What temperature does each thermometer show?

a)

b

c)

d)

e)

2

a) Mark and label these numbers on the number line.

$$-7$$
, $+1$, 0 , 6 , -5 , -3 , $+10$, 11

b) Compare the numbers. Write the missing signs in the circles.

$$-5$$
 -5 () -7

$$-7$$
 \bigcirc -5

$$-5$$
 \bigcirc 0

$$6 \ (\) -3$$

$$6 + 10$$

3

What is the difference between the two temperatures? Answer with an operation.

a) On a January day at dawn the temperature was -3 °C. At mid-day it was 11 °C.

.....

b) In the Sahara Desert, the temperature was 43 °C at noon and – 4 °C at night.

c) In Eastern Siberia the summer temperature is sometimes 30 °C and the winter temperature is sometimes -70 °C.

d) On Earth, the highest air temperature ever measured is 58 °C and the lowest ever measured is -89 °C.

......

e) On the Moon, the temperature can be $-130\,^{\circ}\text{C}$ in the day and $-160\,^{\circ}\text{C}$ at night.

Work out the rule and complete the table. Write the rule in different ways.

y =

x =

v =

2

Write an addition about each diagram.

- c) -10 -5 0 5

3

Fill in the missing number so that the equation is true. Show it on the number line.

a) $5 + \boxed{} = 9$

-5 0 5 9 10

b) $-7 + \boxed{} = -9$

-10 -5 0 5

c) +(-3) = -10

-10 -5 0 5

d) -3+ +(-5)=2

-5 0 5 10

e) $5 + (-3) + \boxed{} = 0$

-5 0 5 10

f) $3 + (-5) + \boxed{} = 6$

-5 0 5 10

1	What is the balance? Write it as an addition.
	a)
	b) ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ①
	c) ① ① ① ① ① ① ① ① ① ① ① ① ① ① ② ② ② ② ②
2	Change the diagrams so that the balance remains the same. Write an addition about it.
	a) ① ① ① ① ① ① ① ① ① ① ① ① ① ① ② ② ② ② ②
	b)
	c) ① ① ① ① ① ① · · · · · · · · · · · · ·
3	Draw a diagram using ① and -1 for each operation. Fill in the missing number.
	a) 5 + (-4) =
	b) $-3 + (+3) = $
	c) $3 + (-8) = $
4	Fill in the missing numbers.
	a) $ = (-6) = 1 $ b) $ = (+10) = 0 $ c) $15 + = -2 $
	d)
	g) $y + (-12) = -20$ h) $x + x + (-5) = 15$ i) $-100 + 10 = $
5	a) Solve the problem by writing an addition. Sue has won £200 but she owes £100. What is her balance?
	b) Work out the answer to the addition. (Think of it as 'cash' and 'debt'.)
	(+150) + (-250) =

a) The car is at (-4) and faces the tree. Move it 3 units ahead.

The car is at (+5) and faces the tree. Move it 5 units ahead. b)

The car is at (-3) and faces the house. Move it 5 units ahead. c)

d) The car is at (-3) and faces the house. Move it 6 units ahead.

Use the idea of the car moving along the number line to help you calculate these sums.

- (-5) + (+7) =a)
- b) (+6) + (-8) = c (-3) + (+3) =

- (-5) + (-2) =d)
- e) (+6) + (+3) = f) (+4) + (-4) =

3

Use the number line pairs to help you calculate the sums.

a)

-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8

- (+5) + (+6) = 11
- (+5) + (+1) =
- (+5) + (-4) =

- (+5) + (+5) =
- (+5)+0=
- (+5) + (-5) =

- (+5) + (+4) =
- (+5) + (-1) =
- (+5) + (-6) =

- (+5) + (+3) =
- (+5) + (-2) =
- (+5) + (-7) =

- (+5) + (+2) =
- (+5) + (-3) =
- (+5) + (-8) =

b)

$$(-3) + (+5) =$$

$$(-3) + 0 =$$

$$-3 + (-5) =$$

$$(-3) + (+4) =$$

$$(-3) + (-1) =$$

$$-3 + (-6) =$$

$$(-3) + (+3) =$$

$$(-3) + (-2) =$$

$$-3 + (-7) =$$

$$(-3) + (+2) =$$

$$(-3) + (-3) =$$

$$-3 + (-8) =$$

$$(-3) + (+1) =$$

$$(-3) + (-4) = \boxed{-7}$$

$$-3 + (-9) =$$

Find the **reductant** (**minuend**) and **subtrahend** on the number line. a) Read the difference.

i)
$$8 - (+3) =$$
 ii) $8 - 0 =$ iii) $4 - (-2) =$ iv) $0 - (-5) =$

ii)
$$8 - 0 =$$

iii)
$$4 - (-2) =$$

iv)
$$0 - (-5) =$$

$$+3-(+8) = 0-(+8) = -2-(+4) = -5-0 =$$
b) Compare the two numbers. Which is more? How much more?

i)
$$+8$$
 $\boxed{} +3$ ii) $+4$ $\boxed{} -2$ iii) 9 $\boxed{} 8$ iv) -5 $\boxed{} 0$

2

Write a subtraction to work out the difference, then check it with an addition.

4		
	—	10
	_	9
	_	8
		_

 3° C is greater than -6° C a)

1	0,
by	(

So
$$3-(-6)=9$$

So 3-(-6)=9 Check: 9+(-6)=3

b)
$$-6^{\circ}$$
C is less than 3° C

by

So	

Check:

by

So	

Check:

d)	7	is greater than	4
	So		

by

e)	-8	is less than	- 2

Check:

e)
$$-8$$
 is less than -2

by

f)
$$-2$$
 is greater than -8

Check:

f)
$$-2$$
 is greater than -8

Check:

Do the subtractions, then check with an addition.

a)
$$3 - (+4) = \dots$$

.... b)
$$(-3)-(+1) =$$

by

$$3-(+3) = \dots \dots$$

$$(-3)-0 =$$

$$3 - (+2) = \dots \dots$$

$$(-3)-(-1) =$$

$$3 - (+1) = \dots \dots$$

$$(-3) - (-2) =$$

$$3-0 = \dots$$

$$(-3)-(-3) =$$

$$3 - (-1) =$$

$$(-3) - (-4) =$$

1	Dra	w diagrams using ① and —1 to model each problem, then write the operation.
	a)	Paula had £7, then she spent £6. b) Roy owed £7 but then £4 of his debt was cancelled. What is his balance now?
	c)	Lee had £3, then he spent £3. d) Tina was £4 in debt, then £4 of her debts What is his balance now? were cancelled. What is her balance now?
		What is his balance now? were cancelled. What is her balance now?
2	Drav	w diagrams using \bigcirc and \bigcirc to help you work out the differences.
	a)	(+6)-(+4) = b) -6-(-4) =
	c)	(+5)-(+5) = d $(-6)-(-6) =$
3	Fill	in the missing amounts in the questions. Solve them in your exercise book.
	a)	Sue's starting balance was £2, as she had £5 in cash and was £ in debt. Then she spent £5. How much is her balance now?
	b)	Rob's starting balance was $-£3$, as he had $\boxed{£}$ in cash and was £5 in debt. Then he spent £2. How much is his new balance?
	c)	Billy's starting balance was $-£3$, as he had £1 in cash and was $\boxed{£}$ in debt. Then £4 of his debts were cancelled. How much is his balance now?
	d)	Mary's starting balance was £ , as she had £5 in cash and was £3 in debt. Then £3 of her debts were repaid by her aunt. What is her balance now?
4	Sho	w the subtractions using the cash and debt model. Complete the calculations.
	a)	(+3)-(-4) = b) (+3)-(+8) =
	c)	(-2)-(-5) = d) (-2)-(+3) =
	e)	0 - (+4) = f) $0 - (-4) =$

Do the subtractions. Use the number line to help you.

a) +9-(+2) =

d) +2-(-5) =

b) +3-(+6) =

e) -1-(+2)=

c) -5-(-2) =

f) -1-(-8) =

2

a) The car is at (+4) and faces the house. Move it 3 units backwards.

.....

b) The car is at (+4) and faces the house. Move it 7 units backwards.

.....

c) The car is at (-5) and faces the tree. Move it 3 units backwards.

.....

d) The car is at (+ 3) and faces the tree. Move it 4 units backwards.

.....

3

Do the subtractions and join them to the matching car.

- a) (+8) (+2) =
- b) (-8)-(-2) =

c) (+2)-(+8) =

d) (-2)-(-8) =

e) (+4) - (+3) =

f) (-4)-(-3) =

4

Do each calculation, then join it to the matching car.

- a) (+3) + (-1) =
- b) (+3)+(-5) =

k) (+3) - (+1) =

c) (+3)+(+2) =

1) (+3)-(+5) =m) (+3)-(-2) =

d) (+3) + 0 =

n) (+3)-0=

e) (-4)+(+1)=

o) (-4)-(-1) =

f) (-4) + (+6) =

p) (-4)-(-6) =

g) (-4)+(-3)=

q) (-4) - (+3) =

h) (-4) + 0 =

r) (-4)-0=

i) 0 + (+2) =

) 0 (0)

s) 0-(-2) =

i) 0 + (-3) =

 $(t) \quad 0 - (+3) =$

Fill in the missing differences. Continue drawing the graphs.

(+4) - (+6) =a)

$$(+4) - (+5) =$$

$$(+4) - (+4) = 0$$

$$(+4) - (+3) = +1$$

$$(+4) - (+2) = +2$$

$$(+4) - (+1) = +3$$

$$(+4) - 0 = +4$$

$$(+4) - (-1) =$$

$$(+4) - (-2) =$$

b)
$$(-4)-(+2) =$$

$$(-4)-(+1)=$$

$$(-4)-0) = -4$$

$$(-4)-(-1) = -3$$

$$(-4)-(-2) = -2$$

$$(-4) - (-3) =$$

$$(-4) - (-4) = 0$$

$$(-4) - (-5) =$$

$$(-4)-(-6) =$$

2

Calculate the sums and differences.

a)

$$(\pm 2) \pm (-5)$$

$$(+3) + (-5) = (+3) - (+5) =$$

$$(-3) + (-2) = (-3) - (+2) =$$

$$(-3) - (+2) =$$

$$(+3) + (-4) = (+3) - (+4) =$$

$$(+3) - (+4) =$$

$$(-3) + (-1) =$$

$$(-3)-(+1) =$$

$$(+3) + (-3) = (+3) - (+3) =$$

$$(+3) - (+3) =$$

$$(-3) + 0 =$$

$$(-3) - 0 =$$

$$(+3) + (-2) = (+3) - (+2) = (-3) + (+1) = (-3) - (-1) =$$

$$(+3) - (+2) =$$

$$(-3) + (+1) =$$

$$(-3) - (-1) =$$

$$(+3)+(-1)$$

$$(+3) - (+1) =$$

$$(-3) + (+2) =$$

$$(+3) + (-1) = (+3) - (+1) = (-3) + (+2) = (-3) - (-2) =$$

$$(+3)+0-$$

$$(+3) 0 =$$

$$(+3) + 0 = (+3) - 0 = (-3) + (+3) = (-3) - (-3) =$$

$$(3) (3) =$$

$$(+3) + (+1) -$$

$$(+3) - (-1) =$$

$$(3) + (+1) -$$

$$(+3) + (+1) = (+3) - (-1) = (-3) + (+4) = (-3) - (-4) =$$

$$(+3) + (+2)$$

$$(-3)+(+5)=$$

$$(+3) + (+2) = (+3) - (-2) = (-3) + (+5) = (+3) - (-5) =$$

3

Tick the solution to the equation if it is correct. Correct the mistake if it is wrong.

a)
$$x - (-12) = 20$$
 b) $-12 - y = -15$ c) $z - (+3) = -2$

$$-12 - y = -15$$

c)
$$z - (+3) = -2$$

$$20 + (-12) = 8$$

$$20 + (-12) = 8$$
 $-12 - (-15) = 3$ $-2 - (+3) = -5$

$$-2 - (+3) = -5$$

$$x = 8$$

$$y = 3$$

$$z = -5$$

Write two possible plans for solving each question. Calculate one of the plans and write the answer in a sentence.

Adrian had no money, neither cash nor debt, so we can say that he had £0. a) Then he ran up debts of £3 each day for a week. What is his balance now?

Plan 1: Plan 2:

Answer:

Five boys were £20 in debt. If they shared the debt equally, how much was each b) boy in debt?

Plan 2: Plan 1:

- Continue the calculations. a)
 - $(-2) \times 5 = (-2) + (-2) + \dots$ i)
 - $4 \times (-3) = (-3) + (-3) + \dots$
 - $(-10) \times 6 = (-10) + (-10) + \dots$
- b) Write the additions as multiplications.
 - $(-5) + (-5) + (-5) + (-5) + (-5) + (-5) + (-5) = \dots$
 - $(-6) + (-6) + (-6) + (-6) + (-6) + (-6) = \dots$ ii)
 - $(-100) + (-100) + (-100) + (-100) = \dots$

3

The car starts at 0 each time and faces the house.

It moves 4 units per second for 3 seconds towards the house. a)

It moves 4 units per second for 4 seconds towards the tree. b)

c) It moves 15 units towards the tree in 3 seconds. How many units does it move

each second on average?

Write the 7th, 10th and 20th terms of each of these sequences in your exercise book.

- -9, -18, -27, ... b) -12, -24, -36, ... c) -40, -80, -120, ...

Fill in the products and notice how they change.

$$5 \times 3 =$$

$$5 \times 2 =$$

$$5 \times 1 =$$

$$5 \times 0 =$$

$$5 \times (-1) = =$$

$$5 \times (-2) =$$

$$5 \times (-3) =$$

Complete the graph.

2

Fill in the quotients and notice how they change. Complete the graph.

$$0 \div 3 =$$

$$-6 \div 3 = \boxed{}$$

$$-9 \div 3 =$$

3

a) In your exercise book or on a grid, draw a house according to these coordinates.

Wall:
$$(-3, 1)$$
, $(-2, 1)$, $(-2, -2)$, $(2, -2)$, $(2, 1)$, $(3, 1)$

Roof:
$$(-3, 1)$$
, $(0, 4)$, $(3, 1)$ Window: $(-1, 0)$, $(1, 0)$, $(1, 1)$, $(-1, 1)$, $(-1, 0)$

- b) Form new coordinates from those in part a) and draw the new images.
 - i) Multiply the first number of each pair (the *x* coordinate) by 2 and leave the 2nd number of each pair (the *y* coordinate) unchanged.
 - ii) Multiply the *y* coordinates of the original pairs by 3 and leave the *x* coordinates unchanged.
 - iii) Multiply both the original x and y coordinates by 2.
 - iv) Divide both the x and y coordinates in part iii) by 4.

4

Write each multiplication as an addition in your exercise book.

a)
$$(-5) \times 4$$

b)
$$3 \times (-8)$$

c)
$$(-15) \times 5$$

d)
$$(-150) \times 6$$

a)	Tina has £2 and Joe has £17. How much should Joe give to Tina so that they bo have the same amount?
b)	Colin has £23. If we add his money to Kate's money, the total amount is £11. How much does Kate have?
c)	Arnie has a bank balance of $-$ £43. If he adds it to Christine's bank account, the balance is £17 altogether. How much does Christine have in her bank account?

Do the numbers in the set make the statements true or false? Complete the table.

	_		
	5	-4	
$\left -1 \right $	0	1	- 3
3		1	- 2
	5	4 ⁻ 2	_/
	J		

Statement	Numbers which make it true	Numbers which make it false
5 – 🔲 = 8		
6+ = 1		
< 3		
5> 6		
4+ ≤ 8		

3 List the integers represented by the shapes. Show the solutions on a number line.

a)
$$-4 - \square = -18$$

$$-4 - \boxed{ } = -18$$
 b) $-\bigcirc < 1$ c) $13 + \triangle = -10$ $\triangle =$

d)
$$-3 - [] \le -15$$

e)
$$10 - \bigcirc = 15$$

$$-3 - \square \le -15$$
 e) $10 - \bigcirc = 15$ f) $\triangle -(-2) > 5$ $\square : \square$

g)
$$= -5$$

h)
$$-8 >-1$$

$$+(-3) = -5$$
 h) $-8 - \bigcirc > -1$ i) $-10 + (-x) = -11$ $=$ $x =$

List the integers represented by the shapes. Show the solutions on a number line.

a)
$$\square \times 6 \ge -18$$

b)
$$+8 \times \bigcirc \leq 0$$

d)
$$-24 \div \Box = -6$$

$$-24 \div \square = -6$$
 e) $\bigcirc \div 5 = -3$ f) $(-5) + \triangle < +6$

e)
$$\bigcirc$$
 ÷ 5 = -3 f) (-5) + \triangle < +6 \triangle :

Find a rule and complete the table.

2

Which is more? How many more? Fill in the missing signs and write the differences.

a)
$$-3+2$$
 $\boxed{}$ $-3+(+2)$

b)
$$+4-3$$
 $+4+(-3)$

c)
$$-4-3$$
 $+4+(-3)$

c)
$$-4-3$$
 d) $-4-5$ $-4+(-5)$

e)
$$3 + (-4)$$
 $+3 -4$

f)
$$5-2$$
 $-5+(-2)$

3

Calculate the sums and differences.

a)
$$-7 + (+12) =$$
 b) $+8 + (-9) =$ c) $-13 + (-7) =$

b)
$$+8+(-9) =$$

c)
$$-13 + (-7) =$$

d)
$$+9 + (+11) =$$
 e) $-8 - (-12) =$ f) $+10 - (+12) =$

e)
$$-8 - (-12) =$$

f)
$$+10 - (+12) =$$

g)
$$+8-(-11)=$$

$$+8-(-11) =$$
 h) $-10-(+12) =$ i) $-13-(-13) =$

i)
$$-13-(-13) =$$

4

Fill in the missing numbers.

a)
$$-(-2) =$$

$$-(-2) = 8$$
 b) $-12 +$ $= -20$ c) $+ (-15) = 0$

d)
$$-6 - (-8) = -6 +$$
 e) $12 - (+10) = +12 +$

e)
$$12 - (+10) = +12 +$$

f)
$$-4+$$
 = $-4-(+6)$

$$-4 +$$
 g) $= -4 - (+6)$ g) $24 + (-9) -$ $= 24$

5

Which integers can be written instead of the shapes?

a)
$$13 - \square > 10$$

$$13 - \square > 10$$
 b) $-10 + (-\bigcirc) < -11$ c) $\triangle \div 5 = -7$ $\triangle =$

c)
$$\triangle \div 5 = -7$$

d)
$$(-4) \times \square > -24$$

$$(-4) \times \square > -24$$
 e) $-12 + 2 \times \bigcirc = -16$ f) $\triangle \div (+3) = -6$ $\triangle = \square$

f)
$$\wedge \div (+3) = -6$$

6

Find a rule. Complete the table. Draw a graph to show the data.

X	+ 3	+ 5	- 1	0	+8		
у	+ 1	- 1				+ 9	

Practise mental calculation.

a)
$$6 + 8 =$$

b)
$$24 + 5 =$$

c)
$$32 + 19 =$$

b)
$$24+5=$$
 c) $32+19=$ d) $250+190=$

g)
$$54 - 18 =$$

$$13 - 8 =$$
 f) $26 - 12 =$ g) $54 - 18 =$ h) $350 - 140 =$

i)
$$6 \times 7$$

i)
$$14 \times 5$$

$$k)$$
 6 x 90 =

$$6 \times 7 =$$
 j) $14 \times 5 =$ k) $6 \times 90 =$ l) $18 \times 100 =$

$$30 \div 5 =$$

n)
$$42 \div 7$$

$$30 \div 5 =$$
 n) $42 \div 7 =$ o) $150 \div 10 =$

p)
$$250 \div 10 =$$

2

Do these calculations in your exercise book.

c)
$$63 \times 18$$

d)
$$784 \div 8$$

e)
$$7015 \times 109$$

3

Solve these problems in your exercise book.

- How much money has Philip saved if he still needs £217 before he has enough a) money to buy the £1520 boat that he wants?
- Andrew has saved £385, which is £127 less than the amount that Ben has saved. b) Ben's sister, Kate, has saved £82. How much money have the two boys saved?
- Charlie has gathered 258 kg of pears. How much money will he make if he sells c) the pears for 91 p per kg?

Write an operation for each problem and calculate the result in your exercise book.

- How much is Linda's balance if she owes £24 and has only £11 in her account? a)
- How much is Kate's balance if she is £100 in debt and has £170 in her account? b)
- c) How much more or less is £110 in cash than £80 in debt?
- How much higher or lower is -170 m than -4900 m? d)
- e) How much more or less is £800 outgoings than £700 income?

5

Write the operations in a shorter form. a)

i)
$$\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$
 ii) $\frac{2}{9} + \frac{2}{9} + \frac{2}{9}$ iii) £4.50 + £4.50 + £4.50

i)
$$\frac{2}{9} + \frac{2}{9} + \frac{2}{9}$$

iii)
$$£4.50 + £4.50 + £4.50 + £4.50$$

Calculate: i) $\frac{7}{10} - \frac{3}{10} =$ ii) $1 - \frac{4}{5} =$ iii) $3 - 1\frac{1}{6} =$ b)

iii)
$$3 - 1\frac{1}{6} =$$

6

Find a rule. Complete

the table.

Ĵ	x	7	8	9	5		6	7	10	6	0
-	y	3	2	5	8	9		7		11	30
2	7	22	17	46		82	61		81		

Rule:

$$z =$$

_	

Which single name describes these shapes?

a)

	b	
а		a

2

Measure the lengths of a, b and c in the shapes in Q.1. Calculate these measures in your exercise book and write the results here.

- a) Rectangle (different sides): Perimeter = Area = \dots
- Square: Perimeter = Area = \dots b)
- Cuboid (different edges) Surface area $= \dots$ Volume = c)
- Cube d) Surface area $= \dots$ Volume =
- e) Cuboid (square based) Surface area $= \dots$ Volume =

3

What is the area of each of these rectangles? (Only part of rectangle 5 is shown.)

Unit of area: $1 \text{ cm} = 1 \text{ cm}^2$ 1 cm

1 cm

7 cm

2 cm

4 cm

4 cm

Imagine the cuboid shown by each net. Calculate its surface area and volume in your exercise book and write the results here.

(1)

3

1	The volume of a cuboid is 36 unit cubes and its edges are a whole number of units.					
	Fill in the table to show how long its edges could be.					
2	Write a plan and and calculate the result. Write the answer as a sentence.					
	The cost of hiring a 45-seater coach for a tour is £3780.					
	a) How much would it cost per person if 42 people go on the tour?					
	Plan:					
	Answer:					
	b) How much would it cost each person if 45 people go on the tour?					
	Plan: C:					
	Answer:					
3	Solve this problem in your exercise book.					
	Last year Uncle Alex planted cabbages in a field which was 15 m wide and 40 m long.					
	This year he wants to plant cabbages in a new field but has not decided whether to use the 5 m wide field, the 24 m wide field or the 30 m wide field.					
	If he plants the same amount of cabbages as last year, what lengths will each of these					
	fields have to be?					
4	Solve this problem in your exercise book. Write the answer here.					
	We have 48 cards and want to put them into envelopes so that there is the same number					
	of cards in each envelope and none are left over. How many envelopes could we use?					
	Answer:					
5	A strange clock whistles every 8 minutes, clicks every 3 minutes and chings every 12 minutes.					
	When it is turned on, after how many minutes will it whistle, click and ching at the					
	same time?					

1	Write plans and do the calculation in your exercise book. Write the answer here.	
	a) How many 60 cm lengths can be cut from a ribbon which is 8 m 90 cm long?	
	Answer:	
	b) 12 litres 50 cl of milk is poured into glasses which can hold 30 cl when full. How many glasses are needed?	
	Answer:	
2	At a birthday party, 6 friends shook hands with one another. How many handshakes were there?	
	Complete the diagram and list all the possibilities.	
	AB	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	•••	
	handshakes	
3	From the entrance to a park, there are 3 different paths to the fountain. From the fountain there are 4 different paths to the play area. From the play area there are 5 different paths to the bandstand.	
	How many different ways are there to get to the bandstand from the entrance?	
	Draw a diagram to show it.	
	ways	
4	In a class of 29 pupils, 15 pupils play volleyball and 17 pupils play football.	
	Each pupil plays at least one of the	
	two games.	
	How is it possible?	
5	How is it possible?	
5	How is it possible? Draw a set diagram to show it. In a bag there are 3 red, 4 white and 5 green marbles. What is the least number of marbles that we must take out of the bag (with our eyes closed) so that we are certain	

Complete the sentences..

- b) The of a circle is a which connects the centre of the circle with a point on the circumference.
- c) A **sphere** is the set of points which are not than a given distance from a point in space, as long as the given distance is not zero.

Points A, B and C are in the same plane but do not form a straight line.

Join up the points and measure the connecting line segments.

A •

B Length of AB:

BC:

• C

AC:

3

In a park garden there is a monument and a well. The park gardeners were asked to plant some rose bushes that were both:

- 2 m from the monument, and also
- 2 m from the well.

Show on the diagrams where the rose bushes should be planted if the distance between the well and the monument is:

- a) 3 metres
- b) 4 metres
- c) 5 metres

 $M \qquad W$

w M

W

4

Draw accurately the triangle which has these sides:

$$a = 2 \text{ cm}, b = 4 \text{ cm}, c = 4 \text{ cm}$$

Follow the order of construction in the diagram.

In your exercise book construct the triangles which have these sides:

- a)
- a = 24 mm
 - b = 42 mmc = 48 mm

а	
b	'
С.	

2

In your exercise book, construct the triangle which has:

- a perimeter of 12 cm and sides of equal length; a)
- a perimeter of 15 cm, two sides of equal length and its third side half as long as b) the others.

Draw a line which is **perpendicular** to the given line and passes through the given point.

a)

b)

 \times B

In a field there are two paths, a and b, as shown in the diagram.

What is the shortest route from path a to path b? Draw and then measure it.

5

Mark on the diagrams, or list by their letters, the **perpendicular** and **parallel** lines.

b)

c)

d)

e)

1	Draw the set of points which are exactly 2 cm away from the straight line e .
	e
2	a) Draw a set of x and y axes in your exercise book.b) Draw the set of points which are 2 units from the x axis.
	c) Draw the set of points which are 3 units from the y axis.
	d) Give the coordinates of the points which satisfy both conditions.
3	Draw three lines which are parallel to line e .
4	Do the calculation in your exercise book and write the answer here. Imagine a block of flats which has 6 storeys, all equal in height.
	Where are the points which are an equal distance from the floor level of the 2nd storey and the floor level of the 6th storey?
	Answer:
5	Construct the rectangle which has these adjacent sides: $a = 4$ cm, $b = 2$ cm Make a freehand sketch first to show the order of construction.

a) Write the number of the polygons in the correct place in the set diagram if: $A = \{ \text{It has at least 1 pair of parallel sides} \}, B = \{ \text{It is a quadrilateral} \}$

- b) Write \emptyset in the area where there are no numbers.
- c) Colour *red* the area where the polygons have parallel sides **and** are quadrilaterals.

2

List the numbers of the quadrilaterals which belong in each set.

 $A = \{ \text{It has a pair of parallel sides} \}$

 $B = \{ \text{Its opposite sides are equal in length} \}$

 $C = \{ \text{Its opposite sides are parallel} \}$

 $D = \{All \text{ its sides are equal in length}\}$

 $E = \{ \text{It has a pair of perpendicular sides} \}$

 $F = \{ \text{It has a pair of parallel sides and its opposite sides are equal} \}$

 $G = \{ \text{It has a pair of parallel sides but not all its sides are equal} \}$

 $H = \{All \text{ its sides are equal but it has no pair of parallel sides}\}$

 $I = \{ \text{Its opposite sides are equal and parallel} \}$

 $J = \{\text{Its opposite sides are equal but are not parallel}\}$

 $K = \{ \text{It has a pair of parallel and a pair of perpendicular sides} \}$

3

Decide whether the statements are true or false. Write a ✓ or a ×.

- a) Every rectangle is a trapezium.
- b) Every trapezium is a rectangle.
- c) Every rhombus is a parallelogram.
- d) Every parallelogram is a rhombus.
- e) A parallelogram can be a trapezium.
- f) All parallelograms are trapeziums.
- g) Not all parallelograms are trapeziums.
- h) A trapezium can be concave.
- i) A trapezium need not be a quadrilateral.
- j) There is no rhombus which is concave.
- k) All rhombi are convex.
- 1) Not every parallelogram is a rhombus.

Write the numbers of the trapeziums in the correct set.

1	2 3
4	5

List in your exercise book the common properties of these trapeziums:

- a)
- 2, 3 and 5
- b) 3, 4, 5 and 7
- c) 3, 5, 6 and 7.

2

Make a set diagram for these parallelograms. Write the numbers of the parallelograms in the correct set.

List in your exercise book the common properties of these parallelograms.

- a)
- 1, 4 and 6
- b) 3, 4 and 7
- c) 1, 3, 4, 6 and 7.

3

- a) Label the sides with letters, using the same letter for equal sides.
- b) Below each shape, write a plan for its perimeter.
- c) Measure the sides, then calculate the perimeters in your exercise book.

ii)

iii)

$$P =$$

$$P =$$

$$P =$$

iv)

v)

vi)

$$P =$$

$$P =$$

$$P =$$

1	
2	
_	

The diagram shows part of a map.

How far away is:

- the waterfall from the statue: a)
 - i) on the map
 - ii) in real life?

b) the waterfall from the road: i)

the statue from the forest:

- on the map
- in real life?
- on the map i)
 - in real life? ii)

Each solid was cut from a cube with edges 3 units long. Draw how you would see it from the front, from the side and from above. Calculate its volume.

a)

c)

Front view

Side view

Top view

Volume =

b)

Volume =

Front view

Side view

Top view

Draw a copy of each solid on the grid. Name the solid and count how many vertices, edges and faces it has.

Name:

Name:

$$v =$$

†	=		l
J			ı

Name:

f	=	
•		

Name:

$$v =$$

1		w lines through the two parallel lines to make different trapeziums. te one of the shapes a special trapezium.
2		w the set of points on the same plane which are 2 cm from:
	a)	this ray b) this line segment
3	a) b)	Can this net be folded to make a cube? Complete each net so that it can be folded to make a solid.
		i) ii)
4	a)	A thick black line has been drawn on the surface of a transparent glass cube. Draw the 3 views of the line.
		Front view Side view Top view
	b)	Draw a line on the surface of the glass cube to match the 3 views shown below.
		Front view Side view Top view

Page 64