

$B K 5$		Lesson Plan 26
Activity 4	(Continued) Here is a fictional (made-up) timetable. What does it tell you? (Train leaves London at 10:20 and gets to York at 16:21, stopping at Sheffield and Doncaster on the way.) Let's work out how long the journeys are between the stations. How can we do it? Ps come to BB to do calculations, with T's help. Class agrees/disagrees. Rest of Ps write calculations in Ex. Bks too. BB: e.g.	Notes Or use a real timetable if it is simple enough Written on BB or SB or OHT Allow Ps to suggest ideas. T intervenes or gives hints only if Ps are stuck and other Ps cannot help. Reasoning, agreement, praising T might show other forms of writing times of arrival and departure, e.g. $10 \underline{20}, 14 \underline{53}, \text { etc. }$
5	Yearly calendar T has large class calendar and Ps have small calendars on desks (for current year if possible). T asks questions and Ps use their calendar to find the answer. e.g. - Number of Sundays in certain months a Which days can be counted 4 (5) times in certain months? - Number of days between two given dates. (e.g. Ps' birthdays) - Length of Easter (summer, Christmas, mid-term) holidays in weeks and days. - Length of school term (year) in weeks (months). etc. Ps can think of questions to ask too. 25 min	Whole class activity Use own calendars or download calendars for any year from: http://www.ex.ac.uk/cimt/ res2/trolqc Agreement, praising Extra praise for creative questions from Ps.
6	Sequences T dictates first few terms of a sequence. Ps write in Ex. Bks, then continue the sequence for 5 more terms. Set a time limit. Review with whole class. Ps come to BB or dictate terms to T, saying the rule that they used. Who agrees? Who used a different rule? Mistakes discussed and corrected. BB: a) $14 \mathrm{~h} 20 \mathrm{~min}, 14 \mathrm{~h} 40 \mathrm{~min}, 15 \mathrm{~h},(15 \mathrm{~h} 20 \mathrm{~min}, 15 \mathrm{~h} 40 \mathrm{~min}, 16 \mathrm{~h}$, $16 \mathrm{~h} 20 \mathrm{~min}, 16 \mathrm{~h} 40 \mathrm{~min}$) [Rule: +20 min] b) $3.50 \mathrm{pm}, 3.10 \mathrm{pm}, 2.30 \mathrm{pm}, 1.50 \mathrm{pm},(1.10 \mathrm{pm}, 12.30 \mathrm{pm}$, 11:50 am, 11:10 am, 10:30 am) [Rule: - 40 min] c) $3.50 \mathrm{am}, 3.10 \mathrm{am}, 2.30 \mathrm{am}, 1.50 \mathrm{am},(1.10 \mathrm{am}, ~ 0.30 \mathrm{am}$, $11.50 \mathrm{pm}, 11.10 \mathrm{pm}, 10.30 \mathrm{pm}$) [Rule: - 40 min]	Individual work, monitored (b) and c) helped) T writes given terms on BB. Discussion, agreement, selfcorrection, praising Feedback for T
Extension	Ps say the terms in b) and c) using the 24 hour clock. b) $15: 50,15: 10,14: 30,13: 50,13: 10,12.30$, etc. c) $03: 50,03: 10,02: 30,01: 50,01: 10,00: 30,23: 50$, etc.	Whole class activity Ps dictate terms to T. Class points out errors.

$B K K$		Lesson Plan 26
Activity 7	Book 5, page 26 Q. 2 Read: A ship sailed from A to B in 1 hour 47 minutes, then from B to C in 2 hours 35 minutes a) How much time did it take to sail from A to C ? b) How much more time did it take to sail from B to C than from A to B ? Deal with one part at a time if class is not very able, otherwise set time limit. Ps calculate in Ex. Bks, them write answer as a sentence in Pbs. Review at BB with whole class. Ps come to BB to write calculations and explain reasoning. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. Solution: e.g. a) Answer: It took 4 hours 22 minutes to sail from A to C. $\text { b) Plan: } \begin{array}{rlrl} & 2 \mathrm{~h} 35 \mathrm{~min}-1 \mathrm{~h} 47 \mathrm{~min} & \text { or } C: \\ & =1 \mathrm{~h} 35 \mathrm{~min}-47 \mathrm{~min} & 2 \mathrm{~h} 35 \mathrm{~min} & \rightarrow 1 \mathrm{~h} 95 \mathrm{~min} \\ & =95 \mathrm{~min}-47 \mathrm{~min} & -\underline{\mathrm{h} 47 \mathrm{~min}} & -\underline{1 \mathrm{~h} 47 \mathrm{~min}} \\ & =\underline{48 \mathrm{~min}} & \underline{0 \mathrm{~h} 48 \mathrm{~min}} \leftarrow \underline{0 \mathrm{~h} 48 \mathrm{~min}} \end{array}$ Answer: It took 48 minutes more to sail from B to C than A to B .	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP BB: Discussion, reasoning, agreement, self-correction, praising Accept any correct form of calculation but T shows column form if Ps have not used it. [Another method of subtraction is shown in Activity 8.]
8	Book 5, page 26 Q. 3 Read: Write a plan, do the calculation and check your result in the context of the question. Write the answer in a sentence. Deal with one part at a time. Set a time limit. Ps read questions themselves and solve in Ex. Bks if they need more space. Review with whole class. Ps could show results on scrap paper or slates in unison on command. Ps answering correctly explain solution at BB. Who agrees? Who did it a different way? etc. Mistakes discussed and corrected. Solution: a) How many minutes are there between half past ten in the morning and a quarter past one in the afternoon of the same day? Plan: $13 \mathrm{~h} 15 \mathrm{~min}-10 \mathrm{~h} 30 \mathrm{~min}$ or $\begin{array}{ll} =3 \mathrm{~h} 15 \mathrm{~min}-30 \mathrm{~min} & \stackrel{\square}{12 \mathrm{~h} 75 \mathrm{~min}} \\ =2 \mathrm{~h} 75 \mathrm{~min}-30 \mathrm{~min} & -\underline{10 \mathrm{~h} 30 \mathrm{~min}} \\ =2 \mathrm{~h} 45 \mathrm{~min} & \\ =120 \mathrm{~min}+45 \mathrm{~min} & \underline{2 \mathrm{~h} 45 \mathrm{~min}} \\ =165 \mathrm{~min} & (=165 \mathrm{~min}) \end{array}$ Answer: There are 165 minutes between 10.30 am and 1.15 pm on the same day.	Individual work, monitored, helped (or whole class activity if time is short) Discussion., reasoning, agreement, self-correction, praising Accept any valid method of solution. or. 10.30 am to 12 noon: 90 min 12 noon to 1.15 pm : 75 min Total time: $(90+75=\underline{165}) \min$ Check: $\begin{aligned} & 10 \mathrm{~h} 30 \mathrm{~min}=630 \mathrm{~min} \\ & 630 \mathrm{~min}+165 \mathrm{~min}=795 \mathrm{~min} \\ & =13 \mathrm{~h} 15 \mathrm{~min} \boldsymbol{V} \end{aligned}$

BTK		Lesson Plan 26
Activity 8	(Continued) b) Lenny spent 6 and a half hours on maths last week. He had 5 maths lessons of 45 minutes each and spent 90 minutes at the school's maths club. The rest of the time was spent on his maths homework. How long did it take Lenny to do his maths homework last week? $\begin{array}{rlrl} \text { Plan: } & & 6 \mathrm{~h} 30 \mathrm{~min}-(5 \times 45 \mathrm{~min}+90 \mathrm{~min}) \\ & =390 \mathrm{~min}-(225 \mathrm{~min}+90 \mathrm{~min}) \\ & =390 \mathrm{~min}-315 \mathrm{~min} & & \text { (or Ps might use } \\ & =75 \mathrm{~min} & & \text { decimals or } \\ & =1 \mathrm{~h} 15 \mathrm{~min} & & \text { fractions of an hour) } \end{array}$ Answer: Lenny took 1 hour 15 minutes to do his homework last week.	Notes or $\begin{aligned} & 5 \times 45+9+\square=390(\mathrm{~min}) \\ & 225+90+\square=390(\mathrm{~min}) \\ & \square \\ & =390-315(\mathrm{~min}) \\ & =75 \mathrm{~min}=1 \mathrm{~h} 15 \mathrm{in} \end{aligned}$ Check: e.g. $\begin{aligned} 5 \times 45 \mathrm{~min} & =225 \mathrm{~min} \\ & =3 \mathrm{~h} 45 \mathrm{~min} \end{aligned}$ $90 \mathrm{~min}=1 \mathrm{~h} 30 \mathrm{~min}$ $3 \mathrm{~h} 45 \mathrm{~min}+1 \mathrm{~h} 30 \mathrm{~min}+$ 1 h 15 min $=5 \mathrm{~h} 90 \min =6 \mathrm{~h} 30 \min \boldsymbol{\imath}$
9	Book 5, page 26, Q. 4 Read: Draw two straight lines to divide this clock face into three parts so that the sum of the numbers in each part is the same. Who has an idea on how to solve this problem? Ps suggest strategies. Accept any valid method, including trial and error. If no P has thought of method below, T gives hints and directs Ps^{\prime} thinking Then Ps suggest where the 2 lines should be drawn. Class checks that they are correct. Solution: Total sum of numbers. on the clock: $1+2+3+4+5+6+7+8+9+10+11+12=6 \times 13=78$ Total of each part should be 1 third of 78: 78 $\div 3=\underline{26}$ BB: $\text { Check: } 12+11+2+1=26$	Whole class activity (or individual trial first if Ps wish, monitored) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, checking, praising Extra praise for clever strategies and for Ps who find the positions of the 2 lines.

	R: Mental calculation C: Simple problems with ratio and proportion E: Fractions and decimals in problems	$\begin{gathered} \text { Lesson Plan } \\ 27 \end{gathered}$
Activity 1	Missing items Let's fill in the missing numbers and units. Ps come to BB or dictate to T , explaining reasoning. Class points out errors. BB: a) $\frac{1}{4}$ hour $=15 \mathrm{~min} .=900 \mathrm{sec}$. b) $\frac{3}{4}$ hour $=45 \mathrm{~min} .=2700 \mathrm{sec}$. c) $\frac{1}{2}$ hour $=30 \mathrm{~min} .=1800 \mathrm{sec}$. d) $\frac{3}{2}$ hour $=90 \mathrm{~min} .=5400 \mathrm{sec}$. e) $\frac{1}{3}$ hour $=20 \mathrm{~min} .=1200 \mathrm{sec}$. f) $\frac{2}{3}$ hour $=40 \mathrm{~min} .=2400 \mathrm{sec}$. g) $\frac{1}{5}$ hour $=12 \mathrm{~min} .=720 \mathrm{sec}$. h) $\frac{3}{5}$ hour $=36 \mathrm{~min} .=2160 \mathrm{sec}$. i) $\frac{1}{6}$ hour $=10 \mathrm{~min} .=600 \mathrm{sec}$. j) $\frac{5}{6}$ hour $=50$ min. $=3000 \mathrm{sec}$. k) $\frac{1}{8}$ hour $=7.5 \mathrm{~min} .=450 \mathrm{sec}$. 1) $\frac{7}{8}$ hour $=52.5 \mathrm{~min} .=3150 \mathrm{sec}$. m) $\frac{1}{10}$ hour $=6 \mathrm{~min} .=360 \mathrm{sec}$. What relationships do you notice among the statements? T (or Ps if they can) explains about direct and inverse proportion	Notes Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Discuss - direct proportion among the rows: as one amount increases (decreases), the other amount also increases (decreases) at the same rate; - inverse proportion between the measuring numbers and the units: as one value increases, the other decreases at the same rate. Praise all positive contributions to the discussion.
2	Problems 1 Listen carefully, note the data and work out the answer in your Ex. Bks. Show me the answer when I say. P answering correctly explains at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. a) If Jenny spent on average 1 hour 40 minutes each evening reading her new book, and she finished it after 5 evenings, how long did it take her to read the book? Show me . . now! (8 h 20 min) BB: e.g. 1 evening $\rightarrow 1 \mathrm{~h} 40 \mathrm{~min}$ $\begin{aligned} 5 \text { evenings } \rightarrow 5 \times 1 \mathrm{~h} 40 \mathrm{~min} & =5 \times 1 \mathrm{~h}+5 \times 40 \mathrm{~min} \\ = & 5 \mathrm{~h} 200 \mathrm{~min}=\underline{8 \mathrm{~h} 20 \mathrm{~min}} \end{aligned}$ or $5 \times 1 \mathrm{~h} 40 \mathrm{~min}=5 \times 100 \mathrm{~min} .=500 \mathrm{~min}=\underline{8 \mathrm{~h} 20 \mathrm{~min}}$ Answer: Jenny took 8 h 20 min to read her book. b) If Benny exercises for 45 minutes 4 times a week, how many hours of exercises does he do in a year? Show me . . . now! (156 hours) BB: e.g. 1 week $\rightarrow 4 \times 45 \mathrm{~min}=180 \mathrm{~min}=3$ hours $52 \text { weeks } \rightarrow 3 \mathrm{~h} \times 52=150 \mathrm{~h}+6 \mathrm{~h}=\underline{156 \mathrm{~h}}$ Answer: In 1 year, Benny exercises for 156 hours.	Individual work, monitored, (helped) T repeats slowly to give Ps time to think and calculate. Responses shown in unison, on scrap paper or slates Reasoning, agreement, selfcorrection, praising Accept any valid method but T also shows direct proportion if Ps have not used it. Feedback for T Extra praise if a P points out that the answer is unlikel to happen in real life. (e.g. Benny might be ill or be on holiday, or have visitors, or just be too busy - a year is a long time!)

BKE		Lesson Plan 27
Activity 3	Problems 2 Listen carefully, note the data and work out the answer in your Ex. Bks. Show me the result when I say. Deal with one question at a time. T reads problem and asks a P to repeat it in own words. Set a time limit. Review with whole class. Ps show results on scrap paper or slates on command. Ps answering correctly explain at BB to those who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. a) How much does 1 m of wire cost if 45 m of wire cost $£ 93.15$? BB: e.g. $45 \mathrm{~m} \rightarrow £ 93.15$ $\begin{aligned} 1 \mathrm{~m} \rightarrow £ 93.15 \div 45 & =9315 \mathrm{p} \div 45 \\ & =1035 \mathrm{p} \div 5=207(\mathrm{p})=£ 2.07 \end{aligned}$ Answer: 1 m of wire costs $£ 2.07$. b) How many lbs of apples can the leader of a group of 32 people on a day trip buy if he has $£ 15$ to spend and 1 lb of apples costs 68 p ? BB: Plan: $£ 15 \div 68 \mathrm{p}=1500 \mathrm{p} \div 68 \mathrm{p}$ or $\quad 68 \mathrm{p} \rightarrow 1 \mathrm{lb}$ $1500 p \rightarrow 1500 p \div 68 p \text { (times) }$ Answer: With $£ 15$ he can buy 22 lbs of apples Which data were not needed? (32 people, 1-day trip)	Notes Individual work, monitored, (helped) Encourage Ps to use direct proportion, but accept any valid method of calculation Discussion, reasoning, agreement, self-correction, praising or, e.g. or Ps might suggest: $1500 \div 68=22 \frac{4}{68}=22 \frac{1}{17}$ So $22 \frac{1}{17} \mathrm{lb}$ of apples could be bought with $£ 15$. Agreement, praising
4	Problem 3 Listen carefully, note the data and think how to solve this problem. 124000 litres of water flows steadily into a pool in 4 and a half hours. How much water flowed into the pool every minute? T chooses Ps to come to BB to write a plan and do the calculation, with help of class where necessary. e.g. Using direct proportion: $\mathrm{BB}: 4 \mathrm{~h} 30 \mathrm{~min}=240 \mathrm{~min}+30 \mathrm{~min}=270 \mathrm{~min}$ $\begin{aligned} 270 \mathrm{~min} & \rightarrow 124000 \text { litres } \\ 1 \mathrm{~min} & \rightarrow 124000 \text { litres } \div 270=12400 \text { litres } \div 27 \end{aligned}$ Discuss what to do with the 7 remaining. Elicit that the amount remaining is really 70 litres, as 124000 litres $\div 270=27$ litres, and 70 litres remain (i.e. the remainder 7 must be changed back to its original magnitude) Agree that the 70 litres cannot be left as a remainder, as it does not make sense in the context of the question. What should we do? Elicit that the 70 litres should be divided into 270 equal parts. Ps dictate what T should write: BB: $\quad \frac{70}{270}=\frac{7}{27}$ (litre) $\quad 459$ litres $+\frac{7}{27}$ litre $=459 \frac{7}{27}$ litres Answer: Every minute, $459 \frac{7}{27}$ litres flow into the pool. 20 min	Whole class activity T repeats slowly and a P repeats in own words to give Ps time to think and discuss. Discussion, reasoning, agreement, praising C: e.g. Allow Ps to explain if they can, otherwise T lshows it. T chooses a P to say the answer in a sentence.

BKE		Lesson Plan 27
Activity 5	Problem 4 Listen carefully and think how you would solve this problem. A bucket holds 15 litres of water and it takes 16 buckets of water to fill a tank. If we used an 8-litre jug instead of a bucket, how many jugfuls of water would we need to fill the same tank? Let's estimate the answer first. How could we do it? (e.g. The capacity of the bucket is nearly twice that of the jug, so the number of jugfuls needed is roughly twice the number of bucketfuls, i.e. approximately 32 jugfuls will be needed.) How can we work it out exactly? Ps suggest plans and calculations. If Ps are stuck, T shows this method and Ps copy in Ex. Bks. BB: 15 litre container $\rightarrow 16$ (times) $\begin{aligned} & 1 \text { litre container } \rightarrow 16 \times 15=240 \text { (times) } \\ & 8 \text { litre container } \rightarrow 240 \div 8=\underline{30} \text { (times) } \end{aligned}$ Who can write an operation in a shorter form on one line? BB: Plan: $15 \times 16 \div 8=15 \times 2=\underline{30}$ (jugs) Answer: We would need thirty 8-litre jugfuls of water to fill the tank.	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising $\begin{array}{l:c:c\|c\|} \text { BB: } & 1 & 6 \\ \text { e.g. } & x & 1 & 5 \\ & +1 & 8 & 0 \\ \hline 2 & 4 & 0 \\ \hline & 1 & \\ \hline \end{array}$ Elicit that the smaller the container, the more times it needs to be filled, and vice versa. i.e. the amounts are in inverse proportion to one another.
6	Book 5, page 27 Q. 1 Read: If 1 lb of cherries costs 32 p , how much do $2 \mathrm{lb}, 3 \mathrm{lb}$, $10 \mathrm{lb}, 437 \mathrm{lb}$ of cherries cost? Continue the table and complete the statement. Set a time limit. Ps follow the example and complete the table. Ps can use Ex. Bks for calculations if they need more room. Review at BB with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: $\begin{array}{ll} 1 \mathrm{lb} & \rightarrow 32 \mathrm{p} \\ 2 \mathrm{lb} & \rightarrow 2 \times 32 \mathrm{p}=64 \mathrm{p} \\ 3 \mathrm{lb} & \rightarrow 3 \times 32 \mathrm{p}=96 \mathrm{p} \\ 10 \mathrm{lb} & \rightarrow 10 \times 32 \mathrm{p}=320 \mathrm{p}=£ 3.20 \\ 437 \mathrm{lb} & \rightarrow 437 \times 32 \mathrm{p}=13984 \mathrm{p}=£ 139.84 \end{array}$ Elicit that the costs are in direct proportion to the amounts.	Individual work, monitored (helped on last row) Written on BB or SB or OHT Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Final calculation shown in detail on BB: $\text { e.g. } \begin{array}{\|c:c:c:c:c} & & 4 & 3 & 7 \\ & & & \times & 3 \\ 2 \\ \hline & & 8 & 7 & 4 \\ \hline 1 & 3 & 1 & 1 & 0 \\ \hline 1 & 3 & 9 & 8 & 4 \\ \hline \end{array}$ As the quantity increases, so does the price at the same rate.
7	Book 5, page 27 Q. 2 and Q. 3 Read: Solve this problem in your exercise book and write the answer here. Set a time limit. Ps read problems themselves and solve them. Review with whole class. Ps could show results on scrap paper or slates on command. P answering correctly explains reasoning at BB. Who agrees? Who did it another way? Mistakes discussed and corrected. Elicit that within each question the amounts are in direct proportion to one another.	Individual work, monitored (helped) Differentiation by time limit. Or deal with one question at a time if Ps are still unsure about proportion. Discussion, reasoning, agreement, self-correction, praising

$B K E$		Lesson Plan 27
Activity	Q. 2 If 4 rolls of material contain 256 m, what length of material would be in 150 such rolls? Solution: e.g. 4 rolls $\rightarrow 256 \mathrm{~m}$ 150 rolls $\rightarrow 150 \times 64 \mathrm{~m}=\underline{9600 \mathrm{~m}}$ C: 1 5 0 \times 6 4 6 0 0 9 0 0 0 9 6 0 0 Answer: There would be 9600 m in 150 rolls of material. Q. 3 If 6 pens cost 240 p, how many pens can we buy for 360 p? Solution: e.g. 6 pens $\rightarrow 240 \mathrm{p}$ 1 pen $\rightarrow 240 \mathrm{p} \div 6=40 \mathrm{p}$ $360 \mathrm{p} \div 40 \mathrm{p}=\underline{9}$ (times) Answer: We can buy 9 pens for 360 p .	Notes $\begin{aligned} \text { Or } & 64 \times 150=640 \times 15 \\ & =640 \times 10+640 \times 5 \\ & =6400+3000+200 \\ & =\underline{9600} \end{aligned}$ T might show other methods: e.g. using ratio: $\begin{aligned} & 360: 240=36: 24=3: 2 \\ & x: 6=3: 2=9: 6, \text { so } x=\underline{9} \end{aligned}$ or 360 p is 1 and a half times 240 p , so we can buy 1 and a half times 6 pens, i.e. $\underline{9}$ pens.
8	Book 5, page 27 Q. 4 Read: If 1 kg of paint cost $£ 9.45$, how much do $1 \mathrm{~kg}, 2 \mathrm{~kg}, 5 \mathrm{~kg}, 11 \mathrm{~kg}, 20 \mathrm{~kg}, 27 \mathrm{~kg}, 30 \mathrm{~kg}, 150 \mathrm{~kg}$ of paint cost? Complete the table. Do the calculations in your exercise book. Set a time limit. Encourage Ps to look for relationships to make calculations easier. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who did it a quicker way? etc. Mistakes discussed and corrected. Solution: What do you think is wrong with this question if you consider what happens in real life? (Paint is usually sold by the litre, not by the kg. Price of paint is not usually in direct proportion to the amount - the larger the tin, the cheaper the paint is per litre to encourage customers to buy more.)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps suggest clever ways to calculate, e.g. $\begin{aligned} 945 \mathrm{p} \div & 15=315 \div 5=63 \mathrm{p} \\ 5 \mathrm{~kg} \rightarrow & £ 9.45 \div 3=\underline{£ 3.15} \\ 11 \mathrm{~kg} \rightarrow & 630 \mathrm{p}+63 \mathrm{p} \\ & =693 \mathrm{p}=\underline{£ 6.93} \\ 20 \mathrm{~kg} \rightarrow & £ 1.26 \times 10 \\ & =£ 12.60 \\ 27 \mathrm{~kg} \rightarrow & £ 12.60+£ 3.15+ \\ & £ 1.26=£ 17.01 \\ 30 \mathrm{~kg} \rightarrow & £ 3.15 \times 6=\underline{£ 18.90} \\ 150 \mathrm{~kg} \rightarrow & £ 9.45 \times 10=\underline{£ 94.50} \end{aligned}$
9	Book 5, page 27, Q. 5 Read: A journey took 6 hours in a car travelling at an average speed of 50 km per hour. How much time would the journey have taken if the car had travelled at these average speeds? What does average speed mean? (As if the car had travelled at the same speed all the time, which is not likely in real life.) Ps come to BB or dictate to T , using quick ways to calculate where possible. Class points out errrors or easier calculations. What is the relationship between speed and time? Ask several Ps what they think. (Elicit that they are in inverse proportion to one another, i.e. as speed increases, time taken decreases, and as speed decreases, time taken increases.)	Whole class activity Written on BB or SB or OHT At a good pace Reasoning, agreement, praising. Ps write in Pbs too. Solution: $\begin{aligned} & 50 \mathrm{~km} / \mathrm{h} \rightarrow 6 \mathrm{~h} \\ & 25 \mathrm{~km} / \mathrm{h} \rightarrow 12 \mathrm{~h}(6 \mathrm{~h} \times 2) \\ & 60 \mathrm{~km} / \mathrm{h} \rightarrow 5 \mathrm{~h}(6 \mathrm{~h} \times 5 \div 6) \\ & 100 \mathrm{~km} / \mathrm{h} \rightarrow 3 \mathrm{~h}(6 \mathrm{~h} \div 2) \\ & 40 \mathrm{~km} / \mathrm{h} \rightarrow 7.5 \mathrm{~h}(6 \mathrm{~h} \times 5 \div 4) \end{aligned}$

BK5		Lesson Plan 28
Activity 2	Continuous data The Environment Agency has set up a piece of equipment which measures continuously the level of the water in a river. The normal level at 0 cm has been fixed after years of experience. BB: Who can explain the graph? (e.g. level above 0 is positive; level below zero is negative; data shown by a continuous line; if line is rising, water level is increasing; if line is falling, water level is decreasing, data collected over 30 days, or a month; etc.) We say that such data are continuous data and are shown on a line graph. Use the graph to help you answer these questions. a) What height was the water level on these dates and was it raising or falling? i) 10th (about 110 cm ; rising) ii) 20th (about - 60 cm ; falling) iii) 22 nd (about -60 cm ; rising) ii) 12th (about 120 cm ; falling) b) Did the water level rise or fall during the first 7 days? (fall) c) When was the water level highest (lowest)? (11th, 21st) etc. 12 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP (If possible, Ps have copies on desks too.) Praising, encouragement only T gives hints if Ps miss something important. BB: Continuous data Ps come to BB to say and show answers on the graph. Class agrees/disagrees. Praising Ps think of questions to ask too. Extra praise for clever questions.
3	Pie chart The pupils in a class were asked what was their favourite subject and the T showed the results like this. Who remembers the name for this method of showing data? (pie chart) BB: Pie Chart e.g. $\begin{array}{llr}\square \text { French }\left(\frac{1}{12}\right) & \square \text { Mathematics }\left(\frac{3}{12}=\frac{1}{4}\right) \\ \square \text { English }\left(\frac{3}{12}=\frac{1}{4}\right) & \square \text { Science } & \left(\frac{2}{12}=\frac{1}{6}\right) \\ \square \text { Music }\left(\frac{1}{12}\right) & \square \text { P. E. } & \left(\frac{2}{12}=\frac{1}{6}\right)\end{array}$ Who can explain it? Ps come to BB to point and explain, with T's help. Let's write the fraction of the class which preferred each subject. Ps come to BB to point to relevant section and write as a fraction. Class agrees/disagrees. T asks Ps questions about the diagram. e.g. a) If there were 24 pupils in the class. How many Ps preferred each subject? Ps come to BB or dictate to T , explaining reasoning. b) What is the ratio of Ps choosing: i) English to French? (6 to 2 , or 3 to 1) $\mathrm{BB}: 6: 2=3: 1$ ii) French to English? (2 to 6 , or 1 to 3) BB: $2: 6=1: 3$ iii) English to Science? (6 to 4 , or 3 to 2) BB: $6: 4=3: 2$	Individual work, monitored Drawn on BB or use enlarged copy master or OHP, or use blank copy master, coloured appropriately (If possible, Ps have copy of dagram on desks too.) (circle divided into 12 equal parts, so each part represents 1 twelfth of the class; different shadings show how many twelfths of the class preferred each subject.) BB: F: $\frac{1}{12}$ of $24=24 \div 12=\underline{2}$ $\mathrm{E} / \mathrm{M}: \frac{1}{4}$ of $24=24 \div 4=\underline{6}$ S/P: $\frac{1}{6}$ of $24=24 \div 6=\underline{4}$ Ps can think of questions too!

$B K$		Lesson Plan 28
Activity 4	Class Pie Chart Let's make a pie chart about which subjects you prefer. What should we do first? (Collect the data) Ps suggest (e.g. 4) subjects and T writes them on BB. T points to each subject in turn and Ps put up their hands if they prefer it. Check that the data match the number of Ps in the class. Now what should we do? Ps work out the fractions for the various subjects, then suggest how to draw the pie-chart, with T's help where necessary. T works on BB (using BB instruments if possible) and Ps work in Ex. $B k s$. (drawing around circular object or using compasses if they have them). Ps choose a colour for each subject, write a key or label diagram. T (and Ps) ask questions about the data.	Notes Whole class activity (Or Ps choose another topic) Discussion about strategy and in which order things should be done. Fractions should be accurate but sections of circle need only be approximate. Discussion, reasoning, agreement, praising Ps could finish pie charts in Lesson 35 if necessary.
5	Book 5, page 28 Q. 1 Read: The graph shows the variation in temperature over one day. Discuss the graph and context first. (e.g. line graph; shows continuous data, so the temperature must have been monitored throughout the day; grid lines at every hour on x-axis and every ${ }^{\circ} \mathrm{C}$ on y-axis; as graph line rises, temperature is increasing, etc.) Set a time limit. Ps read questions and find answers on graph. Review with whole class. Ps could show answers on slates or scrap paper. Ps answering correctly come to BB to confirm on graph. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) What temperature was it at 10.00 am ? $\left(15^{\circ} \mathrm{C}\right)$ b) At what time of day was it hottest? ($3.00 \mathrm{pm}-4.00 \mathrm{pm}$) c) During which times was the temperature rising? (00:00 to 15:00) d) There was a downpour during the day. When do you think that it happened? (4.00 pm to 6.00 pm) (as the temperature dropped sudenly) Who can think of other questions to ask about the graph? (e.g. highest (lowest) temperature, probable time of year, at what time was it a certain temperature, what was the temperature at a certain time, etc.)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP: Discussion, reasoning, agreement, self-correction, praising Whole class activity Praise clever questions and good answers.
6	Book 5, page 34 Q. 2 Read: One day we measured the temperature every hour from 6 o'clock in the morning to 3 o'clock in the afternoon. We noted the data as pairs of numbers. Discuss how the pairs of numbers relate to the graph and ask a P to demonstrate and explain by plotting $(6,2)$. Liken to a pair of coordinates, i.e. the x value is given first. a) Read: Show the data on a graph. Set a time limit. Review with whole class. Ps come to BB to draw dots, explaining what they are doing. Class agrees/ disagrees. Mistakes corrected before Ps read remaining questions themselves and answer them in Pbs.	Whole class discussion to start to clarify the relationship between the data and graph. Coordinates written on BB. Graph drawn on BB or use enlarged copy master or OHP Individual work, monitored, helped (or continue as whole class activity if Ps are still unsure) Reasoning, agreement, selfcorrection, praising

BKE		Lesson Plan 28
Activity 6 Extension	(Continued) Solution: $(6,2),(7,2),(8,4),(9,5),(10,7),(11,10),(12,13),(13,15),(14,14),(15,12)$ b) Is it correct to join the dots with a continuous curve? Why? (Accept Yes and No with correct reasoning, e.g. No, as the data was collected hourly and we do not know what the exact temperature was between the hours, BUT Yes, as temperature is continuous and a continuous curve would show the approximate temperatures between the hours.) T joins up dots on BB and Ps join up dots in Pbs. c) When was the temperature highest? (At about 1300 h or 1.00 pm) d) Estimate the temperature at: $6.30 \mathrm{am}\left(\approx 2^{\circ} \mathrm{C}\right) ; 9.15 \mathrm{am}\left(\approx 5.5^{\circ} \mathrm{C}\right) ; 12.45 \mathrm{pm}\left(\approx 14.75^{\circ} \mathrm{C}\right)$ e) Which season do you think it was? (Accept autumn or spring) When was the temperature rising (falling)? Ps come to graph to show the relevant sections of the curve and to say the approximate times.	Notes Check correct positions of points first, then after discussion (as below) and agreement, join points with a curved line. T repeats reasoning more clearly if necessary, but extra praise for Ps who think of these ideas. Curve need only be rough, as long as it passes through the points. [or c), d) and e) done as a whole class activity] Discussion, agreement, praising
7	Book 5, page 28 Q. 3 Read: Among 60 people at a conference, 10 are American, 20 are British, 5 are Chinese, 15 are Japanese and 10 are Hungarian. a) Show the data in a pie chart. Into how many equal part should we divide the circle? T asks several Ps what they think. If nobody has an idea, T suggests: BB: $\begin{array}{ll} \text { A: } 60 \div 10=\underline{6} & \text { B: } 60 \div 20=\underline{3} \\ \text { C: } 60 \div 5=\underline{12} & \text { J: } 60 \div 15=\underline{4} \\ \text { H: } 60 \div 10=\underline{6} & \end{array}$ What is the lowest number which is divisible by $3,4,6$ and 12? (12) Let's divide the circle into 12 equal parts. How could we do it? (Divide circle into quarters first, then divide each quarter into 3 equal parts.) T works at BB and Ps work in Pbs . Ps decide on a colour for each nationality, then work out how how many twelfths they should colour and label with the initial letter of the country. Review with whole class. Mistakes discussed and corrected.	Whole class activity to start, then individual work, monitored, helped (or continue as whole class activity if Ps are unsure or time is short) Discussion, reasoning, agreement, self-correction, praising Solution: Extension What is the ratio of, e.g.: C to B (1 to 4 or $1: 4$) B to C (4 to 1, or $4: 1$), J to B? (3 to 4, or 3:4), etc.

31		Lesson Plan 29
Activity 3	Order of operations 3 Who can do this calculation? P comes to BB to mark the normal order of operations and work out the answer. Class agrees/disagrees. Could we have used a different order and still get the right answer? Ps suggest other orders for the operations. Class calculates the operations mentally and decides whether the order is valid. BB: e.g.	Notes Whole class activity Written on BB or SB or OHT Discussion, reasoning, agreement, praising Feedback for T Agree that multiplication and division can be done before brackets but only if they do not affect the operations on either side of the brackets !
4	Problem Think of a word problem for this plan. BB: $(17.5+2.5) \times 4+1.5 \times 10=$ Allow Ps to discuss with their neighbours for a minute, then Ps tell their contexts to class. Class decides whether or not they match the plan. Class chooses one of the contexts and Ps come to BB to work out the calculation. Class agrees/disagrees. Could we have written another plan? Come and show it to us. Class decides whether that is valid too. e.g. Mum and Dad bought each of their 4 children a Christmas present for $£ 17.50$ and a card for $£ 2.50$. Then they bought 10 sheets of wrapping paper at $£ 1.50$ per sheet. How much did they spend altogether? Plan: $(17.5+2.5) \times 4+1.5 \times 10=20 \times 4+15=80+15=\underline{95}$ (£) or $\quad 17.50 \times 4+2.50 \times 4+1.5 \times 10=70+10+15=\underline{95}(£)$ P whose context was used says the answer in a sentence. e.g Answer: They spent $£ 95$ altogether.	Whole class activity Written on BB or SB or OHT Praise all suggestions but give extra praise for creative, correct contexts. Discussion, reasoning, agreement, praising In 2nd plan, T shows how to multiply a decimal. $\begin{aligned} \text { BB: } \frac{17.50}{70.00} & \times 4 \\ \frac{\mathrm{U} \times \mathrm{h} \rightarrow \mathrm{~h}}{32} & \mathrm{U} \times \mathrm{t} \rightarrow \mathrm{t} \\ & \mathrm{U} \times \mathrm{U} \rightarrow \mathrm{U} \\ & \mathrm{U} \times \mathrm{T} \rightarrow \mathrm{~T} \end{aligned}$
5	Find the mistakes! Silly Sammy had to calculate the perimeter and area of these rectangles for homework, but he did it too quickly and made some mistakes. Can you find them? Ps come to BB to point to a mistake and say why it is wrong. Class grees/disagrees. Who can write the solution correctly? Ps come to BB to write operations and do calculations, showing details at side of BB if necessary, and explaining reasoning in a loud voice. Class agrees/disagrees. Elicit that: BB: $1 \mathrm{~m}^{2}=1 \mathrm{~m} \times 1 \mathrm{~m}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=\underline{10000} \mathrm{~cm}^{2}$ BB: a) Mistake! (Area and perimeter are the wrong way round.)	Whole class activity Written on BB or use enlarged copy master or OHP Ps check calculations in Ex. Bks. Discussion, reasoning, agreement, praising Correct solution: e.g. $\begin{aligned} A & =425 \mathrm{~cm} \times 210 \mathrm{~cm} \\ & =4250 \mathrm{~cm} \times 21 \mathrm{~cm} \\ & =(85000+4250) \mathrm{cm}^{2} \\ & =\underline{89250 \mathrm{~cm}^{2}\left(=8.925 \mathrm{~m}^{2}\right)} \\ P & =2 \times(210+425) \mathrm{cm} \\ & =2 \times 635 \mathrm{~cm} \\ & =\underline{1270 \mathrm{~cm}}(=12.7 \mathrm{~m}) \end{aligned}$

35		Lesson Plan 29
Activity 5	(Continued) b) $a=3 \frac{1}{2} \mathrm{~m}^{4}$ $\begin{aligned} P & =2 \times\left(3 \frac{1}{2}+3 \frac{1}{2}\right) \mathrm{m}=2 \times 7 \mathrm{~m}=14 \mathrm{~m} \\ A & =3 \frac{1}{2} \mathrm{~m} \times 3 \frac{1}{2} \mathrm{~m}=9 \frac{1}{2} \mathrm{~m}^{2} \mathrm{x} \end{aligned}$ Mistake! We have not learned a fraction \times a fraction but answer should be more than 9 and a half! Correct solution: $\begin{aligned} A=3 \frac{1}{2} \mathrm{~m} \times 3 \frac{1}{2} \mathrm{~m} & =\left(3 \times 3+6 \times \frac{1}{2}+\frac{1}{4}\right) \mathrm{m}^{2} \quad \begin{array}{l} \text { (by counting the } \\ \text { grid squares }) \end{array} \\ & =\left(9+3+\frac{1}{4}\right) \mathrm{m}^{2}=12 \frac{1}{4} \mathrm{~m}^{2}\left(=\underline{\left.12.25 \mathrm{~m}^{2}\right)}\right. \end{aligned}$ or $A=350 \mathrm{~cm} \times 350 \mathrm{~cm}=3500 \mathrm{~cm} \times 35 \mathrm{~cm}=122500 \mathrm{~cm}^{2}$ $\left(=\underline{12.25 \mathrm{~m}^{2}}\right)$	Notes Agree that perimeter is o.k. but perimeter of a square would normally be written as: $P=4 \times 3 \frac{1}{2}=12+2=\underline{14}(\mathrm{~m})$ T confirms area is incorrect by drawing lines on the square as shown. [Preparation for multiplication of fractions and decimals] BB:
6	Book 5, page 29 Q. 1 Read: Complete the diagrams so that the correct number of grid units are shaded to make the fraction correct. Write in the boxes the number of extra grid squares you had to shade. Set a time limit. Review with whole class. Ps come to BB to shade and write numbers, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. What part of the shape did you have to shade? Solution: a) No extra shading needed b) $\begin{aligned} & \text { Extra } \\ & \text { shading: }\end{aligned} \frac{2}{4}=\frac{1}{2}$ c)	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Feedback for T Extra shading shown darker than original.
7	Book 5, page 29 Q. 2 Read: Joe weighed himself and told his friend that he weighed 31 kg , to the nearest kg . How heavy could Joe be? Write an inequality and show it on the number line. Elicit that the number line has ticks at every tenth (0.1) of a kg, but that Joe's exact weight might be between the ticks! Review with whole class. Ps come to BB to mark, write and say the inequality. Who agrees? Who wrote it another way? etc. T shows or elicits other forms of the inequality if all Ps wrote the same. Mistakes discussed and corrected. or $30 \mathrm{~kg} 500 \mathrm{~g} \leq \mathrm{J}<31 \mathrm{~kg} 500 \mathrm{~g}$ or $30 \frac{1}{2} \mathrm{~kg} \leq \mathrm{J}<31 \frac{1}{2} \mathrm{~kg}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, self-correction, praising Extension Tell me possible values for Joe's weight. At speed, T chooses Ps at random. Class points out errors. Praising (e.g. $30 \mathrm{~kg} 501 \mathrm{~g}, 31.49 \mathrm{~kg}$, etc.)

$B K E$		Lesson Plan 29
Activity 8	Book 5, page 29 Q. 3 Read: Do the calculations and compare the results in each row. Ps do necessary calculations in Ex. Bks but encourage mental calculation where possible, with Ps writing interim results above operation signs in Pbs. Set a time limit. Review with whole class. Ps come to BB or dicate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations on BB if problems or disagreement. Solution: a) $15 \times 8+200 \times 2=\underline{320}$ © $\quad 40$ (>) $15+25^{200} \times 8=\underline{215}$ b) $42 \times 12 \div 3=\underline{168}$ $\bigodot \quad(42 \times 12) \div 3=\underline{168}$ $\Theta 42 \times(12 \div 3)=\underline{168}$ c) $24+7 \begin{gathered}24 \quad 288 \\ \div 3 \times 12\end{gathered}=\underline{312}$ $(24+72) \stackrel{32}{96} 3 \times 12=\underline{384}$ (>) $24+72 \div(2 \stackrel{36}{\div}(3 \times 12)=\underline{26}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising $\begin{aligned} & \text { Details: e.g. } \\ & \begin{array}{\|l\|l\|l\|l\|l\|} \hline & 4 & 2 \\ \hline & + & 1 & 2 \\ \hline & + & 2 \\ \hline & + & 2 & 4 \\ \hline & 4 & 8 & 0 \\ \hline 2 & 0 & 4 \\ \hline 2 & 4 & 0 \\ \hline 2 & 8 & 8 \\ \hline \end{array} \quad \begin{array}{\|l\|l\|l\|} \hline 3 & 5 & 0 \end{array} \\ & \hline \end{aligned}$
9	Book 5, page 29 Q. 4 Read: Which is more? Try to fill in the missing signs without doing the calculations. Let's see how many you can do in 2 minutes! Start . . . now! . . . Stop! Review with whole class. Ps come to BB or dicate to T, explaining reasoning, or class shows signs on scrap paper or slates on command and Ps answering correctly explain at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $(32+18)-16$ $32+(18-16)$ b) $518-(281-81)$ $(518-281)-81$ c) $480+237$ © $482+235$ d) 6512-6227 (>) 6510-6329 e) $(17+5) \times 7$ (-) $17+5 \times 7$ f) $(6 \times 8) \times 2$ (6) $(6 \times 2) \times(8 \times 2)$ g) 480×60 $\fallingdotseq 400 \times 60+80 \times 60$ h) 480×60 $\bigodot 500 \times 60-20 \times 60$	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising T helps Ps to explain reasoning and repeats in a clearer way if necessary. Only show calculations on BB if there is disagreement.
10	Book 5, page 29 Q. 5 Read: Solve the equations. Do the calculations in your exercise book. Write the results here. Set a time limit of 3 minutes. Remind Ps to check that their answers make the statements true. Review with whole class. Ps come to BB or dicate to T, explaining reasoning. Class checks that statement is true. Mistakes corrected. Show solutions on relevant sections of the number line drawn on BB , or on class number line. Solution: a) $+35.2=209$ Check: = $209-35.2$ $=\underline{173.8}$ $\begin{array}{\|c\|c\|c\|} 1 & 7 & 3.8 \\ + & 3 & 5.2 \\ \hline 2 & 0 & 9.0 \\ \hline 1 & 1 \end{array}$	Individual work, monitored, (helped) (or whole class activity if time is short) Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, checking, agreement, self-correction, praising Show details of calculations on BB if problems or disagreement. Feedback for T

BKK	R: Calculations. Numbers C: Practice. Word problems E: Combinatorial, set and logic problems	Lesson Plan 30
Activity 1	Missing signs Give a meaning for these numbers, then fill in the missing sign. Ps come to BB to explain meaning of LHS and RHS of each statement by drawing a diagram or showing on number line, or explaining in words, then to fill in the missing sign. Class agrees/disagrees. BB: a) $\frac{2}{3}=\frac{4}{6}$ b) $1 \frac{4}{5}=\frac{9}{5}$ c) $\frac{5}{8} \triangle \frac{2}{4}$ d) 0.8 >0.08 \square e) 1.2 \square $1 \frac{1}{5}$ f) -0.9 \square $\frac{1}{2}$	Notes Whole class activity Written on BB or SB or OHT Reasoning, agreement, praising Explanation: e.g.
2	Fractions and decimals What part of each square is shaded? Ps come to BB to explain reasoning. Class agrees/disagrees or suggests another way to do it. Allow Ps to use their own ideas if they are on the right track, otherwise T gives hints or directs Ps' thinking if they are stuck. Once Ps have found the fraction shaded, allow the use of calculators to obtain the equivalent decimal. BB: e.g. $5 \times 5=25$ (grid squares) Part shaded: $\frac{7}{25}=\frac{14}{50}=\frac{28}{100}=\underline{0.28}$ b) Area: $4 \times 4=16$ (grid squares) $\square 1 \frac{1}{2}=1.5$ Grid squares shaded: $4+4 \times 1.5=4+2 \times 3=4+6=10$ Part shaded: $\frac{10}{16}=\left(\frac{5}{8}\right)=\underline{0.625}$ (by calculator) c) Area: $\text { (or } 1 \text { eighth of } 36 \text {) }$ $6 \times 6=36$ (grid squares) Grid squares shaded: $36-4.5-2 \times 9=36-4.5-18=31.5-18=13.5$ Part shaded: $\frac{13.5}{36}=\frac{27}{72}=\left(\frac{3}{8}=\underline{0.375}\right.$ (using a calculator) Or $1-\frac{1}{8}-\frac{1}{4}-\frac{1}{4}=1-\frac{1+2+2}{8}=1-\frac{5}{8}=\left(\frac{3}{8}\right)$	Whole class activity (Or if Ps wish, allow them to try a) and b) in Ex. Bks first) Drawn on BB or use enlarged copy master or OHT (Ps could have copies on desks too.) Discussion, reasoning, agreement, praising Extra praise for clever ideas. (Required fraction circled and required decimals underlined) Or $16-4 \times 1.5=16-6=10$ Elicit that $0.625=\frac{625}{1000}$ T writes $\frac{1}{8}$ and $\frac{1}{4}$ on relevant parts of diagram. Elicit that $0.375=\frac{375}{1000}$

BKE		Lesson Plan 30
Activity 3	Combinatorics V is a village at the bottom of the mountain, R is a rest hunt half-way up and T is the top of the mountain. How many possible routes are there from the village to the top of the mountain? Allow Ps to think about it for a minute. If you have an answer, show me ... now! (12) P answering correctly explains reasoning at BB . (For each of the 3 possible routes from the village to the rest hut, there are 4 possible routes from the rest hut to the top of the mountain, i.e. $3 \times 4=\underline{12}$ possible routes.) Mistakes discussed and corrected. How could we show all the routes? T suggests using 1, 2, 3 for routes from V to R and a, b, c, d, for routes from R to P. Who has an idea what we could do now? (e.g. list them, put them in 2 sets and join them up, draw tree diagrams) T gives hints about those not suggested by Ps. Possible routes 1a 1b 1c 1d 2a 2 b 2c 2 d 3a 3b 3c 3d Answer: There are 12 possible routes. $15 \min$	Notes Individual trial first Drawn on BB or SB or OHT (but without routes numbered or labelled) In unison Reasoning, agreement, praising Praising, encouragement only Feedback for T
4	Sets This Venn diagram shows the initial letters of the names of Ps who joined the Maths Club and Art Club. Think about what the diagram means! T asks questions and Ps come to BB to show on diagram and list the relevant letters. Class agrees/disagrees. a) Which Ps belong to the Maths club? (All of them) BB: M: P, Z, K, B, L, J, S, T, F (9 pupils) We write the number of element in set M like this. $\mathrm{BB}: \mathrm{n}(\mathrm{M})=9$ b) Which Ps belong to the Art Club? BB: A: F, J, S, T (4 pupils) We write the number of elements in set A like this. $\mathrm{BB}: \mathrm{n}(\mathrm{A})=4$ T : We say that A is a sub-set of M and write it like this. It means that set A is part of set M . c) Which Ps belong to both clubs? BB: M + A: F, J, S, T (4 pupils) d) Which Ps belong to the Maths Club but not the Art Club? BB: M but not A: P, Z, K, B, L (5 pupils) T: We call this set the complement of A and write it like this. We write the number of elements in the complement of A like this. Who could write an addition and subtraction about the sets? BB: $\quad \mathrm{M}=\mathrm{A}+\overline{\mathrm{A}}$ (read as, ${ }^{\prime} \mathrm{M}=\mathrm{A}+$ the complement of $\mathrm{A} .{ }^{\prime}$ or $n(M)=n(A)+n(\overline{\mathrm{~A}})=4+5=\underline{9}$ $\mathrm{A}=\mathrm{M}-\overline{\mathrm{A}}$ or $\overline{\mathrm{A}}=\mathrm{M}-\mathrm{A}$ or $n(A)=n(M)-n(\bar{A})=9-5=\underline{4}$	Whole class activity Drawn on BB or SB or OHT: BB: Reasoning, agreement, praising BB: Sub-set $\mathrm{A} \subset \mathrm{M}$ BB: Complement of A $\begin{gathered} \overline{\mathrm{A}} \\ \mathrm{n}(\overline{\mathrm{~A}})=5 \end{gathered}$ Have no expectations but praise any P who makes a good attempt! Do not expect Ps to learn this notation yet - just to become familiar with it!

BKE		Lesson Plan 30
Activity 5	Sequences competition T says the first 3 terms of a sequence and Ps write as many of the following terms in Ex. Bks. Allow 1 minute per sequence. Review with whole class. Ps stand up and dictate the terms in order round class. Class points out errors. Ps sit down when they have made a mistake or reached the end of their terms. Last $\mathrm{P}(\mathrm{s})$ standing dictate their remaining terms and say the rule. If all correct, class gives them a round of applause. a) $-5.1,-3.9,-2.7,(-1.5,-0.3,0.9,2.1,3.3,4.5,5.7, \ldots)$ Rule: increasing by 1.2 b) $2 \frac{3}{4}, 2.5,2 \frac{1}{4},\left(2,1 \frac{3}{4}, 1.5,1 \frac{1}{4}, 1, \frac{3}{4}, 0.5, \frac{1}{4}, 0,-\frac{3}{4}, \ldots\right)$ Rule: decreasing by $\frac{1}{4}$ or 0.25 .	Notes Individual work, monitored (or whole class activity done orally at speed round class.) Differentiation by time limit Agreement, (self-correcting), praising In good humour! Accept terms as decimals or fractions.
6	Book 5, page 30 Q. 1 Read: How many different 4-digit numbers can you make from these cards? Continue listing them in order. Set a time limit. Less able Ps have number cards on desks. Review with whole class. Ps dictate numbers to T. Class points out errors, duplications or missed numbers. Mistakes corrected or Ps write out again correctly in increasing order in Ex. Bks. if several numbers were missed or another order was used. Solution: 4456, 4465, 4546, 4564, 4645, 4654, 5446, 5464, 5644, 6445, 6454, 6544 (12 possible numbers) In what other way could we have shown the possible numbers? (Tree diagrams) Let's draw them on the BB. Ps come to BB or dictate to T . Class points out errors. BB: (12 possible numbers) How many numbers start with: - $4(6$, as the next 3 digits, $4,5,6$, can be ordered in 6 ways) - 5 (3 , as the next 3 digits, $4,4,6$, can be ordered in 3 ways) - 6? (3, as the next 3 digits, $4,4,5$, can be ordered in 3 ways) How many 4-digit numbers could you make from these number cards? Try to work it out without listing all the numbers. After a minute, ask several Ps what they think (or Ps could show on number cards or slates on command). Elicit that for each of the 4 possible thousands digits, there are $\underline{3}$ possible hundreds digits, and for each of the 3 possible tens digits there are $\underline{2}$ possible tens digits, and for each of the 2 possible tens digits there is only $\underline{1}$ possible units digit. i.e. The number of possible numbers is: BB: $4 \times 3 \times 2 \times 1=\underline{24}$	Individual work, monitored helped Written or stuck on BB: $\begin{array}{\|l\|l\|l\|l\|} \hline 4 & 4 & 5 & 6 \\ \hline \end{array}$ Discussion, reasoning, agreement, self-correction, praising Whole class activity If Ps do not suggest a tree diagram, T starts diagram and Ps continue. Agreement, praising (T prompts Ps to give reasoning too.) Individual trial first, monitored, then whole class discussion BB: \square \square \square 6 Reasoning, agreement, praising Discuss the connection with the digits $4,4,5,6$. Elicit that if 2 cards are equal, the number of possibilities is halved.

$B K 5$		Lesson Plan 30
Activity		Notes
9	Book 5, page 30	
	Q. 4 Read: Solve the problems. Use the diagrams to help you.	Individual work, monitored, helped
	check your answer in the context of the question. Start . . . now! . . . Stop!	Diagrams drawn on BB or SB or OHT
	Review with whole class. Ps come to BB to wite plans, do calculations and say the answer in a sentence. Who agrees? Who did it another way? Who made a mistake ? What did you do? Who did the same? etc.	Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising
	Solutions: e.g. a) Kate has $£ 94.50$ and Eve has $£ 34.50$. How much should Kate give to Eve so that they both have the same amount? Plan: $(£ 94.50-£ 34.50) \div 2=£ 60 \div 2=£ 30$ Check: $£ 94.50-£ 30=£ 64.50=£ 34.50+£ 30$ Answer: Kate should give $£ 30$ to Eve.	Accept any valid method but show the simplest too. BB:
	b) Joe and Sam have $£ 92.50$ altogether but Sam has $£ 12.50$ more than Joe. How much money do they each have? Plan: J: $(£ 92.50-£ 12.50) \div 2=£ 80 \div 2=\underline{£ 40}$ S: $£ 40+£ 12.50=\underline{£ 52.50}$	It is easier to take off the extra money first, then halve the remaining money, so T should show this method if no P has used it.
	or $S:(£ 92.50+£ 12.50) \div 2=£ 105 \div 2=\underline{£ 52.50}$ $\mathrm{J}: £ 52.50-£ 12.50=\underline{£ 40}$ Check: J + S: $£ 40+£ 52.50=£ 92.50$ Answer: Joe has $£ 40$ and Sam has $£ 52.50$.	BB:
	c) These two bunches of flowers cost the same. How many daisies is a tulip worth?	Drawn (stuck) on BB or use enlarged copy master or OHP
	Ps come to BB to cross out (remove) flowers at each step. BB: $\quad 5 \mathrm{D}+3 \mathrm{~T}=1 \mathrm{D}+5 \mathrm{~T}$ Subtract 1D from each side: $4 \mathrm{D}+3 \mathrm{~T}=5 \mathrm{~T}$	If any Ps got correct answer , ask them how they worked it out, then show the method opposite, involving Ps where possible.
	Subtract 3T from each side: $4 \mathrm{D}=2 \mathrm{~T}$	Stress that LHS and RHS of equations must always balance,
	Halve each side (or divide each side by 2): $2 \mathrm{D}=1 \mathrm{~T}$	so whatever is done to one side must also be done to the
	$\text { (and } 1 \mathrm{D}=\frac{1}{2} \mathrm{~T} \text {) }$	other side.
	Answer: One tulip is worth 2 daisies. (and 1 daisy is worth half a tulip - not really practical!)	[Preparation for solution of equations with 2 unknowns]

BK	R: Numbers C: Practice: mental and written calculations. Word problems E: Combinatorics, logic, set problems	$\begin{gathered} \text { Lesson Plan } \\ 31 \end{gathered}$
Activity 1	Components in operations What is the name of the underlined component in each operation? Ps come to BB to point to whatever is underlined and to say and write its name. Class agrees/disagrees or corrects spelling. BB: a) $842+158=\underline{1000}$ (sum) b) $\underline{452} \times 14=6328 \quad$ (multiplicand or mulitplier or factor) c) $7542-1542=\underline{6000}$ (difference) d) $\underline{9145+455}=5600 \quad$ (sum, or terms of addition) e) $\underline{9872-972}=8900$ (difference, or reductand and subtrahend) f) $6432 \div 32=\underline{201} \quad$ (quotient) g) $645 \times 100=\underline{64500}$ (product) h) $\underline{5656} \div \underline{28}=202$ (dividend and divisor, or quotient) Check that my answers are correct with your calculator. Ps point out errors if T has made any deliberate mistakes.	Notes Whole class activity Operations written on BB or SB or OHT (some could have deliberate mistakes, though only correct equations are shown opposite) (Or names of components written on flash cards and stuck to side of BB and Ps choose correct card) At a good pace Agreement, praising Practice in using, and reading from, calculators.
2	Problem 1 Who can think of a word problem about this diagram? T asks Ps for their contexts. Class chooses one of Ps' contexts or T has one already prepared on BB or SB or OHT. e.g. Jenny weighs 40 kg 500 g (rounded to the nearest 10 g). Sean weighs 4 kg 500 g more than Jenny and Bill weighs 2 kg 500 g less than Jenny. If they all stand on a weighing machine, what would it read? Solve the problem in your Ex. Bks. and show me the answer when I say! . . . Show me . . . now! (123.5 kg) P with correct answer comes to BB to explain their reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. $\begin{aligned} & \text { BB: e.g. J: } 40.5 \mathrm{~kg} \quad \mathrm{~S}: 45 \mathrm{~kg} \quad \text { B: } 38 \mathrm{~kg} \\ & \mathrm{~J}+\mathrm{S}+\mathrm{B}: 40.5 \mathrm{~kg}+45 \mathrm{~kg}+38 \mathrm{~kg}=\underline{123.5 \mathrm{~kg}} \\ & \quad \text { or } \quad 40 \frac{1}{2} \times 3+4 \frac{1}{2}-2 \frac{1}{2}=120+1 \frac{1}{2}+2=123 \frac{1}{2}(\mathrm{~kg}) \end{aligned}$ Answer: The weighing machine would read 123.5 kg .	Whole class activity Drawn on BB or SB or OHT BB: Responses shown in unison on scrap paper or slates. Discussion, reasoning, agreement, self-correction, praising Accept 123 kg 500 g but point out that in the diagram, the missing total is in kg , not kg and g .
3	Problem 2 Ps suggest contexts for each equation, then solve it in their Ex. Bks. If you have an answer, show me . . . now! P answering correctly comes to BB to explain solution. Class checks that the answer makes the statement true. Mistakes discussed and corrected BB: e.g. [operation in square brackets done to each side]	Whole class discussion of context first, then individual work, monitored Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising $\text { c) } \begin{aligned} & 350 \div(30+z)=10 \\ & 30+z=350 \div 10=35 \\ & z=35-30=\underline{5} \\ \text { Ch: } & 350 \div(30+5) \\ & =350 \div 35=10 \boldsymbol{\imath} \end{aligned}$

$B K S$		Lesson Plan 31
Activity 6	Book 5, page 31 Q. 1 Read: Five friends (A, B, C, D and E) said goodbye to each other after a party and shook hands with each other. T chooses 5 Ps to come to front of class to be A, B, C, D and E and to stand around as if at a party. Then they say goodbye to each other and shake hands with each other, and go back to their seats. Read: Complete the diagrams and fill in the answers. a) How many goodbyes were said? b) How many handshakes were there? Elicit that in the table, each square represents a 'goodbye' and in the digram, each line represents a handshake. Why are some squares in the table shaded? (They are not needed, as you don't say goodbye to yourself!) Set a time limit. Review with whole class. Ps come to BB to complete diagrams and explain reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) b) 10 handshakes Reasoning: e.g. a) each of the 5 friends said goodbye to each of the other 4 friends, i.e. $(5 \times 4=\underline{20})$ goodbyes were said, b) the 1 st friend shakes hands with 4 others, the 2 nd friend shakes hands with 3 others (as he has already shaken hands with the 1 st), the 3 rd shakes hands with 2 others, and the 4th shakes hands with 1 other, i.e. $(4+3+2+1=\underline{10})$ handshakes. or each of the 5 friends shakes hands with 4 others, but each handshake involves 2 people, so the number must be halved, i.e. $(5 \times 4 \div 2=20 \div 2=\underline{10})$ handshakes	Notes Whole class introduction In good humour! Make sure that Ps understand the diagrams. Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Extra praise if Ps think of 5×4 a nd $5 \times 4 \div 2$ without prompting from T .
7	Book 5, page 31 Q. 2 Read: Form two 3-digit numbers from the digits 2, 5, 8, 0, 1, 4, so that one of them is the smallest possible and the other is the greatest possible. Calculate their sum and difference. Set a time limit. Review with whole class. Ps come to BB to show calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: Smallest: 102 Sum: Difference: Greatest: 854 $\begin{array}{\|c\|c\|c\|} \hline 8 & 5 & 4 \\ -\quad 1 & 0 & 2 \\ \hline 7 & 5 & 2 \\ \hline \end{array}$	Individual work, monitored, (less able helped) Reasoning, agreement, self-correction, praising Feedback for T Extension for quick Ps: Form two numbers which are the closest possible to each other on the number line. $\begin{aligned} & (204-185=19, \text { or } \\ & 501-482=19) \end{aligned}$

$B K E$		Lesson Plan 32
Activity 7	Book 5, page 32 Q. 1 Read: Solve the problems in your exercise book. Write the answer in a sentence here. Deal with one at a time. Ps read question themselves and solve it under a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. P responding correctly explains at BB to Ps who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. Solutions: a) The farmer harvested 983 kg of wheat. He put the wheat into sacks which held 75 kg each. How many sacks did he need? Plan: $983 \mathrm{~kg} \div 75 \mathrm{~kg}$ Answer: He needs $\underline{14}$ sacks. (13 full sacks and 1 sack holding only 8 kg of wheat) b) If 30 cans of lemonade are packed in 5 boxes, how many boxes should we buy if we need 44 cans of lemonade for a party? Plan: 5 boxes $\rightarrow 30$ cans $\begin{aligned} & 1 \text { box } \rightarrow 30 \div 5=6 \text { (cans) } \\ & 44 \text { cans } \div 6 \text { cans }=7 \text { (times), r } 2 \text { cans } \end{aligned}$ Answer: We should buy $\underline{8}$ boxes (although we will have 4 cans more than we need). c) 3 metres of a certain type of material cost $£ 6.00$. What would be the price of 12 metres of the same material? Plan: $3 \mathrm{~m} \rightarrow £ 6.00$ $\begin{aligned} 1 \mathrm{~m} & \rightarrow £ 6 \div 3=£ 2 \\ 12 \mathrm{~m} & \rightarrow £ 2 \times 12=£ 24 \end{aligned}$ Answer: The price of 12 m of material is $£ 24$.	Notes Individual work, monitored (helped) Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who realise the significance of the remainders in a) and b) or $12 \mathrm{~m}=3 \mathrm{~m} \times 4$, so will cost: $£ 6 \times 4=\underline{£ 24}$ Feedback for T
8	Book 5, page 32 Q. 2 Read: Do the calculations in your exercise book and write the results here. Set a time limit. Review with whole class. Ps come to BB to or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Show details of calculations in column form on BB if problems or disagreement. Solutions: a) $1273-27 \times 19-8=1273-513-8=1273-521=\underline{752}$ b) $(1273-27) \times(19-8)=1246 \times 11=\underline{13706}$ c) $1273-(27 \times 19-8)=1273-(513-8)=1273-505=\underline{768}$ d) $1273-27 \times(19-8)=1273-27 \times 11=1273-297=\underline{976}$ 35 min	Individual work, monitored Written on BB or SB or OHT Differentiation by time limit Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who notice connection between a) and c): In a), the 8 has been subtracted, in c) it has been added, so result is 16 more than result in a).

K	R: Straight lines, half-lines/rays, line segments C: 2-D and 3-D shapes. Using compasses to copy and measure line segments E: Various shapes. Creating shapes	$\begin{gathered} \text { Lesson Plan } \\ 33 \end{gathered}$
Activity 1	Solids Let's look at these solids. T has large models on display at front of class. e.g. Let's talk about this one. (T holds one up.) Who can tell us something about it? Who knows something else about it? T asks questions about any features not mentioned by Ps. [e.g. name of solid, curved or plane surfaces, number and type of faces (plane or curved, name of shape); number of vertice and edges; whether there is a hole through it; convex/ concave, etc] How would you put the solids into sets? Ps suggest how it could be done. Class agrees/disagrees. Who can think of another way to do it? Where possible, Ps find real objects in the classroom which belong in the different sets. Agree that a solid is a shape which has 3-dimensions (length, breadth and height) but is not hollow. e.g. a wooden cube is a solid but a box shaped like a cube on the outside but empty inside is not a solid.	Notes Whole class activity T need not use all the solids shown but make sure that there is a variety of curved and straight edges and plane and curved surfaces. At a good pace Discussion, agreement, praising T uses, and encourages Ps to use, correct mathematical names and terms. e.g. pyramid, cube, sphere, cylinder, cone, polyhedron (shape with many plane faces), prism, etc. Possible sets: plane and curved surfaces; straight and curved edges; vertices and no vertices; has a triangular face and has no triangular face, etc.)
2	Other 3-D shapes a) Ps have strips of coloured paper on desks. T has large strips for demonstration. Let's make 3-D shapes which are not solids by folding your strips of paper in different ways. T can demonstrate a shape first, then Ps make their own shapes. T chooses Ps to show their shapes to the class. e.g. Elicit that these shapes have 3 dimensions (i.e. height, breadth, depth) but they are not solids, as the paper is so thin that we can disregard its thickness. Here is a special shape. T makes 1 twist in a strip of paper and Ps copy. (Use glue or a paper clip to keep the 2 edges together). This shape is called a Möbius strip. How many faces and edges do you think it has? T asks several Ps what they think. Imagine an ant starting at one point and walking all around the surface. Will the ant cross any edges? (No) Agree that this shape has 1 edge and 1 face but is $3-\mathrm{D}$. If we make such a shape with 2 twists, does it make a difference to the number of edges and faces? (Yes, it has 2 edges and 2 faces) b) T has shapes made from wire to show to class. e.g. (not plane) What kind of shapes are these? Are they plane shapes? (No) Are they solids? (No) Agree that they are 3-D shapes but they are not solids.	Individual work in making shapes, followed by whole class discussion Extra praise for unusual shapes Discussion, agreement. praising BB: Möbius strip. 1 edge, 1 face Agreement, praising Or Ps have wire or pipecleaners on desks and make their own shapes. T chooses some Ps to show their shapes to the class. Discussion, agreement, praising

BK		Lesson Plan 33
Activity 3	Plane shapes (2-D) Study these shapes and think how you could put them into groups. Ps suggest labels for sets and might mention e.g.: base set: plane shapes; subsets: curved sides, polygons (i.e. plane shapes with straight sides), quadrilaterals, triangles, shapes with holes, closed or open shapes, line shapes, bounded or unbounded (i.e. endless in a certain direction), etc. Class agrees/disagrees. T points to to certain shapes and asks Ps to say what they know about them. Who agrees/ Who knows something else? etc. For example, Ps might mention: name of shape if known (triangle, crescent, oval, semicircle, quadrilateral, rectangle, square, parallelogram, trapezium, triangle, hexagon); number of sides and vertices; concave or convex, symmetrical or not, parallel or perpendicular lines; angles (right, acute, obtuse); line (stretches to infinity in both directions); line segment (part of a line - begins and ends at certain points, ray (line drawn from a certain point and stretching to infinity in one direction); part of a plane (flat surface), etc.)	Notes Whole class activity Shapes drawn (or stuck) on BB or use enlarged copy master or OHP Involve all Ps in the discussion. Ps explain what they know. Thelps with mathematical names and terms where necessary and writes the more difficult names on the BB. Agreement, praising Accept only those suggested by Ps- there is no need to cover all possibilities. Thelps and corrects. Encourage Ps to use correct mathematical names and terms. Revise properties or meanings of any Ps have forgotten. Praising, encouragement only Feedback for T
4	Drawing and cutting plane shapes Ps have coloured paper and scissors on desks. Ps have 2 minutes to create their own plane shapes by cutting and drawing. T chooses Ps to stand up and describe the shape that they have made. They then show their shape and class points out any errors or omissions in the descriptions. T helps with language. 25 min	Individual work, monitored, helped Whole class review. In good humour! Praising, encouragement only
5	Book 5, page 41 Q. 1 Read: Join up each item to the matching label. Set a time liimit. Review with whole class. Ps come to BB to draw joining lines and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected.	Individual work, monitored Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, selfcorrection, praising Discuss the circle: its border (circumference) is a line but its area is a surface) Feedback for T

BTK	R: Rectangle, square C: Plane shapes, polygons. Right angle. Parallel and perpendicular lines E: Common notation on diagrams	$\begin{gathered} \text { Lesson Plan } \\ 34 \end{gathered}$	
Activity 1	Classifying shapes T shows a a range of various shapes on BB (or their images on an OHP). BB: How could we put them into two groups (i.e. classify them)? Ps suggest criteria and list the two sets accordingly. e.g. - 2-D and 3-D shapes, or plane shapes and solids Ps dictate: 2-D: a, c, e, g, h, j; 3-D: b, d, f, i - curved surface (i) and only plane surfaces (all the rest) - curved side and no curved sides: ($\mathrm{h}, \mathrm{i}, \mathrm{j}$) and (all the rest) Elicit the name of each shape. (square, cube, rectangle, cuboid, rhombus, cuboid, parallelogram, circle, cone, segment of a circle) \qquad 4 min \qquad	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP (or real objects placed on OHP so that only shadows are seen on the screen) (Ps could have copies of copy master on desks.) Discussion, agreement, praising T writes on BB any name Ps cannot remember and revises its properties.	
2	Shapes Which of these shapes are plane shapes? BB: e) T asks several Ps what they think and why. Elicit or tell that: - a plane shape consists of all the points in the same plane inside a closed line, so only b), c) and e) are plane shapes; - a), d) and f) are line shapes, not plane shapes, because they are not an enclosed part of the plane; - g) is not a plane shape because it is 3-dimensional, i.e. it is in more than one plane. It is a solid and its name is a pyramid or a prism. \qquad 7 min \qquad	Whole class activity Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, praising Agree on a definition: A part of a plane bordered by a closed line is called a plane shape.	
3	Lines Let's join up the name cards to the matching diagrams. Ps come to BB to draw joining lines, explaining meaning of the terms (with T's help). Class agrees/disagrees. BB: T elicits meanings and shows short notation on BB. - perpendicular lines form a right angle where they meet (shown by drawing a small square in the angle they make) - parallel lines stay the same perpendicular distance apart, however far they are extended, and will never meet.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace T repeats Ps' explanations in a clearer way if necessary. Agreement, praising Who remembers how to show parallel lines on a diagram? P comes to BB ro draw arrowheads on lines e and f. BB: $d \perp h$ (read as 'line d is perpendicular to line h^{\prime}) $e \\| f$ (read as 'line e is parallel to line f^{\prime})	

D		Lesson Plan 34	
Activity 4		Notes	
	Book 5, page 34		
	Q. 1 Read: List the numbers of the plane shapes which match the descriptions.	Individual work but class kept together throughout.	
	Deal with one part at a time. T chooses a P to read the description, then Ps list numbers in Pbs. Review with whole class.	Drawn on BB or use enlarged copy master or OHP	
	Ps dictate answers to T , explaining reasoning. Class points out errors or missed shapes. Mistakes discussed/corrected.	Discussion, agreement, selfcorrection, praising	
	Tell me the name of any of these shapes that you know. Ps come to BB to point to a shape and name it. Class agrees/	Names of shapes Ps have met already and might remember:	
	disagrees. T reminds Ps of names that they have forgotten. Solution:	1: rhombus (equal sides and opposite sides parallel)	
		2: rectangle (with quadrilateral and triangle cut out of it)	
		5: triangle (acute-angled)	
	a) It is enclosed only by straight lines. (1, 2, 5, 6, 7, 9, 11, 12) b) It is enclosed by straight and curved lines. $(4,10)$	7: deltoid (adjacent sides equal) or concave quadrilateral 8: circle	
	c) It is enlcosed only by curved lines. $(3,8)$	9: pentagon (irregular)	
	d) It is not enclosed. $\quad(13,14)$	11: hexagon (regular)	
	e) It has parallel sides. $(1,2,4,6,9,11,12,14)$	12: trapezium (quadrilateral	
	f) It has perpendicular sides. $(2,9,10,14)$	with only 1 pair of \|	sides)
	g) It has exactly 4 straight sides. $(1,(6), 7,12)$ h) It has exactly 6 vertices.	g) Depending on whether you think of shape 6 as having	
	Elicit that shapes 1, 5, 7, 9, 11 and 12 are also called polygons (i.e. plane shapes bounded by a continuous set of many straight sides) T amends the definition to say that the line segements cannot cross and only 2 can meet at a vertex, so 6 is not a polygon.	4 sides, with 2 of its sides crossing, or whether you think of it as having 6 sides, with 4 sides meeting at a point. Accept both answers.	
	Who remembers what convex and concave mean? If Ps cannot explain clearly, T reminds class.	Extra praise for Ps who can explain without T's help.	
	Imagine the shapes 1 to 12 as being clearings in a forest. Could two people be hidden from each other inside them?		
	If they can, the shapes are concave and if they can't, the shapes are convex. You could imagine a convex shape as being a courtyard with high walls, so there is no place to hide.	Convex: 1, 5, 8, 11, 12 (no hiding places) Concave: $2,3,4,5,7,9,10$	
	T points to each shape in turn and Ps say whether it is concave or convex. If disagreement, Ps come to BB to show where two people could be hidden from each other	(hiding places)	
Extension		Whole class discussion	
	- A plane shape is part of a plane bordered by a closed line, but shapes 2 and 6 are plane shapes and are made up of parts of the plane bordered by straight lines, so we should amend our definition to: A plane shape is a part or parts of a plane bordered by a closed line or lines. - In a wider sense, shapes 13 and 14 are also plane shapes because Shape 13 is bordered by 2 rays which extend endlessly, or to infinity; Shape 14 is bordered by the square on the inside and then extends to infinity in all directions.	Ps might disagree with T and if so, allow them to explain their thinking to class. Who agrees? Who disagrees?	
		Involve several Ps in the debate.	
		BB: infinity: ∞ (Ps might notice that shape 3 is this symbol.)	

K		Lesson Plan 34
Activity 5	Making plane shapes Let's see if you can draw (cut out) the shapes that I describe. T reads the descriptions one at a time, while walking around class closely monitoring Ps work. T chooses Ps to show their shapes to class. (Some might be incorrect, and hopefully class will say what is wrong with them.) a) convex triangle, (quadrilateral, pentagon) b) concave triangle, (quadrilateral, pentagon) [Concave Δ impossible!] c) plane shape with straight sides but not a polygon d) plane shape enclosed not only by straight lines e) a polygon with two sides (Ps laughing - it is impossible!) 25 min	Notes Individual or paired work, monitored, helped Ps have scissors and scrap paper on desks, or Ps use rulers to draw shapes in Ex. Bks. Discussion, agreement, praising BB: a) e.g. b) c) d) e) \qquad
6	Plane shapes a) Triangles T draws different types of triangle on BB , one at a time. After each drawing, T asks Ps if they know what kind of triangle it is, then Ps draw a similar type in Ex. Bks. T gives names if Ps do not remember. BB: e.g. isosceles right-angled equilateral obtuse-angled - What features are common to all the triangles? (3 sides, 3 angles, 3 vertices) - What can you say about the border of a triangle? (Closed straight, broken line in 3 segments) - How many points are inside a triangle (on its border line)? (An endless or infinite number) - Let's label the vertices and sides of the triangles we have drawn. T demonstrates on BB first, then Ps label own triangles. We usually label the vertices with capital letters, starting with A at the bottom LHS and moving anti-clockwise. We usually label sides with lower case letters, with a oppsite vertex A, b opposite vertex B and c opposite vertex C. b) Quadrilaterals Draw different quadrilaterals in your $E x$. Bks. T chooses Ps to draw one of their quadrilaterals on BB and name it if they can. (e.g. irregular, rectangle (opposite sides parallel and adjacent sides perpendicular), parallelogram (opposite sides parallel), rhombus (opposite sides parallel and all sides equal), trapezium (only 1 pair of opposite sides parallel), square (regular rectangle), deltoid (concave or convex quadrilateral with adjacent sides equal) Elicit common features (4 angles, 4 sides, 4 vertices, 2 diagonals) T again shows Ps how to label vertices and sides. (As for triangles, but sides labelled anti-clockwise starting with a as line joining A and B, b as line joining B and C , etc. c) Pentagons Repeat as for b). (5 sides, 5 angles, 5 vertices, 5 diagonals)	Whole class discussion, but individual drawing in Ex. Bks. monitored Drawn on BB or SB or OHT acute-angled: all angles $<90^{\circ}$ isosceles: 2 equal sides right-angled: 1 angle $=90^{\circ}$ equilateral: 3 equal sides (and 3 equal angles) obtuse-angled: 1 angle $>90^{\circ}$ Discussion, agreement, praising BB: Sides join 2 adjacent vertices. Individual work, monitored, then whole class review and discussion Deal only with those drawn by Ps. BB: Diagonals join 2 non-adjacent vertices.

$B K$		Lesson Plan 34
Activity 7	Book 5, page 34 Q. 2 Read: Label the vertices. Write the name of the shape and how many diagonals it has below it. Label the sides of the shapes too and draw the diagonals. Use your rulers! Set a time limit Review with whole class Ps come to BB to label, write and draw. Class agrees/disagrees. Mistakes discussed and corrected. In c), expect only the ablest Ps to give the correct number of diagonals. T helps by drawing a convex hexagon on BB and Ps come to BB to draw the diagonals. Agree that each of the 6 vertices is joined to 5 other vertices, but 2 of the 5 vertices are adjacent, so the joining lines are sides. This leaves joining lines to 3 vertices as diagonals but 2 vertices are needed for each diagonal, so number must be halved. Solution: T ask other questions about the shapes. e.g. - Which of them are convex? ($a, b, d, f)$ - Which of them are symmetrical? (a, e, f) - Which of them has a right angle? (b, c, d*, f) *at A - Which of them has parallel lines? (f) etc. 37 min	Notes Individual work, monitored, (less able Ps helped) Drawn on BB or use enlarged copy master or OHP Discussion reasoning, agreement, self-correction, praising BB: 9 diagonals $\begin{aligned} & 6 \times 3 \div 2=18 \div 2=\underline{9} \\ & \text { or } \frac{6 \times 3}{2}=\frac{18}{2}=\underline{9} \end{aligned}$ Stress that in polygons, lines joining 2 adjacent vertices are sides; lines joining nonadjacent vertices are diagonals. or e) concave quadrilateral Ps can think of questions too! T asks Ps at random. Agreement, correcting, praising Feedback for T
8	Book 5, page 34 Q. 3 Read: a) Write what the labels S and P might mean. b) Draw one more element in each set. c) Fill in the missing words. Allow Ps to work with their neighbour if they wish. Set a time limit. Review with whole class. Deal with one part at a time. Ask several Ps what they wrote (drew). Ps come to BB to draw their extra elements. Class decides whether they belong in the set. A, read your completed sentence. Who agrees? Who wrote something different? Class agrees on correct solution and reads the sentence. Solution: a) $\mathrm{S}=$ \{plane shapes $\}, \mathrm{P}=$ \{polygons $\}$ b) Accept any valid shapes. c) Every polygon is a plane shape but not every plane shape is a polygon. T : We can say that the set of polygons is a subset of the set of plane shapes. 41 min	Individual or paired trial first, monitored (helped) Drawn on BB or use enlarged copy master or OHP: Discussion on the common features of the diagrams in each set Reasoning, agreement, selfcorrection, praising Ps choose a polygon and say what they know about it.
9	Hexagons BB: Which of these diagrams are hexagons? (None) Why not? Ps come to BB to draw correct hexagons.	Whole class activity Drawn on BB or SB or OHT Discussion, reasoning, agreement, praising. Feedback for T

BK	R: Sequences with integers, fractions, decimals. Calculations C: Perimeter of polygons. Perimeter of rectangle and square E: \quad Border line (fence) and surface. Perimeter and area	$\begin{gathered} \text { Lesson Plan } \\ 35 \end{gathered}$
Activity 1	Sequences T says the first few terms of sequence. Ps continue the sequence. If a P makes a mistake, the next P must correct it. Final P gives the rule. a) $1,4,9,16,(25,36,49,64,81,100,121,144,169,196,225, \ldots)$ [Rule: the square numbers in increasing order] b) $150,120,90,(60,30,0,-30,-60,-90,-120,-150, \ldots)$ [Rule: decreasing by 30] c) $2 \frac{1}{5}, 2 \frac{3}{5}, 3,\left(3 \frac{2}{5}, 3 \frac{4}{5}, 4 \frac{1}{5}, 4 \frac{3}{5}, 5,5 \frac{2}{5}, 5 \frac{4}{5}, 6 \frac{1}{5}, 6 \frac{3}{5}, \ldots\right)$ [Rule: increasing by 2 fifths] d) $-0.45,-0.32,-0.19,(-0.06,0.07,0.2,0.33,0.46,0.59, \ldots)$ [Rule: increasing by 0.13]	Notes Whole class activity At speed, in order round class T decides when Ps should stop. Class points out missed errors. In good humour! Praising, encouragement only Feedback for T
2	Plane shapes Ps have set of cut-out shapes on desks. T has larger shapes stuck to BB. I will give you 2 minutes to write the name of each shape on the back of it and think of as many of its properties as you can. List them in your Ex. Bks. if it will help you to remember them. Dicuss it with your neighbour if you wish. Review with whole class. Ps come to BB to choose a shape, name it and say what they know about it. Who agrees? Who thought of something else about it? etc. Class points out errors. e.g. a) triangle (equilateral or regular, 3 vertices, 3 equal sides, 3 equal acute angles, convex, symmetrical) b) trapezium (quadrilateral, 4 vertices, 4 angles -2 acute and 2 obtuse, 4 sides - 1 pair of opposite sides parallel, 2 diagonals, convex) c) rectangle (quadrilateral, parallelogram, 4 vertices, 4 right angles, 4 sides - opposite sides equal and parallel, 2 diagonals, convex, symmetrical) d) triangle (isosceles, 3 vertices, 3 acute angles -2 equal, 3 sides - 2 equal, convex, symmetrical) e) square (quadrilateral, parallelogram, regular rectangle, etc.) f) circle (bordered by 1 curved closed line around a central point.) g) triangle (right-angled - 1 right-angle and 2 acute angles, 3 vertices, 3 sides -2 adjacent sides perpendicular, etc.) Hold up the equilateral triangle. Trace its border line with your finger. Show its surface with your palm. What do we mean by its perimeter? (total length of its sides, or the length of its border line) Measure its sides and calculate its perimeter in your Ex. Bk. Do the same for all the other shapes except the circle. Set a time limit. Review quickly orally with whole class. T holds up shape and Ps dictate its sides and perimeter lengths. Class agrees/disagrees. How can we measure the border line on the circle? Ps (T) suggests: Make a mark on its border, draw a ray from that mark and turn the circle along the ray until the mark meets the ray again. The distance between the two marks is the perimeter. Ps do it in Ex. Bks and tell their results.	Paired trial to start, then whole class activity Cut from coloured paper, or from copy master, enlarged and cut out. BB: b) \qquad c) \square d) \AA e) f) g) Reasoning, agreement. praising Extra praise for clever features such as symmetry. At a good pace Ps could stand to do this. Agreement, praising Ps use rulers, or compasses and rulers, to measure to the nearest mm. Accept approximate lengths. Discussion, agreement

$B K$		Lesson Plan 35
Activity 3	Constructing polygons with straws Ps each have coloured straws of different lengths on desks, with the same length of straw the same colour. e.g. $2 \mathrm{~cm}, 3 \mathrm{~cm}, 3.5 \mathrm{~cm}$ and 4 cm straws. a) i) Make a triangle from the 3 shortest straws. What is its perimeter? (BB: $P=2 \mathrm{~cm}+3 \mathrm{~cm}+3.5 \mathrm{~cm}=\underline{8.5 \mathrm{~cm}}$) ii) Make a triangle from three 3.5 cm straws. What is its perimeter? ($\mathrm{BB}: P=3 \times 3.5 \mathrm{~cm}=10.5 \mathrm{~cm}$) Elicit that it is an equilateral triangle, as it has equal sides. Repeat for other combinations of straws. b) i) Form an open broken line with the 4 different straws. In how many different ways can you order them? (BB: $4 \times 3 \times 2 \times 1=\underline{24}$) ii) Form a closed broken line with the 4 different straws. What shape have you made? (quadrilateral) How many different orders of sides are possible (going in 1 direction)? (6) T shows them on BB , as dictated by Ps. BB: What is the perimeter of each one? BB: $2+3+3.5+4=\underline{12.5}(\mathrm{~cm})$	Notes Individual or paired work in manipulation of straws, tmonitored, then whole class discussion (4 different triangles can be formed) Reasoning, agreement, praising Ps could suggest them. (in one direction) (Ps could show on slates or scrap paper on command.) Discussion, agreement, praising (or T has possibilities already prepared) What did you have to do to make sure that adjacent straws touched each other? (Change the angles at the vertices.)
4	Book 5, page 35 Q. 1 Read: Measure the length of each side of the polygon and calculate the length of its perimeter. Set a time limit. Ps write lengths in $P b s$, do the necessary calculation in Ex. Bks. then write the result in Pbs. Review at BB with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that the perimeter is the total length of all the sides. What can you tell me about the shape? (hexagon, concave, plane shape, polygon, 6 sides, 6 angles 6 vertices) Solution: $\mathrm{AB}=5 \mathrm{~cm}$ $\mathrm{BC}=1.8 \mathrm{~cm}$ $\mathrm{CD}=3 \mathrm{~cm}$ $\mathrm{DE}=2.4 \mathrm{~m}$ $\mathrm{EF}=1 \mathrm{~cm}$ $\mathrm{FA}=2.9 \mathrm{~cm}$ $P=5+3+1+1.8+2.4+2.9=14+2.1=\underline{16.1 \mathrm{~cm}}$	Individual work, monitored, (helped with measuring) Drawn on BB or use enlarged copy master or OHP Ps measure with rulers (or compasses and rulers) in cm or mm Reasoning, agreement, selfcorrection, praising Accept lengths of $\pm 1 \mathrm{~mm}$ on each side. T points to a vertex and Ps say what kind of angle is formed by the two adjacent sides.

$B K E$		Lesson Plan 35
Activity 6	Book 5, page 35 Q. 2 Read: Meaure the sides then calculate the length of each perimeter. Ps write lengths beside relevant sides on diagrams in Pbs , calculate perimeter in Ex.Bks, then write the result in Pbs. Set a time limit. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Who agrees? Who had a different length of perimeter? etc. Accept small differences in lengths but Ps who are obviously wrong find and correct their mistakes (with neighbour's help if necessary). Solution: $P=4 \times 3 \mathrm{~cm}=12 \mathrm{~cm}$ $P=2 \times(1.5 \mathrm{~cm}+3 \mathrm{~cm})$ $=2 \times 4.5 \mathrm{~cm}=9 \mathrm{~cm}$ $P=2 \times(3 \mathrm{~cm}+6 \mathrm{~cm})=2 \times 9 \mathrm{~cm}=\underline{18 \mathrm{~cm}}$ $P=2 \times(1.5 \mathrm{~cm}+5.5 \mathrm{~cm})$ $P=4 \times 1.5 \mathrm{~cm}$ $=2 \times 7 \mathrm{~cm}=14 \mathrm{~cm}$ $=6 \mathrm{~cm}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Ps measure with rulers (or compasses and rulers) to the nearest mm. Differentiation by time limit Reasoning, agreement, selfcorrection, praising Who could write a general plan for the perimeter of a rectangle? Who agrees? Who could wite it another way? T shows short form. BB: Rectangle: $\begin{aligned} & P=2 \times(a+b) \\ & =2 \times a+2 \times b=\underline{\underline{2 a+2 b}} \end{aligned}$ Square: $4 \times a=\underline{4 a}$
7	Book 5, page 35 Q. 3 Read: What length of fence (including the gate) is needed to enclose each of these gardens? Set a time limit. Ps do calculations in Ex. Bks, and write only results in Pbs. Reviewwith whole class. Ps could show perimeters on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) $P=45+40+30$ $=115(\mathrm{~m})$ b) $P=2 \times(42 \mathrm{~m}+23 \mathrm{~m})$ $=2 \times 65 \mathrm{~m}=130 \mathrm{~m}$ c) $P=4 \times 100 \mathrm{~m}$ $=\underline{400 \mathrm{~m}}$	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Extension (or as homework) Ps make scale drawings of the gardens in Ex. Bks. and write the scale they have used above each one.

BKS	R: Mental calculation. Perimeter C: Measurement of area. Comparing units of measure E: Estimation. Calculating area of a rectangle (square)	Lesson Plan 36
Activity 1	Mental practice T says a multiplication or division. Ps say result. e.g. $6 \times 4,9 \times 7,81 \div 9,70 \times 3,400 \div 10,279 \times 0,0 \div 17$ $413 \div 1,355 \div 5,100 \div 4,1000 \div 4,320 \div 0$ (impossible!), etc. Ps can give think of operations too! Class points out errors missed by the next Ps.	Notes Whole class activity At speed in order round class If a P makes a mistake, next P must correct it. Praising, encouragement only! In good humour!
2	Coordinate grid Ps draw axes in Ex. Bks (or have already-prepared grid sheets on desks). a) Mark these points on your grid and then join them up. BB: $\mathrm{A}(1,0), \mathrm{B}(6,0), \mathrm{C}(6,6), \mathrm{D}(1,6)$ What shape have you drawn? (a rectangle) Calculate its perimeter. \mathbf{X}, come and show us your calculation. Who agrees? etc. What is the unit of measure? (grid units) BB: $\quad P=2 \times(5+6)=2 \times 11=\underline{22}$ (grid units) What is the area of the rectangle? Agree on the unit of measure. (grid squares) Elicit that there are 5 rows of 6 grid squares, so $\mathrm{BB}: A=5 \times 6=\underline{30}$ (grid squares) b) Repeat for: $\mathrm{BB}: \mathrm{E}(-8,0), \mathrm{F}(-3,0), \mathrm{G}(-3,5), \mathrm{H}(-8,5)$ Elicit that it is a square with area and perimeter: $\begin{array}{ll} \text { BB: } & P=4 \times 5=\underline{20} \text { (grid units) } \\ & A=5 \times 5=\underline{25} \text { (grid squares) } \end{array}$	Individual work, monitored, then whole class review and discussion. Grid drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising.
3	Book 5, page 36 Q. 1 Read: The floor of a doll's house can be covered by three different shapes of tiles. What is the unt of area used in each case and how many such units are needed? Set a time limit. Review with whole class. Ps dictate to T or come to BB , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Agree that the area of the floor is the same in all 3 cases, but the number of units of area (i.e. tiles) needed changes according to their size. Solution: Unit used: $8 \times 4=32 \mathrm{~cm}^{2}$ Units needed: $5 \times 5=25$ Unit used: $4 \times 4=16 \mathrm{~cm}^{2}$ Units needed: $5 \times 10=50$ Unit used: $10 \times 5=50 \mathrm{~cm}^{2}$ Units needed: $4 \times 4=16$ What are the actual dimensions of the room? Who knows how to work it out? Come and explain. Who agrees? Elicit that: Actual dimensions a: $5 \times 8 \mathrm{~cm}($ or $10 \times 4 \mathrm{~cm}$, or $4 \times 10 \mathrm{~cm})=\underline{40 \mathrm{~cm}}$ b: $5 \times 4 \mathrm{~cm}($ or $4 \times 5 \mathrm{~cm})=20 \mathrm{~cm}$ $P=2 \times(40 \mathrm{~cm}+20 \mathrm{~cm})=2 \times 60 \mathrm{~cm}=\underline{120 \mathrm{~cm}}$ $A=40 \mathrm{~cm} \times 20 \mathrm{~cm}=\underline{800 \mathrm{~cm}^{2}}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Do part a) with whole class first if Ps are unsure what to do. Discussion, reasoning, agreement, self-correcting, praising Whole class discussion Involve several Ps Reasoning, agreement, praising Check: $\begin{aligned} 25 \times 32=50 \times 16 & =16 \times 50 \\ & =\underline{800} \downarrow \end{aligned}$

$B K$		Lesson Plan 36
Activity 4	Perimeter and area 1 Draw a shape following my instructions. Start near the top of the page and close to the LHS. Draw a dot where the grid lines cross. From the dot, move your pencil by the number of units in the direction I say. a) 5 units to the right, 8 units down, 2 units to the left, 3 units up, 3 units to the left and 5 units up. What shape have you drawn? (hexagon) What is its perimeter? Count the units or calculate in your $E x . B k$ and show me . . now! (26 units) P answering correctly explains. BB: $P=5+8+2+3+3+5=26$ (units) What is its area? Show me . . . now! (31 unit squares) P answering correctly explains reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. BB: $A=5 \times 5+3 \times 2=25+6=\underline{31}$ (unit squares) Similarly for: b) 2 right, 2 up, 3 right, 8 down, 3 left, 2 up, 2 left and 4 up $P=26$ units; $A=3 \times 8+2 \times 4=24+8=\underline{32}$ (unit squares) c) 5 right, 3 down, 2 left, 2 down, 2 right, 3 down, 5 left, 3 up, 2 right, 2 up, 2 left and 3 up $P=26+4 \times 2=26+8=\underline{34}$ (units); [P of 5 by 8 rectangle +4$]$ $A=2 \times 3 \times 5+2=30+2=\underline{32}$ (unit squares) 20 min	Notes Whole class aactivity Ps work on sheets of squared paper or in squared Ex. Bks. At a good pace Discussion, agreement on names of shapes and their perimeter and area. Discuss alternative ways to calculate the areas, e.g. a) $\begin{aligned} A & =5 \times 8-3 \times 3 \\ & =40-9=\underline{31} \end{aligned}$ Ps draw on BB or T has shapes already prepared: a) b) c) octagon
5	Perimeter and area 2 In your Ex. Bks, draw different rectangles which have: a) area 16 unit squares and calculate their perimeters. Set a time limit. BB: 16 Review with whole class. Ps come to BB $P=2 \times(16+1)=2 \times 17=\underline{34} \text { (units) }$ or dictate to T. Elicit that possible side lengths are factor pairs of 16, and $P=2 \times(8+2)=2 \times 10=\underline{20} \text { (units) }$ that the rectangle with the shortest perimeter is the most regular, i.e. a square. b) perimeter 16 units BB: and calculate their areas. \square $1 \quad A=7 \times 1=\underline{7}$ (units squares) Repeat as with a). $2 A=6 \times 2=\underline{12}$ (units squares) Elicit that the \square $A=6 \times 2=\underline{12} \text { (units squares) }$ rectangle with the greatest area is the $A=5 \times 3=\underline{15} \text { (units squares) }$ most regular, i.e. a square. $A=4 \times 4=\underline{16} \text { (unit squares) }$	Individual work, monitored, helped Thas square grid drawn on BB or SB or OHT Discussion, reasoning, agreement, self-correcting, praising Involve as many Ps as possible in the review and discussion. Elicit the general rules for perimeter and area of a rectangle and square: BB: Rectangle: $P=2 \times(a+b)$ $A=a \times b$ Square: $\begin{aligned} & P=4 \times a \\ & A=a \times a \end{aligned}$

BK5		Lesson Plan 36
Activity 6	Book 5, page 36 Q. 2 Read: How does the area of a polygon change if each side is enlarged by the same number of times? (In each part, the shaded shape is 1 unit.) Ps list the number of units of area in each enlargement beside each diagram in Pbs or in Ex. Bks. if they need more space. Set a time limit or deal with one part at a time if class is not very able. Review with whole class. Ps come to BB to nameeach shape and say by how many times its sides and area have been enlarged. Who agrees? Who thinks something else? etc. Solution: a) $1,4,9,16,25,36, \ldots$ b) c) $1,4,9,16,25, \ldots$ e) d) $1,4,9,16,25, \ldots$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Discuss the unit of area to be used compared with grid unit. Reasoning, agreement, selfcorrection, praising What do you notice? (The sequences formed in all cases are the square numbers.) In e), elicit that if the unit of area used is the grid unit, the sequence of enlargement is: $6,24,54, \ldots \quad(\text { i.e. } \times 6)$ Extra praise if Ps can generalise their findings. e.g. 'If the sides of a polygon are increased by n times, its area is increased by $n \times n$ times. but do not expect this!
7	Book 5, page 36 Q. 3 Read: Count or calculate the areas of these polygons and write them in your exercise book. What units of area will you use? (grid squares or grid triangles) Set a time limit. Remind Ps that half units can be counted too. Review with whole class. Ps come to BB to write areas and explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. T shows how difficult shapes can be broken up into smaller shapes which are halves of rectangles or squares and the areas Solution: added together. Unit of area: grid squares Unit of area: grid triangles If we use 2 grid triangles as the unit of measure, i.e. a diamond, what are the areas of shapes L to P ? T points to each shape in turn and Ps shout out the number of units of area.	Individual work, monitored, G to K helped (or done with whole class) Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising A to C using calculation: A: $2 \times 3=\underline{6}$ B: $2 \times 3 \frac{1}{2}=6+1=\underline{7}$ $\text { C } \begin{array}{rl} \mathrm{C} & 2 \times 3+5 \times \frac{1}{2}+\frac{1}{4} \\ & =6+2 \frac{1}{2}+\frac{1}{4}=8 \frac{3}{4} \end{array}$ (Dashed lines in diagram show how shapes G to K can be broken up.) BB: Unit of area: In unison. Praising

BKK		Lesson Plan 36
Activity 8	Standard units of area What is the area of a square with sides 1 cm long? (1 cm square, or 1 square cm) How do we write it mathematically? P comes to BB. Class agrees/disagrees. ($\mathrm{BB}: 1 \mathrm{~cm} \times 1 \mathrm{~cm}=\underline{\mathrm{cm}^{2}}$) What is the area of a square with sides 1 mm long? P comes to BB . How many mm^{2} are equal to $1 \mathrm{~cm}^{2}$? Let's write it on the BB. Ps dictate what T should write. BB: $1 \mathrm{~cm}^{2}=10 \times 10 \mathrm{~mm}^{2}=\underline{100} \mathrm{~mm}^{2}$ What is the area of a square with sides 1 m ? ($1 \mathrm{~m}^{2}$) How many $\mathrm{cm}^{2}\left(\mathrm{~mm}^{2}\right)$ are equal to $1 \mathrm{~m}^{2}$? Ps dictate what T should write. BB: $1 \mathrm{~m}^{2}=100 \times 100 \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$ (10 thousand: 4 zeros) $1 \mathrm{~m}^{2}=1000 \times 1000 \mathrm{~mm}^{2}=1000000 \mathrm{~mm}^{2}$ (1 million: 6 zeros)) What is the area of a square with sides 1 km long? $\left(1 \mathrm{~km}^{2}\right)$ How many m^{2} are equal to $1 \mathrm{~km}^{2}$? Ps come to BB or dictate what T should write. BB: $1 \mathrm{~km}^{2}=1000 \times 1000 \mathrm{~m}^{2}=\underline{1000000 \mathrm{~m}^{2}}$ Let's practise using these standard units of area. a) T says the lengths of 2 sides of a rectangle. Ps calculate its area mentally or in Ex. Bks and show on command (or dictate to T), giving the unit of area too. Show details of calculations on BB if problems. i) $a=15 \mathrm{~cm}, b=21 \mathrm{~cm} \quad\left[A=15 \mathrm{~cm} \times 21 \mathrm{~cm}=315 \mathrm{~cm}^{2}\right]$ ii) $a=30 \mathrm{~cm}, b=21 \mathrm{~cm}$ $\left[A=30 \mathrm{~cm} \times 21 \mathrm{~cm}=630 \mathrm{~cm}^{2}\right]$ iii) $a=30 \mathrm{~cm}, b=42 \mathrm{~cm}$ $\left[A=30 \mathrm{~cm} \times 42 \mathrm{~cm}=1260 \mathrm{~cm}^{2}\right]$ b) How long is the other side of a rectangle if one side is 70 cm and its area is $3500 \mathrm{~cm}^{2}$? P comes to BB or dictate what T should write. Class agrees/disagrees. BB: $a=70 \mathrm{~cm}, A=3500 \mathrm{~cm}^{2}$ $b=3500 \mathrm{~cm}^{2} \div 70 \mathrm{~cm}=350 \mathrm{~cm}^{2} \div 7 \mathrm{~cm}=\underline{50 \mathrm{~cm}}$	Notes Whole class acitivy $\begin{aligned} & \text { BB: } 1 \mathrm{~cm} \lcm{1 \mathrm{~cm}^{2}} \\ & 1 \mathrm{~cm} \\ & \square 1 \mathrm{~mm} \times 1 \mathrm{~mm}=1 \mathrm{~mm}^{2} \end{aligned}$ T asks Ps to think of 10 rows of 10 mm squares. Elicit that area of each row is $10 \mathrm{~mm}^{2}$. Ask Ps to think of - 100 rows of 100 cm squares - 1000 rows of 1000 mm squares [T might tell Ps of other units of area used in some countries: 1 are $=10 \times 10 \mathrm{~m}^{2}=\underline{100 \mathrm{~m}^{2}}$ 1 hectare $=100 \times 100 \mathrm{~m}^{2}$ $=\underline{10000 \mathrm{~m}^{2}}$ Individual work, monitored, reviewed, or continue as whole class activity At a good pace Responses shown on scrap paper or slates in unison. Discussion, reasoning, agreement, self-correction, praising Ps write operation in Ex. Bks.
9	Book 5, page 36, Q. 4 Read: The area of this shape is i) more than what ii) less than what? How can we work it out? Give Ps a minute to think about it, and if no P has thought of a strategy, T gives hints. Draw the biggest polygons possible inside and outside the shape and count their areas. Ps come to BB to draw the polygons (with T's help) and rest of class work in Pbs too. Agree on the two areas (in grid squares). What should we do now? (Write an inequality) Ps come to BB or dictate to T. BB: Class agrees/disagrees. BB: 22 grid squares $<A<42$ grid squares How could we get closer to the exact area? (Make the grid more dense, e.g. draw grid lines at every mm.) 45 min \qquad	Whole class activity (or individual trial if Ps wish) Drawn on BB or use enlarged copy master or OHP Allow Ps to suggest strategies first. Discussion, reasoning, agreement, praising Extra praise if Ps think of drawing polygons without prompting from T . T suggests this strategy if no P does so and asks Ps what they think of it.

BK5	R: Area, perimeter C: Nets: surface area of cubes and cuboids E: Polyhedrons and other solids	$\begin{gathered} \text { Lesson Plan } \\ 37 \end{gathered}$
Activity 1	Mental relay practice T says a 3-term multiplication. P says result and gives another 3-term multiplication to next P. e.g. $1 \times 2 \times 2,4 \times 3 \times 5,6 \times 3 \times 3,9 \times 20 \times 2,10 \times 4 \times 6, \text { etc. }$ Class points out errors. (Multiplications can be done in easiest order.) 3 min	Notes Whole class activity At speed, in order round class. In good humour! Praising, encouragement only
2	Area and perimeter What do these diagrams suggest to you? (perimeter or area) Ps come to BB to point to a shape, name it, say whether perimeter or area is shown and write an appropriate operation using the given letters. Other Ps help if necessary. BB: squares Perimeter Area Perimeter $P=4 \times a$ $P=2 \times(a+b)$ $A=a \times a$ $A=a \times b$ Agree that we have not yet learned how to find the area of a deltoid without the help of a grid, but we will learn it another time. \qquad 5 min \qquad	Whole class activity Drawn on BB or SB or OHT At a good pace Discussion, agreement, praising Elicit that a deltoid is a quadrilateral with 2 pairs of adjacent sides equal. It is not a rectangle, so we cannot use the equation: $A=a \times b$
3	Solids T has a demonstration set of various solids on desk (including at least 1 cube and 2 other different types of cuboid, one with a square base) a) \mathbf{A}, come and choose the solids which have only plane faces. Is \mathbf{A} correct? Who remembers the name we give a solid with many plane faces? (polyhedron) T tells class that 'poly' means 'many' and 'hedron' means 'plane faces'. What other word that you know begins with poly? (polygon, a plane shape with many straight sides) \mathbf{B}, come and choose the polyhedrons which have rectangular faces. Is \mathbf{B} correct? Who remembers what we call such solids? (cuboids) C, come and choose a cuboid which has both square and rectangular faces. We call this a square-based cuboid. D, come and choose a cuboid which has only square faces. What do we call it? (a cube) b) Let's show these 3 types of cuboid in a Venn diagram. Ps dictate what T should draw. Let's check it is correct. Agree that every cube is a cuboid, but not every cuboid is a cube. c) Eveyone hold up a cuboid. Show me one of its faces with your hand. How many faces does it have? (6 faces) P comes to BB to label a face on one of the diagrams. Repeat for edges (12) and vertices (8). BB: cuboid Cuboids cube 6 faces 12 edges 8 vertices 10 min	Whole class activity Ps have a smaller version of T's set on desks too, or at least have models of the 3 cuboids. Agree that a plane face is a flat surface. BB: polyhedron Agreement, praising T has axiomatic diagrams already prepared on BB or SB or OHT and uncovers each cuboid as it is identified, adding its name too. BB: Demonstration, agreement, praising T could also show a frame model of a cuboid and Ps come to front of class to identify the components.

BKS		Lesson Plan 37
Activity 5	(Continued) b) Read: In your exercise book, draw a net for each of these cuboids, then calculate the area of each face and its total surface area. Write the surface area here. Deal with one at a time. Set a time limit. Review with whole class. T has grids already prepared. T chooses 2 Ps to come to BB to draw their (different) nets. Who drew another one? Come and show us. Class decides whether nets are correct. What is the surface area of the cube (cuboid)? Show me . . . now! Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: i) $\begin{aligned} A & =6 \times 4 \\ & =\underline{24} \text { (grid squares) } \end{aligned}$ ii) $\begin{aligned} A & =2 \times 4+4 \times 8 \\ & =8+32 \\ & =\underline{40} \text { (grid squares) } \end{aligned}$	Notes T could have models already made up to show to class. Grids drawn on BB or use enlarged copy master or OHP (Less able Ps could use copy master instead of Ex. Bks.) Or to save time, T could have some nets already prepared and ask who drew them. T helps with labelling vertices on the nets Discussion, reasoning, agreement, self-correction, praising Extra praise for unexpected but correct nets.
6	Book 5, page 37 Q. 2 Read: In your exercise book, draw 3 different nets for a cube of side 2 units. Try to think of 3 nets which are different from the net that you drew in Q.1b. Try it out roughly on scrap paper first. Set a time limit of 3 minutes. Review with whole class. T has 3 nets already prepared on BB . T points to each in turn and asks who drew it. Who drew a net which is different from these? Come and draw it for us. Class decides whether it is correct. Solution: e.g. 35 min	Individual work, monitored, helped Less able Ps could use grid sheets from copy master in LP 37/5. Agreement, self-correction, praising (If disagreement, check nets by drawing on grids, cutting out and folding to see if they form cubes.)

R		Lesson Plan 37
Activity 7 Extension	Book 5, page 37 Q. 3 Read: Calculate the surface area of each cuboid if a, b and c are the lengths of its edges. T helps by showing a diagram and net (see copy master) on BB and labelling them with a, b and c. Set a time limit. Review with whole class. Ps come to BB to write operations and explain reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. Solution: a) $\begin{aligned} a & =5 \mathrm{~cm}, b=10 \mathrm{~cm}, c=3 \mathrm{~cm} \\ A & =5 \times 10 \times 2+5 \times 3 \times 2+10 \times 3 \times 2 \\ & =100+30+60=\underline{190}\left(\mathrm{~cm}^{2}\right), \underline{\text { or }} \\ A & =2 \times(5 \times 10+5 \times 3+10 \times 3) \\ & =2 \times(50+15+30)=2 \times 95=\underline{190}\left(\mathrm{~cm}^{2}\right) \end{aligned}$ b) $\begin{aligned} a & =8 \mathrm{~m}, b=7 \mathrm{~m}, c=10 \mathrm{~m} \\ A & =2 \times(8 \times 7+8 \times 10+7 \times 10) \\ & =2 \times(56+80+70)=2 \times 206=\underline{412}\left(\mathrm{~m}^{2}\right) \end{aligned}$ c) $\begin{aligned} a & =1 \mathrm{~m}, b=1 \mathrm{~m}, c=7 \mathrm{~m} 50 \mathrm{~cm} \\ A & =2 \times(1 \times 1+1 \times 7.5+1 \times 7.5) \\ & =2 \times(1+7.5+7.5)=2 \times 16=\underline{32}\left(\mathrm{~m}^{2}\right) \end{aligned}$ Who could write for the general rule for the surface area of any cuboid, using only letters? Ps come to BB or dictate to T . $\text { BB: } \mathrm{A}=2 \times(a \times b+a \times c+b \times c)$	Notes Individual work, monitored, helped BB: Discussion, reasoning, agreement, self-correction, praising Discuss what the cuboids could be in real life. e.g. a) a box b) a building c) a pillar Whole class activity T could show short form: $\mathrm{BB}: A=2(a b+a c+b c)$
8 Extension	Book 5, page 37, Q. 4 Read: How many unit cubes are needed to build these cubes? Ps could show on slates or scrap paper on command. Ps come to BB to explain on diagrams (or on model). Elicit/tell that the number of unit cubes is the volume of the cube, i.e. the amount of space it takes up. What is the surface area of each cube? Ps come to BB or dictate to T, explaining reasoning. (If nobody knows, T gives hints: What is the area of each face? How many faces does it have?) Solution: a) 8 unit cubes b) 27 unit cubes $A=6 \times 2 \times 2=\underline{24} \text { unit squares }$ $A=6 \times 3 \times 3=\underline{54}$ unit squares Let's compare the surface area of a) with 8 separate unit cubes and that of b) with 27 separate unit cubes. BB: 1 unit cube: $A=6 \times(1 \times 1)=\underline{6}$ (unit squares) a) 8 unit cubes: $A=8 \times 6=48$ unit squares >24 unit squares $(\times 2)$ b) 27 unit cubes: $A=27 \times 6=162$ unit squares >54 unit squares $(\times 3)$	Whole class activity Drawn on BB or use enlarged copy master or OHP If possible, T has real models made from multi-link cubes. $B B$: volume unit of volume: unit cube (Ps could do calculations in Ex. Bks. first before coming to BB.) Discussion, reasoning, agreement, (self-correction) praising Ps dictate what T should write. Agreement, praising (Or done as homework if there is not enough time.)

BKS	R: Parallel, perpendicular lines. Calculations C: \quad Shapes (1-D, 2-D). Right angles E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 38 \end{gathered}$
Activity		Notes
	Surface area 1	Whole class activity
	Use Cuisennaire rods if T and Ps have them, otherwise T has already prepared strips made from multi-link 1 cm cubes. Let's calculate the area of the Cuisennaire rods (plastic strips).	T has models and also diagram drawn on BB (or use enlarged copy master or OHP)
	Ps measure own rods or strips (1 cm to 10 cm) and dicate lengths to T, or Ps come to T's desk to measure T's rods (strips) and tell class the lengths. Ps dictate calculations for the surface areas (or come to BB to write some). Class points out errors. What do you notice?	If Ps have multilink cubes on desks, they make each strip it is dealt with.
	BB: (Surface areas form a	At a good pace
	$A=6 \times 1 \mathrm{~cm}^{2}=6 \mathrm{~cm}^{2}$ sequence, increasing $A^{A}=2 \times 1 \mathrm{~cm}^{2}+4 \times 2 \mathrm{~cm}^{2}=2 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2}=10 \mathrm{~cm}^{2}$ by $\left.4 \mathrm{~cm}^{2}\right)$	Involve as many Ps as possible.
		Reasoning, agreement, praising, encouragement only
	$12 A=2 \times 1 \mathrm{~cm}^{2}+4 \times 12 \mathrm{~cm}^{2}=2 \mathrm{~cm}^{2}+48 \mathrm{~cm}^{2}=50 \mathrm{~cm}^{2}$ $16 A=2 \times 1 \mathrm{~cm}^{2}+4 \times 16 \mathrm{~cm}^{2}=2 \mathrm{~cm}^{2}+64 \mathrm{~cm}^{2}=\underline{66 \mathrm{~cm}^{2}}$	(Surface areas of 12 cm and 16 cm rod added to diagram later - see opposite and below)
	What do you think the surface area of a $12 \mathrm{~cm}(16 \mathrm{~cm})$ rod (strip) would be? Show me . . . now! ($50 \mathrm{~cm}^{2}, 66 \mathrm{~cm}^{2}$)	Allow Ps time to think about it In unison, on scrap paper/slates
	Ps answering correctly explain how they worked it out. (12 cm rod: $42 \mathrm{~cm}^{2}+2 \times 4 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2}=\underline{50 \mathrm{~cm}^{2}}$) (16 cm rod: $50 \mathrm{~cm}^{2}+4 \times 4 \mathrm{~cm}^{2}=50 \mathrm{~cm}^{2}+16 \mathrm{~cm}^{2}=66 \mathrm{~cm}^{2}$)	Reasoning, agreement, praising (as 11, 13, 14, 15 cm terms have been missed out)
	Let's check by doing the calculations for surface area. Ps dictate operations and T writes beside 12 and 16 cm strips in diagram on BB .	Agreement, praising
Extension	T lays the 1 cm to 10 cm rods one on top of the other, (or sticks the multilink strips together) as in the top part of the diagram.	Whole class activity
	What shape have I made? (polyhedron) Elicit that a polyhedron is a solid with many plane faces.	Ps make the polyhedron too if they have the rods/strips on desks.
	- How many cm cubes are in this polyhedron? Ps dictate the addition. BB: $1+2+3+4+5+6+7+8+9+10=5 \times 11=\underline{55}$	T points out easy way to calculate if no P remembers.
	- What is its surface area? Ps suggest how to work it out. T gives hints if necessary. (55 on front, 55 on back, 10 on bottom, 10 on LHS, 10 on tops of steps and 10 on fronts of steps on RHS) i.e.	$1+10=2+9=\ldots=11$ Number of faces, edges, etc. is difficult, so T should help.
	- How many faces, edges and vertices does it have? (f: 24, e: $66, \mathrm{v}: 44$)	To Ts only: (as a check) Euler's formula: $f+v-e=2$
2	Surface area 2	Whole class activity
	Let's calculate the surface area of this polyhedron made from 7 cm rods (or strips of seven 1 cm multilink cubes). T shows model and also a diagram on BB or OHT. Discuss the best way to do the calculation.	Drawn on BB or SB or OHT If possible, Ps build shape on desks with rods or cubes.
	BB: If no P suggests method below, T gives hints. 1 rod: $A=2+4 \times 7=2+28=\underline{30}\left(\mathrm{~cm}^{2}\right)$ Polyhedron: $A=4 \times 30-3 \times 2=120-6=\underline{114}\left(\mathrm{~cm}^{2}\right)$	Discussion involving several Ps, reasoning, agreement, praising
	[As there are $\left(1 \mathrm{~cm}^{2}+1 \mathrm{~cm}^{2}\right)$ hidden 3 times.]	Extra praise if Ps think of this idea without help from T.

$B K$		Lesson Plan 38
Activity 4	Book 5, page 38 Q. 1 Read: Calculate the surface area of these cuboids. Deal with one part at a time under a time limit. Ps write operation and calculate the result in Pbs. Remember to write the unit too! Review with whole class. Ps come to BB to show their solution, explaining reasoning. Who agrees? Who wrote something else? etc. If disagreement, allow Ps to check with a calculator. Mistakes discussed and corrected. Solution: a) b) c) cm $\begin{aligned} A & =6 \times(11 \times 11) \\ & =6 \times 121=\underline{726\left(\mathrm{~m}^{2}\right)} \end{aligned}$ $\begin{aligned} A & =2 \times(12 \times 12)+4 \times(12 \times 25) \\ & =2 \times 144+4 \times 300 \\ & =288+1200=\underline{1488\left(\mathrm{~cm}^{2}\right)} \end{aligned}$ (square-based cuboid) $\begin{aligned} A & =2 \times(45 \times 20+45 \times 110+20 \times 110) \\ & =2 \times(900+4950+2200) \\ & =1800+9900+4400 \end{aligned}=\frac{16100\left(\mathrm{~cm}^{2}\right)}{\left.1 \mathrm{~m}^{2} 6100 \mathrm{~cm}^{2}\right)} \text { (= }$	Notes Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Difficult interim calculations can be done in Ex.Bks. Discussion, reasoning, agreement, self-correction, praising Show details on side of BB if problems, e.g. BB: $\begin{array}{r} 25 \\ \times 12 \\ \hline 50 \\ 250 \\ \hline 300 \\ \hline \end{array}$ $\begin{array}{r} 45 \\ \times 110 \\ \hline 450 \\ \hline 4500 \\ \hline 4950 \\ \hline 4200 \\ \times 200 \\ \hline \end{array} \begin{array}{r} 1800 \\ 9900 \\ +4400 \\ \hline \end{array} \begin{array}{r} 16100 \\ 2 \end{array}$ As $10000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}$
5	Book 5, page 38 Q. 2 Read: Calculate the surface area of these solids in your exercise book. Write the answers here. How many unit cubes is each of them made from? This is its volume. Agree that the unit of area is unit squares and the unit of volume is unit cubes. Ps count the squares on the visible faces to determine the dimensions of the cuboids. Set a time limit or deal with one at a time if class is not very able. Review with whole class. Ps could show areas and volumes on command. Ps answering correctly come to BB to explain reasoning. Class agrees/ disagrees. Mistakes discussed/corrected. Compare the surface areas and volumes. What do you notice? Solution: a) $A=\underline{72}$ square units $V=36$ unit cubes Reasoning: e.g. a) $A=2 \times(6 \times 2+3 \times 2+6 \times 3)$ $\begin{aligned} & =2 \times(12+6+18) \\ & =2 \times 36=\underline{72}\left(\text { unit }^{2}\right) \end{aligned}$ b) $\mathrm{A}=72-3+3=\underline{72}$ (unit squares) c) $A=72-8+6=72-2=\underline{70}$ (unit squares)	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Thas large models already made up for demonstration. Discussion, reasoning, agreement, self-correcting, praising [b) is 1 cube less than a) but its surface area is the same because the 3 newly exposed squares take the place of the 3 original squares lost] Extra praise if Ps notice that: b) 3 unit squares lost, 3 gained c) 8 unit squares lost, 6 gained

BK		Lesson Plan 38
Activity 6	Book 5, page 38 Q. 3 Read: A box is shaped like a cuboid but is open at the top. Inside, it is 1.4 m long, 1 m wide and 80 cm high. What is its inner surface area? Ps can draw a diagram in Ex. Bks or on scrap paper to help them. Set a time limit. Review with whole class. Ps could show result on scrap paper or slates on command. Ps answering correctly explain at BB to to those who were wrong. Class agrees/disagrees. Ps can check with a calculator. Mistakes discussed and corrected. Solution: $\begin{aligned} & 1.4 \mathrm{~m}=140 \mathrm{~cm}, 1 \mathrm{~m}=100 \mathrm{~cm} \\ & \begin{aligned} A & =(140 \times 100)+2 \times(140 \times 80)+2 \times(100 \times 80) \\ & =14000+2 \times 11200+2 \times 8000) \\ & =14000+22400+16000 \\ & =52400\left(\mathrm{~cm}^{2}\right) \\ & {\left[=5 \mathrm{~m}^{2} 2400 \mathrm{~cm}^{2}\right] \quad\left(\text { as } 10000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}\right) } \end{aligned} \end{aligned}$ Answer: Its inner surface area is $52400 \mathrm{~cm}^{2}$.	Notes Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising BB: e.g. $\begin{aligned} & 140 \times 80=1400 \times 8 \\ & \\ & \begin{array}{r} 1400 \\ \times 8 \\ \times 2400 \\ \frac{1200}{3} \end{array} \\ & \frac{16000}{1} \\ & \frac{52400}{1} \end{aligned}$
7	Book 5, page 38, Q. 4 Read: Calculate the surface area of a small box which has these measurements. $a=5 \mathrm{~cm}, b=17 \mathrm{~mm}, c=4 \mathrm{~cm} 3 \mathrm{~mm}$ What should we do first? (Draw a digram.) Ps come to BB to draw cuboid and write the lengths beside the relevant edges. BB: Now what should we do? (Convert the lengths to the same unit.) Ps come to BB or dictate to T. Now let's calculate the area. Ps come to BB to write operations, doing necesssary calculations at side of BB . Class agrees/disagrees. $\begin{aligned} \text { BB: } A & =2 \times(50 \times 17+50 \times 43+17 \times 43) \\ & =2 \times(850+2150+731) \quad \text { Elicit that: } 100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2} \\ & =2 \times 3731 \quad \swarrow \\ & \left.=\underline{7462\left(\mathrm{~mm}^{2}\right.}\right)\left[=74 \mathrm{~cm}^{2} 62 \mathrm{~mm}^{2}=74.62 \mathrm{~cm}^{2}\right] \end{aligned}$ Who could write the general rule (formula) for the area of the surface of a cuboid (cube)? Ps come to BB to try it with help of class and T. BB: Area of a cuboid $=2 \times(a \times b+a \times c+b \times c)[=2(a b+a c+b c)]$ Area of a cube $=6 \times a \times a\left[=6 a^{2}\right] \quad$ T could show short forms. 45 min	Whole class activity (or individual work if Ps wish, with calculation finished at home if time runs out) At a good pace Discussion, reasoning, checking, agreement, praising (Other Ps check calculations with calculators.) Praising, encouragement only Have no expectations!

BK	R: Mental calculation. Divisibility. Nets and area C: Building cuboids from unit cubes (and Cuisennaire rods) E: Volume of cuboids(square-based cuboids, cubes)	$\begin{gathered} \text { Lesson Plan } \\ 39 \end{gathered}$
Activity 1	Nets Thas nets drawn on BB and Ps have cut-out nets on desks if possible. Which nets can cover a cuboid exactly? Deal with one row at a time. T asks one or two Ps to say which nets they think will not cover a cuboid then class folds their nets to confirm (or Ps coming to front of class to fold large nets). What can you tell me about the cuboid the nets make? a) i) Elicit that they form a cube. If the length of each edge is 3 cm , what is its surface area? $A=6 \times 3 \times 3=6 \times 9=\underline{54}\left(\mathrm{~cm}^{2}\right)$ b) i) ii) iv) Elicit that they form a cuboid. Let's colour the opposite faces in the same colour. Ps colour own nets and/or come to BB to colour diagrams. c) i) ii) iii) iv) Elicit that they form a square-based cuboid. If $a=3 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$, what is the area of the net? Ps dictate to T. BB: $\begin{aligned} A=2 \times(3 \times 3)+4 \times(3 \times 1) & =2 \times 9+4 \times 3 \\ & =18+12=\underline{30}\left(\mathrm{~cm}^{2}\right) \end{aligned}$ d) Everyone stand up! i) Show me $1 \mathrm{~cm}^{2}$ in the air. What is the length of each side? $(1 \mathrm{~cm})$ ii) Draw the outline of a square with 1 m long sides in the air. T watches out for Ps who are obviously wrong and helps them. (T could have a metre stick to compare against.) What is the area of your square? $\left(1 \mathrm{~m}^{2}\right)$	Notes Whole class activity, but paired work in folding and checking the nets. Drawn on BB or use enlarged copy master or OHP Ps have nets cut from copy master (1 set per pair of Ps) and T has enlarged versions for demonstration. Set a time limit at each stage. Discussion, predicting, checking, confirming, reasoning, agreement (Helps Ps to visualise the nets folded.) If Ps are able, elicit the general rule (formula) for the surface area of a square-based cuboid. BB: $\begin{gathered} A=2 \times(a \times a)+4 \times(a \times b) \\ {\left[=2 a^{2}+4 a b\right] \quad(\mathrm{T} \text { shows. })} \end{gathered}$ Whole class activity In good humour! If possible T should have both models to show to class to give Ps a better idea of their sizes.
2	Missing words a) Which words do you think are covered up? T asks several Ps what they think. Ps come to BB to uncover the words and then class reads complete sentence in unison, stressing the words which were covered. BB: i) A cuboid is a part of space which is enclosed by rectangles. ii) The surface area of a polyhedron is the sum of the area of its faces. iii) A solid occupies part of space. b) This enclosed part of space is measured by volume (or capacity). I heard this statement the other day. 'The cost of heating a room depends on how many cubic metres of air are in the room.' What do you think a cubic metre is? (That part of space which is taken up by a cube with 1 m long edges.) We write it like this. $\mathrm{BB}: 1$ cubic metre $=1 \mathrm{~m}^{3} \mathrm{~T}$ shows class a cube with sides 1 m .	Whole class activity Written on BB or SB or OHT Agreement, praising Underlined words should be covered up (or omitted) BB: volume (how much space something takes up) capacity (how much space something contains)

		Lesson Plan 39
Activity 2	(Continued) c) Here is a 1 cm unit cube. What is the length of each edge? $(1 \mathrm{~cm})$ What is the area of each of its faces? $\left(1 \mathrm{~cm}^{2}\right)$ What is its volume? (1 cubic cm) Who can write it? (BB: $1 \mathrm{~cm}^{3}$) 11 min	Notes Ps should have 1 cm unit cubes on desks too (or white Cuisennaire rods) Have no expectations - extra praise if a P writes it correctly.
3	Building cuboids Ps have multi-link cubes (or Cuisennaire rods) on desks (24 cubes per pair of Ps) and Thas larger version for demonstration. a) Build a cuboid which is 4 cm long, 3 cm wide and 2 cm high. BB: $4 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$ Allow a couple of minutes, then ask Ps how they did it. e.g. 4 cubes in a row 3 rows in a layer 2 layers How many unit cubes did you use? $(4 \times 3 \times 2=\underline{24})$ T: We say that the volume of this cuboid is 24 cubic centimetres and write it like this. BB: $V=24 \mathrm{~cm}^{3}$ What is its surface area? Ps dictate what T should write. $\text { BB: } \begin{aligned} A=2 \times(4 \times 3+4 \times 2+3 \times 2) & =2 \times(12+8+6) \\ & \left.=2 \times 26=\underline{52\left(\mathrm{~cm}^{2}\right.}\right) \end{aligned}$ b) Build a different cuboid using unit cubes (or cuisennaire rods). Allow a couple of minutes, then T asks some Ps to hold up their cuboids and tell class their dimensions, volume and surface area. (Accept 'unit squares' or 'unit cubes' from Ps as the units of measure.)	Individual or paired work, monitored, helped (T could have a lidded box prepared so that the cuboid will fit inside it exactly to show the similarity between volume and capacity.) Agreement, praising At a good pace Reasoning, agreement, praising Choose cuboids of different types and sizes. (with help of other Ps and T)
4	Volume and capacity 1 T has a transparent plastic or glass cube with 10 cm edges and open at the top (or the frame of such a cube). Let's find out how many of these 1 cm cubes are needed to fill this cube (frame). T holds up a 1 cm cube. If this cube was filled with water, how much water would it hold? T reminds Ps if necessary. (1 ml) T calls Ps to front of class to build up the cube gradually, as below. After each stage, elicit the number of cubes, their volume and their capacity. BB: 10 cubes in a row 10 rows in 1 layer 10 layers in the whole cube $\begin{array}{rlrlrl} V & =10 \times 1 \mathrm{~cm}^{3} & V & =10 \times 10 \mathrm{~cm}^{3} & V & =10 \times 10 \times 10 \mathrm{~cm}^{3} \\ & =\underline{10 \mathrm{~cm}^{3}} & & =\underline{100 \mathrm{~cm}^{3}} & & =\underline{1000 \mathrm{~cm}^{3}} \end{array}$ T tells class that in some countries this size of cube, which holds 1 litre of water, is called a cubic decimetre because each edge is 10 cm , i.e. $\frac{1}{10} \mathrm{~m}$.	Whole class activity Initial discussion on similarity between volume (how much space something takes up) and capacity (how much space is inside it, or how much liquid something can hold) T has single rows and layers already prepared to save time. T could have diagrams drawn on BB too, or use enlarged copy master or OHP. Involve as many Ps as possible in demonstration and discussion. Elicit that: BB: $1000 \mathrm{~cm}^{3} \rightarrow 1$ litre (water at $4^{\circ} \mathrm{C}$) BB: $1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}$

$B K S$		Lesson Plan 39
Activity 5	Volume and capacity 2 Let's summarise what we have learned. A 1 cm cube, or cubic cm, can be built from 10001 mm cubes. A 10 cm cube (or cubic decimetre) can be built from 10001 cm cubes. A 1 m cube (or cubic m) can be built from 100010 cm cubes or dm cubes. Let's write them in increasing order and compare them. T starts and at each unit, T gives Ps the chance to dictate if they can. BB: $1 \mathrm{~mm}^{3}<1 \mathrm{~cm}^{3}<1 \mathrm{dm}^{3}<1 \mathrm{~m}^{3}$ $\times 1000 \times 1000 \times 1000$ Or we could write it this way. (Again give Ps the chance to dictate.) BB: $1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3} \quad$ (capacity: 1 ml) $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}=1000000 \mathrm{~mm}^{3} \quad$ (capacity: 1 litre) $1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}=1000000 \mathrm{~cm}^{3}=1000000000 \mathrm{~mm}^{3}$	Notes Whole class activity If possible, T holds up the appropriately sized cube as it is mentioned. Have no expectations but allow Ps to contribute if they can. T says the inequality and equations clearly in a loud voice to familiarise Ps with the units of volume and the large numbers. BB: $1000000=1$ million $1000000000=1$ Thu million
6	Book 5, page 39 Q. 1 Read: Pete has already made the base layer of a cuboid from unit cubes. If Pete has 72 unit cubes, how high can he build his cuboid? Set a time limit. Review with whole class. Ps could show height on scrap paper or slates on command. P answering corrrectly comes to BB to show solution, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: BB: Number of unit cubes in base: $3 \times 4=\underline{12}$ Number of layers: $72 \div 12=\underline{6}$ Height of cuboid: 6 units What is the volume of the cuboid? (72 unit cubes, or cubic units) What is its surface area? Ps come to BB to write calculation. $\text { BB: } \begin{aligned} A & =2 \times(4 \times 3+4 \times 6+3 \times 6) \\ & =2 \times(12+24+18)=2 \times 54=\underline{108 \text { (square units) }} \end{aligned}$ If we wanted to make a frame model for this cuboid, what length of tubing would we need? Ps come to BB or dictate to T . BB: Sum of edges of cuboid: $4 \times(4+3+6)=4 \times 13=\underline{52}$ (units)	Individual work, monitored, helped Drawn on BB and/or use real model. Discussion, reasoning, agreement, self-correction, praising BB: Whole class activity Reasoning, agreement, praising Agreement, praising
7	Book 5, page 39 Q. 2 Read: Calculate the volume of each of these cuboids if the length of its edges in units are: a) $a=8, b=5, c=6$ b) $a=b=5, c=10$ c) $a=b=c=9$ Set a time limit. Review with whole class. Ps come to BB to write calculations, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) $V=8 \times 5 \times 6=40 \times 6=\underline{240}$ (cubic units) b) $V=5 \times 5 \times 10=25 \times 10=\underline{250}$ (cubic units) (squ.-based) c) $V=9 \times 9 \times 9=81 \times 9=729$ (cubic units) (cube)	Individual work, monitored, (less able Ps helped with models) Reasoning, agreement, selfcorrection, praising T asks Ps to describe the cuboids. e.g. a) 8 cubes in a row, 5 rows in each layer and 6 layers. Elicit the general rule: $\begin{aligned} & V \text { of cuboid }=a \times b \times c[=a b c] \\ & V \text { of cube }=a \times a \times a\left[=a^{3}\right] \end{aligned}$

$B K$		Lesson Plan 39
Activity 7 Extension	(Continued) What is the surface area of each cuboid? a) $A=2 \times(8 \times 5+8 \times 6+5 \times 5)=2 \times 118=\underline{236}$ (square units) b) $A=2 \times(5 \times 5)+4 \times(5 \times 10)=50+200=\underline{250}$ (square units) c $A=6 \times(9 \times 9)=480+6=\underline{886}$ (square units)	Notes What is the general rule for surface area of a cuboid (cube)? BB: $\begin{gathered} A=2 \times(a \times b+a \times c+b \times c) \\ {[=2(a b+a c+b c)]} \end{gathered}$ and for a cube: $A=6 \times(a \times a)\left[=6 a^{2}\right]$
8	Book 5, page 39 Q. 3 Read: Use the tables to show the lengths of the edges of different cuboids which can be made from these numbers of cubes. Less able Ps have cubes on desks to help them. Set a time limit. Review with whole class. Ps come to BB to complete tables. Class agrees/disagrees. Mistakes corrected. (Agree that cuboids can be turned around and over, so e,g, $a=7, b=1, c=1$ is the same cuboid as $a=1, b=1, c=7$) Solution: 7 cubes a) Only 1 cuboid is possible. c) 5 cuboids are possible. 8 cubes b) 3 cuboids are possible. 30 cubes	Individual work, monitored, (helped) Tables drawn on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Extension for quicker Ps: Calculate the surface areas in your Ex. Bks. Which columns show squarebased cuboids? Which column shows a cube?
9	Book 5, page 39, Q. 4 Read: This solid has a 1 unit square hole bored right through its centre. a) How many unit cubes would be needed to build the solid? b) What is its surface area? Deal with one part at a time. Ps suggest strategy, then come to BB to write calculation, explaining reasoning and referring to diagram on BB (or real model if Thas one). Class agrees/disagrees. Rest of class write operation in Pbs too. Solution: a) The volume of the solid is the volume of the whole cuboid minus the volume of the part taken out, i.e. $V=(5 \times 5 \times 8)-(1 \times 1 \times 8)=200-8=\underline{192} \text { (unit cubes) }$ b) The surface area of the solid is the area of the surface of the whole cuboid minus the squares on top and bottom, plus the surface area inside the hole, i.e. $\begin{aligned} A & =2 \times(5 \times 5)+4 \times(5 \times 8)-2 \times(1 \times 1)+4 \times(1 \times 8) \\ & =2 \times 25+4 \times 40-2 \times 1+4 \times 8 \\ & =50+160-2+32=210+30=\underline{240} \text { (unit squares) } \end{aligned}$	Whole class activity (or individual or paired trial first if Ps wish) Diagram drawn on BB or use enlarged copy master or OHP BB: If possible, T has a model too. T gives hints if Ps are stuck. Discussion, reasoning, agreement, correcting, praising [If time is short, surface area could be set as a challenge for homework.]

BK	R: Perimeter and area of polygons C: Practice: Area, nets, volume of cuboids. Capacity E: Word problems. Challenges	$\begin{gathered} \text { Lesson Plan } \\ 40 \end{gathered}$
Activity 1	Formulae for area and volume Study these solids and nets. Join them up to the matching name and fill in the missing formulae. (T elicits or explains that a formula is a general rule.) Ps come to BB to join up each diagram to an appropriate name and to fill in the boxes, explaining reasoning. Class agrees/disagrees. a) c) d) e) f) $\begin{aligned} & V=a \times a \times a \\ & V=a \times a \times b \\ & V=a \times b \times c \\ & V \end{aligned}$ cube $A=$ \square $6 \times a \times a$ square-based cuboid cuboid BB:	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP BB: formula - a general rule At a good pace Reasoning, agreement, praising, encouragement only N.B. It is neither expected nor required that Ps know the formulae by heart but in a whole class situation, with T's and other Ps' help, they might understand the ideas. Solution: Cubes: a) and f) Square-based cuboids: c), e and g) Cuboids: b) and d)
2	Surface area and capacity Ps have 14 cm squares of paper, rulers, scissors and sellotape on desks. Cut a 3 cm square from each corner and fold the paper to make a box T demonstrates each step with a larger sheet, using sellotape to fix the edges together and draws on BB: Show me your completed box . . .now! What can you tell me about the dimensions of your box? e.g. It has a square base, 8 cm long and 8 cm wide. It is 3 cm high. How many 1 cm cubes could fit in it? BB: 64 BB: $8 \times 8 \times 3=64 \times 3=\underline{192}$ $\begin{array}{r}\times 3 \\ \hline 192 \\ \hline\end{array}$ We could say that its capacity is 192 cubic cm . What is its surface area? Ps might point out that it has outside and inside surface areas. Agree that paper is so thin that we can think of both as being the same. Inner (or outer) surface area: BB: $A=8 \times 8+4 \times(3 \times 8)=64+4 \times 24=64+96=\underline{160}\left(\mathrm{~cm}^{2}\right)$ or $A=14 \times 14-4 \times(3 \times 3)=196-4 \times 9=196-36=\underline{160}\left(\mathrm{~cm}^{2}\right)$ 10 min	Individual work in making the box. (Or T could have sheets with squares at corner already cut out if class is not very able) Whole class discussion Agreement, praising If possible, Ps use cm cubes to confirm. Discussion, reasoning, agreement, praising BB: e.g. $\begin{aligned} 14 \times 14 & =14 \times 10+14 \times 4 \\ & =140+56=\underline{196} \end{aligned}$
3	Cuboids with equal volume How many different cuboids could be built from 64 unit cubes? Let's show them in a table. Ps come to BB or dictate to T in a logical order. Class checks that they are correct and points out missed values. BB: Agree that 7 different cuboids are possible. Which has the greatest surface area? (1st column)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Extra praise if Ps remember that it is the least regular, i.e. $1 \times 1 \times 64$

B		Lesson Plan 40
Activity 4	Problem 1 The surface of a cube with edge 3 cm was painted red, then cut into 1 cm cubes. How many of the 1 cm cubes will have $3(2,1,0)$ faces painted red? T illustrates with a real cube made from unit cubes, or draw a diagram on BB. Allow Ps to think about it for a minute and discuss with their neighbours if they wish. Ps tell class their thoughts and findings. Other Ps agree or disagree, or add other points. T intervenes or give hints only if necessary. (T could confirm by breaking down the painted 3 cm cube.) Elicit the following points. - At each vertex there is a unit cube with 3 red faces. - At the middle of each edge there is a unit cube with 2 red faces. - In the middle of each face there is a unit cube with 1 red face. - The unit cube in the centre of the large cube has no red faces. $\begin{array}{ll} \text { ie. } 3 \text { faces red } \rightarrow 8 \text { unit cubes } \quad \text { (as } 8 \text { vertices) } \\ 2 \text { faces red } & \rightarrow 12 \text { unit cubes } \\ \text { (as } 12 \text { edges) } \\ 1 \text { face } \text { red } & \rightarrow 6 \text { unit cubes } \\ \text { (as } 6 \text { faces) } \\ \text { no face red } & \rightarrow 1 \text { unit cube } \end{array}$	Notes Individual or paired trial first, then whole class discussion involving as many Ps as possible. Praise all positive contributions. T repeats explanations more clearly when necessary. BB: Check: $\begin{aligned} & V=3 \times 3 \times 3=\underline{27} \text { (unit cubes) } \\ & 8+12+6+1=\underline{27} \text { unit cubes } \boldsymbol{V} \end{aligned}$ [Euler's formula: $\begin{aligned} & v+f-e=2 \\ & 8+6-12=2] \end{aligned}$
5	Problem 2 Imagine an empty cuboid-shaped glass container which is 1 m high and has a 40 cm by 40 cm square base. If we poured 16 litres of water into it, how high would the level of water be? T illustrates with a diagram drawn on BB . Allow Ps a minute to think about it and discuss with their neighbours if they wish. What do we need to remember before we can solve the problem? Elicit or tell that 1 litre of water takes up the same space as a 10 cm by 10 cm by 10 cm cube, i.e. 1 litre of water has a volume of $1000 \mathrm{~cm}^{3}$) Who thinks that they know how to solve it? Come and explain to us. Who agrees? Who thinks something else? etc. BB: e.g. litre $\rightarrow 1000 \mathrm{~cm}^{3}$ 16 litres $\rightarrow 16000 \mathrm{~cm}^{3}$ Let height of water level be h : $\begin{aligned} & (40 \times 40) \mathrm{cm}^{2} \times h=16000 \mathrm{~cm}^{3} \\ & 1600 \mathrm{~cm}^{2} \times h=16000 \mathrm{~cm}^{3} \\ & h=16000 \mathrm{~cm}^{3} \div 1600 \mathrm{~cm}^{2}=10 \mathrm{~cm} \end{aligned}$ Answer: The level of water would be 10 cm high.	Whole class activity (or individual or paired trial first if Ps wish, monitored and reviewed with whole class) (Do not write h on diagram until Ps suggest it - see below) BB: 1 litre $\rightarrow 1000 \mathrm{~cm}^{3}$ Discussion, reasoning, agreement (self-correction), praising If no P has a good idea, T gives hints or leads Ps through solution opposite, involving them where possible. Feedback for T

$R K$		Lesson Plan 40
Activity 6	Book 5, page 40 Q. 1 Read: Join up the calculation plans to the correct shapes. Colour the plan blue if it is a perimeter, red if it is an area and green if it is a volume. Set a time limit. Ask quicker Ps to do the calculations in their Ex. Bks. and write the results above or below each calculation box in Pbs. Review with whole class. Ps come to BB to draw joining lines, identify the relevant shape, say the type of calculation, and colour appropriately. Class agrees/disagrees. Mistakes discussed and corrected. Who has done the calculation? What is your result? Who agrees? etc. (If disagreement, show details on BB.) Solution:	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit and extra task Discussion, agreement, selfcorrecting, praising
7	Book 5, page 40 Q. 2 Read: A rectangular-shaped garden is 22 m long and 12 m wide. a) How long is the fence around if if the gate is 3 m wide? Draw a diagram first. b) What is the area of the garden? You do not need to draw an accurate diagram - a rough sketch will do. Remember to write on it the information given in the question. Set a time limit. Review one part at a time. Ps could show results on scrap paper or slates in unison on command. Ps answering correctly explain at BB to those who were wrong. Mistakes discussed and corrected. Solution: e.g. a) Plan: $\mathrm{F}=2 \times(22 \mathrm{~m}+12 \mathrm{~m})-3 \mathrm{~m}=68 \mathrm{~m}-3 \mathrm{~m}=\underline{65 \mathrm{~m}}$ Answer: The fence around the garden is 65 m long. b) Plan: $A=22 \times 12=220+44=\underline{264}\left(\mathrm{~m}^{2}\right)$ Answer: The area of the garden is $264 \mathrm{~m}^{2}$. Ps draw a scale diagram of the garden. (e.g. Scale: $1 \mathrm{~cm} \rightarrow 1 \mathrm{~m}$)	Individual work, monitored, helped Differentiation by time limit. (or deal wth one part at a time if class is not very able) Discussion, reasoning, agreement, self-correction, praising BB: D : or $\mathrm{F}=2 \times 12+22+(22-3)$ $=24+22+19=\underline{65}(\mathrm{~m})$ (or this task could be set for homework)

31		Lesson Plan 40
Activity 8	Book 5, page 40 Q. 3 Read: Solve these problems in your exercise book. Write only the answers here. Set a time limit. Ps read problems themselves and solve in Ex. Bks. Review with whole class. Ps could show results on scrap paper or slates in unison on command. Ps answering correctly explain at BB to those who were wrong. Who agrees? Who did it a different way? Who made a mistake? etc. Solution: a) The area of the surface of a cube is $150 \mathrm{~cm}^{2}$. What is its volume in centimetre cubes? $\begin{array}{ll} \text { e.g. } & A=6 \times a \times a=150 \mathrm{~cm}^{2} \\ a \times a=150 \mathrm{~cm}^{2} \div 6=25 \mathrm{~cm}^{2} & \frac{65}{150} \\ \text { but } 5 \times 5=25, \text { so } a=5 \mathrm{~cm} \\ & V=a \times a \times a=5 \times 5 \times 5=25 \times 5=\underline{125}\left(\mathrm{~cm}^{3}\right) \end{array}$ Answer: Its volume is $125 \mathrm{~cm}^{3}$. b) A cube is built from 64 one cm cubes, so its volume is $64 \mathrm{~cm}^{3}$. What is its surface area in centimetre squares? e.g. $\quad V=a \times a \times a=64 \mathrm{~cm}^{3}$ BB: But $64=4 \times 4 \times 4$, so $a=\underline{4 \mathrm{~cm}}$ $A=6 \times a \times a=6 \times 4 \times 4=24 \times 4=\underline{96}\left(\mathrm{~cm}^{2}\right)$ Answer: Its surface area is $96 \mathrm{~cm}^{2}$.	Notes Individual work, monitored, helped Expect only more the able Ps to solve question b). Discussion, reasoning, agreement, self-correction, praising Feedback for T BB: Extension What is its capacity in cl? $1 \mathrm{~cm}^{3} \rightarrow 1 \mathrm{ml}$ $125 \mathrm{~cm}^{3} \rightarrow 125 \mathrm{ml}=\underline{12.5 \mathrm{cl}}$ Ps might remember this from previous calculations, but otherwise allow trial and error (or use of calculators)
9	Book 5, page 40, Q. 4 Choose one of these problems and solve it in your Ex. Bks. If you have time, try another one too. I will give you 3 minutes! Start . . . now! . . . Stop! Who chose problem a)? \mathbf{X}, come and show us how you worked out the answer. If you did not try it, watch out for any mistakes! Repeat in a similar way for the other two questions. Solutions: a) We poured water into a 10 cm cube which was open at the top. How much water did we pour in if the water level was: i) $5 \mathrm{~cm} \quad$ Volume of water $=10 \times 10 \times 5=500\left(\mathrm{~cm}^{3}\right)$ But $1 \mathrm{~cm}^{3} \rightarrow 1 \mathrm{ml}$, so $500 \mathrm{~cm}^{3} \rightarrow 500 \mathrm{ml}=\underline{50 \mathrm{cl}}$ ii) 3.5 cm ? Volume of water $=10 \times 10 \times 3.5=350\left(\mathrm{~cm}^{3}\right)$ But $1 \mathrm{~cm}^{3} \rightarrow 1 \mathrm{ml}$, so $350 \mathrm{~cm}^{3} \rightarrow 350 \mathrm{ml}=\underline{35 \mathrm{cl}}$ b) Divide this hexagon into 4 congruent parts. First divide the hexagon into squares. BB: It makes 3 congruent squares. If we divide each square into 4 equal parts, there are 12 grid squares altogether. If we divide the 12 grid squares into 4 equal parts, each part is made up of $\underline{3}$ grid squares. c) Make 4 congruent triangles from 6 straws of equal length. It is impossible in 1 plane, but can be done in space (i.e. 3-D).	Individual work, monitored, helped (or whole class activity if time is short) Differentation by time limit and choice. (More able Ps might attempt all 3 questions.) Discussion, reasoning, agreement, (self-correction), praising (T writes relationship beteen volume and capacity on BB if Ps are struggling.) T advises Ps to draw diagram in Ex. Bks or on squared grid sheets. BB: Extra praise for Ps who realised this!

