
a)

b)

c)

d)

e)

\square
a)

$$
-7,+1,0,6,-5,-3,+101,1
$$

b)
$-7 \bigcirc+1$
$0 \bigcirc-5$
$-5 \bigcirc-7$
$-7 \bigcirc-5$
$-5 \bigcirc$
0
$11 \bigcirc 0$
$6 \bigcirc-3$
$6 \bigcirc+10$
$-7 \bigcirc-3$
11
$0 \bigcirc-5$
$-3 \bigcirc+10$

a) | x | 5 | -3 | 2 | 14 | | 0 | -140 | 479 | 40.5 | | | -0.72 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | -5 | 3 | | | 8 | 0 | | -479 | | -12.3 | $\frac{5}{8}$ | |

$$
y=\quad x=
$$

b) | u | 6 | -11 | 5 | -93 | 41 | 164 | -2.3 | 0 | | | | -0.15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| v | 6 | 11 | 5 | | | | | | 0 | 10 | 10 | |

$$
v=
$$

a)

b)

a) $5+\square=9$

b) $-7+\square=-9$

c) $\square+(-3)=-10$

d) $-3+\square+(-5)=2$

e) $5+(-3)+\square=0$

f) $3+(-5)+\square=6$

a) $\quad-1,-1 \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1} \boxed{-1}$
(1) (1) (1) (1) (1) (1) (1) $-1 \boxed{-1}-1 \boxed{-1}$
b) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) -1 $-1 \boxed{-1}-1 \boxed{-1}$ (1) (1) (1)
c) (1) (1) (1) (1) (1) (1)
-1 -1 $-1 \boxed{-1}-1 \boxed{-1}$
a) (1) (1) (1) (1) (1) (1) (1)
b)
(1) (1) (1) (1)
$-1,-1-1$-1 $-1,-1 \boxed{-1}-1$
c)

$$
\begin{aligned}
& \text { (1) (1) (1) (1) } \\
& \text {-1 -1 - }-1 \text {-1 }
\end{aligned}
$$

1 sheet per 3 Ps.

a)

$(+5)+(+6)=\square 11$
$(+5)+(+5)=\square$
$(+5)+(+4)=\square$
$(+5)+(+3)=\square$
$(+5)+(+2)=\square$
$\begin{aligned}(+5)+(+1) & =\square \\ (+5)+0 & =\square \\ (+5)+(-1) & =\square \\ (+5)+(-2) & =\square \\ (+5)+(-3) & =\square\end{aligned}$
$(+5)+(-4)=\square$
$(+5)+(-5)=\square$
$(+5)+(-6)=\square$
$(+) 5+(-7)=\square$
$(+5)+(-8)=\square$
b)

$$
\begin{aligned}
& (-3)+(+5)=\square \\
& (-3)+(+4)=\square \\
& (-3)+(+3)=\square \\
& (-3)+(+2)=\square \\
& (-3)+(+1)=\square
\end{aligned}
$$

$$
(-3)+0=\square
$$

$$
-3+(-5)=\square
$$

$$
(-3)+(-1)=\square
$$

$$
-3+(-6)=\square
$$

$$
(-3)+(-2)=\square
$$

$$
-3+(-7)=\square
$$

$$
(-3)+(-3)=\square
$$

$$
-3+(-8)=\square
$$

$$
(-3)+(-4)=-7
$$

$$
-3+(-9)=
$$

\square

b)

a) $3^{\circ} \mathrm{C}$ is greater than $-6^{\circ} \mathrm{C}$
by

So $3-(-6)=9$
Check:
$9+(-6)=3$
b) $-6{ }^{\circ} \mathrm{C}$ is less than $3{ }^{\circ} \mathrm{C}$
by

Check:
c) 4
is less than
7
by \square
Check:
d) 7
is greater than
4
by \square
Check:
e) -8 is less than -2 by $\quad \square$

So
f) -2 is greater than -8

So
Check:
by \square
Check:
a) Sue's starting balance was $£ 2$, as she had $£ 5$ in cash and was
\ddagger in debt. Then she spent $£ 5$.
How much is her balance now?
b) Rob's starting balance was $-£ 3$, as he had

in cash and was $£ 5$ in debt. Then he spent $£ 2$.
How much is his new balance?
c) Billy's starting balance was $-£ 3$, as he had $£ 1$ in cash and was $£ \quad$ in debt. Then $£ 4$ of his debts were cancelled.
How much is his balance now?
d) Mary's starting balance was $£$, as she had $£ 5$ in cash and was $£ 3$ in debt. Then $£ 3$ of her debts were repaid. What is her balance now?
a) $(+8)-(+2)=$
c) $(+2)-(+8)=$

b) $(-8)-(-2)=$
d) $(-2)-(-8)=$
e) $(+4)-(+3)=$

f) $(-4)-(-3)=$

a) $(+3)+(-1)=$
b) $(+3)+(-5)=$
c) $(+3)+(+2)=$
d) $(+3)+0=$
e) $(-4)+(+1)=$
f) $(-4)+(+6)=$
g) $(-4)+(-3)=$
h) $(-4)+0=$
i) $0+(+2)=$
j) $0+(-3)=$
k) $(+3)-(+1)=$

1) $(+3)-(+5)=$
m) $(+3)-(-2)=$
n) $(+3)-0=$
o) $(-4)-(-1)=$
p) $(-4)-(-6)=$
q) $(-4)-(+3)=$
r) $(-4)-0=$
s) $0-(-2)=$
t) $0-(+3)=$
a)

a	8	7	6			3	2				-2	-3	-4
b	5	4		2	1			-2	-3	-4			

Rule:
b)

x	5	-1	2	0		7		3	-40		8		
y	-2	4	1		-3		100			11		6	8.5

Rule:
a)

$$
\begin{aligned}
& (+4)-(+6)=\square \\
& (+4)-(+5)=\square \\
& (+4)-(+4)=0 \\
& (+4)-(+3)=+1 \\
& (+4)-(+2)=+2 \\
& (+4)-(+1)=+3 \\
& (+4)-0=+4 \\
& (+4)-(-1)=\square \\
& (+4)-(-2)=\square
\end{aligned}
$$

b)

$$
\begin{aligned}
& (-4)-(+2)=\square \\
& (-4)-(+1)=\square \\
& (-4)-0)=-4 \\
& (-4)-(-1)=-3 \\
& (-4)-(-2)=-2 \\
& (-4)-(-3)=\square \\
& (-4)-(-4)=0 \\
& (-4)-(-5)=\square \\
& (-4)-(-6)=\square
\end{aligned}
$$

a)
$(+3)+(-5)=(+3)-(+5)=(-3)+(-2)=(-3)-(+2)=$
$(+3)+(-4)=(+3)-(+4)=(-3)+(-1)=(-3)-(+1)=$
$(+3)+(-3)=(+3)-(+3)=(-3)+0=\quad(-3)-0=$
$(+3)+(-2)=(+3)-(+2)=(-3)+(+1)=(-3)-(-1)=$
$(+3)+(-1)=(+3)-(+1)=(-3)+(+2)=(-3)-(-2)=$
$(+3)+0=(+3)-0=$
$(+3)+(+1)=$
$(+3)-(-1)=$
$(-3)+(+4)=$
$(-3)-(-4)=$
$(+3)+(+2)=$
$(+3)-(-2)=$
$(-3)+(+5)=$
$(+3)-(-5)=$

H Th	T Th	Th	H	T	U

$$
\begin{aligned}
5 \times 3 & =\square \\
5 \times 2 & =\square \\
5 \times 1 & =\square \\
5 \times 0 & =\square \\
5 \times(-1) & =\square \\
5 \times(-2) & =\square \\
5 \times(-3) & =\square
\end{aligned}
$$

$$
\begin{aligned}
9 \div 3 & =\square \\
6 \div 3 & =\square \\
3 \div 3 & =\square \\
0 \div 3 & =\square \\
-3 \div 3 & =\square \\
-6 \div 3 & =\square \\
-9 \div 3 & =\square
\end{aligned}
$$

1 sheet per $\mathrm{P} \quad$ Also use to prepare solution.

Statement	Numbers which make it true	Numbers which make it false
$5-\square=8$		
$6+\square=1$		
$\square<3$		
$5-\square>6$		
$4+\square \leq 8$		

a) $\quad-4-\square=-18$
b) $-\bigcirc<1$
\bigcirc :
c) $13+\triangle=-10$ $\triangle=$
f) $\triangle-(-2)>5$ \triangle :
g) \square
$+(-3)=-5$
h) $-8-\bigcirc>-1$

:
i) $-10+(-x)=-11$ $x=$
a) $\square \times 6 \geq-18$
b) $+8 \times \bigcirc \leq 0$
c) $\triangle \times 4=\triangle+(-12)$
\square : \qquad O:
$\triangle=$
d) $-24 \div \square=-6$
e) $\bigcirc \div 5=-3$
f) $(-5)+\triangle<+6$

$$
\square=
$$

$$
\bigcirc=
$$

$\triangle:$
a)

x	4	-1	0	17	-29			-1024	+12		
y	-4	1	0	-17		165	-40			+309	4
$y=$	$x=$										

b) | a | 5 | -4 | +11 | 0 | +105 | -48 | | | +2183 | -536 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | 5 | 4 | +11 | 0 | | | +382 | +382 | | |

$$
b=
$$

a) $13-\square>10$
b) $-10+(-\bigcirc)<-11$
c) $\triangle \div 5=-7$
$\triangle=$
d) $(-4) \times \square>-24$
e) $-12+2 \times \bigcirc=-16$
f) $\triangle \div(+3)=-6$
$\square:$
$\bigcirc=$
$\triangle=$

x	+3	+5	-1	0	+8			
y	+1	-1				+9		

a) $6+8=$
c) $32+19=$
e) $13-8=$
g) $54-18=$
i) $6 \times 7=$
k) $6 \times 90=$
m) $30 \div 5=$
o) $150 \div 10=$
b) $24+5=$
d) $250+190=$
f) $26-12=$
h) $350-140=$
j) $14 \times 5=$

1) $18 \times 100=$
n) $42 \div 7=$
p) $250 \div 10=$
a)

b)

x	7	8	9	5		6	7	10	6	0
y	3	2	5	8	9		7		11	30
z	22	17	46		82	61		81		

a) 1 unit

c) 1 unit

d) 1 unit

e) 1 unit

a)

c)

$\underset{\text { mep }}{\substack{\text { med } \\ \text { bed }}}$ MEP: Book

(1)

(2)
(3)

$A=$
$V=$ \qquad $V=$
a) We can work out the perimeter of a rectangle if we add the lengths of its sides.

$$
\begin{aligned}
& P_{\text {rectangle }}=a+b+a+b=2 a+2 b=2 \times(a+b) \\
& P_{\text {square }}=a+a+a+a=4 \times a
\end{aligned}
$$

b) We can work out the area of a rectangle if we multiply two adjacent sides.

$$
A_{\text {rectangle }}=a \times b
$$

$$
A_{\text {square }}=a \times a
$$

c) We can work out the surface area of a cuboid if we add the area of it faces.

$$
\begin{aligned}
& A_{\text {cuboid }}=2 \times(a \times b+a \times c+b \times c) \\
& A_{\text {square-based cuboid }}=2 \times(a \times a)+4 \times(a \times b) \\
& A_{\text {cube }}=6 \times a \times a
\end{aligned}
$$

d) We can work out the volume of a cuboid if we multiply the lengths of the 3 edges which meet at a vertex.

$$
\begin{aligned}
& V_{\text {cuboid }}=a \times b \times \mathrm{c} \\
& V_{\text {square-based cuboid }}=a \times a \times b \\
& V_{\text {cube }}=a \times a \times a
\end{aligned}
$$

$\begin{array}{l}\text { No. of card } \\ \text { per envelop }\end{array}$
$\begin{array}{l}\text { No. of } \\ \text { envelopes }\end{array}$

a) | a | 8 | 0 | 14 | 7 | | 13 | 29 | | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | 22 | 30 | 16 | | 20 | | | -1 | |

Rule:

b) | x | 26 | 42 | 88 | 110 | | 98 | 1410 | | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y | 13 | 21 | 44 | | 33 | | | -400 | |

Rule:

a) The circumference of a circle is the set of points in a plane which are a given distance (not zero) from a given point in the plane.
b) A circle is the set of points in a plane which are equal to or less than a given distance from a point in the plane.
c) The surface of a sphere is the set of points in space which are a given distance (not zero) from a given point in space.
d) A sphere is the set of points in space which are equal to or less than a given distance from a given point in space.

circumference (c)

centre (O)
radius (r)
diameter (d)
$\operatorname{arc}(\mathrm{a})$
chord (ch)
tangent (t)
tangent point (T)

sector

segment semi-circle

LP 57/8

LP 57/9
a) The circumference of a circle is the set of points in a plane which are an equal distance from the
b) The of a circle is a which connects the centre of the circle with a point on the circumference.
c) A sphere is the set of points which are not than a given distance from a point in space, as long as the given distance is not zero.
meto $M E P$: Book 5

a) \times

c)

d) A
e)

f)

g)
a)

b)

c)

d)

e)

f)

a)

c)

b)

d)

$M E P:$ Book 5

b)

LP 61/7

LP 62/3

$P=$

$P=$
ii)

$P=$

$P=$ \qquad

iii)

$P=$
vi)

$P=$

statue

waterfall

$$
0
$$

$$
\begin{aligned}
& \Delta \theta^{8} \\
& \Delta \Delta \Delta \theta 日 \theta
\end{aligned}
$$

a)

Volume $=$
b)

Volume $=$

Front view

Side view
Top view

Front view

Side view
Top view

Name:
$v=\square \quad e=\square \quad f=\square$
Name:
$v=\square e=\square \quad f=\square$
Name:
$v=\square \quad e=\square \quad f=\square$
Name:
$v=\square \quad e=\square \quad f=\square$

LP 64/2

a)

b)

c)

Front view

Front view

Front view

Side view
Top view
$\square \square$

Side view
Top view

Side view
Top view

