreement, praising Rest of class could check with a reverse operation or with a calculator. Feedback for T

BTK		Lesson Plan 116
Activity 5	Book 4, page 116 Q. 2 Read: The perimeter of a triangle is 10 units. It has two equal sides. The length of each side is whole units. What is the length of each side? Ps can draw triangles and try out different lengths in Ex. Bks, then write the answer in Pbs. Set a time limit. Review with whole class. X, what lengths did you answer? Who agrees? Who got a different answer? etc. Ps come to BB to explain their reasoning. Class agrees/disagrees. Solution: e.g. List 2 numbers the same + another number to make 10 : BB: $1,1,8,2,2,6,3,3,4 \quad 4,4,2,5,5,0$ then cross out those which cannot make a triangle, i.e. the sum of the two smallest sides must be more than the 3rd side. Answer: The lengths of the sides can be 3 units, 3 units and 4 units; or 2 units, 4 units and 4 units.	Notes Individual work, monitored, helped Discussion, reasoning, agreement, praising T could check lengths by drawing on BB with BB compasses and ruler. BB:
6	Book 4, page 116 Q. 3 Read: The diagram shows a 5-unit shape made from 12 equal sticks. Make another shape from 12 equal sticks which has an area of 5 units. Ps have sticks or straws on desks to manipulate. They first make the shape in Pbs and agree that it has an area of 5 squares. Now make another shape which uses all the sticks and also has an area of 5 squares. When you have found it, draw it in your Pbs. Review at BB with whole class. P comes to BB to draw his/her shape and point to the 5 units. Class agrees/disagrees. Solution: What can you say about the shapes? e.g. for LHS shape: - It is symmetrical. Ps come to BB to draw lines of symmetry. - It is a dodecagon (12-sided polygon, if corners are joined up)	Individual work, monitored Original diagram drawn on BB (or straws or sticks stuck on BB): If no P has found it after a set time, T gives hints or shows it on BB. Ps make it on desks with sticks. Discussion, demonstration, agreement, praising and for RHS: e.g. 1 line of symmetry octagon (8-sided polygon)
7	Book 4, page 116 Q. 4 Read: Draw 12 dots on a 6 by 6 grid so that there are exactly 2 dots in each row, column and diagonal. Less able Ps could have enlarged grids and counters on desks. Set a time limit. As soon as a P finds a configuration he or she comes to BB to show it. Class checks that it meets the conditions. Deal with all cases. Agree that many arrangements are possible. Solution: e.g. Or etc.	Individual work, monitored, (helped) (Or whole class activity if time is short) Grids drawn on BB or use enlarged copy master or OHP Reasoning, agreement, (self-correction), praising Which of the patterns are symmetrical?

BK4	R: Calculations C: Collecting data. Tally charts and grouping E: Different ways to display data	Lesson Plan 117
Activity	Factorisation Let's factorise 145 and 146 and then list all their factors. Ps come to BB or dictate to T, trying the prime numbers in turn as divisors. Class agrees/disagrees. BB: $\quad 145=5 \times 29$; Factors: $1,5,29,45$ $146=2 \times 73 ; \quad \text { Factors: } 1,2,73,146$ What kind of numbers are they? (Both are nice numbers.)	Notes Whole class activity Reasoning, agreement, praising Ps may use a calculator to check the divisors. Feedback for T
2	Missing numbers Let's fill in the missing numbers. Ps come to the BB to say the equation as a word problem and explain how they will solve it. Then they do the calculation at the side of the BB , explaining reasoning in detail. Class points out errors. BB: a) $7.32+2.96=10.28$ e.g. How much is added to 7.32 to get 10.28 ? We get the unknown term of a sum if we $\text { C: } \begin{array}{r} 10.28 \\ -\quad 7.32 \\ \hline 2.96 \\ \hline \end{array}$ take away the known term from the sum. b) $54.63-45.26=9.37$ C: 54.63 e.g. How much is subtracted from 54.63 to get 9.37 ? We get the unknown subtrahend if we subtract the difference from the reductant. c) $1266.3-452.6=813.7$ $C: \quad 813.7$ e.g. How much is 452.6 taken away from to get 813.7 ? We get the reductant of a subtraction if we add the subtrahend and the difference. d) $5 \times £ 25.74=£ 128.70$ e.g. What amount is multiplied by 5 to get $£ 128.70$? We get the unknown factor of a product if we divide the product by the known factor. e) $£ 17.60 \div 2=£ 8.80$ e.g. What do we divide $£ 17.60$ by to get $£ 8.80$? that $£ 8.80$ is half of $£ 17.60$) the dividend by the quotient. f) $£ 123.20 \div 8=£ 15.40$ C: $\quad 15.40$ e.g. What amount is divided by 8 to get $£ 15.40$? We get the unknown dividend if we multiply the quotient by the divisor.	Whole class activity Written on BB or SB or OHT At a good pace T helps with wording if necessary. Revise the mathematical terms if required. At a good pace Reasoning, agreement, checkingt, praising Rest of class could check with a reverse operation or with a calculator. Feedback for T Or, e.g. $\begin{aligned} & 17.60 \div 8.80=1760 \div 880 \\ & =176 \div 88=16 \div 8=\underline{2} \end{aligned}$ f) Details of reasoning: e.g. 8 times 0 hundredths $=0 \mathrm{~h}$ 8 times 4 tenths $=32 \mathrm{t}=3 \mathrm{U}+\underline{2} \mathrm{t}$ 8 times $5 \mathrm{U}=40 \mathrm{U}$, $40 \mathrm{U}+3 \mathrm{U}=43 \mathrm{U}=4 \mathrm{~T}+\underline{3} \mathrm{U}$ 8 times $1 \mathrm{~T}=8 \mathrm{~T}$, $8 \mathrm{~T}+4 \mathrm{~T}=12 \mathrm{~T}=\underline{1} \mathrm{H}+\underline{2} \mathrm{~T}$

BKK4		Lesson Plan 117
Activity 3	Problem 1 Listen carefully and think about how you would solve this problem. We have several coins. When we arrange them in rows of 2, 3 or 4, 1 coin is always left over. How many coins could we have? Allow Ps a minute to think and discuss with neighbours if they wish. Ps explain their ideas and findings to class. Who agrees? Who thinks something else? etc. Elicit that the number of coins must be 1 more than a multiple of 2,3 and 4 (or multiples of 12 , as 12 is the first multiple of 2,3 , and 4). BB: Multiples of 2, 3 and 4: 12, 24, 36, 48, 60, 72, 84, 96, 108, \ldots Possible number of coins: $13,25,37,49,61,73,85,97,109, \ldots$ 20 min	Notes Whole class activity T repeats slowly to give Ps time to think and discuss. Less able Ps could have counters on desks. Discussion, reasoning, agreement, praising Ps check the numbers by saying how many rows of 2,3 and 4 coins there would be for each quantity of coins.
4	Problem 2 If a square means 100 units, what is the area of each of these rectangles? Ps come to BB to count the squares and write the area below each column. Class agrees/disagrees. BB: Let's list the numbers in increasing order. Ps dictate to T. BB: $50,100,200,300,500,650,800,900,1000$ Which is the middle number? P comes to BB to underline it. Who remembers the name for the middle number in a set of data? (median) T tells it and writes on BB if nobody remembers.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising T chooses Ps at random or class shouts out in unison. Agreement, praising BB: median middle value in a set of data

BKK	R: Calculations C: Collecting and displaying data E: Different graphs. Problems	$\begin{gathered} \text { Lesson Plan } \\ 118 \end{gathered}$
Activity 1	Factorising Factorise 147 in your Ex. Bks and then list all its factors. Review with whole class. Ps come to BB or dictate to T , explaining reasoning (e.g. 3 is a factor of 147 because $1+4+7=\underline{12}$, which is a mulitple of 3). Class agrees/disagrees. Mistakes corrected. BB: $\quad 147=3 \times 7 \times 7$ (3) 49 Factors: 1, 3, 7, 21, 49, 147	Notes Individual work, monitored Discussion, reasoning, agreement, self-correction, praising (Ps may use a calculator.) Feedback for T
2	Problem Listen carefully and think about how you would solve this problem. We have between 100 and 200 marbles. When we arrange them in rows of 2, 3, 4 or 5, one marble is always left over. How many marbles could we have? Allow Ps a minute to think and discuss with neighbours if they wish. Ps explain their ideas and findings to the class. Who agrees? Who thinks something else? etc. Elicit that the number of marbles must be 1 more than a multiple of 2,3 , 4 and 5 (or a multiple of 60 , as 60 is the first multiple of $2,3,4$ and 5). BB: Multiples of 2, 3, 4 and 5: $\quad 60,120,180,240,300, \ldots$ So possible numbers of marbles are: $61,121,181,241,301, \ldots$ but the only numbers between 100 and 200 are $\underline{121}$ and 181. Answer: We could have 121 or 181 marbles 10 min	Whole class activity T repeats slowly to give Ps time to note down the data. Discussion, reasoning, agreement, praising Ps check the two numbers by saying how many rows of 2,3 , 4, 5 marbles there would be.
3	Missing numbers Let's complete the operations. Ps come to BB to say the operation in words, explain what they have to do to solve it and then do the calculation. Class checks mentally that they are correct. BB: a) $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}$ b) $3 \frac{1}{4}-\frac{3}{4}=2 \frac{1}{2}$ $\left(\frac{6}{5}-\frac{2}{5}=\frac{4}{5}\right)$ $\left(3 \frac{1}{4}-2 \frac{1}{2}=1 \frac{1}{4}-\frac{1}{2}=\frac{3}{4}\right)$ c) $\sqrt[4]{ }-1 \frac{1}{6}=2 \frac{5}{6}$ d) $\frac{3}{8} \times 3=1 \frac{1}{8}$ $\left(2 \frac{5}{6}+1 \frac{1}{6}=3+\frac{6}{6}=4\right)$ $\left(\frac{9}{8} \div \frac{3}{8}=3\right) \begin{aligned} & \text { How many } 3 \text { eighths } \\ & \text { are in } 9 \text { eighths? }\end{aligned}$ e) $\frac{5}{7} \div 5=\frac{1}{7}$ f) $2 \frac{2}{3} \div 4=\frac{2}{3}$ (How many $\frac{1}{7}$ are in $\frac{5}{7}$?) $\left(\frac{2}{3} \times 4=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{8}{3}=2 \frac{2}{3}\right)$	Whole class activity Written on BB or SB or OHT e.g. Ps: a) 'What must be added to 2 fifths to get 6 fifths?' 'To find the missing term in an addition, subtract the known term from the sum.' T helps with wording when necessary. At a good pace Reasoning, agreement, praising

3 K 4		Lesson Plan 118
Activity 4	Displaying data. T has various graphs copied from books, magazines or newspapers and enlarged (e.g. pie charts, tally charts, histograms, bar charts, pictograms, line graphs, etc.). Ps come to BB to explain the meaning of each graph and to ask and answer questions about the data shown. Class agrees/disagrees. T could have some questions already prepared, in case Ps cannot think of any.	Notes Whole class activity Stuck (or drawn) on BB (Or Ps could have been asked to collect them.) Discussion led by T. Involve as many Ps as possible.
5	Median T has sets of numbers written on BB or SB or OHT. Which number is in the middle of the set? What is it called? (the median) Ps come to BB circle the median, explaining reasoning. Class agrees/ disagrees. T helps in sets with even numbers if necessary. What do you notice about any of the sets? e.g. BB a) $2,3,4,5,6,7.8,9,10,11,12 \quad$ (increasing by 1) b) $2,4,6,8,10,{\underset{\downarrow}{12,14}, 16,18,20,22,24 \quad \text { (positive even nos.) }}_{\downarrow}$ $13 \quad[(12+14) \div 2=26 \div 2=\underline{13}]$ c) $2,3,5,7,11,13,17,19,23,29,31,37$ (prime numbers) d) $1,4,9,16,{\underset{\downarrow}{25,36}, ~ 49}_{\downarrow} 64,81,100$ (square numbers) $30.5[(25+36) \div 2=61 \div 2=\underline{30.5}]$ e) $-11,-9,-7,-5,-3$, $1,3,5,7,9$ (increasing by 2)	Whole class activity BB: median middle data At a good pace Reasoning, agreement, praising Extra praise if Ps remember what to do with an even number of data without T's help or $36-25=11$, $11 \div 2=5.5$ Median: $25+5.5=30.5$, or $36-5.5=30.5$ Feedback for T
6	Book 4, page 118 Q. 1 Read This graph shows the highest point of some mountain ranges and the deepest point of some seas. T has a large map of the world beside the BB. Which of the mountains or seas have you heard of? Where is it on this map? Which country is it in (near)? Who has been there? etc. Ps tell of those they know and show them on the map. T points out any that Ps have not heard of. Read: Read the graph and fill in the approximate missing values. Who can explain what the graph means? (The horizontal axis shows the mountains or seas, represented by triangles; the vertical axis shows the height in metres, with a grid line at every 1000 m) Ps come to BB to read the data from the graph and fill in the missing numbers. T helps with closer approximation if Ps' reading is too rough. Ps fill in agreed heights in Pbs too. Ps read questions themselves and answer in Pbs. Set a time limit. Review with whole class. Ps dictate answers to T and confirm on the graph. Mistakes discussed and corrected.	Whole class discussion to start If possible, Ps have copies of world map on desks too. Thas brief information prepared for the mountains and seas in case Ps know nothing about them. Whole class activity Graph drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Individual work, monitored, helped Reasoning, agreement, selfcorrecting, praising

BK4		Lesson Plan 118
Activity 6	(Continued) Solution: Height (m) 1. Alps $\approx 4800 \mathrm{~m}$ 5. Mediterrean Sea $\approx-4600 \mathrm{~m}$ 2. Carpathians $\approx 2600 \mathrm{~m}$ 6. Atlantic Ocean $\approx-9300 \mathrm{~m}$ 3. Himalayas $\approx 8900 \mathrm{~m}$ 7. Indian Ocean $\approx-8100 \mathrm{~m}$ 4. Adriatic Sea $\approx-1600 \mathrm{~m}$ 8. Pacific Ocean $\approx-11600 \mathrm{~m}$ a) Which is higher, the Alps or the Carpathian Mountains? (Alps) How much higher? BB: $4800 \mathrm{~m}>2600 \mathrm{~m}$ $2200 \text { m }$ b) Which sea is deeper, the Mediterranean or the Adriatic? (Med.) How much deeper? BB: $-4600 \mathrm{~m}<-1600$ 3000 m c) What is the difference between the highest mountain and the deepest sea? BB: $8900 \mathrm{~m}-(-11600 \mathrm{~m})=8900 \mathrm{~m}+11600 \mathrm{~m}=\underline{20500 \mathrm{~m}}$ Elicit that this is the range of the data. Show on the vertical axis.	Notes (Or accept approximations to the nearest 500 or 1000) (Or Ps could show results on scrap paper or slates in unison on command.) BB: $\begin{array}{r}11600(-11600 \text { to } 0) \\ +\quad 8900(0 \text { to } 8900) \\ \hline\end{array}$
7	Book 4, page 118 Q. 2 Read: How many acorns did the Squirrel family collect each day? Complete the diagram. Tell (elicit) that data shown in the form of pictures is called a pictogram. What does half an acorn represent? (75 acorns) Set a time limit. Ps write operations horizontally in Pbs. Review at BB with whole class. Ps come to write on BB or dictate to T , explaining reasoning. Mistakes discussed/corrected. Solution: Read: How many acorns did they collect altogether? Ps add up the columns and show result on command. (3825)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP BB: Pictogram data as pictures (Or Ps do can necessary calculations in Ex. Bks.) Reasoning, agreement, selfcorrection, praising BB: 750 600 825 450 675 $\begin{array}{r}+525 \\ +3825 \\ \hline 2\end{array}$ Extension What is the mode? (none) What is the median? (600) What is the range? (825)

BK4	R: Calculations C: Collecting and displaying data E: Problems. Grouping by 2, 3, 4, 5 and 10	Lesson Plan 119
Activity 1	Factorising Factorise 148 in your $E x . B k s$ and then list all its factors. Review with whole class. Ps come to BB to draw a factor tree and explain their reasoning. Class agrees/disagrees. Mistakes corrected. BB: $148=2 \times 2 \times 37$ (2) 74 Factors: 1, 2, 4, 37, 74, 148 (2) 37	Notes Individual work, monitored Discussion, reasoning, agreement, self-correction, praising (Ps may use a calculator.) Feedback for T
2	Counting in different bases Ps have 17 counters (or coins or cubes, etc.) on desks and T has 17 circles stuck on BB at random. a) Let's put the counters in groups of 2 . Elicit that there are 8 groups of 2 , and 1 single unit left over. Now let's put the groups of 2 in twos. (i.e. $2 \times 2=4$ per group) Elicit that there are 4 groups of 4 , no groups of 2, and 1 left over. Now let's put the groups of 4 in twos. (i.e. $2 \times 2 \times 2=\underline{8}$ per group) Elicit that there are now 2 groups of 8 , no groups of 4 , no groups of 2 , and 1 left over. If we continue in this way, what will the next grouping be? (Put the 8 -element groups in twos.) i.e. $2 \times 2 \times 2 \times 2=\underline{16}$ per group) Elicit that there is now 1 group of 16 , no groups of 8 , no groups of 4, no groups of 2 , and 1 left over. Let's show in a table how we can make 17 using 2 as a base for counting. T draws table and Ps dictate the headings and place-values. BB: Base 2 $17=1 \times 16+1 \times 1$ b) Let's group the 17 counters using 3 as the base. Ps manipulate counters on desks then dictate to T or come to BB . BB: Base 3 $17=1 \times 9+2 \times 3+2 \times 1$ c) Let's group them using 4 as the base. BB: Base 4 $17=1 \times 16+1 \times 1$ d) Let's group them using 5 as the base. Base 5 $17=3 \times 5+2 \times 1$	Whole class activity but individual (or paired) manipulation of groups Ps manipulate counters on desks and surround the groups with different coloured string or wool (or arrange counters on sheets of paper and draw around the groups) T groups (or draws) counters on BB, using coloured lines to show the different groupings. Discussion, agreement, praising Ps draw tables in Ex. Bks too. Ask Ps to explain the headings for each table. e.g. Base 3 $\begin{aligned} & 3 \times \underline{1}=\underline{3}, 3 \times 3=\underline{9}, \\ & 3 \times 9=\underline{27}, \ldots \end{aligned}$ Base 4 $\begin{aligned} & 4 \times \underline{1}=\underline{4}, 4 \times 4=\underline{16}, \\ & 4 \times 16=\underline{64}, \ldots \end{aligned}$ Base 5 $\begin{aligned} & 5 \times \underline{1}=\underline{5}, 5 \times 5=\underline{25}, \\ & 5 \times 25=\underline{125}, \ldots \end{aligned}$

BKK		Lesson Plan 119
Activity 2	(Continued) e) Let's group them using 10 as the base. BB: Base 10 $17=1 \times 10+7 \times 1$ Of course, this is the base that we usually use in counting! \qquad 15 min \qquad	Notes Base 5 $\begin{aligned} & 10 \times \underline{1}=\underline{10} \\ & 10 \times 10=\underline{100} \\ & 10 \times 100=\underline{1000} \end{aligned}$ [Preparation for studying the number system]
3	Missing numbers Let's complete the operations. Ps come to BB to explain the operation in words and fill in the missing number either by counting on the class number line or by calculation. Class agrees/disagrees. BB: a) $5+\boxed{-9}=-4$ b) $4-7=-3$ (by counting 9 to the left from 5) (by counting 7 to the left from 4) c) \square $-(-3)=5$ d) $-5 \times 4=-20$ $[5+(-3)=5-3=\underline{2}]$ $[(-5)+(-5)+(-5)+(-5)=-20]$ \square e) $-14 \div 7=-2$ [by guessing, or $(-2)+(-2)+(-2)+(-2)+(-2)+(-2)+(-2)=-14]$ f) $-12 \div 3=-4$ [by guessing, or $(-4) \times 3=(-4)+(-4)+(-4)=-12$]	Whole class activity Written on BB or SB or OHT T helps where necessary but give Ps time to reason in their own way, with help of class, if they can. Demonstrate each operation on the class number line. Elicit that: - adding a '+' number or subtracting a ' -' number means moving to the right; - subtracting a '+' number or adding a '--' number means moving to the left. Agreement, praising
4	Problem Listen carefully and think about how you would solve this problem. We have several coins. When we arrange them in rows of 2, 1 coin is left over. When we arrange them in rows of 3, 2 coins are left over. When we arrange them in rows of 4, 3 coins are left over. How many coins could we have? Allow Ps a minute to think and discuss with neighbours if they wish. Ps explain their ideas and findings to the class. Who agrees? Who thinks something else? etc. Elicit that the number must be odd (1 more than a mulitple of 2), 2 more than an odd multiple of 3 , and 3 more than a multiple of 4 . BB: e.g. Possible multiples of $3: 3,9,15,21,27,33,39,45,51, \ldots$ Add on 2 more: $\quad 5,11,17,23,29,35,41,47,53, \ldots$ Subtract 3 and underline the multiples of 4: $2, \underline{8}, 14, \underline{20}, 26, \underline{32}, 38, \underline{44}, 50, \ldots$ What do you notice? (The possible numbers form a sequence, starting at 11 and increasing by 12.) Answer: We could have 11, 23, 35, 47, 59, ... coins.	Whole class activity Ps note data in Ex. Bks. Ps could have counters on desks to help them. Discussion, reasoning, agreement, checking Praise all positive contributions. If Ps have no good ideas, T gives hints and leads Ps through the solution shown opposite.

BKK		Lesson Plan 119
Activity 6	(Continued) b) Draw a graph about the table. c) Put the data in order. BB: $0,1,2,3,3,3,3,3,4,4,5,6$ d) Which are the middle data? (3 and 3) What is the median? $(3+3) \div 2=\underline{3}$ e) Read: Think of another 37 people, Would this statement about them be certain, possible or impossible? At least 4 people were born in the same month. T asks several Ps what they think and why. Class decides on correct answer. [Certain] Reasoning: e.g. Among 36 people, at least 3 must be born in the same month, as there are only 12 different months. So the 37th person must make 4 people born in one of the months.	Notes Accept thick lines as here or shaded columns centred on the ticks for each month. Whole class activity (Or Ps could show their responses on scrap paper or slates on command and T chooses Ps for each response to explain their reasoning.) Discussion, reasoning, agreement, praising
7	Book 4, page 119 Q. 3 Read: 60 pupils were given a choice of 4 activities. How many pupils chose each one and what fraction of them chose it? Use the pie chart to complete the table. How many equal parts has the pie chart been divided into? Work out the fraction first, then calculate the number of Ps for each activity. Set a time limit. Review with whole class. Ps come to BB to complete table, explaining their reasoning by referring to the pie chart. Class agrees/disagrees. Mistakes discussed and corrected. Solution: 41 min	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion reasoning, agreement, self-correction, praising How can we check our data? (The numbers should add up to 60 and the fractions should add up to 1.) $\begin{aligned} & \text { BB: } 5+30+20+15=60 \\ & \frac{1}{12}+\frac{6}{12}+\frac{2}{12}+\frac{3}{12}=\frac{12}{12} \end{aligned}$
8	Real data T chooses 12 (or 18) Ps to say, e.g. which fruit they prefer (or Ps could choose the subject). Ps come to BB to make a tally above each column in the table, fill in the numbers and fractions and complete the pie chart. Class (T) helps and corrects when necessary.	Whole class activity Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, praising In good humour!

BKK		Lesson Plan 120
Activity 5	Book 4, page 120 Q. 2 Read: A chain of supermarkets made a pictogram of how many pies they had sold in a year. Each pie on the diagram means 1000 real pies. Who can explain the pictogram? (The number of whole pies tells you how many thousands of real pies that they sold; the pies are divided into 8 equal segments, so each part means 1 eighth of 1000 ; half a pie means 500 real pies, 1 quarter of a pie means 250 real pies and 3 quarters of a pie means 750 real pies.) a) Read: Fill in the missing numbers and draw pies to show the numbers given. Set a time limit. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected before doing other questions. Solution: $\theta=1000 \text { pies }$ Ps read questions b) to d) themselves and write answers in Pbs . Review with whole class. Ps come to BB or dictate to T, explaining reasoning, or Ps could show results on scrap paper or slates for c) and d). Mistakes discussed and corrected. Solution: b) Write the data in increasing order. BB: 2000, 2500, 2750, 3000, 3000, 3250, 3500, 3500, 4000, 4125, 4250, 4750 c) What is the difference between the first and last numbers? BB: $4750-2000=\underline{2750}$ Elicit that this is called the range of the data. d) Underline the two middle numbers. Which number is half-way between them? This is the median. BB: Median: $(3250+3500) \div 2=6750 \div 2=\underline{3375}$ or $(3500-3250) \div 2=250 \div 2=125$, $3250+125=\underline{3375} \text { or } 3500-125=\underline{3375}$	Notes Whole class discussion to start Drawn (stuck) on BB or use enlarged copy master or OHP Clarification of meaning of pictogram to start Involve several Ps. Agreement, praising Individual work, monitored, helped Drawings need only be rough. Necessary calculations can be done on scrap paper or slates or in Ex. Bks. BB: e.g. $\begin{aligned} 1000 \div 8 & =800 \div 8+ \\ & 160 \div 8+40 \div 8 \\ & =100+20+5 \\ & =\underline{125} \end{aligned}$ or $250 \div 2=\underline{125}$ Individual wok, monitored, d) helped Reasoning, agreement, self-correction, praising (If no Ps used the 2nd method, T could show it and explain by drawing on BB the relevant segment of the number line.) Which way do you think is easiest? Why?

BKK		Lesson Plan 120
Activity 6	Book 4, page 120, Q. 3 Read: 67 scientists are at a conference. 47 speak French, 35 speak German and 23 speak both languages. How many of them speak neither French nor German? Complete the Venn diagram. Who has an idea of what we should do? Who agrees? Who thinks something else? etc. Ps come to BB to explain their reasoning and write calculations. T gives hints only if Ps are stuck. Solution: French: 47; German: 35; French + German: $\underline{23}$ so number speaking: French but not German: $47-23=\underline{24}$ German but not French: $35-23=\underline{12}$ Number speaking German or French: $23+24+12=59$, so number not speaking German or French: $67-59=\underline{8}$ 41 min	Notes Whole class activity (or individual or paired trial first if Ps wish) Drawn on BB or use enlarged copy master or OHP. Discussion, reasoning, agreement, praising BB:
7	Book 4, page 120 Q. 4 Read: How many dictionaries would be needed to translate among these languages: English, German, French, Spanish? Allow Ps to try it in Ex. Bks. for a couple of minutes. If Ps are struggling, T could give a hint about drawing tree diagrams. If you found an answer, show me . . now! (12) P answering correctly explains reasoning. Some Ps might answer 6 , forgetting that, e.g. $\mathrm{E} \rightarrow \mathrm{G}$ is not the same as $\mathrm{G} \rightarrow \mathrm{E}$ Solution: $\mathrm{S}<_{\mathrm{F}}^{\mathrm{F}} \underset{\mathrm{G}}{\mathrm{E}} \quad 4 \times 3=\underline{12}$ Answer: 12 dictionaries would be needed.	Individual work, monitored, helped (T could have some such dictionaries to show to class.) In unison on scrap paper or slates Discussion, reasoning, agreement, self-correction, praising Or by reasoning: Each of the 4 languages would need a dictionary for each of the other 3 languages.

BTK	R: Calculations C: Data and graphs E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 121 \end{gathered}$
Activity 1	Factorising In your Ex. Bks, factorise 150 and 151 and then list all their factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the numbers as the product of their prime factors, and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. 151 is a prime number (not divisible by $2,3,5,7$ or 11 , and $13 \times 13=169>151$) Factors: $\quad 150: 1,2,3,5,6,10,15,25,30,50,75,150$ 151: 1,151	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps could join up the factor pairs for 150 .
2	Different bases Imagine that we have 151 counters. Let's group them using different numbers as the base. Ps first dictate headings for the place value table for each base number. Then Ps show the groupings in two ways: starting from the LHS and then the RHS of the table. Ps come to BB or dictate operations to T, with T's help if necessary. Class points out errors. BB: e.g. a) Grouping by 3 Or starting at RHS of table: $\begin{array}{r} 151 \div 3=50, \mathrm{r} \text { 1 } \\ 50 \div 3=16, \mathrm{r} 2 \\ 16 \div 3=5, \mathrm{r} \text { 1 } \\ 5 \div 3=1, \mathrm{r} 2 \\ 1 \div 3=0, \mathrm{r} \end{array}$ b) Grouping by 4 Check: $1 \times 81+\underbrace{2 \times 27}_{54}+1 \times 9+2 \times 3+1 \times 1=\underline{151}$ Starting at LHS of table: Or starting at RHS of table:$\begin{aligned} 151 \div 64 & =2 \mathrm{r} 23 \\ 23 \div 16 & =1 \mathrm{r} 7 \\ 7 \div 4 & =1 \mathrm{r} 3 \\ 3 \div 1 & =3 \end{aligned}$Base 4 64 16 4 1 2 1 1 3$\begin{aligned} 151 \div 4 & =37, r \square \\ 37 \div 4 & =9, r \square \\ 9 \div 4 & =2, r \square \\ 2 \div 4 & =0, r \end{aligned}$ Check: $\underbrace{2 \times 64}_{128}+1 \times 16+1 \times 4+3 \times 1=\underline{151} \downarrow$ c) Grouping by 5 Starting at LHS of table: Or starting at RHS of table: $\begin{aligned} 151 \div 125 & =1 \text { r } 26 \\ 26 \div 25 & =1 \text { r } 1 \\ 1 \div 5 & =0 \text { r } 1 \\ 1 \div 1 & =1 \end{aligned}$ Base 5$151 \div 5=30, \mathrm{r} 1$125 25 5 1 1 1 0 1$30 \div 5=6, r 0$$6 \div 5=1, r \square$$1 \div 5=0, \mathrm{r} \square$ Check: $1 \times 125+1 \times 25+0 \times 5+1 \times 1=\underline{151 \boldsymbol{V}}$	Whole class activity Deal with one at a time and gradually build up the tables and the two methods of divisions. At a good pace Reasoning, agreement, praising (Ps may use a calculator.) Feedback for T

BTK		Lesson Plan 121
Activity 5	Book 4, page 121 Q. 2 Read: Jack is in training for a marathon. These were the distances he ran every day last week. What do you notice about the distances? What should you do first? (Change all the distances to metres to match the unit of measure on the graph.) BB: $2.9 \mathrm{~km}=2900 \mathrm{~m}, 10 \mathrm{~km}=10000 \mathrm{~m}$ a) Read: Show the data in a graph. Elicit that the distances are shown on the vertical axis, with a grid line at every 200 m , and the days are on the horizontal axis. Set a time limit. Ps can draw the rectangle for each day of the week in a different colour. Review at BB with whole class. Ps come to BB or T has solution already prepared. Mistakes corrected. Solution: Ps read questions b) to d) themselves and answer them in Pbs . Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solutions: b) List the distances in increasing order. BB: $2800 \mathrm{~m}, 2900 \mathrm{~m}, 3200 \mathrm{~m}, 3500 \mathrm{~m}, 4300 \mathrm{~m}, 6800 \mathrm{~m}$, 10000 c) What is the difference between the smallest and greatest distance? BB: $10000 \mathrm{~m}-2800 \mathrm{~m}=\underline{7200 \mathrm{~m}}$ Elicit that this is the range of the data. d) Read: What is the median (the middle number)? Median: $\underline{3500 \mathrm{~m}}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Initial discussion to clarify the meaning of the graph. Discussion, reasoning, agreement, self-correction, praising (or bars can be the width of the column and touch either) Individual work, monitored under a time limit Reasoning, aagreement, selfcorrection, praising (Or Ps could show responses for c) and d) on scrap paper or slates in unison on command.)

BKK	R: Calculations C: Data, diagrams, tables, functions (single line graphs) E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 122 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 152 and then list all its factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the numbers as the product of their prime factors, and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: e.g. $\quad \mathbf{1 5 2}=2 \times 2 \times 2 \times 19$ (2) (2) Factors: 152: 1, 2, 4, 8, 19, 38, 76, 152 4 min	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps could join up the factor pairs.
2	Different bases Imagine that we have 152 coins. How can we group them using different numbers as the base number? Ps first dictate headings for the place value table for each base number. Then Ps show the groupings in two ways: starting from the LHS and then the RHS of the table. Ps come to BB or dictate operations to T, with T's help if necessary. Class points out errors. BB: e.g. a) Grouping by 6 Starting at LHS of table: Or starting at RHS of table: Check: $\underbrace{4 \times 36}_{144}+1 \times 6+2 \times 1=\underline{152}$ b) \quad Grouping by 7 Starting at LHS of table: Or starting at RHS of table:$\begin{aligned} 152 \div 49 & =3 \text { r } 5 \\ 5 \div 7 & =0 \mathrm{r} 5 \\ 5 \div 1 & =5 \end{aligned}$Base 749 7 1 3 0 5$\begin{array}{r} 152 \div 7=21, \mathrm{r} 5 \\ 21 \div 7=3, \mathrm{r} 0 \\ 3 \div 7=0, \mathrm{r} 3 \end{array}$ Check: $\underbrace{3 \times 49}_{147}+0 \times 7+5 \times 1=\underline{152}$ c) \quad Grouping by 8 Starting at LHS of table: Or starting at RHS of table: Check: $\underbrace{2 \times 64}_{128}+3 \times 8+0 \times 1=\underline{152}$ d) \quad Grouping by 9 Starting at LHS of table: Or starting at RHS of table: Check: $1 \times 81+7 \times 9+8 \times 1=\underline{152}$	Whole class activity Deal with one at a time and gradually build up the tables and the two methods of division. At a good pace Reasoning, agreement, praising Ps may use a calculator or do the calculations in Ex. Bks or at side of BB. Feedback for T

BKK		Lesson Plan 123
Activity 4	Sequences T says the first 3 terms of a sequence and Ps note them in Ex. Bks. I will give you 1 minute to work out the rule and continue the sequence for as many terms as you can. Start . . . now! . . . Stop! Review at BB with whole class. Eveyone stand up! T chooses a P to give a term in order round class. Ps sit down if they made a mistake or have reached their last term. Last $\mathrm{P}(\mathrm{s})$ standing gives the rule and if correct receives a round of applause for writing the most terms. e.g. a) $7843,17843,27843,(37843,47843,57843,67843, \ldots)$ Rule: The terms are increasing by 10000 . [+ 10000] b) $9000,18000,27000,(36000,45000,54000,63000, \ldots)$ Rule: The terms are increasing by 9000 . [+9000] c) $100,300,900,(2700,8100,24300,72900,218700, \ldots)$ Rule: The terms are increasing by 3 times. [$\times 3$] 21 min	Notes Individual work, monitored Deal with one sequence at a time. If a P says an initial unexpected term, ask them to say what rule they are using. T could write terms on BB as Ps dictate them. Agreement, self-correction, praising (T might allow Ps to use a calculator for c).)
5	Calculation practice T has additions and subtractions written on BB. Ps copy them in Ex. $B k s$. and do the calculations under a time limit. Remember to check your work! Review at BB with wholeclass. Ps come to BB to do the calculations, explaining reasoning with place-value detail. Class agrees/disagrees. Mistakes discussed and corrected. BB: c) $\begin{array}{r}64711^{1010} \\ -243_{1} 8_{1} 9 \\ \hline 40326 \\ \hline\end{array}$ Ps check a) and b) by adding in opposite direction, c) by addition. 25 min	Individual work, monitored, helped Or T reads the numbers aloud and Ps write in column form in Ex. Bks.) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Extension - What is the difference between the greatest and smallest answer? (46 972) - What is the total of the three answers? (193 346)
6	Book 4, page 123 Q. 1 Read: Sammy Snail climbed up the wall at a steady speed. You can read from the table where he got to after the first 4 minutes. At the end of the 5th minute, Sammy Snail turned and went back down the wall, again at a steady speed. This time you can read from the graph where he got to in the last 5 minutes. Who can explain the graph? What is the relationship between the table and the graph? Ps come to BB to demonstrate. Elicit that the missing values in the table can be found from the dots on the graph and the missing dots on the graph relate to the given values in the table. a) Read: Complete the table and the graph. Set a time limit. Review with whole class. Ps come to BB to complete table and graph, explaining reasoning. Class points out errors. Mistakes discussed and corrected.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Whole class discussion to start, with T's where necessary Differentiation by time limit Reasoning, agreement, selfcorrction, praising

BKK		Lesson Plan 12
Activity 6	(Continued) b) Read: Is it correct to join up the dots? T asks several Ps what they think and why. (Yes, because Sammy Snail moved at a steady speed without a break and any time on his journey could be shown on the graph.) Let's join up the dots. T draws lines on BB and Ps in Pbs. Solution:	Notes Discussion, agreement, praising T helps with wording of reasoning. Where would Sammy Snail be after, e.g. - 2 and a half minutes - 6 and a half minutes? etc. Ps come to BB to point and give approximate height. Extension Did Sammy Snail go up the wall and down the wall at the same speed? (No) Up: 12 cm every minute Down: 15 cm every minute So Sammy Snail came down the wall faster than he went up! (Why?)
7	Book 4, page 123, Q. 2 Read: We ran water from a tap into a jug shaped like a cylinder and noted the water level at certain times. We found that the relationship betweeen the time and the water level is $w=2 \times t$ (where w is the water level in cm and t is the time in seconds). If possible, T has a cylindrical jug or container to show to class. Stress that it is the same width through all its length, so will fill at a steady rate. What would happen if the container was narrower (wider) at the bottom? (The water level would increase more quickly (slowly) at first and then more slowly (quickly) later on, so we could not make a rule from the data.) Demonstrate the experiment if there is a tap in the classroom, otherwise ask Ps to imagine it. Elicit that the water flowing from the tap must be a steady trickle or there would not be time to mark the water levels! a) Read: Fill in the table using this rule. Ps come to BB to complete the table, explaining reasoning. Class agrees/disagrees. Ps fill in table in Pbs too. Solution: b) Read: Draw a graph by drawing dots on this grid and then joining them up. Ps come to BB to choose a column, point to the values for r and w on the axes, move fingers along the grid lines until they join up, then draw (stick on) a dot. Ps draw dots in Pbs too.	Whole class activity Drawn on BB or use enlarged copy master or OHP Intitial discussion (and demonstration if possible) to clarify the context and the concept of a constant rate of flow and filling. BB: Rule: $w=2 \times t$ At a good pace Reasoning, agreement, praising Make sure that Ps understand what the graph means. Elicit that there is a vertical grid line at every second, but a horizontal grid line at every 2 cm .

BK4		Lesson Plan 124
Activity 3	Calculation practice T has operations already written on BB. Ps copy into Ex. Bks. and do the calculations. Set a time limit. Review at BB with whole class. Ps come to BB to explain their reasoning with place-value detail. Class agrees/disagrees. Mistakes discussed and corrected. BB: a) $\begin{array}{r}47506 \\ +21835 \\ \hline \frac{69341}{1}\end{array}$ b) $\begin{array}{r}47506 \\ -\quad$1010 1855 25671 \end{array} c) $\begin{array}{r}8516 \\ \times 6 \\ \hline 51096 \\ \hline 33\end{array}$ d) $\begin{array}{r}27210 \\ \quad \times 3 \\ \hline \frac{81630}{2}\end{array}$ e) $\begin{aligned} & 7836, \mathrm{r} 4 \\ & 5 \begin{array}{l}39184 \\ 413(4)\end{array}\end{aligned}$ f) $\begin{aligned} & 16666, r \quad 3 \\ & 6 \longdiv { 9 9 9 9 9 } \\ & 3333(3)\end{aligned}$	Notes Individual work, monitored, helped (or whole class activity if class is not very able) Written on BB or SB or OHT Reasoning, agreement, checking, self-correction, praising Class checks with reverse operations (or with a calculator). (Show as long division if Ps have difficulties.) Feedback for T
4	Rounding Let's round these numbers to the nearest $10,100,1000$ and 10000 . Ps come to BB to fill in the table, explaining reasoning. Class agrees/ disagrees. If disagreement, draw relevant segment of the number line on the BB . BB: Rounded to nearest:	Whole class activity Involve several Ps. Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Review the rules of rounding. Feedback for T
5	Problem How much is 3 quarters of $£ 68252$? Who can write a plan for the solution? Ps come to BB or dictate to T. Class agrees/disagrees. Now let's do the calculations. Ps come to BB to write the calculations in column form at side of BB, explaining reasoning in detail. Class points out errors. Solution: Plan: $\frac{3}{4}$ of $£ 68252=£ 68252 \div 4 \times 3=£ 17063 \times 3=£ 51189$ Answer: Three quarters of $£ 68252$ is $£ 51189$.	Whole class activity Reasoning, agreement, checking, praising BB: C: $\begin{array}{r} 17063 \\ 4 \underset{2}{682} \\ \hline 21 \end{array} \frac{17063}{} \begin{array}{r} \frac{51189}{21} \end{array}$ Ps may check with a calculator

BTK4		Lesson Plan 124
Activity		Notes
7	(Continued)	Whole class activity (or individual work if Ps wish, monitored, helped and reviewed with whole class)
	Now let's see if you are clever enough to answer the questions!	
	$\mathrm{T}(\mathrm{P})$ reads each question aloud and Ps show answers on scrap paper or slates on command. Ps answering correctly come to BB to explain to those who were wrong. Class agrees/disagrees. Solution:	
	a) How far away from home did Tammy go? (120 m)	Responses given in unison.
	b) For how long was she away from home? (21 minutes) c) When did she start her return journey? (after 15 minutes)	Agreement, (self-correcting), praising
	d) How many times did Tammy stop to rest? (twice)	Ps show relevant parts of the graph.
Extension	Who can think of other questions to ask about the graph? e.g. - For how long did she rest? - How far away from home was she after $2 \mathrm{~min}(10 \mathrm{~min}$, etc.)? - How far had she walked before her first rest? - When did Tammy walk more slowly? etc.	Extra praise for clever questions
		Ps who asked the question choose a P to answer it.
8	Problem 2	Individual work, monitored
	Listen carefully, note the data and try to solve the problem in your Ex. Bks. Show me the answer when I say.	
	There are 200 litres of water in my bath. When I take out the plug, the water gurgles down the plughole at a rate of 25 litres every minute.	T repeats slowly to give Ps time to think and calculate.
	Set a time limit. Ps can discuss with their neighbours if they wish. If you found an answer, show me . . . now! (8 minutes)	In unison
	P who answered correctly explains at BB. Who did the same? Who did it a different way? etc. If no P found the answer, T gives hints and class solves it together.	Discussion, agreement, selfcorrection, praising
	Solution: e.g. $200-25-25-25-25-25-25-25-25=0 \text { (litres) } \rightarrow \underline{8} \mathrm{~min} .$	Or Ps might draw a table to show the different amounts left after each minute. Ps say answer in unison.
9	Book 4, page 124	Individual work, monitored
	Read: How many diagonals does a hexagon have? Show it by drawing a hexagon and its diagonals. How many sides does a hexagon have? (6) I will give you 2 minutes to find the answer! You do not need to draw a regular hexagon.	Elicit that a diagonal joins up vertices which are not adjacent, so a side is not a diagonal.
	Start . . now! . . . Stop! Show me the answer . . now! (9) P answering correctly shows solution on BB . Class agrees/disagrees.	Agreement, self-correcting, praising
	Solution: irregular regular or or by calculation: 9 diagonals $6 \times 3 \div 2=\underline{9}$	(as each of the 6 vertices is joined to 3 other vertices which are not adjacent, but there are 2 vertices on each diagonal)

3 K 4	R: Calculations C: Probability games. Fair and unfair games E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 125 \end{gathered}$
Activity 1	Factorising In your $E x$. $B k$, factorise 155 and 156 and then list all their factors. Review at BB with whole class. Ps come to BB to draw tree diagrams, show the numbers as the product of their prime factors and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: (2) 39 155: 1, 5, 31, 155 (a nice number!) 156: $1,2,3,4,6,12,13,26,39,52,78,156$ (3) (13)	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps may join up the factor pairs for 156. Feedback for T
2	Calculation practice Ps come to BB to do the calculations, explaining reasoning in detail. Class checks mentally and points out errors. BB: a)2 7 3 6$\|$ b) $+$ 4 3 5 1 8 1 2 4 7 6 4 4 0 0 6 1 0 0 0 0 0 1 1 1 2 c) $\left.\begin{array}{\|c\|c\|c\|c\|c\|}7 & 3 & 4 & 1 & 9 \\ - & 6 & 3 & 4 & 2\end{array}\right)$ d) e) 8 3 4 7 \times 1 2 1 6 6 9 4 8 3 4 7 0 1 0 0 1 6 4 f) Who notices quicker ways of calculating c), e) and f)? c) $73419-63419=10000,10000-1=\underline{9999}$ e) $8347 \times 12=8347 \times 6 \times 2=50082 \times 2=\underline{100164}$ (using d) f) $80000 \div 8=10000$, so $79999 \div 8=\underline{9999}$, remainder 7	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, checking, agreement, praising (If disagreement, check with a calculator.) Extra praise if Ps notice without help from T.
3	Rounding Who can explain to us what these statements really mean? a) 64000 is the value of a number which has been rounded to the nearest thousand. P: e.g. The number is at least 63500 and it is less than 64500. Who can write it as an inequality? BB: $63500 \leq n<64500$ If the number is a natural number, what could the number be? (n: 63 500, 63 501, . . ., 64 499) If the number can be a whole number or a fraction or a decimal, who can show us the possible values on this number line? T draws on BB and Ps come to BB to draw circles and join them up, explaining reasoning. Class agrees/disagrees. Revise the notation if necessary. BB:	Whole class activity BB: 64000 (to nearest 1000) Agreement, praising Elicit that a natural number is a positive whole number. Ps dictate possible numbers. Extra praise if Ps remember without help from T how to show the complete solution.

3 K		Lesson Plan 125
Activity	(Continued) b) 64000 is the value of a number which has been rounded to the nearest hundred. P: e.g. The number is at least 63950 and it is less than 64050. Who can write it as an inequality? BB: $63950 \leq n<64050$ If the number is a natural number, what could the number be? ($n: 63$ 950, $63951, \ldots, 64049$) If the number can be a whole number or a fraction or a decimal, who can show us the possible values on this number line? T draws on BB and Ps come to BB to draw circles and join them up, explaining reasoning. Class agrees/disagrees. BB:	Notes BB: 64000 (to nearest 100) Agreement, praising Ps dictate possible numbers. Reasoning, agreement, praising
4	Perimeter This is an equilateral triangle. What does equilateral mean? (Its sides are equal in length.) The two smaller triangles are also equilateral, and their perimeters are 15 units and 24 units long. What is the perimeter of the largest triangle? Ps suggest what to do first and how to continue. T gives hints only if necessary. e.g. Each side of the smallest triangle is: 15 units $\div 3=\underline{5}$ units Each side of the middle-sized triangle is: 24 units $\div 3=\underline{8}$ units So each side of the large triangle is: 5 units +8 units $=\underline{13}$ units and its perimeter is: 3×13 units $=\underline{39}$ units. Or: The perimeter of the largest triangle is equal to the sum of the perimeters of the two smaller triangles. (as DE is equal to AF and FE is equal to AD) $\begin{aligned} \text { Perimeter } & =(\mathrm{CD}+\mathrm{CE}+\mathrm{AF})+(\mathrm{FB}+\mathrm{BE}+\mathrm{AD} \\ & =15 \text { units }+24 \text { units }=\underline{39 \text { units }} . \end{aligned}$ $22 \mathrm{~min}_{-}$	Whole class activity Drawn on BB or use enlarged copy master or OHP BB: T gradually adds lengths to diagram as each value is worked out. BB: Reasoning,agreement, praising If no P suggests the 2 nd method, T shows it.
5	Book 4, page 125 Q. 1 Read: If we put a 3-volume encyclopedia back on the shelf without looking at the volume numbers, in what order might they end up? Show all the possiblities. Set a time limt. Review with whole class. Ps come to BB or dictate to T. Mistakes corrected and omissions added. Agree that there are only 6 different possible arrangements. BB: 231 3112 321	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correcting, praising Or by calculation: $3 \times 2 \times 1=\underline{6}$

BKK		Lesson Plan 125
Activity 5	(Continued) a) Read: What chance is there of them being in the order 231 ? (1 out of 6 , or 1 sixth, as each of the 6 possibilities has an equal chance of occurring.) $\left[\frac{1}{6}\right]$ b) Read: What chance is there of these events happening? i) the book on the left-hand side is Volume 1 (2 out of 6 , or 2 sixths, or 1 third) $\left[\frac{2}{6}=\frac{1}{3}\right]$ ii) the volume numbers are decreasing from the left. (1 out of 6 , or 1 sixth) $\left[\frac{1}{6}\right]$ If necessary T revises the vocabulary of probability: - the chance (probability) of something (an event) happening (occurring) is usually given as a fraction between 0 and 1. - the less chance there is of an event occurring, the nearer the fraction is to 0 . - the greater the chance, the nearer the fraction is to 1 .	Notes Individual work, monitored, helped, then reviewed with whole class, or whole class activity, with Ps showing answers on scrap paper or slates in unison on command. Reasoning, agreement, praising Whole class discussion Ps think of other events too! e.g. What is the probability of volume 2 being in the middle?
6	Book 4, page 125, Q. 2 Read: Four children are playing a game with these cards. T has a large set stuck to BB for demonstration. Let's play the game! T calls 4 Ps to front of class to be A, B C and D. T or Preads out one rule at a time and the group carries it out. Repeat until all 4 Ps in the group have drawn a 2-digit number and written it on the BB. Repeat if some Ps still do not understand the game. a) Read: List in your exercise book all the 2-digit numbers that could be chosen. Set a time limit. Review with whole class. Ps dictate the numbers and T writes on BB in a logical order. Class points out any missed. BB: $\quad(01,02,03,04,05), 10,12,13,14,15 ; 20,21,23,24,25$; $30,31,32,34,35 ; 40,41,42,43,45 ; 50,51,52,53,54$ Agree that there are 30 possible combinations. Are they all 2-digit numbers? (No, 01, 02, 03, 04 and 05 are 1 -digit numbers, so the extra rules do not apply to them, only to the 252 -digit numbers.) b) Read: Who might complain because the extra rules are unfair? Let's work out the probability of each person missing a turn. T reads out the extra rules one at a time and Ps count how many of of that type of number there are (not counting the 1-digit numbers), then give the probability. Class agrees/disagrees. Alan misses a turn if the 2-digit number is even. Becky misses a turn if the 2-digit number is odd. Callum misses a turn if the 2-digit number is a whole 10. Diana misses a turn if the 2-digit number is divisible by 5. ($\frac{9}{25}$) All but Callum might complain as he has least chance of missing a turn.	Whole class activity BB: 042334 Demonstration of card game Individual work, monitored, helped Agreement, self-correction, praising Extra praise if Ps reason without prompting that 01,02 , etc. contain only units, so are not 2-digit numbers. Whole class activity Or Ps could show results on scrap paper or slates in unison on command. Reasoning, agreement, praising T asks several Ps what they think and why.

BTK	R: Calculations C: Probability games E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 126 \end{gathered}$
Activity 1	Factorising Let's factorise 157 and then list all its factors. Ps dictate or come to BB to try each of the prime numbers, 2, 3, 5, 7 and 11 as divisors, using 'quick' methods where possible. Should we try dividing by 13 ? (No, as $13 \times 13=169>157$) Elicit that 157 is a prime number, and its factors are 1 and 157.	Notes Whole class activity At a good pace Ps explain reasoning or do divisions at side of BB. Class agrees/disagrees Praising, encouragement only
2	Problem Listen carefully, picture the story in your head and think about how you would work out the answer. A knight fell in love with a young princess and promised her that every Sunday he would bring her as many roses as it is the day of the month. What is the most number of roses that he might take to the princess in a month? A, tell us what you would do. Who agrees? Who would do it another way? etc. T gives hints if nobody is on the right track. Solution: The most number of days in a month is 31 . In a 31-day month, the most roses that the knight could take to the princess woud be if the 31 st was a Sunday. So the roses he took to the princess during that month would be: BB: $31+24+17+10+3=\underline{85}$ Answer: The most roses that the knight might take to the princess in a month is 85 .	Whole class activity T repeats slowly to give Ps time to think and discuss. Discussion, reasoning, agreement, praising T helps with wording of reasoning. Ps do addition on slates or scrap paper or in Ex. Bks and dictate result to T . T chooses a P to say the answer in a sentence.
3	Calculation practice Listen carefully, write down the numbers and do the calculation in your Ex. Bks. Show me the result when I say. Deal with one question at a time. Ps responding correctly explain at BB to those who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. a) Which number is 4 times as much as 9350? (37 400) BB: $9350 \times 4=\underline{37400}$ b) Five times a number is 43810. What is the number? BB: $43810 \div 5=\underline{8762}$ c) Which number is 2 fifths of 45600 ? $(45600 \div 5 \times 2=9120 \times 2=\underline{18240})$ d) Three quarters of a number is 45 600. What is the number? $(45600 \div 3 \times 4=15200 \times 4=\underline{60800})$	Individual calculation, then whole class review (Or whole class activity, with Ps coming to BB to write the operations and do the calculations, explaining reasoning. Class points out errors.) BB: e.g. a) $\begin{array}{r}9350 \\ \times 4 \\ \hline 37400 \\ \hline 12\end{array}$ b) $\begin{array}{r}8762 \\ 5 \lcm{43810}\end{array}$ 331 c) $\begin{array}{r}9120 \\ \underline{5} \begin{array}{r}45600 \\ 1\end{array} \\ \hline \underline{18240} \\ \hline\end{array}$ d)15200 $\begin{array}{r}15200 \\ 3 \\ \hline\end{array} \begin{array}{r}45600 \\ \hline\end{array}$ $\frac{60800}{2}$

BTKム		Lesson Plan 126
Activity 4	Converting units of measure Let's convert these quantities. Revise units of measure first if necessary. Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: a) $32 \mathrm{~m} 35 \mathrm{~cm}=(3235 \mathrm{~cm}=32350 \mathrm{~mm})$ b) $15684 \mathrm{~mm}=(1568 \mathrm{~cm} 4 \mathrm{~mm}=15 \mathrm{~m} 68 \mathrm{~cm} 4 \mathrm{~mm})$ c) 57 litres $24 \mathrm{cl}=(5724 \mathrm{cl}=57240 \mathrm{ml})$ d) $28315 \mathrm{ml}=(2831 \mathrm{cl} 5 \mathrm{ml}=28$ litres 31 cl 5 ml$)$ e) $46 \mathrm{~kg} \mathrm{380} \mathrm{g}=(46380 \mathrm{~g})$ f) $65904 \mathrm{~g}=(65 \mathrm{~kg} 904 \mathrm{~g})$ g) $98 \mathrm{~km} 540 \mathrm{~m}=(98540 \mathrm{~m})$ h) $21480 \mathrm{~m}=(21 \mathrm{~km} 480 \mathrm{~m})$	Notes Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising Feedback for T
5	Book 4, page 126, Q. 1 Read: Three boys, A, B and C, decided to have a race. We know that there was a tie but not for which place. What possibilities could there be? (there is a winner and 2 boys tie for 2nd place, 2 boys tie for 1st place and there is a 3rd place, 3 boys tie for 1st place) a) Read: What could the finishing order be? Show all the possibilities. Ps come to BB or dictate to T. Class agrees/disagrees. Ps complete the tables in Pbs too. BB: b) Read: If each possible result has an equal chance of happening, what is the chance that there was a tie for 1st place? How many different possibilities are there? (7) How many of them have ties for 1st place? (4) What is the probability of a 1st place tie? Show me . . now! $\left(\frac{4}{7}\right)$	Whole class activity (or individual work if Ps wish) Discussion, agreement If Ps do not sggest the last possibility, T asks them to keep thinking! Drawn on BB or SB or OHT At a good pace Agreement, praising (on slates in unison) Agreement, praising
6	Book 4, page 126 Q. 2 Read: Predict the results for each outcome first, then do the experiment. T puts 2 red, 2 white and 2 green counters in a bag and chooses A to take out 2 counters with his/her eyes shut. Before he/she does so, T asks Ps to predict the outcome. Will they both be the same (s) or different (d); will there be 1 red +1 white ($\mathrm{R}+\mathrm{W}$) or 2 green? (2G) Ps write their prediction on slates and show in unison on command. A takes out the counters. Ps who predicted correctly stand up and class gives them a round of applause! This is only one outcome from one experiment! If we do the experiment 15 times, how many times do you think the different outcomes will occur? Write your prediction in this column in the table. (T points on BB.) Now let's do the experiment properly!	Whole class introduction Table drawn on BB or use enlarged copy master or OHP Ps work in pairs and each pair has appropriately coloured counters and bag on desks. Demonstration of experiment to show Ps what to do. Ps write predictions in table in $P b s$ and T could write on table on BB.

BTK4		Lesson Plan 126
Activity 7	Book 4, page 126 Q. 3 Read: How many squares which have vertices on the grid dots can you draw on this diagram? T could draw a square on grid on BB if Ps do not understand what they have to do. Set a time limit. Ps draw copies of the grid in Ex. Bks for their trials. Review at BB with whole class. A, how many squares did you find? Come and show them to us. Who agrees? Who found more? etc. (T could have solution already prepared on 6 grids as below and uncover those that Ps did not find.) Agree that it is possible to draw $\underline{20}$ squares on the grid. Solution: (9 of this) (4 of this) (4 of this) (1 of this) (1 of this)	Notes Individual work, monitored, helped Grids drawn on BB or use enlarged copy master or OHT (or Ps have copies of copy master on desks) Discussion, demonstration, agreement, self-correction, praising Extra praise for Ps who found all 20 squares without help
8	Book 4, page 126 Q. 4 Read: Which digits can be the last digits of the square numbers? Continue the list in your exercise book. Let's see how many more you can find in 2 minutes! Review at BB with whole class. Ps dictate the list to the T who writes on BB . Continue the list as far as any P has reached. BB: $1 \times 1 \rightarrow \underline{1}, 2 \times 2 \rightarrow \underline{4}, 3 \times 3 \rightarrow \underline{9}, 4 \times 4 \rightarrow \underline{6}$ $5 \times 5 \rightarrow \underline{5}, 6 \times 6 \rightarrow \underline{6}, 7 \times 7 \rightarrow \underline{9}, 8 \times 8 \rightarrow \underline{4}$ $9 \times 9 \rightarrow \underline{1}, 10 \times 10 \rightarrow \underline{0}, 11 \times 11 \rightarrow \underline{1}, 12 \times 12 \rightarrow \underline{4}$, etc. Agree that the last digit can be $0,1,4,5,6$ or 9 . T reads the statements and Ps write T or F in Pbs, then show their answer (on scrap paper or slates or by pre-agreed actions) in unison on command. a) Is it true or false that in 7 different square numbers there are at least 2 in which the units digits are the same? \mathbf{X}, why do you think so? (The first 6 numbers could all have different units digits, but the 7th number must have a units digit the same as one of the previous 6 numbers.) b) Is it true or false that in 7 different square numbers there are at least 2 in which their difference is divisible by 10? \mathbf{Y}, why do you think so? (The first 6 numbers could all have different units digits, but the 7th number must have a units digit the same as one of the previous 6 numbers, so their difference must have 0 as the units digit and is therefore divisible by 10 .)	Individual work, monitored Differentiation by time limit Agreement, self-correcting, praising i.e. $\underline{6}$ possible units digits In good humour! (Ps decide on the actions if used.) Discussion, reasoning, agreement, self-correction, praising Thelps with wording of explanations if necessary.

BKK		Lesson Plan 127
Activity 4	Book 4, page 127 Q. 2 Read: At the entrance to a wood there are 5 paths leading to the first clearing. From the first clearing there are 6 paths leading to the 2nd clearing. From the 2nd clearing there are 3 paths leading to the 3rd clearing. a) Draw a diagram to show it in your exercise book. b) How many routes could you take from the 1st clearing to the 3rd clearing? c) What chance would you have of guessing correctly a person's route from the entrance of the wood to the 3rd clearing? Deal with part a) first. Ps come to BB to draw the diagram (with T's help) and rest of Ps draw it in Ex. Bks. Ps read questions b) and c) themselves and write the answers. Review with whole class. Ps could show responses on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) BB : e.g. b) For each of the 6 paths to the 2 nd clearing, there are 3 paths to the 3rd clearing, so there are: $6 \times 3=\underline{18}$ routes. c) Altogether, there are $5 \times 6 \times 3=\underline{90}$ possible routes from the entrance to the 3rd clearing, so the chance of guessing correctly is: $1 \text { out of } 90, \text { or } \frac{1}{\underline{90}} .$	Notes Individual work monitored (but diagram helped or done with whole class first) Agreement, praising Reasoning, agreement, selfcorrection, praising (Unless you know that the person has a usual or favourite route.)
5	Book 4, page 127 Q. 3 Read: Predict the results for each outcome first, then do the experiment. Throw a dice 20 times and keep a tally of how it lands in this table. T or P demonstrates experiment first if necessary. Set a time limit. Ps have dice on desks and work in pairs (or individually if they prefer). Review table totals and compare with predictions. e.g. Ps read questions themselves and write answers in Pbs using their own data.	Individual (or paired) work, monitored Table drawn on BB or use enlarged copy master or OHP for reference Remind Ps that their final totals should add up to 20 . Class applauds Ps who made accurate predictions by reasoning rather than by guessing. Individual work, monitored, helped

BK4	R: Calculations C: Probability games and experiments E: Problems	Lesson Plan 128
Activity	Factorising In your $E x . B k$, factorise 159 and list all its factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the number as the product of its prime factors and list all its factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: $159=3 \times 53$ (3) 53 Factors: 1, 3, 53, 159 (It is a nice number.)	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator.
2	Problem 1 Listen carefully and think about how you would solve this problem. The sum of 5 adjacent natural numbers is 5 times 25 . What are the numbers? Allow Ps 2 or 3 minutes to think about it and try to work it out. Ps may discuss with their neighbours if they wish. Who thinks that they know what to do. Come and explain it to us. Who agrees? Who would do it another way? etc. e.g. $\quad 5 \times 25=25+25+25+25+25=125$ so the 5 adjacent numbers must each be close to 25 : $23+24+25+26+27=\underline{125}$ Answer: The 5 adjacent numbers are 23, 24, 25, 26 and 27. \qquad 8 min	Individual trial first, then whole class solution Ps tell their ideas and findings to class. Reasoning, checking, agreement, praising Elicit that: $24+26=23+27=50$ T chooses a P to answer in a sentence.
 	Problem 2 If we throw a red and a white dice at the same time, what are the possible outcomes? Let's write the red number first, then the white number. Ps dictate what T should write on BB . BB: $(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$; $(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$; $(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$; $(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)$; $(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)$; $(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)$ Agree that there ate 36 possible outcomes. Could we have worked it out without writing them all down? (Yes -for each of the 6 possible outcomes on the red dice, there are 6 possible outcomes on the white dice, i.e. $6 \times 6=36$) If the dice are not biased, what is the probability of you throwing 2 sixes? ($\frac{1}{36}$, as each of the 36 outcomes has an equal chance of happening) 14 min	Whole class activity Ps dictate in order round class. Class points out errors. Agreement, praising Discussion, agreeement, praising Ps could show fraction on scrap paper or slates in unison on command.

BK		Lesson Plan 128
Activity 4	Problem 3 Listen carefully and think about how you would solve this problem. In how many ways could you draw 5 dots on this 5×5 grid so that there is 1 dot in each row and column? \mathbf{X}, what do you thank that we should do? Who agrees? Who thinks something else? etc. Ps tell class their ideas. Reasoning: e.g. The rows and columns are labelled, so we cannot turn the grid. For each of the possible 5 rows in column A, there are 4 possible rows in column $\mathrm{B}, \underline{3}$ possible rows in column $\mathrm{C}, \underline{2}$ possible rows in column D and only 1 possible row in column D , so there are BB: $5 \times 4 \times 3 \times 2 \times 1=\underline{120}$ ways 20 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP BB: e.g. Discussion, reasoning, agreement, praising T helps with wording if necessary.
5	Book 4, page 128 Q. 1 Read: Throw 2 dice at the same time 36 times. Keep a tally of the outcomes here. If possible, Ps should have 2 different coloured dice each, but otherwise Ps work in pairs with one dice each. Set a time limit or keep class together on the throws. [T could collect the class data if there is time.] After the 36 throws, Ps read the questions themselves and answer the using their own data (or if class is not very able, deal with one question at a time). T monitors thoroughly, correcting mistakes. Choose some Ps to show and explain their results to class. Class agrees/disagrees with their reasoning and answers. Solution: (e.g. using the data in the tables above) a) How many times were these numbers the product of the two numbers? b) How many times was the product of the two numbers even? What fraction is it of the 36 throws? $\left(\frac{26}{36}=\frac{13}{18}\right)$ c) How many times were these numbers the sum of the two numbers thrown? Elicit that 0 and 13 are impossible!	Individual (or paired) work, monitored, helped Tables drawn on BB or use enlarged copy master or OHP for reference (or for collecting class data) Individual work, monitored closely, praising Reasoning, checking, agreement, praising

BK	R: Mental calculation C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 129 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 160 and 161 and then list all their factors. Review at BB with whole class. Ps come to BB to draw tree diagrams, show the numbers as the product of their prime factors and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: 160: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160 161: $1,7,23,161$ (It is a nice number!)	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps join up the factor pairs for 160. Feedback for T
2	Problem 1 Listen carefully and think about how you would solve this problem. In how many ways could you draw 6 dots on this 6×6 grid so that there is 1 dot in each row and column? \mathbf{X}, what do you thank that we should do? Who agrees? Who thinks something else? etc. Ps tell class their ideas. Reasoning: e.g. The rows and columns are labelled, so we cannot turn the grid. For each of the possible $\underline{6}$ rows in column A, there are $\underline{5}$ possible rows in column B, for each of these there are 4 possible rows in column C, for each of these there are $\underline{3}$ possible rows in column D , for each of these there are $\underline{2}$ possible rows in column E and for each of these there is only 1 possible row in column F , so there are BB: $6 \times 5 \times 4 \times 3 \times 2 \times 1=\underline{720}$ ways	Whole class activity Drawn on BB or use enlarged copy master or OHP BB: Discussion, reasoning, agreement, praising T helps with wording if necessary.
3	Problem 2 Three friends, Alan, Ben and Charlie, live in the same street. Alan lives at no. 2, Ben lives at no. 4 and Charlie lives at no. 12. The houses in their street are the same distance apart. Here is a diagram of their street showing the house numbers. They want to meet at a house on the street where the total distance they have to walk is as short as possible. Let's work out where they should meet. What should we do first? (Write the number of houses they have to pass in total above each house, then see which is the smallest.) Ps come to BB or dictate to T, explaining reasoning. Class checks that they are correct. BB: Agree that the meeting point should be at no. 4 (Ben's house).	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion on strategy for solution. Accept and praise any positive contribution. If no P thinks of the idea opposite, T gives hints or suggests it. At a good pace Ps can work out the totals in Ex. Bks first before coming to BB. Reasoning, agreement, praising

$B K 4$		Lesson Plan 129
Activity 4	Book 4, page 129 Q. 1 Read: Calculate the product of the 7 smallest a) postive, even whole numbers b) 1-digit numbers. Ps write plans in Pbs, do calculations in Ex. Bks, then write answers in Pbs. Set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain reasoning at BB . Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: e.g. a) $\begin{aligned} & 2 \times 4 \times 6 \times 8 \times 10 \times 12 \times 14 \\ & =8 \times 6 \times 8 \times 10 \times 168=8 \times 6 \times 8 \times 1680 \\ & =8 \times 6 \times 13440=8 \times 80640=\underline{645120} \end{aligned}$ b) $0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6=\underline{0}$ What is another name for positive, even whole numbers? (natural numbers) What is another name for a whole number? (integer) Remind Ps that an integer can be positive or negative or zero. Elicit that zero is neither positive nor negative. 21 min	Notes Individual work, monitored (less able helped) Ps can use any combination of multiplications. In unison Reasoning, agreement, selfcorrection, praising Revision of types of numbers. Agreement, praising
5	Book 4, page 129 Q. 2 Read: Circle the natural numbers up to 100 which have only two factors. (e.g. the only factors of 7 are 7 and 1) We call these numbers prime numbers. List them in increasing order. Ps try out divisors 2, 3, 5, 7 and 9 in Pbs if necessary, although Ps might use other strategies (e.g. after circling 2, we know that any other even number is not a prime number, so can be crossed out; after circling 3 , we know that any other multiple of 3 is not a prime number, so can be crossed out, etc.) Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that 1 is not a prime number as it has only 1 factor - itself! Solution: $\begin{array}{lllllllllllllllllllll} 1 & (2) & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & (11) & 12 & (13) & 14 & 15 & 16 & (17) & 18 & (19) & 20 \\ 21 & 22 & (23) & 24 & 25 & 26 & 27 & 28 & (29) & 30 & (31) & 32 & 33 & 34 & 35 & 36 & (37) & 38 & 39 & 40 \\ (41) & 42 & (43) & 44 & 45 & 46 & (47) & 48 & 49 & 50 & 51 & 52 & (53) & 54 & 55 & 56 & 57 & 58 & (99) & 60 \\ (61) & 62 & 63 & 64 & 65 & 66 & (67) & 68 & 69 & 70 & (1) & 72 & (37) & 74 & 75 & 76 & 77 & 78 & (9) & 80 \\ 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 & 96 & (97) & 98 & 99 & 100 \end{array}$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising Feedback for T

B		Lesson Plan 129
Activity 6	Book 4, page 129 Q. 3 Read: Practise calculation. Let's see how many you can do in 5 minutes! Remember to check your answers! Start . . . now! . . Stop! Review with whole class. Ps come to BB to write results, explaining with place-value detail. Class agrees/disagrees. Mistakes discussed and corrected. Showe) and f) as long multiplication, and g) and h) as long division, if problems. Who had all 8 correct? Let's give them a round of applause! Who had 1 mistake ($2,3,4$, more than 4 mistakes)? T notes Ps having difficulty and sets them extra similar calculations for homework. Solution: b) c) 10 10 1 2 4 0 5 1 8 0 4 3 4 3 6 2 e) h)	Notes Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Evaluation, praising Feedback for T
7	Book 4, page 129 Q. 4 Read: A cuboid is built from 20 unit cubes. We know that the lengths of its edges are whole units and more than 1 unit. Work out the answers in your exercise book. a) How long are its edges? b) What is its surface area in unit squares? Set a time limit. (If Ps are struggling, T gives hint about finding the factors of 20 and about drawing a diagram.) Review at BB with whole class. Ps come to BB to explain reasoning. Class agrees/disagrees. Mistakes discussed/corrected. Solution: a) As $20=2 \times 2 \times 5$, and there is no other 3-term multiplication possible, the three edges are: $a=2$ units, $b=2$ units, $c=5$ units T could have a large model already prepared as confirmation. b) $\begin{aligned} A & =2 \times(2 \times 2)+4 \times(2 \times 5) \\ & =2 \times 4+4 \times 10=8+40=\underline{48}(\text { unit squares }) \end{aligned}$	Individual work, monitored, helped Less able Ps could have 20 unit cubes on desks. Or ask Ps to think of 20 as the product of 3 numbers. Discussion, reasoning, checking, agreement, selfcorrecting, praising Model, or diagram on BB:

$B K 4$	R: Mental calculation C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 130 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 162 and then list all its factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the numbe as the product of its prime factors and list all its factors. Class agrees/disagrees. Mistakes discussed and corrected. BB:	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps join up the factor pairs. Feedback for T
2	Problem 1 Which point on the line is the shortest total distance from the 4 points, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ? How could we work it out? (Ps might notice the similarity to Activity 3 in Lesson 161, but if not, T reminds Ps about it.) T points to each number marked on the number line in turn and Ps come to BB or dictate its total distance from the 4 points. Encourage mental calculation if possible. Class points out errors. BB: Agree that there are 3 points with the shortest total distance (15) from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D : at 2 (B), 3 and 4 (C).	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion on strategy for solution. At a good pace Reasoning, agreement, praising Feedback for T
3	Book 4, page 130 Q. 1 Read: Practise calculation. Do the operations in the correct order. Revise order of operations first if necessary. Set a time limit. Ps do necessary calculations in Ex. Bks, write the interim results above each operation sign and write the answers in Pbs . Review with whole class. Ps come to BB or dictate to T , explaining reasoning. If problems or disagreement, Ps do calculations at side of BB, reasoning with place-value detail. Mistakes discussed and corrected. What did you notice about the two operations in each part? Solution: 1408 a) $\begin{gathered}1408 \\ 2756-1348 \\ \text { a }\end{gathered}$ 220 $=1628$ 1128 $\bigodot 2756-(1348-220)=$ 1628 110245392 b) $2756 \times 4+1348 \times 4=16416$ $\bigodot(2756+1348) \times 4=$ 16416 4589 189455178 c) $(6315-1726) \times 3=13767$ $6315 \times 3-1726 \times 3=$ \square 2564593 d) $10256 \div 4-2372 \div 4=1971$ 7884 $\Theta(10256-2372) \div 4=$ \square e) $2187 \div(9 \stackrel{3}{\div} 3)=729$ (>) $2187^{243} \div 9 \div 3=$ \square 19683 f) $2187 \times 9 \div 3=6561$ 〇 $2187 \times(9 \div \stackrel{3}{\div} 3)=6561$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit (or if class is not very able, T chooses only one or two) Reasoning, agreement, selfcorrection, praising Extra praise if Ps noticed that [apart from e)] the calculations on RHS have the same result as on LHS, so they only had to do half of the calculations. In e), elicit that dividing by 9 and then by 3 is the same as dividing by 27 .

BTK4		Lesson Plan 130
Activity 5	Book 4, page 130 Q. 3 Read: Where could you put '+' signs among the digits 1 to 7 so that the sum is 100? You must keep the digits in increasing order!) T writes the digits 1 to 7 on BB. Allow Ps a couple of mintues to try it in Ex. Bks. Who has solved it? Come and show us. Who agrees? Who has found a different solution? etc. If no P has found an answer, T gives hint about 2-digit numbers and class solves it together. Ps write a solution in Pbs. Solution:	Notes Individual trial first, monitored BB: $1 \begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & 7\end{array}$ Reasoning, checking, agreement, praising Extra praise if Ps found a solution without help from T.
6	Book 4, page 130 Q. 4 Read: Point A stands for 1 fifth and Point B stands for 7 tenths. Mark the positions of 0 and 1. How can we do it? T asks several Ps what they think. Elicit that the distance between A and B is 5 tenths (7 tenths -2 tenths) of a unit, so if we measure it, we can work out what 1 tenth of a unit is and then where 0 and 1 should be. Ps measure with rulers and mark the tenths and 0 and 1 in Pbs . Review with whole class. Ps come to BB to explain and mark the tenths with a BB ruler. Class agrees/disagrees. Solution: A to B: 5 tenths of a unit $\rightarrow 5 \mathrm{~cm}$ 1 tenth of a unit $\rightarrow 1 \mathrm{~cm}$ 0 is 2 tenths of a unit, i.e. 2 cm , to the left of A. 1 is 3 tenths of a unit, i.e. 3 cm , to the right of B. BB:	Ps have rulers on desks. Whole class discussion on strategy for solution, then individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP for demonstration only Discussion, reasoning, agreement, self-correction, praising Extra praise If Ps explained how to solve the problem without help from T. (Ps do not need to mark every tenth in $P b s$, just 0 and 1)
7	Book 4, page 130, Q. 5 Read: Check the results and correct the answer if it is wrong. What should we do first? (Change the Roman numerals into Arabic numbers.) Revise Roman numerals if necessary. Ps come to BB or dictate what T should write. Class agrees/disagrees. In the case of b), which is wrong, Ps suggest how to correct it. Solution: a) $\mathrm{CLXXXVI} \div \mathrm{III}=$ LXII b) MMII - MCMXCIX $=\mathrm{V}$ $186 \div 3=62$ $2002-1999=5 \times$ Correction: e.g. MMII - MCMXCIX = III or MMII - MCMXCVII $=\mathrm{V}$ or MMIV - MCMXCIX $=\mathrm{V}$ or MMII - MCMXCIX $\neq \mathrm{V}$, etc.	Whole class activity Written on BB or SB or OHT Involve several Ps. Reasoning, agreement, correcting, praising a) $\begin{aligned} & \mathrm{C}=100, \\ & \mathrm{LXXX}=50+30=80 \\ & \mathrm{VI}=5+1=6 \\ & 100+80+6=\underline{186} \end{aligned}$ b) $\begin{aligned} & \mathrm{MMII}=2000+2=\underline{2002} \\ & \mathrm{M}=1000 \\ & \mathrm{CM}=1000-100=900 \\ & \mathrm{XC}=100-10=90 \\ & \mathrm{IX}=10-1=9 \\ & 1000+900+90+9=\underline{1999} \end{aligned}$

BKK	R: Mental calculation C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 131 \end{gathered}$
Activity 1	Factorising Let's factorise 163 and then list all its factors. Ps dictate or come to BB to try each of the prime numbers, 2, 3, 5, 7 and 11 as divisors, using 'quick' methods where possible. Should we try dividing by 13 ? (No, as $13 \times 13=169>163$) Elicit that 163 is a prime number, and its factors are 1 and 163.	Notes Whole class activity At a good pace Ps explain reasoning or do divisions at side of BB. Class agrees/disagrees Praising
2	Book 4, page 131 Q. 1 Read: In your exercise book, write 2-term additions using the numbers in $\operatorname{Set} A$. BB: $A=\{-3,2,1,0,-5,6\}$ What could we do first to make the task easier? (Put them in increasing order.) Ps dictate to T who writes on BB and Ps write in Pbs. Let's see how many you can write and solve in 5 minutes! Start . . .now! . . . Stop! Review with whole class. Ps dictate additions and T writes on BB in a logical order. Class points out errors in solution or additions missed. Accept what Ps dictate for the moment. a) Read: How many additions are possible? Elicit that for each of the 6 possible 1st terms, there are 5 possible 2nd terms, i.e. $6 \times 5=\underline{30}$ possible additions, but as the terms of an addition are inter-changeable, e.g. $2+1=1+2$, we must divide 30 by 2 , so $\underline{15}$ different additions are possible. Ps check that there are 15 additions on BB and dictate any missing. $\begin{array}{llll} \text { BB: } & -5+(-3)=-8, & -5+0=-5, & -5+1=-4, \\ & -5+2=-3, & -5+6=1 ; & \\ & -3+0=-3, & -3+1=-2, & -3+2=-1, \\ & -3+6=3 ; & & \\ & 0+1=1, & 0+2=2, & 0+6=6 ; \\ & 1+2=3, & 1+6=7 ; & \\ & 2+6=8 & & \end{array}$ b) Read: How many results are i) positive (8 , but only 6 different results) ii) negative? (7, but only 6 different results)	Individual work, monitored, helped Written on BB or SB or OHT BB: $-5,-3,0,1,2,6$ Differentiation by time limit. Reasoning, agreement, selfcorrection, praising Whole class acitivty T asks several Ps what they think. T gives hints if necessary. Agreement, checking, praising Ps shout out numbers in unison. Elicit how many different results there are.

BKL		Lesson Plan 131
Activity 3	Book 4, page 131 Q. 2 Read: Solve this problem in your exercise book. Write only the answer here. Ps read problem themselves and solve it in Ex. Bks. Set a time limit. Remind Ps to check their answers! Review with whole class. Ps could show answer on scrap paper or slates on command. P answering correctly explains at BB to those who were wrong. Mistakes discussed and corrected. Solution: If my father takes 20 paces forward, he covers a distance of 16 m . If I take 10 paces forward, I cover a distance of 7 m . How much longer is one of my father's paces than one of mine? BB: e.g. F: 20 paces $\rightarrow 16 \mathrm{~m}$ 10 paces $\rightarrow 8 \mathrm{~m} \quad$ Me: 10 paces $\rightarrow 7 \mathrm{~m}$ Difference in 10 paces: $8 \mathrm{~m}-7 \mathrm{~m}=1 \mathrm{~m}=100 \mathrm{~cm}$ Difference in 1 pace: $100 \mathrm{~cm} \div 10=\underline{10 \mathrm{~cm}}$ Answer: The father's pace is 10 cm longer than his child's pace. 19 min	Notes Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising Check in the context of the question. Or F: 1 pace $\rightarrow 0.8 \mathrm{~m}=80 \mathrm{~cm}$ M: 1 pace $\rightarrow 0.7 \mathrm{~m}=70 \mathrm{~cm}$ D: $80 \mathrm{~cm}-70 \mathrm{~cm}=\underline{10 \mathrm{~cm}}$ T chooses a P to give the answer in a sentence.
4	Book 4, page 131, Q. 3 Read: The price of 0.7 litres of syrup is $£ 5.60$. How much would 1 litre of syrup cost? Ps decide what to do first, then how to continue. Ps come to BB to explain reasoning. Class points out errors in calculations or reasoning or suggests another way to solve it. T intervenes and helps only when necessary. $\begin{aligned} & \text { BB: e.g. } 0.7 \text { litres } \rightarrow £ 5.60 \\ & 0.1 \text { litres } \rightarrow £ 5.60 \div 7=£ 0.80 \\ & 1 \text { litre } \rightarrow £ 0.80 \times 10=\underline{£ 8.00} \\ & \text { or } \quad 0.7 \text { litres }=70 \mathrm{cl} \rightarrow £ 5.60=560 \mathrm{p} \\ & \\ & 10 \mathrm{cl} \rightarrow 560 \mathrm{p} \div 7=80 \mathrm{p} \\ & 100 \mathrm{cl} \rightarrow 80 \mathrm{p} \times 10=800 \mathrm{p}=\underline{£ 8} \end{aligned}$ Answer: 1 litre of syrup would cost $£ 8$.	Whole class activity (or individual work if Ps wish, monitored, helped and reviewed by Ps showing answer on scrap paper or slates in unison on command) Ps might suggest drawing a diagram: e.g. BB: Discussion, reasoning, agreement, (self-correction), praising Ps write agreed answer in Pbs.
5	Book 4, page 131, Q. 4 Read: $8=2 \times 4$ and $8+4=12$ is exactly divisible by 3 , as $3 \times 4=12$ $14=2 \times 7$ and $14+7=21$ is exactly divisible by 3 , as $3 \times 7=21$ Is this statement true or false? Give a reason for your answer. If we add a natural number and its double, then the sum is exactly divisible by 3. T gives Ps time to think about it, discuss with neighbours and try to find a counter example. Show me what you think . . now! (T) A, why do you think so? Who agrees? Who can give another reason? $\text { e.g. } \begin{aligned} 2 \times 4=\underline{8}=4+4, \quad \underline{8}+4=(4+4)+4=\underline{3} \times 4 \\ 2 \times 7=\underline{14}=7+7, \quad \underline{4}+7=(7+7)+7=\underline{3} \times 4 \end{aligned}$ Adding a natural number to its double means that you have 3 times the number, so the sum must be a multiple of 3 .	Whole class activity T explains statment if Ps do not understand. Ps try out other examples in Ex. Bks, then show responses on slates or by agreed actions. T shows the general solution: Let any natural number be n : $\begin{aligned} n+2 \times n & =n+n+n \\ & =3 \times n \end{aligned}$ which is divisible by 3 . Ps write agreed answer in own words in Pbs.

$B K 4$		Lesson Plan 131
Activity 6	Book 4, page 131 Q. 5 Read: Factorise these numbers. What will you have to do in b) and c)? (Do the calculation first, then factorise the result.) Ps try out prime numbers as divisors and draw tree diagrams in Ex. Bks, then write the number as the product of its prime factors in Pbs. Set a time limit or deal with one part at a time. Review with whole class. Ps come to BB to draw tree diagrams and write the multiplications. Class agrees/disagrees. Mistakes discussed and corrected. Solution:	Notes Individual work, monitored, helped Reasoning, agreement, selfcorrection, praising Ps may use a calculator. Feedback for T
7	Book 4, page 131 Q. 6 a) Read: Factorise 1250 and 175 in your exercise books. Set a time limit. Review with whole class. Ps come to BB to draw tree diagrams and write the multiplications. Class agrees/disagrees. Mistakes discussed and corrected. Solution: i) Read: What is the greatest natural number which is a factor of both numbers? Show me . . now! (25) Ps come to BB to point to 5×5. ii) Read: What is the smallest natural number which is a factor of both numbers? Show me . . now! (1) b) As in a) above. Solution: i) Greatest factor of both 68 and 170 is $\underline{34}(2 \times 17)$ ii) Smallest factor of both 68 and 170 is 1 . Tell class that factors of more than one number are common factors.	Individual work in factorising, monitored, helped (or whole class activity if time is short) Reasoning, agreement, selfcorrecting, praising Whole class activity On scrap paper or slates in unison In unison Individual work, monitored, (helped) Reasoning, agreement selfcorreciton, praising Whole class activity Agreement, praising

$B K K$		Lesson Plan 131
Activity		Notes
8	Problem T sticks these number cards on BB: 10781 How many different 4-digit numbers can be made with these number cards? Ps come to BB or dictate numbers to T . Agree that there are $\underline{6}$ possible different 4-digit numbers BB: 1177, 1717, 1771, 7117, 7171, 7711	Whole class activity (or individual work in Ex. Bks. if Ps prefer) Agreement, (self-correcting) praising

BKK	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 132 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 164 and list all its factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the number as the product of its prime factors and list all its factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: 1, 2, 4, 41, 82, 164	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Feedback for T
2	Plane shapes Ps work in pairs and each pair has the same set of three different sizes of squares on desk. T has larger set for demonstration only. a) Take one of the small squares BB: - Measure its sides. - Calculate its perimeter and area. - Measure its diagonals. Agree that the 2 diagonals of a square are equal. Ps calculate in Ex. Bks. then dictate measurements to T. b) Take one of the middle-sized squares BB: - Measure its sides. - Calculate its perimeter and area. - Measure its diagonals. Ps dictate measurements to T. - Can you tile over (tessellate) this square with the small squares? (Yes, 4 small squares cover it exactly) Think of a number line which is endless in 2 directions. Who remembers the mathematical name for endless or never ending? (infinite) Now think of the plane (flat surface) that the square is on and imagine it being infinite and spreading out wider and wider in all 4 directions. Could you use the small or middle-sized squares to tessellate the whole plane so that there are no gaps and no overlaps? Ask several Ps what they think and why. There are two arguments, e.g. P_{1} : No, the plane is endless, so we would never be able to finish tiling. P_{2} : Yes, we could tile the plane using equal (congruent) squares in any of the 4 possible directions but we would need an infinite number of squares. Praise both arguments but T supports P_{1}, as in practice nobody could ever tessellate an infinite plane!	Paired work, monitored, helped but class kept together on tasks. Use copy master, copied onto coloured paper or card and squares cut out. Ps follow T's instructions. $\begin{aligned} & \text { BB: } P=4 \times 2 \mathrm{~cm}=\underline{8 \mathrm{~cm}} \\ & A=2 \mathrm{~cm} \times 2 \mathrm{~cm}=\underline{4 \mathrm{~cm}^{2}} \\ & d \approx \underline{2.8 \mathrm{~cm}} \end{aligned}$ $\begin{aligned} & \text { BB: } P=4 \times 4 \mathrm{~cm}=\underline{16 \mathrm{~cm}} \\ & A=4 \mathrm{~cm} \times 4 \mathrm{~cm}=\underline{16 \mathrm{~cm}^{2}} \\ & d \approx \underline{5.6 \mathrm{~cm}} \end{aligned}$ BB: tessellate to cover with congruent tiles so that there are no gaps and no overlaps Whole class discussion (N, S, E, W) Reasoning, agreement, praising

BKK		Lesson Plan 132
Activity 2	(Continued) c) Take one of the large squares BB: - Measure its sides. - Calculate its perimeter and area. (For the area, T advises changing the lengths to mm , then Ps can do long multiplication, or $56 \times 7 \times 8$) - Measure its diagonals. Ps dictate measurements to T . - Can you tessellate this square with the small or middle-sized squares? (No) If we cut the squares in half along a diagonal, could we tessellate the large square with the small or the middle-sized half squares? (i.e. right-angled triangles) Ps try it out and confirm that it can be done. T shows it on diagram or model on BB (as in diagram above).	Notes Measurements of sides need only be approximte. $\begin{aligned} & \text { BB: } a \approx 5.6 \mathrm{~cm} \\ & \begin{aligned} & P \approx 4 \times 5.6 \mathrm{~cm}=\underline{22.4 \mathrm{~cm}} \\ & \begin{aligned} A & \approx 5.6 \mathrm{~cm} \times 5.6 \mathrm{~cm} \\ & =56 \mathrm{~mm} \times 56 \mathrm{~mm} \\ & =3136 \mathrm{~mm}^{2}=\underline{31.36 \mathrm{~cm}^{2}} \\ & \left(\text { as } 100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2}\right) \end{aligned} \\ & d=\underline{8 \mathrm{~cm}} \end{aligned} \end{aligned}$ Discussion, demonstration, agreement, praising
3	Book 4, page 132 Q. 1 Read: The rectangle is the plan of a garden. 1 mm on the diagram means 1 m in real life. Measure the sides and complete the table. Agree on values of a and b first before Ps continue with table. Review with whole class. Ps come to BB to complete the table, explaining reasoning and showing calculations on BB . Class agrees/disagrees. Mistakes discussed and corrected. Solution: 25 min	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising $\begin{aligned} \text { BB: } \begin{aligned} P & =2 \times(40+30) \\ & =2 \times 70=\underline{140}(\mathrm{~mm}) \\ A=30 & \times 40=\underline{1200}\left(\mathrm{~mm}^{2}\right) \end{aligned} \end{aligned}$
4	Book 4, page 132 Q. 2 Read: The square is the plan of a table. 1 mm on the diagram means 3 cm in real life. Measure the sides and complete the table. Agree on values of a and b first before Ps continue with table. Review with whole class. Ps come to BB to complete the table, explaining reasoning and showing calculations on BB . Class agrees/disagrees. Mistakes discussed and corrected. Solution: Elicit that if the lengths of the sides of a square are increased by 3 times, the area increases by $3 \times 3=\underline{9}$ times.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising $\begin{aligned} \mathrm{BB}: P & =4 \times 30 \mathrm{~mm} \\ & =\underline{120 \mathrm{~mm}} \\ A=30 & \times 30=\underline{900}\left(\mathrm{~mm}^{2}\right) \end{aligned}$ BUT in real life: $\begin{aligned} A & =90 \mathrm{~cm} \times 90 \mathrm{~cm} \\ & ={\underline{8100} \mathrm{~cm}^{2}}^{2} \end{aligned}$

BKK		Lesson Plan 132
Activity 5	Book 4, page 132, Q. 3 Read: On the outside of a measuring cylinder, there are marks at every 10 cl . Join up the quantities to the corresponding marks. Who can explain the diagram? (The cylinder has been divided up into 10 equal parts, with a mark at every 1 tenth of a litre, so if you pour in 1 tenth of a litre of water, it will be level with the first mark.) How many cl (ml) are in 1 tenth of a litre? ($10 \mathrm{cl}, 100 \mathrm{ml}$) Ps come to BB to choose a quantity, convert to litres if necessary and join up to appropriate mark on diagram. Class agrees/disagrees. Ps draw joining lines in Pbs too. Solution:	Notes Whole class activity (or individual work if Ps prefer) Drawn on BB or use enlarged copy master or OHP Initial discussion and revision of capacity. T could have cylinder to show to class. Elicit that its base is a circle. At a good pace Reasoning, agreement, (self-correction), praising Feedback for T Discuss why a cylinder is a good shape for measuring liquid. (It is the same width at any point along its height.)
6	Book 4, page 132 Q. 4 Read: Change the units of measure, then round them to the nearest whole unit required. Do a) i) with the whole class first if necessary as an example for the class to follow. Set a time limit. T writes an extra question iv) for each part on BB for Ps who finish early.* Review with whole class. Ps dictate to T or come to write on BB, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected Solution: a) i) $678 \mathrm{~m}=\underline{0} \mathrm{~km} \underline{678} \mathrm{~m} \approx \underline{1 \mathrm{~km}}$ ii) $15240 \mathrm{~m}=\underline{15} \mathrm{~km} \underline{240} \mathrm{~m} \approx \underline{15} \mathrm{~km}$ iii) $5648 \mathrm{~mm}=\underline{5} \mathrm{~m} \underline{648} \mathrm{~mm} \approx 6 \mathrm{~km}$ iv) $5648 \mathrm{~cm}=\underline{56} \mathrm{~m} \underline{48} \mathrm{~cm} \approx \underline{56} \mathrm{~m}$ b) i) $3518 \mathrm{ml}=\underline{3}$ litres $518 \mathrm{ml} \approx \underline{4}$ litres ii) $3518 \mathrm{cl}=\underline{35}$ litres $\underline{18} \mathrm{cl} \approx \underline{35}$ litres iii) $18450 \mathrm{ml}=\underline{18}$ litres $\underline{450 \mathrm{ml} \approx \underline{18} \text { litres }, ~}$ * iv) $18450 \mathrm{cl}=\underline{184}$ litres $\underline{50} \mathrm{cl} \approx \underline{185}$ litres	Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Elicit that: 5 rounds up to nearest 10 , 50 rounds up to nearest 100 , 500 rounds up to nearest 1000 .
7	Mental practice a) T says an amount in kg and Ps change it to grams. e.g. 1 tenth of a $\mathrm{kg}(=100 \mathrm{~g}), \quad 1$ fifth of a $\mathrm{kg}(=200 \mathrm{~g})$, 0.1 of a $\mathrm{kg}(=100 \mathrm{~g}), \quad 3$ tenths of a $\mathrm{kg}(=300 \mathrm{~g})$, 3 fifths of a $\mathrm{kg}(=600 \mathrm{~g}), \quad 0.3$ of a $\mathrm{kg}(=300 \mathrm{~g})$, etc. b) T says an amount in g and Ps give it in kg (fraction or decimal). (Ps can say the amounts in g too and choose Ps to convert it to kg .)	Whole class activity T chooses Ps at random. At speed Class points out errors. In good humour! Praising, encouragement only

BKK	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 133 \end{gathered}$
Activity 1	Factorising In your Ex. Bk, factorise 165 and 166 and then list all their factors. Review at BB with whole class. Ps come to BB to draw tree diagrams, show the numbers as the product of their prime factors and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: $\begin{aligned} & 165: 1,3,5,11,15,33,55,165 \\ & 166: 1,2,83,166 \text { (It is a nice number!) } \end{aligned}$	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Feedback for T
2	Plane shapes Pairs of Ps each have the same type and number of plane shapes on desks and T has larger version of the same set for demonstration. BB: e.g. What name could you give to all these shapes? (polygons, i.e. plane shapes with many straight sides) T chooses Ps to hold up a shape and say what they know about it. (e.g. name, number of sides, types of angles, etc.) Elicit that acute angle < right angle (90°) < obtuse angle Which shapes are similar (congruent)? (e.g. A ~ C, L ~M ~N, etc. but none are congruent) a) Let's measure the sides of some of these shapes (T writes letters on BB) and calculate their perimeters and areas. Ps dictate to T . b) Let's tile (tessellate) some of the larger shapes with the smaller shapes. Ps come to BB to show class when they have found shapes which can be tessellated. e.g. G with A $(4 \mathrm{~A}=\mathrm{G})$ K with P	Whole class activity to start Use copy master copied on to card and either kept as a sheet for Ps, or cut out. (T's version enlarged and stuck on BB.) (If class is not very able, T can choose which shapes to deal with.) [Ps and T should have extra copies of some of the smaller shapes cut out for tessellation in b).] Initial discussion to revise plane shapes. (Extra praise for clever facts, e.g. 2-dimensional) Praising, encouragement only Paired work in measuring, whole class calculation Paired work, monitored, helped, then demonstration and discussion with large models with whole class Agreement, praising

3 K 4		Lesson Plan 134
Activity 3	Book 4, page 134 Q. 1 Read: Do the calculations in your exercise book. Write the answers here. Set a time limit. Review at BB with whole class. Ps could show responses on scrap paper or slates on command. Ps answering correctly explain with place-value detail to Ps who were wrong, Mistakes discussed and corrected. Solutions: a) 1 m of material costs $£ 6.70$. How much do 8 m cost? Plan: $£ 6.70 \times 8 \quad$ or $670 \mathrm{p} \times 8$ E: $\quad £ 7 \times 8=£ 56 \quad$ or $700 \mathrm{p} \times 8=5600 \mathrm{p}$ Answer: The cost of 8 m of material is $£ 53.60$. b) 7 kg of apples cost $£ 13.30$. How much does 1 kg cost? Plan: $£ 13.30 \div 7$ or $1330 \mathrm{p} \div 7$ $E<£ 14 \div 7=£ 2$ or $E<1400 \mathrm{p} \div 7=200 \mathrm{p}$ C : $7 \longdiv { 7 _ { 6 } . 3 0 } (\mathrm { f }) \quad \text { or } \quad 7 \longdiv { 6 } \frac { 1 9 0 } { 1 3 3 0 } (\mathrm { p })$ Answer: The cost of 1 kg is $£ 1.90$. c) 5 litres of oil cost $£ 16.50$. How much do 7 litres cost? Plan: $£ 16.50 \div 5 \times 7$ or $1650 \mathrm{p} \div 5 \times 7$ $E:>£ 15 \div 5 \times 7=£ 21$ or $E>1500 \mathrm{p} \div 5 \times 7=2100 \mathrm{p}$ C : Answer: The cost of 7 litres of oil is $£ 23.10$.	Notes Individual work, monitored, helped In unison Reasoning, agreement, selfcorrecting, praising $\text { C: } \begin{array}{r} £ 6.70 \\ \times 8 \end{array} \text { or } \begin{array}{r} 670 \\ \begin{array}{r} \times 53 \\ \hline 5 \end{array} \\ \frac{5360}{5} \end{array}$ It is easier to estimate here by taking the nearest known multiple of 7 . It is easier to estimate here by taking the nearest known multiple of 5 .
4	Book 4, page 134 Q. 2 Read: Kate had 360 pennies. On Friday, she spent 7 ninths of them on stamps. a) How much did the stamps cost? b) What part of her money was left? Review with whole class. Ps come to BB to show their solution, explaining reasoning and referring to the diagram. Class agrees or disagrees. Mistakes discussed and corrected. Solution: e.g. a) Plan: $360 \mathrm{p} \div 9 \times 7=40 \mathrm{p} \times 7=280 \mathrm{p}$ Answer: The stamps cost 280 p . b) Plan: $1-\frac{7}{9}=\frac{9}{9}-\frac{7}{9}=\frac{2}{9}$ Answer: Kate had 2 ninths of her money left.	Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising BB: e.g.

BK4		Lesson Plan 134
Activity 5	Book 4, page 134 Q. 3 Read: Danny has already run 900 m, which is 3 fifths of the distance he has to run. a) What distance is he running? b) i) What part of the distance does he still have to run? ii) How many metres does he still have to run? Deal with one part at a time or set et a time limit. Review whole class. Ps come to BB to show their solution, explaining reasoning and referring to the diagram. Class agrees.disagrees. Mistakes discussed and corrected. Solution: e.g. a) Plan: $900 \mathrm{~m} \div 3 \times 5=300 \mathrm{~m} \times 5=1500 \mathrm{~m}$ Answer: Danny is running 1500 m . b) i) Plan: $1-\frac{3}{5}=\frac{5}{5}-\frac{3}{5}=\frac{2}{5}$ Answer: He still has 2 fifths of the distance to run. ii) Plan: $1500 \mathrm{~m}-900 \mathrm{~m}=\underline{600 \mathrm{~m}}$ Answer: He still has 600 m to run.	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising $\underbrace{\overbrace{\substack{600 \mathrm{~m} \\ \frac{2}{5}}}^{\text {e.g. }} 1500 \mathrm{~m}}_{\begin{array}{c}900 \mathrm{~m} \\ \frac{3}{5}\end{array}}$ (or $\frac{2}{5}$ of $1500 \mathrm{~m}=\underline{600 \mathrm{~m}}$)
6	Book 4, page 134 Q. 4 Deal with one at a time or set a time limit. Review at BB with whole class. Ps could show answers on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected a) Read: How much does Peter have if half of his money is 50 p more than 1 quarter of it? Solution: $\frac{1}{2}-\frac{1}{4}=\frac{2}{4}-\frac{1}{4}=\frac{1}{4} \rightarrow 50 \mathrm{p}, \quad \text { or } \frac{1}{2}=\frac{2}{4} \underset{50 \mathrm{p}}{>} \frac{1}{4}$ So $\frac{4}{4} \rightarrow 50 \mathrm{p} \times 4=200 \mathrm{p}=\underline{£ 2}$ Answer: Peter has $£ 2$. b) Read: 2 fifths of Veronica's money is 120 p less than 3 fifths of it. How much money does Veronica have? Solution: e.g. $\begin{aligned} & \frac{3}{5}-\frac{2}{5}=\frac{1}{5} \rightarrow 120 \mathrm{p} \text {, so } \frac{5}{5} \rightarrow 120 \mathrm{p} \times 5=600 \mathrm{p}=\underline{£ 6} \\ & \text { Answer: Veronica has } £ 6 . \end{aligned}$	Individual work, monitored, helped (or whole class activity if time is short) Discussion, reasoning, agreement, checking, selfcorrection, praising BB: $\underbrace{\frac{1}{4} 50 \mathrm{p}}_{\frac{1}{2}}$ BB: $\quad \frac{3}{5}$

3 K 4		Lesson Plan 134
Activity 6	(Continued) c) Read: Wendy spent half of her money on Monday, half of what was left on Tuesday and she had 40 p left. How much money did Wendy have at first? Solution: e.g. Monday: part spent: $\frac{1}{2}$, part left: $\frac{1}{2}$ Tuesday: part spent: $\frac{1}{2}$ of $\frac{1}{2}=\frac{1}{4}$ Part spent altogether: $\frac{1}{2}+\frac{1}{4}=\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$ Part left: $1-\frac{3}{4}=\frac{1}{4} \rightarrow 40 \mathrm{p}$, so $\frac{4}{4} \rightarrow 40 \mathrm{p} \times 4=160 \mathrm{p}=\underline{£ 1.60}$ Answer: Wendy had $£ 1.60$ at first.	Notes (Or part left: $\left.1-\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\right)$
7	Book 4, page 134, Q. 5 Read: Solve these equations in your exercise book. Deal with one at a time. Ps decide what to do first and how to continue. Ps work on BB and rest of class in Ex. Bks. Calculations done at side of BB if necessary. Class checks that the solution is correct by inserting values in original statements. T helps with d) and shows on number line. BB: a) $3 \times a-410=4690$ b) $3 \times a=4690+410=5100$ $a=5100 \div 3=\underline{1700}$ $\begin{gathered} 4 \times b+40=3 \times b+110 \\ 4 \times b=3 \times b+70 \\ \underline{b}=70 \end{gathered}$ c) $5 \times c+2000<7400$ d) $\begin{aligned} & 87<6 \times d-320<113 \\ & 407<6 \times d<433 \\ & 67<d<73 \end{aligned}$ or $d: 68,69,70,71,72$	Whole class activity (or individual work if Ps wish) Written on BB or SB or OHT Discussion, reasoning, checking, agreement, (selfcorrection), praising Accept trial and error too. BB: d)

BKK	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 135 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 168 and list all its factors. Review at BB with whole class. Ps come to BB to draw tree diagram, show the number as the product of its prime factors and list all its factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps join up the factor pairs. Feedback for T
2	Points on a plane a) Draw a dot A in your Ex. Bks. (in the middle of the page) Draw dots on the same plane which are not more than 2 cm away from it. How could we show all the dots possible? (Colour over them) Let's colour the area covering the complete set of dots green. What shape have you made? (a circular plane shape) Now let's find dots which are more than 2 cm away from point A. Let's colour this part red. What colour should the points which are exactly 2 cm away from A be? (green, as not more than 2 cm) T tells class that the points in the plane less than 2 cm from A are called the inside points, the points exactly 2 cm away from A are the border points and the points more than 2 cm away from A are the outside points. Elicit that the red area covers the whole plane to infinity in all directions, except for the green circular plane shape. b) In your Ex. Bks. draw a straight line 3 cm long. Find dots in the same plane which are less than 2 cm from the line. Try to draw dots in several different places. How can we show all the dots possible? (Colour over them.) Let's colour the area covering all these points red. Should the the border points be red? (No) Let's colour the points on the plane which are exactly 2 cm from the line in yellow. (border points) Colour the dots on the plane which are more than 2 cm from the line segment in green. Elicit that these are the outside points. c) In your Ex. Bks. mark three dots A, B and C in similar positions to these dots. (T draws them on BB.) Find dots on the same plane which are an equal distance from A and B. Colour them red. (Elicit that they form a straight line.) How long is the line? (it is never-ending or infinite.) Find dots on the plane which are an equal distance from A and C . Colour the set of dots blue. (Elicit that they form a straight line.) Find dots on the plane which are an equal distance from A, B and C. How many dots did you find? (one) Where is it? (At the point where the red and blue lines cross over each other)	Ps have rulers and if possible, compasses, on desks. Individual work, but Ps kept together and follow T's instructions. Discussion on, reasoning, agreement, praising T works on BB and Ps copy what T does in Ex. Bks. Do not expect exact constructions! Allow Ps to draw freehand too. [d $=$ distance]

BKK		Lesson Plan 135
Activity 5	Book 4, page 135 Q. 3 Read: It takes 45 minutes for 7200 litres of water to flow out of the dam. How much water would flow out after these times? Fill in the missing numbers. What is a dam? Why do we build them? Who has seen one? (T has picture to show if possible.) Set a time limit, Ps can do necessary calculations in Ex. Bks. and write only answers in Pbs. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) 15 minutes: 7200 litres $\div 3=\underline{2400}$ litres b) 5 minutes: 2400 litres $\div 3=\underline{800}$ litres c) 3 minutes: 2400 litres $\div 5=\underline{480}$ litres d) 1 minute: $\quad 480$ litres $\div 3=\underline{160}$ litres e) 30 minutes: 2400 litres $\times 2=\underline{4800}$ litres f) 1 hour: $\quad 4800$ litres $\times 2=\underline{9600}$ litres 35 min	Notes Individual work, monitored, helped Written on BB or SB or OHT Initial discussion to clarify the context. Involve several Ps. Differentiation by time limit Reasoning, agreement, selfcorrection, praising Show calculations in detail on BB if problems. Ps might show other ways to calculate, e.g. $5 \mathrm{~min}: 7200 \ell \div 9=800 \ell$ Feedback for T
6	Pb Y4b, page 135 Q. 4 Deal with one question at a time. Ps read question themselves, work out the answer in Ex. Bks, check it and and write only the numerical solution in Pbs . Ps write answer on scrap paper or slates and show to T in unison on command. P responding correctly explains at BB to Ps who were wrong. Mistakes discussed and corrected. Solutions: a) Lennie Lion eats about 16 kg of meat every day. About how much meat does Lennie Lion eat in a year? Plan: $365 \times 16 \mathrm{~kg}=730 \times 8 \mathrm{~kg}$ E: $700 \times 8 \mathrm{~kg}=5600 \mathrm{~kg}$ Answer: Lennie Lion eats about 5840 kg of meat in a year. b) In one year, Ellie Elephant drinks about 150 times. Each time, she drinks about 200 litres of water. How much water does Ellie Elephant drink in a year? Plan: 150×200 litres $=300 \times 100$ litres $=3000 \times 10 \text { litres }=\underline{30000 \text { litre }}$ Answer: Ellie Elephant dinks about 30000 litres in 1 year. c) Daisy Dragonfly flies around for 2 and a half hours. How far does she fly if she covers 625 m per min? Plan: 2 and a half hours $=60+60+30=150$ (minutes) $\begin{aligned} 625 \times 150 & =6250 \times 15=62500+6250 \times 5 \\ & =62500+31250=\underline{93750}(\mathrm{~m}) \end{aligned}$ Answer: Daisy Dragonfly flies 93 km 750 m in 2.5 hours.	Individual work, monitored, helped (or whole class activity if time is short) Reasoning, agreement, selfcorrection, praising T chooses Ps to say answers in sentences. [Familiarisation with large numbers.] $\begin{array}{lr} C: \begin{array}{r} 6250 \\ \times 5 \end{array} & \begin{array}{r} 6250 \\ \times 15 \end{array} \\ \hline \frac{31250}{12} & \begin{array}{r} 31250 \\ \text { or T might show: } \\ +\underline{62500} \\ \hline \underline{93750} \end{array} \end{array}$

BTK	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 136 \end{gathered}$
Activity 1	Factorising Let's factorise 169 and then list all its factors. Ps try the prime numbers $2,3,5,7$ and 11 in turn, using quick methods where they can. Should we try 13? (Yes) BB: $13 \times 13=130+39=169$, So $169=13 \times 13$ (It is a square number). Its factors are $1,13,169$	Notes Whole class activity Extra praise if Ps remember $169=13 \times 3$ from the trials of previous numbers. Reasoning, agreement, praising BB: \qquad
2	Missing numbers Where should these numbers go in the diagram if the arrows are pointing towards the greater number? BB: $-5,40.93,0,-\frac{2}{7}, 562,-72.3$ Who knows where one of the numbers should go? Why? Ps come to BB to write a number and explain their thinking. Class agrees/ disagrees. BB: Reasoning: e.g. - The circle with no arrows pointing towards it must contain the smallest number, which is -72.3 . - The circle with 5 arrows pointing towards it and none away from it must be the biggest number, which is 562 . - The circle with 4 arrows pointing towards it and only one away from it must be the 2 nd greatest number, which is 40.93 . etc.	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising At a good pace T helps with wording of reasoning where necessary.
3	Shortest distance Where should we measure how far apart one element is from the other? Ps come to BB to say what the two elements are, then to show where they would measure their distance apart. Class agrees/disagrees. Ps draw the measuring line using BB ruler (with T's help). Let's label the distance between them d. BB: d) b) h) c) f) i)	Whole class activity Drawn on BB or use enlarged copy master or OHP Ps could have rulers and copies of copy master too. Discussion, reasoning, agreement, praising Elicit that the shortest distance between: - 2 points is a straight line; - 2 lines is the perpendicular distance between them; - 2 shapes is the distance between the 2 closest points. Point out that lines, e.g. e and f in h) can be extended to infinity and if not parallel will cross one other eventually, but that line segments, e.g. AB , have a finite length.

BTK	R: Calculations C: Puzzles and challenges E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 137 \end{gathered}$
Activity 1	Factorising In your $E x . B k$, factorise 170 and 171 and then list all their factors. Review at BB with whole class. Ps come to BB to draw tree diagrams, show the numbers as the product of their prime factors and list all their factors. Class agrees/disagrees. Mistakes discussed and corrected. Factors: 170: 1, 2, 5, 10. 17, 34, 85, 170 171: 1, 3, 9, 19, 57, 171	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Feedback for T
2	Missing numbers Where should these numbers go in the diagram if the arrows are pointing towards the smaller number? BB: $\quad 3 \frac{2}{3},-2,0,-\frac{1}{3}, 0.7, \frac{4}{3}$ Who knows where one of the numbers should go? Why? Ps come to BB to write a number and explain their thinking. Class agrees/ disagrees. BB: Reasoning: e.g. - The smallest number (-2) has all the arrows pointing towards it. - The largest number $\left(3 \frac{2}{3}\right)$ has all the arrows pointing away from it. - The 2 nd smallest number $\left(-\frac{1}{3}\right)$ has 4 arrows pointing towards it and only one arrow away from it.	Whole class activity Drawn on BB or use enlarged copy master or OHP Ps might suggest putting the numbers in order first. Discussion, reasoning, agreement, praising At a good pace T helps with wording of reasoning if necessary.
3	Book 4, page 137 Q. 1 Read: How many routes lead from A to K, L, M, N and O if you can only move down to the left or to the right? Let's see how many ways you can find in 4 minutes! Review a BB with whole class. Ps dictate to T. Class agrees/ disagrees. Omissions added and mistakes corrected. Solution: A to K : 1 route (ABDGK) A to L: 4 routes (ABDGL, ABDHL, ABEHL, ACEHL) A to M: 6 routes (ABDHM, ABEHM, ABEIM, ACEHM, ACEIM, ACFIM) A to N: 4 routes (ABEIN, ACEIN, ACFIN, ACFJN) A to O: 1 route (ACFJO)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Agreement, self-correction, praising BB:

BK4		Lesson Plan 137
Activity 6	Book 4, page 137 Q. 4 Read: Fill in the missing numbers. Set a time limit. Review with whole class. Ps come to BB to fill in numbers and explain their reasoning in detail. Who did the same? Who did it a different way? etc. e.g. $P_{1}: \quad 900 \times 4=3600$, so $3600 \times 2=7200$, then $7200 \div 900=72 \div 9=\underline{8}$ $\mathrm{P}_{2}: \quad(900 \times 4) \times 2=900 \times \underline{8}$ etc. T shows the 2 nd strategy if no P used it. Mistakes discussed and corrected. Solution:	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who noticed 'quick' ways. (Or could be done as a competition between 2 teams of 4 Ps. T times how long it takes each team to reason aloud to class and fill in missing numbers. Class points out errors and Ps have to start their reasoning all over again if incorrect. Team finished correctly in the quickest time is the winner. Let's give them three cheers!)
7	Combinatorics In how many ways can you put 2 circles and 3 triangles in order? Ps draw the different orders in Ex. Bks and/or have shapes or shape cards on desks to manipulate. Set a time limit. Show me the most number of ways that you found . . . now! (10) Ps with the correct answer explain how they worked it out. T gives extra praise for a systematic method of solution. e.g. BB: 10 different orders	Individual or paired work, monitored (or whole class activity if time is short and Ps come to BB tor dictate to T) Responses shown on scrap paper or slates in unison. Discussion, reasoning, agreement, praising T might show the tree diagram if no P has thought of it.

3 BC	R: Calculations C: Puzzles and challenges E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 138 \end{gathered}$
Activity 1	Factorising In your Ex. Bks. factorise 172 and then list all its factors. Review at BB with whole class. Ps come to BB to draw a tree diagram show the number as the product of its prime factors, and list all its factors. Class agrees/disagrees Mistakes discussed and corrected. BB: $172=2 \times 2 \times 43$ Factors: 1, 2, 4, 43, 86, 172	Notes Individual work, monitored Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator.
2	Combinatorics In how many ways can we get to B from A ? Let's choose some interim steps first. In how many ways can we get from A to here? (T points to a grid point.) Ps come to BB to show the different routes. Class agrees/disagrees. Ps write number of ways in the appropriate circle. Repeat for one or two other grid points until Ps realise that the number of ways for any grid point is the sum of the 2 numbers directly above it in the previous row. e.g. $15=10+5$ Agree that the number of different ways from A to B is 70 .	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Involve several Ps Reasoning, agreement, praising Extra praise if Ps realise from the beginning that they should add the 2 numbers in the row above. Elicit that the shape forms part of Pascal's Triangle.
3	Book 4, page 138, Q. 1 Read: a) List the natural numbers up to 100 which have an odd number of factors. b) What are these numbers called? Let's do it logically. What is the first natural number? (1) How many factors does it have? (1, which is an odd number) Ps factorise the following natural numbers in Ex. Bks, then come to BB to show the next appropriate numbers and list their factors as a check. Class agrees/disagrees. (It will be rather slow at first until Ps realise that the numbers they are looking for are square numbers.) Solution:	Whole class activity (or individual work if Ps wish) At a good pace Reasoning, agreement, praising Extra praise for the first P to realise that the numbers are square numbers. What is a square number? (A number which is formed by multiplying another number by itself.) Elicit that it can form a square. BB: e.g.

BKK		Lesson Plan 138
Activity 5	Book 4, page 138 Q. 3 Read: The product of the ages of my children is 1664. The youngest is half the age of the oldest. I am 50 years old. How many children do I have and what are their ages? Allow Ps time to think about it and discuss with their neighbours. Ps can do calculations and checks in Ex. Bks. If Ps are struggling, T could give a hint about factorising 1664. Who thinks that they have an answer? Ps tell their ideas and findings to class. If no P knows what to do, class solves it together with T's help. Solution: First factorise 1664. Then try to form numbers with the prime factors which fulfil the conditions. Answer: I have 3 children aged 8 years, 13 years and 16 years. 25 min \qquad	Notes Individual trial first, monitored, helped (or whole class activity) Discussion, reasoning, agreement, checking, praising (Ps might try various combinations before they reach the solution.) Praise all positive contributions. Extra praise if Ps solved it without help from T.
6	Book 4, page 138, Q. 4 Read: Two positive whole numbers have these factors in common: $\text { 1, 2, } 3 \text { and } 6 .$ If we combine their factors, we get this set: $\{1,2,3,4,6,9,12,18\}$ Write the factors in the correct set if: $\begin{aligned} & A=\{\text { factors of the } 1 \text { st number }\} \\ & B=\{\text { factors of the } 2 \text { nd number }\} \end{aligned}$ Which factors should we write in first? (the common factors) P comes to BB to write 1, 2, 3, and 6 in intersection of the two sets. Which set should the other factors be in? Ask several Ps what they think and why. Class agrees/disagrees. Ps fill in diagram in Pbs too. What are the two numbers? (12 and 18) Let's check their factors. Factors of 12: 1, 2, 3, 4, 6, $12 \boldsymbol{\sim}$ Factors of 18: 1, 2, 3, 6, 9, $18 \boldsymbol{\sim}$	Whole class activity (or individual trial first, monitored, helped) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, (self-correction), praising BB:

BKL		Lesson Plan 138
Activity 7	Book 4, page 138 Q. 5 Read: List all the positive integers up to 100 which are exactly divisible by 2, 3, 4 and 5. Think carefully before you start! Set a time limit. Review with whole class. Elicit that only one number is possible: 60. Ps explain how they worked out the answer. Reasoning: e.g. It must be an even number as it is divisible by 2 , and it must be a whole 10 if it also divisible by 5 . The only whole ten divisible by both 3 and 4 is 60 .	Notes Individual work, monitored but not helped Ps could show solution on scrap paper or slates in unison on command. Reasoning, agreement, selfcorrection, praising Agree that the dotted lines allowed in the Pbs are deliberately misleading!
8	Book 4, page 138 Q. 6 Read: I am thinking of a positive number. Its half is 15 more than its third and its quarter is 15 more than its sixth. What is the number? Ps use the diagrams to help them and do any necessary calculations in Ex. Bks. Set a time limit. Remind Ps to check their solutions in the context of the question. Review with whole class. Who found an answer? Let's check it. Elicit that such a number is impossible! Reasoning: e.g. Using 1st clue: $\left(\frac{1}{2}-\frac{1}{3}\right)$ of $n=\left(\frac{3}{6}-\frac{2}{6}\right)$ of $n=\frac{1}{6}$ of $n=15$ $\text { So } n=15 \times 6=\underline{90}$ But if we check it with the other clue: $\left(\frac{1}{4}-\frac{1}{6}\right) \text { of } n=\left(\frac{3}{12}-\frac{2}{12}\right) \text { of } n=\frac{1}{12} \text { of } n \neq 15$ So the number is impossible or the clues are wrong!	Individual work, monitored (Do not allow Ps to spend too long on it if they do not realise that the clues are impossible!) Reasoning, agreement, praising In good humour! (This book is trying to catch us out today! Extension Ps could amend the clues so that the number is possible.
9	Book 4, page 138, Q. 7 Read: In how many different orders can you put these shapes? T starts, then Ps come to BB or dictate what T should write once they can see the pattern. Class points out errors or duplications. Agree that 30 different orders are possible. Solution: e.g. 45 min	Whole class activity (or individual trial first under a time limit if Ps wish. T could have solutions already prepared so that Ps can check their results - see copy master) Shapes drawn (stuck) on BB Encourage a logical listing and patience! At a good pace Agreement, praising

BKK	R: Calculations C: Puzzles and challenges E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 139 \end{gathered}$
Activity 1	Factorising Let's factorise 173 and then list all its factors. Ps dictate or come to BB to try each of the prime numbers, $2,3,5,7,11$ and 13 as divisors, using 'quick' methods where possible. Should we try dividing by the next prime number, 17 ? (No, as $17 \times 17=289>173)$ Elicit that 173 is a prime number, and its factors are 1 and 173. 6 min	Notes Whole class activity At a good pace Ps explain reasoning or do divisions at side of BB or use a calculator. Class agrees/disagrees Praising
2	Game of 20 a) Let's play a game. Two players, A and B, start from zero and take turns to count in steps of 1 or 2 up to 20 . e.g. A says 2 , B says 5 , A says 6 , B says 8 , and so on. The first player to reach ' 20 ' is the winner. Play the game in pairs and keep a record of the steps on scrap paper or in your Ex. Bks. e.g A: $2 \begin{array}{lllll} & 6 & \ldots & \text { (T shows on BB.) }\end{array}$ B: $5 \quad 8 \quad \ldots$ Ps take turns to be Player A, i.e. start the game. Ps play the game several times and note the winner each time. What did you find? (Hopefully, Player B won more often.) b) T plays the game in front of whole class with one one or two Ps. Who thinks that they can beat me? If T is Player A, T exploits B's possible weaknesses, but if T is Player $B, \mathrm{~T}$ always wins the game. Who has noticed a strategy for playing the game so that you always win? Ask several Ps what they think. Strategy: e.g. To get to 20 , I have to say 16 , as then the other player cannot reach 20. In order to say 16 , I have to say 12 the turn before. etc. The best strategy is to be Player B and to say $4,8,12,16,20$. c) If we changed the rules and the person who reaches 20 is the loser, what would the winning strategy be? (To be Player A and say: $3,7,11,15,19$, so B has to reach 20.)	Paired work, monitored T walks round listening to the games. Ask several pairs of Ps about their matches, e.g. how many games they played, who won most often and what position they went in when they won. Whole class activity In good humour! Discussion, reasoning, agreement, praising T calls two Ps to front of class to try out the strategy. Ps think of a strategy first, then T calls two Ps to front of class to try it out.
3	Problem T has BB already prepared. BB: D I V I S In how many ways could we read the I V I S O word divisor on this diagram? V I S OR Ps come to BB to point out different routes and write them on the BB. Let's think of each letter as a point on a grid and write the number of possible routes to each point. Ps come to BB or dictate to T. BB: Agree that the number of different ways is 15 .	Whole class activity Written on BB or SB or OHT BB: e.g. D D I V I I V I S OR S OR etc. At a good pace Agreement, praising

BKK		Lesson Plan 139
Activity 4	Book 4, page 139 Q. 1 Read: The perimeter of a triangle is 10 cm and the length of each side is a whole cm. Are these statements true or false? Write a tick if true and a cross if false. Ps can draw diagrams or do calculations in Ex. Bks. Set a time limit. Review with whole class. T (P) reads each question and Ps show responses by writing T or F on scrap paper or slates or by pre-agreed actions, and show on command. T asks Ps with different viewpoints to explain their reasoning and class decides on correct answer. Mistakes corrected. Solutions: a) The triangle has only one side which is 1 cm long. If $a=1$, then possible values for b and c are: but $1+2<7,1+3<6,1+4=5$, which are impossible. (In a triangle the sum of the 2 shorter sides must be more than the longest side.) b) The triangle could have only one side which is 2 cm long. If $a=2$, then possible values of b and c are: The first column is impossible as $2+3=5$, but the 2 nd column is possible. The sides are $2 \mathrm{~cm}, 4 \mathrm{~cm}$ and 4 cm . c) The triangle has only one side which is 3 cm long. If $a=3$, the two other sides must be 3 and 4 but then there would be two sides which are 3 cm long! d) The triangle has only one side which is 5 cm long. The sum of the other two sides must be 5 , which is not more than 5 , so the triangle is impossible.	Notes Individual work, monitored, helped T gives hints about the lengths of the sides of a triangle if Ps are struggling. Discussion, reasoning, agreement, self-correcting, praising Thelps with wording of reasoning and suggests showing possible values in a table. Ps might use the first style of reasoning as a model to follow and T gives less help and hints thereafter. (as 6 and 1 , and 5 and 2 are impossible)
5	Book 4, page 139 Q. 2 Read: We want to rearrange some books on two bookshelves. At the moment, there are 156 books on the bottom shelf and on the top shelf there are 30 books more than there are on the bottom shelf. Rearrange the books so that there are: a) the same number of books on both shelves, b) one shelf has twice as many books as the other. Ps draw diagrams or do calculations in Ex. Bks. then write only the numbers of books on each shelf in Pbs. Set a time limit. Review with whole class. Ps come to BB to show their solutions and explain reasoning. Class agrees/disagrees. Mistakes corrected. Solution: a) 171 and 171 b) 228 and 114 (or vice versa)	Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising a) $(186-156) \div 2=\underline{15}$ b) $(186+156) \div 3=\underline{114}$

BKK	R: Calculations C: Puzzles and challenges E: Poblems	$\begin{gathered} \text { Lesson Plan } \\ 140 \end{gathered}$
Activity 1	Factorising In your Ex. Bks. factorise 174 and then list all its factors. Review at BB with whole class. Ps come to BB to draw a tree diagram, show the number as the product of its prime factors, and list all its factors. Class agrees/disagrees. Mistakes discussed and corrected. BB: Factors: 1, 2, 3, 6, 29, 58, 87, 174	Notes Individual work, monitored Discussion, reasoning, agreement, self-correction, praising Ps may use a calculator. Ps join up the factor pairs. Feedback for T
2	Game of 21 a) Let's play a game which is similar to the one we played yesterday. Two players, A and B, start from zero and take turns to count in steps of $1,2,3$ or 4 up to 21 . e.g. A says 1 , B says 5 , A says 8 , B says 11, and so on. The first player to reach '21' is the winner. Play the game in pairs and keep a record of the steps on scrap paper or in your Ex. Bks. Ps take turns to be Player A, i.e. start the game. Ps play the game several times and note the winner each time. What did you find? (Hopefully, Player A won more often.) b) T plays the game in front of the whole class with two Ps (one P as Player A and the other as Player B). If T is Player B, T exploits P's possible weaknesses, but if T is Player $B, \mathrm{~T}$ wins the game. Who has noticed a strategy for playing the game so that you always win? Ask several Ps what they think. Strategy: Be Player A and say 1, 6, 11, 16, 21.	Paired work, monitored T walks round listening to the games. Ask several pairs of Ps about their matches, e.g. how many games they played, who won most often and what position they went in when they won. Whole class activity In good humour! Discussion, reasoning, agreement, praising T calls 2 Ps to front of class to try out the strategy.
3	Book 4, page 140 Q. 1 Read: Sue spent half of her money. Then she spent another $£ 20$ and had $£ 80$ left. How much money did Sue have at first? Ps solve problem in Ex. Bks. then write the answer as a sentence in Pbs. Set a time limit. Review at BB with whole class. Ps could show result on scrap paper or slates on command. P answering correctly explains at BB to those who were wrong. Who agrees? Who did it in a different way? etc. Mistakes discussed and corrected. Solution: e.g. Do the reverse operations in the opposite order: Plan: $(£ 80+£ 20) \times 2=£ 100 \times 2=\underline{£ 200}$ or $\frac{1}{2}$ of $S-£ 20=£ 80$, so $\frac{1}{2}$ of $S=£ 80+£ 20=£ 100$ So $S=£ 100 \times 2=\underline{£ 200} \quad$ (where $S=$ Sue's money) Answer: Sue had $£ 200$ at first.	Individual work, monitored, helped Discussion, reasoning, agreement, checking, self-correction, praising Deal with all methods used. e.g. BB: Check: $200-100-20=80$

BKK		Lesson Plan 140
Activity 7	Book 4, page 140, Q. 5 Read: On a sheet of paper there are these 4 statements. Tick the only true one. BB: 1. On this sheet there is exactly one false statement. 2. On this sheet there are exactly two false statements. 3. On this sheet there are exactly three false statements. 4. On this sheet there are exactly four false statements. Allow Ps time to think about it and discuss with their neighbours first. Who thinks that Statement 1 is true? Why do you think so? Who disagrees? Why? Class agrees that it is not the true one. Deal with each statement in turn in the same way, involving as many Ps as possible in the discussions. Solution: 1. If this statment is true, then 2,3 and 4 are false, which makes 3 false statements, so it is a contradiction and cannot be true. 2. If this statement is true, then 1,3 and 4 are false, which makes 3 false statements, so it is a contradiction again and cannot be true. 3. If this statement is true, then 1,2 and 4 are false, which makes 3 false statements, so it is true. 4. If this statement is true, than all the others including itself are false, which is a contradiction again, so it cannot be true. Answer: Statement 3 is the only true one.	Notes Whole class activity Written on BB or use enlarged copy master or OHP Whole class discussion. T helps with wording of reasoning if necessary but makes no comment on whether Ps are correct - let the class decide. Reasong, agreement, praising In good humour! T gives class a clap if they decide on the correct statement, otherwise T explains as opposite.
8	Book 4, page 140 Q. 6 Read: At the market in Hobbitland, they offered 4 roosters for 2 geese or 2 roosters for 4 chickens. How many roosters did Mrs Hobbit get for 1 goose and 2 chickens? Ps work out solution in Ex. Bks and write the answer as a sentence in Pbs. Set a time limit. Remind Ps to check their solution in the context of the question. If you have found the answer, show me . . .now! (3) P with correct answer explains at BB to Ps who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. If no P found the answer, T helps class to solve it. $\begin{array}{cl} \text { Solution: } & 4 \mathrm{R}=2 \mathrm{G} \quad \rightarrow \quad 1 \mathrm{G}=2 \mathrm{R} \\ & 2 \mathrm{R}=4 \mathrm{C} \quad \rightarrow \quad 2 \mathrm{C}=1 \mathrm{R} \\ \text { So } & 1 \mathrm{G}+2 \mathrm{C}=2 \mathrm{R}+1 \mathrm{R}=3 \mathrm{R} \end{array}$ Answer: Mrs Hobbit got 3 roosters for 1 goose and 2 chickens.	Individual work, monitored, helped (or whole claass activity if time is short) In unison Reasoning, agreement, selfcorrection, praising

BKK		Lesson Plan 140	
Activity 9	Book 4, page 140, Q. 7 Read: We want to cut out a cross from a square piece of material which has sides of length 7 cm . The width of each arm of the cross is 1 cm . How much material will be wasted? Who thinks that they know how to work it out? Who agrees? Who can think of another way to solve it? etc. Ps come to BB to explain, giving their reasoning in detail, writing calculations on BB and referring to the diagram where relevant. Class points out errors. Solution: e.g. Area of the cross: $(7 \times 1)+(7 \times 1-1) \quad$ [as middle square is $\begin{array}{ll} =7+6 & \text { included in both arms }] \\ =\underline{13} \mathrm{~cm}^{2} & \end{array}$ Area of material: $7 \mathrm{~cm} \times 7 \mathrm{~cm}=49 \mathrm{~cm}^{2}$ Area wasted: $49 \mathrm{~cm}^{2}-13 \mathrm{~cm}^{2}=\underline{36} \mathrm{~cm}^{2}$ Or taking the 4 pieces wasted: Area wasted: $4 \times(3 \times 3)=4 \times 9=\underline{36}\left(\mathrm{~cm}^{2}\right)$ Or putting the waste material together: $6 \times 6=\underline{36}\left(\mathrm{~cm}^{2}\right)$ Answer: The amount of material wasted is $36 \mathrm{~cm}^{2}$.	Notes Whole claass activity (or individual trial first if Ps wish) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Ps write answer as a sentence in Pbs.	
	Book 4, page 140, Q. 7 Read: We want to cut out a cross from a square piece of material which has sides of length 7 cm . The width of each arm of the cross is 1 cm . How much material will be wasted? Who thinks that they know how to work it out? Who agrees? Who can think of another way to solve it? etc. Ps come to BB to explain, giving their reasoning in detail, writing calculations on BB and referring to the diagram where relevant. Class points out errors. Solution: e.g. Area of the cross: $(7 \times 1)+(7 \times 1-1) \quad$ [as middle square is $\begin{array}{ll} =7+6 & \text { included in both arms }] \\ =\underline{13} \mathrm{~cm}^{2} & \end{array}$ Area of material: $7 \mathrm{~cm} \times 7 \mathrm{~cm}=49 \mathrm{~cm}^{2}$ Area wasted: $\quad 49 \mathrm{~cm}^{2}-13 \mathrm{~cm}^{2}=\underline{36} \mathrm{~cm}^{2}$ Or taking the 4 pieces wasted: Area wasted: $4 \times(3 \times 3)=4 \times 9=\underline{36}\left(\mathrm{~cm}^{2}\right)$ Or putting the waste material together: $6 \times 6=\underline{36}\left(\mathrm{~cm}^{2}\right)$ Answer: The amount of material wasted is $36 \mathrm{~cm}^{2}$.		

