$B K E$	R: Calculations C: Experiments and probability E: Symmetry	$\begin{gathered} \text { Lesson Plan } \\ 113 \end{gathered}$
Activity 1	Factorisation a) Let's factorise 141 and list its positive factors. Ps dictate what T should write. Class agrees/disagrees. BB: $\quad 141=3 \times 47 \quad$ Positive factors: $1,3,47,141$ b) Let's define 141 in different ways. (e.g. 141% of $100,1.41 \times 100,200-59,1$ third of 423 , etc.) 6 min	Notes Whole class activity Reasoning, agreement, praising At a good pace Ps may use a calculator. Extra praise for creativity
2	Probability 1 A computer has drawn a unit square on a squared grid. BB: a) It draws another unit square at random adjacent to one of the sides of the first square. i) How many possible outcomes are there? BB: (4) Ps show them on the diagram. ii) What is the probability of this? BB: $\square\left(\frac{1}{4}\right)$ b) It draws another unit square at random adjacent to one of the sides of the 2 squares in a). i) How many possible outcomes are there? BB: ii) What is the probability of this? BB: $\left(\frac{1}{6}\right)$ c) It draws another unit square at random adjacent to one of the sides of the 3 squares in b). i) How many possible outcomes are there? BB: ii) What is the probability of this? $\mathrm{BB}: \square\left(\frac{1}{7}\right)$	Whole class activity Grid drawn on BB or use enlarged copy master or OHP [or use a computer] At a good pace Discussion, reasoning, agreement, praising Feedback for T (Possible outcomes are shown by dots on diagrams) Ps can continue the pattern of questioning if there is time.
3	Probability 2 If I toss a 1 p coin and a 2 p coin at the same time, what is the probability of each of these outcomes? Ps first list all possible outcomes in Ex. Bks. before writing each probability on slates or scrap paper and showing to T on command. Ps answering correctly explain to Ps who were wrong. a) Two Heads $\left(\frac{1}{4}\right)$ [possible outcomes: HH, HT, TH, TT] b) One Head and one Tail $\left(\frac{2}{4}=\frac{1}{2}\right) \quad[\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}]$ c) At least one Head or at least one Tail (1) [Certain] d) Two Tails. $\left(\frac{1}{4}\right)$ [HH, HT, TH, TT]	Whole class activity Responses shown in unison. Reasoning, agreement, praising Demonstrate with 2 coins if disagreement . Agree that if we assume that the coins are fair (unbiased), each outcome has an equal probability. Feedback for T

BK5	R: Calculations C: Experiments and probability E: Symmetry	$\begin{gathered} \text { Lesson Plan } \\ 114 \end{gathered}$
Activity 1	Factorisation a) Let's factorise 142 and list its positive factors. Ps dictate what T should write. Class agrees/disagrees. BB: $\quad 142=2 \times 71 \quad$ Positive factors: $1,2,71,142$ b) Let's define 142 in different ways. $\text { (e.g. } 142 \% \text { of } 100,14.2 \times 10,20 \times 7+2,1 \text { fifth of } 710 \text {, etc.) }$ 6 min	Notes Whole class activity Reasoning, agreement, praising At a good pace Ps may use a calculator. Extra praise for creativity
2	Possible outcomes a) Imagine that we are throwing a white dice and a red dice at the same time. Let's list the possible outcomes in these tables. Ps could list outcomes in Ex. Bks (or fill in prepared tables) then dictate results to T in a logical order. BB: Agree that there are 6×6 possible outcomes, and each has an equal chance of happening. Discuss the symmetry of the data. b) What is the probability of throwing: i) a 2 and a 6 $\left(\frac{2}{36}=\frac{1}{18}\right)$ [Outcomes: $(2,6)$ or $(6,2)$] ii) a 2 or a 6 $\left(\frac{20}{36}=\frac{5}{9}\right)$ [as 20 of the outcomes include either 2 or 6 , or both] iii) not a 5 ? $\left(\frac{25}{36}\right)$ [as 25 of the outcomes do not include 5]	Whole class activity (or short individual trial first, monitored, under a time limit) Tables drawn on BB or use copy master from LP 109/3 (Ps could have copies too.) Agreement, (self-correction), praising Feedback for T Whole class activity Ps show responses on scrap paper or slates in unison on command. Ps answering correctly explain to Ps who were wrong. [or $\frac{36}{36}-\frac{11}{36}=\frac{25}{36}$]
3	Book 5, page 114 Q. 1 Read: Throw two equal dice 72 times and write the data in the table. Set a time limit. Ps throw the 2 dice, keeping a tally for each outcome. After checking that they have 72 tally marks, Ps write totals and relative frequencies for their own data. T could ask some Ps to say what they notice about their data. Elicit the value of n for the class data, collect the pupil data and check that the totals match n (T makes adjustments if necessary) Then elicit the relative frequencies as fractions, decimals and percentages. Ps say the fraction, work out the decimal (to 4 decimal places) using a calculator and also give the percentage. Class agrees/disagrees. Ps write agreeed values in table in Pbs.	Individual (or paired) work, monitored, helped, corrected Table drawn on BB or use enlarged copy master or OHP (Ps who do not finish the experiment can do so while class data is collected, with the help of quicker Ps.) Whole class activity At a fast pace Ps keep running totals for each outcome in Ex. Bks or on a calculator.

BK		Lesson Plan 114
Activity 4	Book 5, page 114, Q. 2 Read: Using the class data in Question 1, fill in this table where we deal with the sum of the two numbers thrown. Let's fill in the Frequency row in our table first. Look at the outcomes column in the table in Q.1. Which of them have a total of zero? (None, as it is impossible!) Which of the outcomes give a total of 1? (Again, none as it is impossible!) Which outcomes give a total of 2? (Only one outcome: 1 and 1) How many times did the class throw it? (63) This is its frequency. Let's write it in the Q. 2 table. T wries on BB and Ps write in Pbs. Which outcomes give a total of 3? (Again, only one outcome: 1 and 2) How many times did the class throw it? (118) This is its frequency. Let's write it in the Q. 2 table. T writes on BB and Ps write in Pbs. Which outcomes give a total of 4? (1 and 3; 2 and 2) How many times did the class throw them? $(120+58=178)$ Let's write this frequency in the Q. 2 table. T writes on BB and Ps write in Pbs. Continue in this way, with Ps dictating the different ways of making each sum, finding such outcomes in the Q. 1 table, adding their frequencies where necessary and writing total in the Q. 2 table. BB: Sum Outcomes $\begin{aligned} & 4=1+3=2+2 \\ & 5=1+4=2+3 \\ & 6=1+5=2+4=3+3 \\ & 7=1+6=2+5=3+4 \\ & 8=2+6=3+5=4+4 \\ & 9=3+6=4+5 \\ & 10=4+6=5+5 \\ & 11=5+6 \\ & 12=6+6 \end{aligned}$ 13 (Not possible!) How many times did the class throw the 2 dice altogether? (e.g. 2160) Let's fill in the relative frequency row, writing a fraction first, then we can use our calculators to work it out as a percentage. T helps Ps to round the percentage (to the nearest tenth, i.e. to 1 decimal place) if necessary. T writes agreed relative frequencies on BB and Ps write in Pbs. If we throw 2 dice at the same time, how many different outcomes are possible? (36) (T could show the 6 tables again as a reminder.) How many of the outcomes will give a sum of $0(1,2,3$, etc.)? What do you think is the probability of throwing this sum? Ps dictate the fraction, then T and Ps use a calculator to work out the percentage. (Divide numerator by denominator and multiply by 100 .) T writes agreed probability as a fraction and as a percentage on the BB and Ps write it in table in Pbs. A sample table for a class of 30 Ps is shown on the following page.	Notes Whole class activity Tables drawn on BB or use enlarged copy master or OHP T leads Ps through each step. Once Ps understand what to do, allow Ps to take over, with T intervening only where necessary. Discussion, reasoning, agreement, praising Keep up a good pace. (Instead of doing one at a time as opposite, Ps could write the different ways of obtaining each sum below the table in their Pbs first as individual work, then review with the whole class.) Ps use own tables of outcomes if they have them. Reasoning, checking by rest of class, agreement, praising

$B K 5$																Lesson Plan 114
Activity 4	（Continued） Sample table for a class of 30 Ps： BB；e．g．$n=2160$															Notes
	Sum	0	1	2	3	4	5	6	7	8	9	10	11	12	13	Of course，the table formed by T and Ps will match the Ps＇ own experimental data！
	Frequency	0	0	63	118	178	239	297	362	299	240	180	124	60	0	
	Relative frequency	0	0		$\frac{118}{2160}$	$\frac{178}{2160}$	$\frac{239}{2160}$	$\frac{297}{2160}$ 13.8%	年 $\frac{362}{2160}$	年迆	$\frac{240}{21100}$	$\frac{180}{2160}$	$\frac{124}{2160} 5$	$\frac{60}{2160}$ 28%	0	
	Probability	0	0	$\begin{aligned} & \frac{1}{36} \\ & 2.8 \% \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{2}{36} \\ 5.6 \% \\ 5 \end{array}$			$\begin{array}{\|c\|} \hline \frac{5}{36} \\ 13.8 \% / 1 \end{array}$	$\frac{6}{36}$	$\begin{aligned} & \frac{5}{36} \\ & 13.8 \% \\ & \hline \end{aligned}$	$\begin{gathered} \frac{4}{36} \\ 11.1 \% \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \frac{3}{36} \\ 8.3 \% \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{2}{36} \\ 5.6 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{1}{36} \\ 2.8 \% \\ \hline \end{array}$	0	Discussion，agreement， praising
	What do you notice about the table？e．g． －The relative frequencies are very close to the probabilities． －The frequencies and relative frequncies for a sum of 2 and a sum of 12 ，（and for 3 and 11， 4 and 10，5 and 9，6 and 8）are very similar．） Draw Ps＇attention to the symmetry of the data if necessary．															simulation to show the symmetry and to confirm that the more times that the experiment is done，the closer the relative frequencies are to the probabilities］

$B K E$	R: Calculations C: Experiments and probability E: Unfair games	$\begin{gathered} \text { Lesson Plan } \\ 115 \end{gathered}$
Activity 1	Factorisation a) Let's factorise 143 and list its positive factors. Elicit that 114 is not divisible by: - 2 (as it is an odd number), nor by - 3 (as $143=150-7$, and 7 is not a multiple of 3), nor by - 5 (as it does not have units digt 5 or 0), nor by - 7 (as $143=140+3$, and 3 is not a multiple of 7) but that it is exactly divisible by $11 .(143 \div 11=13)$ BB: $\quad 143=11 \times 13 \quad$ Positive factors: $1,11,13,114$ b) Let's define 143 in different ways. Class checks that definitions are correct and are unique to 143 . (e.g. 143% of $100,14300 \div 100,1000-857,20 \times 7+3$, etc.) 8 min	Notes Whole class activity Discussion, reasoning, agreement, praising Extra praise if Ps remember how to reason for the first few prime numbers, but accept divisions too. At speed, in good humour Extra praise for creativity!
2	Probability A computer has drawn a unit triangle on BB: a triangular grid. a) It draws another unit triangle at random adjacent to one of the sides of the first triangle. i) How many possible outcomes are there? BB: (3) Ps show them on the diagram. ii) What is the probability of this? BB: $\left(\frac{1}{3}\right)$ b) It draws another unit triangle at random adjacent to one of the sides of the 2 triangles in a). i) How many possible outcomes are there? BB: (4) Ps show them on the diagram. ii) What is the probability of this? $\mathrm{BB}: \nabla\left(\frac{1}{4}\right)$ c) It draws another unit triangle at random adjacent to one of the sides of the 3 triangles in b). i) How many possible outcomes are there? BB: (5) Ps show them with dots on diagram. ii) What is the probability of this? $\mathrm{BB}: \forall\left(\frac{1}{5}\right)$	Whole class activity Grid drawn on BB or use enlarged copy master or OHP [or use a computer] At a good pace Ps could show responses in unison on scrap paper or slates. Discussion, reasoning, agreement, praising Feedback for T Ps can continue the pattern of questioning if there is time.

BK		Lesson Plan 115
Activity 3	Book 5, page 115 Q. 1 Read: Using the class data in Question 1 on page 114, fill in this table where we deal with the product of the numbers thrown. Calculate in your exercise book. Make sure that Ps understand what to do, then set a time limit for filling in the frequencies. Ps list the outcomes which match each product in Ex. Bks, find them in the Q. 1 table on page 114, add up the frequencies and write their total in the table. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. e.g. Product Outcomes $1=1 \times 1$ $2=1 \times 2=2 \times 1$ $3=1 \times 3=3 \times 1$ $4=1 \times 4=4 \times 1=2 \times 2$ $5=1 \times 5=5 \times 1$ $6=1 \times 6=6 \times 1=2 \times 3=3 \times 2$ $8=2 \times 4=4 \times 2$ $9=3 \times 3$ $10=2 \times 5=5 \times 2$ $12=2 \times 6=6 \times 2=3 \times 4=4 \times 3$ $15=3 \times 5=5 \times 3$ $16=4 \times 4$ $18=3 \times 6=6 \times 3$ $20=4 \times 5=5 \times 4$ $24=4 \times 6=6 \times 4$ $25=5 \times 5$ $30=5 \times 6=6 \times 5$ $36=6 \times 6$ Frequencies (from sample table): 118 120 $123+58=181$ 117 $121+116=237$ 121 59 120 $118+121=239$ 121 60 120 120 119 61 124 60 How many times did the class throw the 2 dice altogether? (e.g. 2160) Let's fill in the relative frequency row, writing a fraction first, then we can use our calculators to work it out as a percentage. Thelps Ps to round the percentage (to the nearest tenth, i.e. to 1 decimal place) if necessary. T writes agreed relative frequencies on BB and Ps write in Pbs . If we throw 2 dice at the same time, how many different outcomes are possible? (36) (T could show the 6 tables again as a reminder.) How many of the outcomes will give a product of $1(2,3,4$, etc.) ? What do you think is the probability of throwing this sum? Ps dictate the fraction, then T and Ps use a calculator to work out the percentage. (Divide numerator by denominator and multiply by 100 .) T writes agreed probability as a fraction and as a percentage on the BB and Ps write it in table in Pbs. The sample table for a class of 30 Ps is shown on the following page.	Notes Individual work, monitored, helped (or all done as a whole class activity if Ps are unsure) Table drawn on BB or use enlarged copy master or OHT Discussion, reasoning, agreement, praising Keep up a good pace. (If done as a whole class activity, T leads Ps through each step to start. Once Ps understand what to do, allow Ps to take over, with T intervening only where necessary.) Ps use own tables of outcomes if they have them. Reasoning, checking by rest of class, agreement, praising

BKS		Lesson Plan 115
Activity 3	(Continued) Sample table for a class of 30 Ps , each throwing 2 dice 72 times: BB; e.g.$n=2160$Product 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 30 36 Frequency 63 118 120 181 117 237 121 59 120 239 121 60 120 120 119 61 124 60 Relative frequency $\frac{63}{2160}$ $\frac{118}{2160}$ $\frac{120}{2160}$ $\frac{181}{2160}$ $\frac{117}{2160}$ $\frac{237}{2160}$ $\frac{121}{2160}$ $\frac{59}{2160}$ $\frac{120}{2160}$ $\frac{239}{2160}$ $\frac{121}{2160}$ $\frac{60}{2160}$ $\frac{120}{2160}$ $\frac{120}{2160}$ $\frac{119}{2160}$ $\frac{61}{2160}$ $\frac{124}{2160}$ $\frac{60}{2160}$ Probability $\frac{1}{26}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{4}{36}$ $\frac{2}{36}$ $\frac{1}{36}$ $\frac{2}{36}$ $\frac{4}{36}$ $\frac{2}{36}$ $\frac{1}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{1}{36}$ \approx $\frac{2}{36}$ $\frac{1}{36}$ 2.8% 5.6% 5.6% 8.3% 5.6% 11.1% 5.6% 2.8% 5.6% 11.1% 5.6% 2.8% 5.6% 5.6% 5.6% 2.8% 5.6% 2.8% What do you notice about the table? e.g. - The relative frequencies are very close to the probabilities. - The frequencies and relative frequncies for a product of 12 and a product of 6 are very similar and are higher than the other products. Why? (They have 4 factors less than 6.) - The product of 4 is the only one with 3 factors less than 6 . - Numbers missing from table such as $0,7,11,13,14$, etc. are impossible products. (Elicit that their probability is 0 .)	Notes Of course, the table formed by T and Ps will match the Ps' own experimental data! Discussion, agreement, praising [If possible, use a computer simulation to show the symmetry and to confirm that the more times that the experiment is done, the closer the relative frequencies are to the probabilities.]
4	Book 5, page 115 Q. 2 Read: What is the probability of these events happening? What can you tell me about the wheel? (Divided into 6 equal sections, so each outcome has equal probability.) Deal with one part at a time or set a time limit. Ps write probabilites as fractions in Pbs. (More able Ps could also write the fractions in decimal form and/or as a percentage.) Review with whole class. Ps could show fractions on scrap paper or slates on command. Ps who answered correctly explain at BB. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) Red wins. $\left(\frac{2}{6}=\frac{1}{3}\right)$ ii) Red or green wins. $\left(\frac{4}{6}=\frac{2}{3}\right)$ iii) Green does not win. $\left(\frac{4}{6}=\frac{2}{3}\right)$ iv) Neither green nor red wins. $\left(\frac{2}{6}=\frac{1}{3}\right)$ b) i) Red wins. $\left(\frac{2}{6}=\frac{1}{3}\right)$ ii) Red or green wins. $\left(\frac{3}{6}=\frac{1}{2}\right)$ iii) Green does not win. $\left(\frac{5}{6}\right)$ iv) Neither green nor red wins. $\quad\left(\frac{3}{6}=\frac{1}{2}\right)$	Individual work, monitored, helped Wheels drawn (stuck) on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T Extension Ps think of other questions to ask or alternative outcomes. e.g. a) $\begin{aligned} & p(\text { green wins })=\frac{1}{3} \\ & p(\text { white wins })=\frac{1}{3} \end{aligned}$ b) $\begin{aligned} & p(\text { green wins })=\frac{1}{6} \\ & p(\text { white wins })=\frac{1}{2} \end{aligned}$

BK5	R: Calculations C: Experiments: Probability: fair and unfair games E: Problems. Pyramid-shaped dice	Lesson Plan 116
Activity 1	Numbers a) Find the prime factors of 116 in your Ex. Bks. and write it as the product of its prime factors, then list all its positive factors using the prime factors to help you. Set a time limit. Ps come to BB or dictate to T. Class agrees or disagrees. Mistakes discussed and corrected. $B B$: e.g. Factors: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 What special kind of number is 144 ? (It is a square number. BB: $144=12 \times 12=12^{2}$) b) Let's define 144 in different ways. Class checks that definitions are correct and are unique to 144 . $\text { (e.g. } 100+44,14400 \div 100,1000-856,29 \times 5-1 \text {, etc.) }$	Notes Individual work in Ex. Bks. monitored, helped Reasoning, agreement, selfcorrection, praising Ps may use a calculator to work out all the factors. Ps can join up the factor pairs as a check. Extra praise for Ps who remember this. Whole class activity T chooses Ps at random. At speed, in good humour Praising, encouragement only
2	Problem Listen carefully, note the data and calculate in your Ex. Bks. Show me your answer when I say. In a hotel, there is an equal chance of guests arriving at any time betwen mid-day and midnight. What is the probability that a guest will arrive: a) between 1200 hours and 1400 hours $\left(\frac{2}{12}=\frac{1}{6}\right)$ b) between 1.00 pm and 6.00 pm $\left(\frac{5}{12}\right)$ c) between 17:00 and 18:00 $\left(\frac{1}{12}\right)$ d) between 11.00 pm and 23:30? $\left(\frac{1}{24}\right) \quad$ etc.	Whole class activity T could write some times on BB rather than saying them. Responses shown on scrap paper or slates in unison. Ps responding correctly explain reasoning to Ps who were wrong. Elicit that there are 12 hours and 24 half hours between mid-day and midnight. Demonstrate on a real clock if necessary. Ps can say some times too.

BTK	R: Calculations C: Collecting and analysing data. Graphs of discrete and continuous data E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 117 \end{gathered}$
Activity 1	Numbers a) Let's factorise 146 and then list all its positive factors. Ps come to BB or dictate to T. Class agrees/disagrees. BB: $\quad 146=2 \times 73 ;$ Factors: 1, 2, 73, 146 b) Let's define 146 in different ways. Class checks that definitions are correct and are unique to 146 . $\text { (e.g. } 1 \mathrm{H}+46 \mathrm{U}, \quad 146000 \div 1000,200 \% \text { of } 73,12^{2}+2 \text {, etc.) }$	Notes Whole class activity Reasoning, agreement, praising At a good pace Extra praise for clever definitions. Feedback for T
2	Probability graph 1 Let's draw a graph to show the probability of each of these outcomes (BB) if we toss two coins at the same time. Ps first dictate the probabilities. BB: $\quad \mathrm{HH}\left(\frac{1}{4}\right), \mathrm{H}$ and $\mathrm{T}\left(\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\right), \quad \mathrm{TT}\left(\frac{1}{4}\right)$ Elicit/remind Ps that the outcome 'a Head and a Tail ' is really the sum of 'HT' and 'TH'. T draws the vertical and horizontal axes on BB, and Ps dictate the scales. (y-axis: probability scale 0 to 1 , with a tick at every quarter; x-axis: outcomes HH, H and T, TT) Ps come to B to draw the appropriate lines or rectangles. BB: Probability e.g.	Whole class activity Discussion, reasoning, agreement, praising (If necessary refer back to Q. 1 on page 141 of $P b s$.) Ps can draw the graph in Ex. Bks. too. Ask for the probability of other events. e.g. $\begin{aligned} p(\text { at least one Head }) & =\frac{3}{4} \\ p(\text { a Head or a Tail }) & =1 \end{aligned}$ Accept other types of graph if Ps suggest them (e.g. using vertical lines or dots). Feedback for T
3	Book 5, page 117 Q. 1 Read: Three equal coins are tossed. Draw a graph to show the probability of each outcome. First Ps list all the different possible outcomes in Pbs. Elicit/remind Ps that they must think of the 3 coins as being different, even if all the individual outcomes are not asked for in the question. (Refer back to Q. 2 on page 141 of $P b s$ if necessary.) Elicit that the possible outcomes are: BB: HHH, HHT, HTH, THH, HTT THT, TTH, TTT and that each has an equal chance of happening. (i.e. 1 eighth) Set a time limit for drawing the graph. (P finished first could draw his or her graph on BB.) Review with whole class. Ps compare their graphs with that on BB and agree/disagree. Mistakes discussed and corrected. T (Ps) asks for the probability of other events too. $\text { e.g. } p(\text { at least } 1 \mathrm{H})=\frac{7}{8} ; p(\text { at least } 2 \mathrm{~T})=\frac{4}{8}=\frac{1}{2}$	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Accept any form of graph. Discussion, reasoning, agreement, self-correction, praising Solution:

BK5		Lesson Plan 117
Activity 4	Probability graph 2 Let's draw a graph to show the probability of each outcome if we throw a fair dice. Ps dictate the outcomes and probabilities. BB: Outcomes: 1, 2, 3, 45,6 (each with equal probability: $\frac{1}{6}$) T draws the vertical and horizontal axes on BB , and Ps dictate the scales. (y-axis: probability scale 0 to 1 , with a grid line at every sixth; x-axis: outcomes $1,2,3,4,5$ and 6) Ps come to B to draw rectangles (or lines or dots) on the diagram. Class agrees/disagrees. $\mathrm{T}(\mathrm{Ps})$ asks for the probability of other events too. e.g. $p(\text { even number })=\frac{3}{6}=\frac{1}{2} ; p(\text { number } \leq 5)=\frac{5}{6} ; p(0)=0, \text { etc. }$	Notes Whole class activity At a good pace Discussion, reasoning, agreement, praising Ps could draw graph in Ex.Bks. too. Extra praise if Ps think of them without T's help.
5	Revision of mode, mean and median a) What does this graph tell us? (The mass in kg of each of 7 boxes) Elicit that the y-axis shows the mass, with a grid line at every 20 kg , and the x-axis shows the 7 boxes as rectangles, with the height of each rectangle showing the mass of the box. BB: b) Let's show the data in a table. Ps come to BB or dictate what T should draw. Class agrees/disagrees. BB:	Whole class activity Drawn on BB or use enlarged copy master or OHP T asks about any important piece of information not mentioned by Ps. Discussion, agreement, praising At a good pace Agreement, praising

B		Lesson Plan 117
Activity 5	(Continued) c) Let's write the amounts in increasing order. Ps come to BB or dictate to T. Class points out errors. BB: $40 \mathrm{~kg}, 40 \mathrm{~kg}, 60 \mathrm{~kg}, 80 \mathrm{~kg}, 100 \mathrm{~kg}, 140 \mathrm{~kg}, 160 \mathrm{~kg}$ Let's see if you remember the 3 different names we give to certain values in a set of data. (T reminds Ps where necessary and writes names on BB.) i) Which is the the middle value? $(80 \mathrm{~kg})$ Who remembers what we call the middle value in a set of ordered data? (the median) ii) Which value occurs most often? (40 kg) Who remembers what we call the most frequent value in a set of data? (the mode) iii) How can we work out what the average value of a set of data is? (Add up all the values, then divide by the number of pieces of data.) P comes to BB to do the calculation, explaining reasoning. Class points out errors. BB: $\frac{40+40+60+80+100+140+160}{7}=\frac{620}{7}=88 \frac{4}{7}$ Elicit that the average mass is $88 \frac{4}{7} \mathrm{~kg}$. Who remembers the name for the average value in a set of data? (the mean) What does average really mean? Elicit that the average or mean value shows what each box would weigh if the light and heavy weights were evened out and all the boxes weighed the same.	Notes Agreement, praising BB: median middle value mode most frequent value BB: $\quad \begin{array}{r}88 \\ \\ \\ \\ 629 \\ 6(4)\end{array}$ (or Ps use a calculator and write as a recurring decimal or round it to 2 d.p.) BB : mean average value
6	Book 5, page 117 Q. 2 Read: Two equal dice are thrown. Draw a graph to show the probability of each possible sum of the two numbers thrown. Use the probability data from Question 2, page 115. Review the data first, reminding/eliciting from Ps about what was done in the experiment and what was found out. Set a time limit for drawing the graph. Ps may use any form. Review with whole class. Ps come to BB to draw the graph, explaining reasoning. Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. Solution: e.g.	Individual work, monitored, helped, after initial whole class discussion Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction, praising Show all forms used by Ps. Extra praise if Ps point out the symmetry of the graph (and thus of the data). Feedback for T

R		Calculation Collecting Problems											$\begin{gathered} \text { Lesson Plan } \\ 118 \end{gathered}$
Activity 1	Numbers a) Let's factorise 147 and list all its positive factors. Ps come to BB or dictate to T, explaining reasoning. (e.g. 147 is odd, so 2 is not a factor. $147=120+27$, and both numbers are multiples of 3 , so 3 is a factor.) T reminds Ps of another way to check quickly that 3 is a factor of 147. If the sum of its digits is a multiple of 3 , then 3 is a factor. $(1+4+7=12$, which is a multiple of 3$)$. BB: $147=3 \times 7 \times 7$ e.g. (3) 49 Positive factors: $1,3,7,21,49,147$ b) Let's define 147 in different ways. Ps dictate their definitions and class checks that they are correct and unique to 147 . (e.g. $21 \times 7,1.47 \times 100,500-353,1$ tenth of 1470 , etc.)												Notes Whole class activity Reasoning, agreement, praising At speed round class Extra praise for clever definitions. Feedback for T
2	Crossword Let's fill in the rows using these clues then read the word in the vertical box. T reads out each clue, Ps make suggestions and class checks which word is correct (meaning and number of letters). BB: 1. This word describes numbers less than zero. (negative) 2. This word describes two straight lines in a plane which have no common point. (parallel) 3. A quadrilateral with equal sides and equal angles. (square) 4. A positive number which has exactly two positive factors. (prime) 5. The number of vertices in a triangle. (three) 6. This word describes numbers greater than zero. (positive) Let's read out the word in the box. (GRAPHS)												Whole class activity Drawn/written on BB or use enlarged copy master or OHP (or Ps have copies of copy master on desks and try it individually under a time limit first, then review with whole class) At a good pace In good humour! Agreement, praising Ask Ps to give (or draw) examples for each row. In unison. Praising
3	Book 5, page 118 Q. 1 a) Read: Write in the table how many pupils in your class have birthdays in each month. Let's do it together! T says each month in turn and Ps who have birthdays in that month stand up. T writes number in table on BB and Ps write in Pbs. BB : e.g. for a class of 30 Ps												Whole class collection of data Table drawn on BB or use enlarged copy master or OHP At a fast pace Ps check own table against numbers on BB and that the total equals the number of Ps in the class.

BK5		Lesson Plan 118
Activity 3	(Continued) Read: b) Show the data in a graph. c) Write the data in increasing order. d) What are these values? i) Mode ii) Median iii) Mean Deal with one part at a time. Set a time limit. Ps can use any form of graph (rectangles, vertical lines or dots) Elicit meanings of mode, median and mean before Ps attempt the question. Calculation for mean can be done in Ex. Bks. Review with whole class. Ps come to BB to draw graph, dictate order of data to T then show mode, median and mean one at a time on scrap paper or slates on command. Class agrees/disagrees. Mistakes discussed and corrected. Solutions: e.g. using sample data for 30 Ps: b) c) $0,0,1,1,1,2,2,3,3,4,6,7$ d) i) Mode: 1 (most frequent data) ii) Median: 2 (middle data) (As there are 12 numbers in increasing order, there is no obvious middle number, so we take the average of the 6 th and 7th numbers. In this case they are both $2: 2+2 \div 2=2$) iii) Mean: (average data: sum of data \div no. of data) $\frac{0+0+1+1+1+2+2+3+3+4+6+7}{12}=\frac{30}{12}=2.5$	Notes Individual work, monitored, helped Grid drawn on BB or use enlarged copy master or OHP BB: mode most frequent data median middle data mean average data Discussion, reasoning, agreement, self-correction, praising N.B. Sample graph and data! Graph and mode, etc should match the class data There might be more than one number as the mode (e.g. If 1 and 2 occur an equal number of times, the mode would be '1 and 2'). Extra praise if Ps remember what to do with an even number of data without T's help

BTK	R: Calculations C: Organising and interpreting data. Mode, median, mean E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 120 \end{gathered}$
Activity 1	Numbers a) Let's factorise 149 and then list all its positive factors. Ps try out the prime numbers $2,3,5,7,11$ as divisors and dictate their findings. e.g. - 2 is not a factor because 149 is odd; - 3 is not a factor because $1+4+9=14$, which is not a multiple of 3 ; - 5 is not a factor because the units digit is not 0 or 5 ; - 7 is not a factor because $149 \div 7=21$, r 2 - 11 is not a factor because $149 \div 11=13$, r 6 What is the next prime number? (13) Should we try 13? (No, as $13 \times 13=169$, which is more than 149.) Agree that 149 is a prime number and has only 2 factors: 1 and 149 . b) Let's define 149 in different ways. Class checks that definitions are correct and are unique to 149 . (e.g. $1 \mathrm{H}+4 \mathrm{~T}+9 \mathrm{U}, \quad 1.49 \div 100,7^{2}+10^{2}, 600-400-51$, etc.) 8 min	Notes Whole class activity Involve several Ps Reasoning, agreement, checking, praising (Calculators are not needed.) At a good pace Extra praise for clever definitions. Feedback for T
2	Crossword Let's fill in the rows using these clues, then read the word in the vertical box. T reads out each clue, Ps come to BB to write the appropriate words. Class agrees/disagrees. BB: 1. 100000×10 2. A quadrilateral with equal angles. 3. $1 \div 4$ 4. $810 \div 90$ Let's read out the word in the box. (MEAN)	Whole class activity Puzzle drawn on BB or use enlarged copy master or OHP Clues written on BB or SB or OHT At a good pace In good humour! Agreement, praising Extension If the word in the box was mode, think of suitable clues and draw a suitable grid.
3	Average heartbeat Put your hand over your heart so that you can feel your heartbeat. Close your eyes and concentrate. Start counting your heartbeats from . . . now! . . Stop! I have timed exactly 1 minute. Write down the number of heartbeats you had. Repeat another 4 times. You should all have 5 numbers written down. How could you work out your average heartbeat per minute? (Calculate the mean by adding up the numbers and dividing by 5.) Ps do so in Ex. Bks. Show me your average heartbeat . . . now! Ps show on slates or scrap paper on command (e.g. 63.4, 70.5, etc.) If you did lots of exercise, then counted your heartbeats again 5 times and worked out the mean, do you think there would be any change? (More heartbeats per minute as the heart would beat faster.) Ps could try it at home or at break or lunch or in their next PE lesson.	Whole class activity Use a stopwatch or kitcher timer or watch the second hand of a watch or clock. Agreement, praising In unison. T gently teases Ps with unrealistic heartbeats! T talks about the 'normal' range ($60 / \mathrm{min}$ to $90 /$ minute) and 'average' heartbeat ($70 / \mathrm{min}$) or asks Ps to find it out.

BKE		Lesson Plan 120
Activity 4	Book 5, page 120 Q. 1 Read: The ages of the members of the Cabbage family are: 1 year, 3 years, 33 years, 34 years and 65 years. The ages of the members of the Parsnip family are: 10 years, 12 years, 19 years,, 21 years, 42 years and 43 years. a) Calculate the mean age of each family. b) Both families are working in their gardens. Which family do you think will be able to do more work? Give a reason for your answer. Deal with part a) first and review, with mistakes discussed and corrected, before Ps attempt part b). Set a time limit for each part. Ask several Ps to read out their answer to part b). Who agrees? Who disagrees? Why? Solution: a) Mean age of Cabbage family: $\frac{1+3+33+34+65}{5}=\frac{136}{5}=27.2(\text { years })$ Mean age of Parsnip family: $\frac{10+12+19+21+42+43}{6}=\frac{147}{6}=24.5 \text { (years) }$ b) Elicit that although the Cabbage family are older on average, 2 of them are too young to do any gardening and one of the remaining adults would need to keep an eye on them. Answer: The Parsnip family would be able to do more work in the garden because all of them can work.	Notes Individual work, monitored, helped Revise how to calculate the mean. (Add up the ages and divide by the number in the family.) Ps do necessary calculations in Pbs or Ex. Bks. Discussion, reasoning, agreement, self-correction, praising (Or Ps could write C or P on slates or scrap paper and show in unison. T asks Ps with different answers to explain their reasoning.) Extra praise for Ps who realised this. Ps who were wrong or did not give a reason, correct or amend their sentences.
5	Book 5, page 120 Q. 2 Read: One summer's day in Budapest, the temperature was noted every two hours and recorded in this table. a) Calculate the mean of the temperatures on that day from the given data. b) Write the data in increasing order then find the mode and median. What time of day was it hottest (coldest)? (hottest: 4 pm , coldest: 4 am) Deal with one part at a time. Set a time limit. Ps write operations in Ex. Bks. but can use a calculator to work out the results if they wish. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected.	Individual work, monitored helped Table drawn on BB or use enlarged copy master or OHP Ps shout out in unison. Compare the temperatures with today's temperature. Discussion, reasoning, agreement, self-correction, praising

BKS		Lesson Plan 120
Activity 5	(Continued) Solution: BB: $\left({ }^{\circ} \mathrm{C}\right)$ a) Mean temperature: $\begin{aligned} & \frac{10.6+10.0+9.5+11.1+15.2+20.9+25.0+28.3+29.0+26.1+21.0+17.4+13.0}{13} \\ & =\frac{237.1}{13} \approx 18.2\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ b) $9.5,10.0,10.6,11.1,13.0,15.2,17.4,20.9,21.0,25.0,26.1,28.3,29.0$ Mode: Any or all of these temperatures (as each occurs once) Median: $17.4^{\circ} \mathrm{C}$ 38 min	Notes Extension Ps draw a graph of the data as homework. (T could have axes already prepared on worksheets, or use enlarged copy master, for less able Ps)
6	Book 5, page 120 Q. 3 Read: One winter's day in Budapest, the temperature was noted every two hours and recorded in this table. a) Calculate the mean of the temperatures on that day from the given data. b) Write the data in increasing order then find the mode and median. What was the temperature at mid-day (midnight)? $\left(1^{\circ} \mathrm{C},-8^{\circ} \mathrm{C}\right)$ Deal with one part at a time. Set a time limit. Ps write operations in Ex. Bks. but can use a calculator to work out the results if they wish. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: BB: $\left({ }^{\circ} \mathrm{C}\right)$ a) Mean temperature: $\begin{aligned} & \frac{-10+(-11)+(-11)+(-10)+(-8)+(-3)+1+4+5+2+0+(-4)+(-8)}{13} \\ & =\frac{-65+12}{13}=\frac{-53}{13} \approx-4\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ b) $-11,-11,-10,-10,-8,-8,-4,-3,0,1,2,4,5$ Mode: - 11 or -10 or -8 Median: $-4^{\circ} \mathrm{C}$	Individual work, monitored helped Table drawn on BB or use enlarged copy master or OHP Ps shout out in unison. Compare with British winter temperatures. Discussion, reasoning, agreement, self-correction, praising Extension Ps draw a graph of the data as homework or in Lesson 150. (T could have axes already prepared on worksheets, or use enlarged copy master, for less able Ps)

BKE	R: Calculations with and without calculators C: Revision: Numbers. Roman numerals. Negative numbers E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 121 \end{gathered}$
Activity 1	Numbers a) Let's factorise 151 and then list all its positive factors. Ps try out the prime numbers $2,3,5,7,11$ as divisors and dictate their findings. e.g. - 2 is not a factor because 151 is odd; - 3 is not a factor because $1+5+1=7$, which is not a multiple of 3 ; - 5 is not a factor because the units digit is not 0 or 5 ; - 7 is not a factor because $151 \div 7=21, \mathrm{r} 4$ - 11 is not a factor because $151 \div 11=13, \mathrm{r} 8$ What is the next prime number? (13) Should we try 13? (No, as $13 \times 13=169$, which is more than 151.) Agree that 151 is a prime number and has only 2 factors: 1 and 151 . b) Let's define 151 in different ways. Class checks that definitions are correct and are unique to 151 . (e.g. $15 \mathrm{~T}+1 \mathrm{U}, \quad 15.1 \times 10,7^{2}+10^{2}+2,500-349$, etc.)	Notes Whole class activity Involve several Ps Reasoning, agreement, checking, praising (Calculators are not really needed.) At a good pace Extra praise for clever definitions. Feedback for T
2	Sequences T writes first few terms of a sequence on $B B$. Ps agree on the rule, then come to BB to write and say the following terms. Class points out errors. T decides when to stop. BB: a) $30100,29200,28300,(27400,26500,25600,24700$, 23 800, 22 900, $22000, \ldots$) [Rule: Decreasing by 900 , or -900] b) $-32,-25,-18,(-11,-4,3,10,17,24,31, \ldots)$ [Rule: Increasing by 7, or +7] Revise negative numbers and show on a number line if necessary. c) XXII, XLIII, LXIV, LXXXV, (CVI, CXXVII, CXLVIII, $\begin{array}{lllllll}22 & 43 & 64 & 85 & 106 & 127 & 148\end{array}$ CLXIX, CXC, CCXI, ...) 169190211 [Rule: Increasing by XXI, or +21]	Whole class activity Discussion, agreement on the rule At a fast pace In good humour! Reasoning, agreement, correcting, praising Elicit/revise the Roman numerals first if necessary. $\begin{aligned} & (\mathrm{V}=5, \mathrm{X}=10, \mathrm{~L}=50 \\ & \mathrm{C}=100, \mathrm{D}=500 \\ & \mathrm{M}=1000) \end{aligned}$
3	Book 5, page 121 Q. 1 Read: Write in the missing numbers. I wll give you 2 minutes to do it. Start . . . now! . . . Stop! Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. If correct, Ps circle the mark. If wrong, Ps cross out their mistake in red and correct it. All mistakes discussed with the class. Solution: a) $(4 \times 3)+5=17$ as $17-12=5$ b) $(5 \times 5)-3=22$ as $25-22=3$	Individual work, monitored Written on BB or SB or OHT Reasoning, e.g. a) $17-12=5$ b) $25-22=3$ Agreement, self-correction, praising

BKE		Lesson Plan 121
Activity 4	Problem Listen to the question and study the diagram. Do not use a calculator! Show me your answer when I say. I will give you 2 minutes. BB: Write 2 more numbers so that the total of all the numbers is 1000 . Show me 2 numbers . . now! (e.g. 200 and 50, 100 and 150, etc.) T chooses a P to explain their reasoning. ($1000-750=250$, so any 2 numbers which sum to 250 are possible.) 24 min	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP Encourage mental calculation, but Ps may work in Ex. Bks if necessary. Responses shown on scrap paper or slates in unison. Reasoning, agreement, praising
5	Book 5, page 121 Q. 2 Read: Calculate 459×6 Allow 2 minutes. Ps do working in Pbs. Show me the product . . now! P answering correctly explains at BB . Who did the same? Who did it another way? etc. Ps circle '1 mark' if correct or cross out their mistake in red and correct it. Solution: or $\begin{array}{r}459 \\ \times 6 \\ \hline 2754 \\ \hline 35\end{array}$	Individual work, monitored Responses shown on slates or scrap paper in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method. Feedback for T
6	Calculation practice T has operations written on BB. Work out the missing numbers in your Ex. Bks. I will give you 3 minutes! Start . . . now! . . . Stop! Ps come to BB or dictate to T , explaining reasoning. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. BB: a) $100-64=36$ [as 100-36=64] b) $5 \times 13=65$ Allow 1×65 or exclude it in advance. c) $250 \div 5=50$ [as $250 \div 50=25 \div 5=5]$ Elicit the general methods of solution. (subtrahend $=$ reductant -difference; divisor $=$ dividend \div quotient 32 min	Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising (as units digit is 5, so 5 must be a factor, and $65 \div 5=13$)
7	Book 5, page 121 Q. 3 Read: Write the number that is the nearest to 5000 which uses all the digits 4, 5, 6 and 8. Although a calculator was allowed in the KS2 Test, encourage Ps to work it out logically rather than using trial and error. Allow 1 minute. Ps show number on scrap paper or slates on command. (4865) Ps responding correctly explain reasoning. Who thought the same? Who did it another way? etc.	Individual work, monitored Responses shown in unison. Reasoning: e.g. 4Th or 5 Th possible but 4800 is nearer to 5000 than 5400 is, so nearest number is 4865 .) Agreement, self-correction, praising

BKE		Lesson Plan 121
Activity 8	Book 5, page 121 Q. 4 Read: Practise calculation. Set a time limit of 3 minutes. Encourage Ps to check their results (adding in different directions and using reverse operations). Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected. If too many mistakes were made, ask Ps to reason with place-value details. Solution: a) b) c) - T points to a digit and Ps say what its place-value is. - T asks Ps to say the answers in increasing order. 40 min	Notes Individual work, monitored Written on BB or use enlarged copy master or OHP Quick checking, agreement, self-correction, praising Feedback for T At speed round class In unison. Praising
9	Book 5, page 121 Q. 5 Read: We have 80 books altogether. They are arranged on 3 shelves. If we moved 7 books from the top shelf to the middle shelf and took 8 books away from the bottom shelf, there would be an equal number of books on each shelf. How many books are on each shelf? Allow 3 minutes for Ps to try to solve the problem, working individually or in pairs. T advises Ps to read the problem carefully and try to picture it in their heads. Review with whole class. Who has an answer? Come and tell us how you did it. Who agrees? Who did it another way? etc. If nobody had the correct answer, T helps class to solve it together. Solution: e.g. Number of books: 80 Number of books to be moved: 7 Number of books to be taken away completely: 8 Number of books left: $80-8=72$ Number of books on each of 3 shelves if equal: $72 \div 3=24$ Actual number of books on: top shelf: $24+7=31$ middle shelf: $24-7=17$ bottom shelf: $24+8=32$ Check: $\quad 31+17+32=80$ and $31-7=24 \checkmark ; 17+7=24 \checkmark ; 32-8=24$ Answer: There are 31 books on the top shelf, 17 books on the middle shelf and 32 books on the bottom shelf.	Individual (paired) trial first, monitored [If Ps say that it is impossible, as 80 is not exactly divisible by 3 , tell them to read the problem again!] Discussion, reasoning, agreement, checking, self-correction, praising or BB: $(80-8) \div 3=72 \div 3=24$ Extra praise for Ps who solved it without help from T .

BKE		Lesson Plan 122
Activity 3	Book 5, page 122 Q. 1 Read: Circle two numbers which add up to 160. Allow 2 minutes. Ps circle 1 pair in diagram then list as many other pairs as they can. (Only 1 pair was required in KS2 Test.) Review with whole class. A, how many pairs did you find? Who found more than A ? Let's check them. Ps come to BB to show pairs on diagram and write on BB. Class agrees/ disagrees and points out any pairs missed. Deal with all possibilities and encourage Ps to list in a logical order, as shown. Mistakes/omissions corrected. Solution: $\begin{aligned} & 63+97, \quad 64+96, \quad 65+95, \quad 66+94, \quad 67+93, \\ & 73+87,74+86,75+85,76+84, \quad 77+83 \end{aligned}$ 16 min	Notes Individual work, monitored Diagram drawn on BB or use enlarged copy master or OHP BB: Reasoning, checking (with calculators), agreement, self-correction, praising T points out that such an ordered listing ensures that no pairs are missed.
4	Book 5, page 122 Q. 2 Read: A shop sells these flowers. a) John buys 4 bunches of daisies. How much does he pay altogether? b) Karpal has $£ 5.00$ to spend on roses. How many roses can she buy for $£ 5.00$? Set a time limit of 3 minutes. Ps write operations and write the results in the boxes. Review with whole class. Ps could show result for each part on slates or scrap paper on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Class agrees/ disagrees. Ps circle each mark in red if correct, or cross out their mistake and correct it. T asks Ps to say each answer in a sentence. Solution: a) $99 \mathrm{p} \times 4=100 \mathrm{p} \times 4-4 \mathrm{p}=400 \mathrm{p}-4 \mathrm{p}=396 \mathrm{p}=£ 3.96$ or $\quad=£ 1 \times 4-4 \mathrm{p}=£ 4-4 \mathrm{p}=£ 3.96$ Answer: John paid $£ 3.96$ for 4 bunches of daisies. b) $£ 5 \div 50 \mathrm{p}=500 \mathrm{p} \div 50 \mathrm{p}=50 \mathrm{p} \div 5 \mathrm{p}=10$ (times) Answer: Karpal can buy 10 roses.	Individual work, monitored Drawn (stuck) on BB or use enlarged copy master or OHP (or real flowers in vases) Responses shown in unison. Reasoning, agreement, selfcorrection, praising or $\begin{array}{r}999 \\ \hline 3 \quad 4 \\ \hline 3: 9 \\ \hline\end{array}$ (p) If time, Ps think of other questions to ask about the flowers.

BKE		Lesson Plan 122
Activity 5	Book 5, page 122 Q. 3 Let's see how many of these you can do in 3 minutes! Start . . . now! . . . Stop! Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Encourage Ps to use the correct terminology (numerator, denominator, simplify, expand, mixed number, equivalent fractions, lowest common multiple, etc.). Draw area diagrams on BB if necessary. Class agrees/disagrees. Mistakes discussed and corrected. Who had all 6 correct? Let's give them a clap! Solution: a) $\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\left(\frac{6}{4}=\frac{3}{2}=1 \frac{1}{2}\right)$ b) $2 \frac{4}{5}-1 \frac{1}{5}=\left(1 \frac{3}{5}\right)$ c) $3 \frac{2}{3}+\frac{1}{6}=\left(3 \frac{4}{6}+\frac{1}{6}=3 \frac{5}{6}\right)$ d) $\frac{7}{8}-\frac{1}{5}=\left(\frac{35-8}{40}=\frac{27}{40}\right)$ e) $\frac{2}{7} \times 3=\left(\frac{6}{7}\right)$ f) $\frac{8}{9} \div 4=\left(\frac{2}{9}\right) \quad\left(\right.$ or $\left.=\frac{8}{36}=\frac{4}{9}\right)$	Notes Individual work, monitored, (helped) Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Quick revision of the concept of a fraction. Elicit that: - to find the lowest common multiple of two numbers, list the multiples of the greater number until you reach a common multiple; - to multiply a fraction by a natural number, either multiply the numerator or divide the denominator; - to divide a fraction by a natural number, either divide the numerator or multiply the denominator.
6	Book 5, page 122 Q. 4 Read: Circle the two numbers which add up to 1 . Set a time limit of 1 minute. Review with whole class. Ps could show the two numbers on slates or scrap paper on command. P answering correctly comes to BB to explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: as $0.85+0.15=\frac{85}{100}+\frac{15}{100}=\frac{100}{100}=1$ 31 min	Individual work, monitored Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Ps say all the numbers as fractions. Ps say what should be added to each of the other numbers to make 1 . Feedback for T
7	Book 5, page 122 Q. 5 Set a time limit of 3 minutes. Encourage Ps to estimate result first and to check their answers with reverse operations (mentally or in Ex. Bks. or on scrap paper or slates). Review with whole class. Ps come to BB or dictate to T, explaining reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) b) 3 6.8 2 $-\quad 1$ 4. 5 9 2 2.2 3 c) d)	Individual work, monitored Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising T points to a digit and Ps say its actual value. T asks Ps to say each number as a fraction.

		Lesson Plan 122
Activity 8	Missing number How can we work out the missing number? BB: $950.4 \div \square=49.5$ We have not learned this yet but can you think of a way of doing it from what you know already? If Ps have ideas, allow them to explain and ask rest of class what they think about it. If nobody has an idea, T gives hints or directs Ps' thinking. e.g. Using an easier division on $B B$ (e.g. $50 \div \square=5$) elicit that to find an unknown divisor, divide the dividend by the quotient. BB: \square $=950.4 \div 49.5$ $=9504 \div 495$ (as increasing the dividend and divisor by the same number of times does not change the value of the quotient) You know how to do long division, so let's do it together. Ps come to BB or dictate what T should write. Class points out errors. (BB) Ps write the missing number in the original division. How can we check that we are correct? (By doing the division again, or with the inverse operation - multiplication, on a calculator) BB: $\quad 950.4 \div 19.2=49.5 \checkmark$ Check: $\quad 49.5 \times 19.2=950.4 \checkmark$ Elicit the general rules for working out an unkown component in a division.	Notes Whole class activity Written on BB or SB or OHT This type of operation will be covered properly in Book 6. Involve several Ps. Extra praise for good suggestions. Discussion, reasoning, agreement, praising only T might need to remind Ps about this. BB: Quotient $=$ dividend \div divisor Divisor $=$ dividend \div quotient Dividend $=$ quotient \times divisor
9	Book 5, page 122 Q. 6 Read: In this addition, different letters stand for different digits and the same letters stand for the same digits. A is not less than 3. a) Which digit could each letter stand for? Find different solutions in your exercise book. b) What is: i) the smallest ii) the greatest possible sum? Set a time limit. Ps work individually (or in pairs) in Ex. Bks. Encourage a logical listing rather than trial and error. Review with whole class. A, how many did you find? Who found more than \mathbf{A} ? How did you do it? etc. Solution: a) Possible values for each letter can be shown in a table. b) Smallest sum: 43 c) Greatest sum: 98	Individual (paired) trial first, monitored (or whole class activity if time is short or Ps are not very able) T and Ps could use grids and table on copy master. Agreement, checking, praising T could have solution already prepared and uncover the relevant additions as dictated by Ps. If no P found all 15 , P dictate those they did find and then they could be asked to complete the task for homework.

BK	R: Calculations, with ane without a calculator C: Numbers and calculations with integers E: Problems	Lesson Plan 123
Activity 1	Numbers a) Let's factorise 153 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: b) Let's define 153 in different ways. Class checks that definitions are correct and are unique to 153 and that there are no repeats. (e.g. $1 \mathrm{H}+53 \mathrm{U}, 15.3 \times 10,1$ fifth of $765,300 \%$ of 51 , etc.) 6 min	Notes Whole class activity Reasoning, agreement, praising (3 is a factor of 153 , as $1+5+3=9$, which is a multiple of 3) At a good pace Extra praise for clever definitions. Feedback for T
2	True or False? Listen to the statement. If you think it is true, knock once on your desk; if you think it is false, put your hands on your head. Show me what you think when I say. a) The sum of 2 positive numbers is always positive. b) The sum of 3 negative numbers is always negative. c) The sum of a positive and a negative number is always positive. [e.g. $+5+(-5)=0$, or $+5+(-7)=-2]$ When is the sum positive? (When the positive number has a greater absolute value [i.e. numerical value disregarding the sign] than the negative number.) d) The sum of 4 positive numbers is greater than any of the 4 terms. (T) e) The sum of 2 negative numbers is greater than any of the 2 terms. (F) [e.g. $-2+(-5)=-7$ and $-7<-2,-7<-5]$ The sum of 2 negative numbers is smaller than any of the 2 terms. f) The difference between two positive numbers can be -1 . $[$ e.g. $+3-(+4)=-1]$	Whole class activity (or Ps decide on appropriate actions or write T or F on slates or scrap paper) Responses shown in unison. Ps with differing responses explain reasoning, giving examples or counter examples as necessary. Note that only one counter example is needed to prove a statement wrong. Class agrees on correct answer. Praising, encouragement only If time, Ps can think of own statements to say to class.
3	Book 5, page 123 Q. 1 Read: Practise addition. Set a time limit. Encourage Ps to calculate mentally if possible, and to look out for easy combinations of terms. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/ disagrees or suggests an easier way. Mistakes discussed and corrected. Solution: a) i) $3+2=5$ ii) $3+0=3$ iii) $3+(-2)=1$ iv) $3+(-4)=-1$ v) $3+(-6)=-3$ b) i) $-3+(-2)=-5$ ii) $-3+0=-3$ iii) $-3+2=-1$ iv) $-3+4=1$ v) $-3+6=3$ c) i) $25+(-41)+12+(-10)=37+(-52)=-14$ ii) $-100+(-30)+78+(-48)=-100+78+(-78)=100$ iii) $5000+(-2000)+(-3000)=5000+(-5000)=0$ iv) $-85000+(-15000)+(-20000)=-100000+(-20$ 000) v) $-236700+0=-236700$	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Reasoning, if necessary on class number line or with model, e.g. cash and debt for a) and b), and using height above/below sea level and/or vertical number line for c) Agreement, self-correction, praising Feedback for T $=-120000$

$B K E$		Lesson Plan 123
Activity 4	Book 5, page 123, Q. 2 Read: Write an operation and calculate the answer. Deal with one part at a time. Teacher chooses a P to read the question, Ps calculate in Ex. Bks then show result on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Ps write agreed operation in Pbs . Solution: a) Ian had $£ 1500$ in cash and was $£ 400$ in debt, then $£ 300$ of his debt was cancelled. What is his balance now? Plan: $1500+(-400)-(-300)=1500+(-100)=1400$ Answer: Ian's balance is $£ 1400$. b) Lucy had $£ 1500$ in cash and was $£ 400$ in debt. She went on holiday and spent $£ 1200$. What is her balance now? Plan: $1500+(-400)+(-1200)=300+(-400)=-100$ Answer: Lucy's balance is $-£ 100$.	Notes Whole class activity but individual calculation under a short time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Demonstrate with cash and debt cards on BB if necessary. T chooses a P to say the answer in a sentence. Feedback for T
5	Book 5, page 123 Q. 3 Read: Practise calculation. How many calculations are there? $(2 \times 8=16)$ Let's see how many of them you can do in 5 minutes! It might help if you picture the operations on an imaginary number line in your head. Start . . . now! . . . Stop! Review with whole class. What sign could be written between part a) and part b)? Show me . . now! (=) Ps come to BB or dictate what T should write, explaining reasoning with cash and debt model or in the case of subtractions, by comparison. Show on number line too if problems or disagreement. Class agrees/ disagrees. Mistakes discussed and corrected. Who had all 16 correct? Who made just 1 mistake? Let's give them 3 cheers! Solution: a) i) $20-(+14)=6$ b) i) $20+(-14)=6$ ii) $20-(+36)=-16$ ii) $20+(-36)=-16$ iii) $40-(+40)=0$ iii) $40+(-40)=0$ iv) $35-(-20)=55$ iv) $35+(+20)=55$ v) $-30-(-10)=-20$ v) $-30+(+10)=-20$ vi) $-30-(-30)=0$ vi) $-30+(+30)=0$ vii) $-20-(-50)=30$ vi) $-20+(+50)=30$ viii) $-20-(+30)=-50$ viii) $-20+(-30)=-50$ Elicit that: - subtracting a positive number is the same as adding the opposite negative number; - subracting a negative number is the same as adding the opposite positive number.	Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, evaluation, praising Responses shown in unison. Reasoning, e.g. by comparion: a) i) 20 is 6 more than 14 , so $20-14=6$ ii) 20 is 16 less than 36 , so $20-36=-16$ or by checking with reverse operation. e.g. a) iv) $\begin{aligned} & 35-(-20)=55, \\ & \text { as } 55+(-20)=35 \end{aligned}$ Feedback for T

BKE	R: Calculations with and without calculators C: Numbers and calculations. Rounding integers and decimals E: Problems. Coordinates	$\begin{gathered} \text { Lesson Plan } \\ 124 \end{gathered}$
Activity 1	Numbers a) Let's factorise 154 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: (7) (11) Positive factors: $1,2,7,11,14,22,77,154$ b) Let's define 154 in different ways. Class checks that definitions are correct and are unique to 154 and that there are no repeats. (e.g. 200% of 77,1 tenth of $1540,14 \times 11,-50+204$, etc.) 6 min \qquad	Notes Whole class activity Reasoning, agreement, praising At a good pace Extra praise for clever definitions. Feedback for T
2	Rounding T has sentences written on BB. Treads one sentence at a time, saying 'something' instead of the missing word or number. What would make the sentence true? Ps come to BB or dictate what T should write, then read the whole sentence again. Who thinks it is correct? Who thinks we should write something else? Why? etc. BB: a) 56437 rounded to the nearest hundred is \square 56400 b) 3620 is 3615 rounded to the nearest \square tenth . c) $46.5 \approx 47$ shows that \square 5 rounds up to the next greater place-value. d) The inequality $2055 \leq x<2065$ shows the possible values of x which round to 2060 as the nearest ten. e) The inequality $10.35 \leq x<10.45$ shows the possible values of x which round to 10.40 as the nearest hundredth. What are the rules of rounding? e.g. - 5 rounds up to next whole ten, 50 rounds up to next whole hundred, 500 round up to next whole thousand; 0.5 rounds up to next unit, 0.05 rounds up to next tenth, etc. - When rounding, the complete number must be rounded at once,	Whole class activity Written on BB or use enlarged copy master or OHP (or Ps could show on scrap paper or slates in unison on command) Reasoning agreement, selfcorrection, praising Feedback for T

		Lesson Plan 124
Activity 3	Book 5, page 124 Q. 1 Read: Practise rounding: a) to the nearest 10 b) to the nearest 100 c) to the nearest tenth. Set a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) to nearest 10 b) to nearest 100 c) to nearest tenth $6208 \approx 6210$ $6208 \approx 6200$ $62.08 \approx 62.1$ $14035 \approx 14040$ $14035 \approx 14000$ $140.35 \approx 140.4$ $90455 \approx 90460$ $90455 \approx 90500$ $904.55 \approx 904.6$ $383 \approx 380$ $383 \approx 400$ $3.83 \approx 3.8$ $9999 \approx 1000$ $9999 \approx 10000$ $99.99 \approx 100.0$ 22 min \qquad	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising Show on relevant segments of number line drawn on BB if problems or disagreement. Feedback for T
4	Book 5, page 124 Q. 2 Calculate 538-396. Set a time limit of 1 minute. Ps estimate mentally first by rounding, do the calculation, then check against estimate and with the reverse operation. Review with whole class. Ps show result on scrap paper or slates on command. T chooses one of the Ps responding correctly to explain reasoning at BB to Ps who were wrong. Who did the same? Who did it a different way? Mistakes discussed and corrected. Elicit the correct mathematical names for the components of subtraction. (reductant, subtrahend and difference) Solution: e.g. $538-396=238-96=148-6=142$ or $542-400=142$ (Adding equal amounts to reductant and subtrahend does not change the difference.)	Individual work, monitored e.g. Estimating to nearest: $\begin{aligned} & 100: 500-400=100 \\ & 10: 540-400=140 \end{aligned}$ Responses shown in unison. Reasoning, agreement, selfcorrection, praising Deal with all methods used by Ps. T writes the names on BB .
5	Book 5, page 124 Q. 3 Read: Write in the four missing digits. Put one digit in each box. In the KS2 test, Ps were allowed to use a calculator to help them but it can done just as easily without one. Why not try it? Allow 1 minute. Remind Ps to check their solution. Review with whole class. P comes to BB or dicates to T. Who agrees? Who wrote something different? How did you work it out? (e.g. trial and error with a calculator) Who did the same? Who worked it out without a calculator? Tell us what you did. Solution: e.g. Reasoning: e.g. $198 \approx 200$, and $100+100=200$ 198 is 2 less than 200, so subtract 2 from LHS also, i.e. 1 from each of the 100s. $99+99=198$	Individual work, monitored Written on BB or SB or OHT A challenge for more able Ps to think logically! Discussion, reasoning, checking, agreement, selfcorrection, praising or $198 \div 2=99$ so $99+99=198$

$B K E$		Lesson Plan 124
Activity 6	Book 5, page 124 Q. 4 Read: Here is a graph. a) The points A, B and C are equally spaced. What are the coordinates of point B ? b) Point D is directly below point C. What are the coordinates of the point D? Elicit what the given coordinates beside A and C really mean. Ps come to BB to explain and point, with T's help if necessary. (1st number is the x-coordinate and shows how far the point is along the x-axis, i.e. its distance from the y-axis; 2nd number is the y-coordinate and shows how far the point is along the y-axis, i.e. its distance from the x-axis) Set a time limit. Review with whole class. Ps could show the coordinates of each point on slates or scrap paper on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) B is half-way between A and C , so b) x-coordinate of $\mathrm{D}=x$-coordinate of $\mathrm{C}=10$, y-coordinte of $\mathrm{D}=0$ (as on the x-axis), so coordinates of $\mathrm{D}:(10,0)$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Quick revision of the Cartesian coordinate system Discussion, reasoning, agreement, self-correction, praising Feedback for T BB:
7	Book 5, page 124, Q. 5 Read: In a race, the runners are started 1 minute after each other. The first runner covers 174 m each minute and the second runner covers 182 m each minute. What distance will be between the two runners: a) 10 minutes after the first runner started b) 30 minutes after the first runner started? Allow 4 minutes for Ps to think about it, discuss with their neighbours or try to work out a method of solution in their Ex.Bks. Then Ps who have ideas tell them to class, with T's help or guidance if necessary. If Ps have no ideas, T gives hints or directs Ps' thinking. e.g. - Write their distances in a table. T starts and Ps come to BB to continue it. Extra praise if Ps realise that they do not need to write every minute in the table! Discuss what the results actually mean. BB: Elicit that after 10 minutes the first runner is still ahead by 102 m but by 30 minutes, the 2 nd runner has overtaken the 1 st runner and is now leading by 58 m .	Individual (paired) trial first, then whole class discussion on methods of solution (or allow more time for individual solution if Ps wish) Recommend that Ps use calculators to save time on calculations. Discussion involving several Ps, reasoning, agreement, praising - or Distance apart after 10 min : $\begin{aligned} & 174 \mathrm{~m} \times 10-182 \mathrm{~m} \times 9 \\ & =1740 \mathrm{~m}-1638 \mathrm{~m}=102 \\ & (\mathrm{~m}) \end{aligned}$ Distance apart after 30 min : $\begin{aligned} & 174 \mathrm{~m} \times 30-182 \mathrm{~m} \times 29 \\ & =5220 \mathrm{~m}-5278 \mathrm{~m}=-58 \mathrm{~m} \end{aligned}$ [T could demonstrate problem in a graph or by using computer graphics.]

BKS	R: Calculations with and without a calculator C: Order of operations. Brackets E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 125 \end{gathered}$
Activity 1	Numbers a) Let's factorise 156 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: b) Let's define 156 in different ways. Class checks that definitions are correct and are unique to 156 and that there are no repeats. (e.g. 300% of 52,1 sixth of $936,12 \times 13,12^{2}+12$, etc.) \qquad 8 min \qquad	Notes Whole class activity Reasoning, agreement, praising Ps could join up the factor pairs. At a good pace Extra praise for clever definitions. Feedback for T
2	Calculation practice 1 Which number does the letter stand for? T dictates the equation and Ps write it in Ex. Bks., do the calculation and show answer on slates or scrap paper on command. Ps with correct answers explain at BB to Ps who were wrong. Who did the same? Who did it a different way? etc. Mistakes discussed/corrected. BB: e.g. a) $a=25 \times 6 \times 125 \times 4 \times 8=[100 \times 1000 \times 6=600000]$ (as $25 \times 4=100$ and $125 \times 8=1000$) b) $b=25 \times 42 \times 125 \times 4 \times 8=[600000 \times 7=4200000]$ (same terms as a except for 42 instead of 6 , and $42=6 \times 7$) c) $c=40 \times 50 \times 9 \times 2 \times 25=[1000 \times 100 \times 9=900000]$ (as $40 \times 25=1000$ and $50 \times 2=100$) d) $d=40 \times 50 \times 3 \times 2 \times 25=[900000 \div 3=300000]$ (same terms as c except for 3 instead of 9 , and $3=9 \div 3$) e) $e=250 \div 5 \times 13 \times 8 \div 4=[50 \times 2 \times 13=100 \times 13=1300]$ (50) (2) f) $f=250 \div 50 \times 13 \times 8 \div 4=[1300 \div 10=130]$ (same terms as e except for 50 instead of 5 , and $5=50 \div 10$) 16 min	Individual work, monitored T could write the equations on BB too. Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising Extra praise for Ps who noticed easy ways of doing the calculations T points them out if no P noticed and ask Ps what they think of them.
3	Calculation practice 2 Do these calculation in at least two different ways in your Ex Bks. BB: a) $84-41+29-19+16$ b) $84 \div 5 \times 15 \div 12 \times 10$ Set a time limit. Review with whole class. Ps come to BB to write and explain their calculations. Who did the same? Who used a different calculation? Deal with all cases. Mistakes discussed and corrected. Solutions: e.g. from left to right, or grouping terms in an easier way: a) $\begin{aligned} & 84-41=43,43+29=72,72-19=53,53+16=69 \\ & \text { (or } 84 \xrightarrow{-41} 43 \xrightarrow{+29} 72 \xrightarrow{-19} 53 \xrightarrow{+16} \underline{69} \text {) } \\ & \text { or } \overbrace{84+16-41-19}+29=100-60+29=40+29=69 \end{aligned}$	Individual work, monitored Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising Extra praise for clever ideas. Elicit that if only + and -, it is usual to work from left to right unless there is an easier combination of terms.

BKE		Lesson Plan 125
Activity 3	(Continued) b) From left to right, or combining easy terms: $\left.\begin{array}{l} 84 \div 5=16 \frac{4}{5}, 16 \frac{4}{5} \times 15=160+80+12=252, \\ 252 \div 12=21,21 \times 10=210 \\ \text { (or } 84 \stackrel{\div}{\longrightarrow} 16.8 \xrightarrow{\times 15} 252 \stackrel{\div 12}{\longrightarrow} 21 \xrightarrow{\times 10} 210 \end{array}\right) \text {) }$	Notes Elicit that if only \times and \div, it is usual to calculate from left to right unless there is an easier combination of terms. BB: $\begin{array}{r} 16.8 \\ 5 \begin{array}{r} 164.0 \\ 34 \end{array} \\ \hline 15 \\ \hline 840 \\ \\ \hline \frac{1680}{252.0} \\ \hline 11 \end{array}$
4	Book 5, page 125 Q. 1 Read: Practise calculation. Set a time limit of 5 minutes. Ps do necessary calculations in Ex. Bks. Review with whole class. Ps come to BB tor dictate what T should write, explaining reasoning. Class agrees/disagrees or suggests an easier method of calculation. Mistakes discussed and corrected. Solution: e.g. a) $37-80+43+64$ $\begin{aligned} & -44=(37+43-80)+(64-44) \\ & \quad=0+20=20 \end{aligned}$ b) $3.7-8+4.3+6.4-4.4=20 \div 10=2$ (as each term in b) is 1 tenth of corresponding term in a). c) 5×31 $\begin{aligned} \times 25 \times 20 \times 4 & =(5 \times 20) \times(25 \times 4) \times 31 \\ & =100 \times 100 \times 31=310000 \end{aligned}$ d) $2 \times 50 \div 4 \times 27=100 \times 27 \div 4=2700 \div 4=675$ 32 min	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correction, praising (If disagreement, check correct result with a calculator.) If no P noticed these easy methods, accept any correct calculation, then T points them out. BB:675 2700 32
5	Book 5, page 125 Q. 2 Read: Practise calculation. What do you notice about these calculations? (They include all 4 operations.) Who can tell us in which order they should be done? (Multiplication and division first, then addition and subtraction) Set a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Mistakes discussed and corrected. Solution: a) $30-16 \div 4+9 \times 5+15=30-4+45+15=26+60=86$ b) $\begin{aligned} 72 \div 8-20 \times 6 \div 5+300 \div 100 & =9-120 \div 5+3 \\ & =12-24=-12 \end{aligned}$ c) $\begin{aligned} & 20 \div 8 \times 6+3 \times 12 \div 9+15 \div 5-5 \\ & =120 \div 8+36 \div 9+3-5=15+4+3-5=17 \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Discussion, reasoning, agreement, self-correcting, praising (If disagreement, check result on a calculator.) Feedback for T

R		Lesson Plan 125
Activity 6	Book 5, page 125 Q. 3 Read: Do each calculation in two different ways. Do part a) with whole class first. A, come and show us one way of doing the calculation. Is A correct? Who can think of another way to do it? Class points out errors. Point out that the operation outside the brackets applies to each number inside the brackets. Let's see if you can do the others on your own. Tick the calculation you think is easiest. Deal with one at a time or set a time limit. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes discussd and corrected. Ask Ps which method they like best and why. (Agree that both methods give the correct answer but doing the operation in brackets first is usually quicker and easier.) Solution: a) $650-(450+120)=650-570=80$ or $650-450-120=200-120=80$ b) $650-(450-120)=650-330=320$ or $650-450+120=200+120=320$ c) $50 \times(12+38)=50 \times 50=2500$ or $50 \times 12+50 \times 38=600 \times 1900=2500$ d) $(200-180) \times 7=20 \times 7=140$ or $200 \times 7-180 \times 7=1400-1260=140$ e) $(90+72) \div 18=162 \div 18=81 \div 9=9$ or $90 \div 18+72 \div 18=5+4=9$ f) $600 \div(25 \times 6)=600 \div 150=60 \div 15=4$ or $600 \div 25 \div 6=100 \div 25=4$	Notes Whole class activity to start, then individual work, monitored, helped (or continue as a whole class actvity if Ps are unsure) Written on BB or use enlarged copy master or OHT Discussion, reasoning, agreement, self-correction, praising (If problems or disagreement, Ps can use calculators to check results.) Feedback for T
7	Book 5, page 125, Q. 4 Read: Which positive, whole numbers make all three inequalities true at the same time? Allow 1 minute for Ps to think about it and discuss with their neighbours. Who thinks they know what to do? Come and explain it to us. Who agrees? Who thinks something else? If no P has an idea, T directs Ps^{\prime} thinking and class solves it together. Solution: $\begin{array}{ll} 3 \times(5+\square)<35 & \rightarrow 5+\square<12(\text { as } \square \text { is a whole number) } \\ & \text { so } 1 \leq \square<7 \text { (as } \square \text { is a positive number) } \\ 8+\square>11 & \rightarrow \square>3 \\ 20-3 \times \square \leq 9 & \rightarrow 11 \leq 3 \times \square, \text { so again } 3<\square \end{array}$ From all the above: $3<\square<7$ Possible numbers: $\square: 4,5,6$	Whole class activity (or individual trial if Ps wish, leaving the question open for finishing at home if Ps are on the right track) Written on BB or SB or OHT Discussion, reasoning, agreement, checking by inserting possible solutions in the inequalities to see if they are true, praising Involve as many Ps as possible. Agree that the 3rd inequality does not give any additional information - it merely confirms the 2 nd inequality.

BK	R: Calculations with and without calculators C: Revision: numbers and operations (integers, fractions, decimals) E: Problems	Lesson Plan 126
Activity	Numbers a) Let's factorise 157 and then list all its positive factors. Ps try each of the prime numbers $2,3,5,7$ and 11 . Elicit hat there is no need to try 13 , as $13 \times 13=169$ and $169<157$. Agree that 157 is a prime number so its positive factors are 1 and 157. b) Let's define 157 in different ways. Class checks that definitions are correct and are unique to 157 and that there are no repeats. (e.g. $1 \mathrm{H}+5 \mathrm{~T}+7 \mathrm{U}, 1$ third of $471,15 \times 10+7,1.57 \times 100$, etc.)	Notes Whole class activity At a good pace Ps explain reasoning or do divisions at side of BB. Class agrees/disagrees At speed round class In good humour. Praising, encouragement only
2	Calculation practice Write this calculation in your Ex. Bks, work out the result and show it to me when I say. It looks difficult but if you do one step at a time it is quite easy! (Allow 3 minutes.) BB: $\frac{3}{4}+2 \times 0.8+4.5 \div 2-\left(1 \frac{1}{2}+2.5\right)=$ If you have an answer, show me ... now! (0.6 or $\frac{6}{10}$ or $\frac{3}{5}$) Ps with different forms of correct answer come to BB to do the calculation, explaining reasoning. Ps who were wrong tell class when they made their mistake and what it was. Ps write both forms of the calculation in Ex. Bks. Solution: $\begin{array}{ll} \text { e.g. } & \frac{3}{4}+2 \times 0.8+4.5 \div 2-\left(1 \frac{1}{2}+2.5\right) \\ & =0.75+1.6+2.25-(1.5+2.5)=4.6-4=0.6 \\ \text { or } & =\frac{3}{4}+2 \times \frac{8}{10}+4 \frac{1}{2} \div 2-\left(1 \frac{1}{2}+2 \frac{1}{2}\right) \\ & =\frac{3}{4}+\frac{16}{10}+2 \frac{1}{4}-4=3+1 \frac{6}{10}-4=4 \frac{6}{10}-4=\frac{6}{10}\left(=\frac{3}{5}\right) \end{array}$	Individual work in Ex. Bks, monitored, helped (or whole class activity if class is not very able, with Ps coming to BB or dictating what T should write) Written on scrap paper or slates and shown in unison Discussion, reasoning, agreement, self-correction, praising Feedback for T
3	Sequences T has first few terms of sequences written on BB. Ps copy them in Ex. $B k s$ then continue the sequences for 5 more terms. Allow 4 minutes. Review with whole class. Ps come to BB or dictate terms to T and give the rule. Who agrees? Who used a different rule? etc. Mistakes discussed and corrected. Revise Roman numerals if necessary. BB: a) $-200,-145,-90,(-35,20,75,130,185, \ldots) \quad[+55]$ b) $10.8 .5,7,5.5,(4,2.5,1,-0.5,-2, \ldots) \quad[-1.5]$ c) $\frac{3}{8}, \frac{3}{4}, \frac{3}{2},(3,6,12,24,48, \ldots) \quad[\times 2]$ d) $99,33,11,\left(\frac{11}{3}, \frac{11}{9}, \frac{11}{27}, \frac{11}{81}, \frac{11}{243}, \ldots\right) \quad[\div 3]$ e) CXI, CCXXII, CCCXXXIII, (CDXLIV, DLV, DCLXVI, DCCLXXVII, DCCCLXXXVIII, ...) [+ CXI, i.e. + 111]	Individual work, monitored, helped Discussion, reasoning, agreement, self-correction, praising Accept other rules too if explained correctly. Part e) could be optional or set as extra work for quicker or more able Ps.

BKT		Lesson Plan 126
Activity 4	Book 5, page 126 Q. 1 Read: Megan makes a sequence of numbers starting with 100. She subtracts 45 each time. Write the next two numbers in the sequence. Set a time limit of 1 minute. Review with whole class. Ps could show the numbers on slates or scrap paper on command. Ps answering correctly explain reasoning. Mistakes discussed and corrected. Show sequence on number line if necessary. Solution: 100, 55, 10, -35, -80 (Rule: - 45) What can you tell me about positive and negative numbers? (e.g. Positive numbers are greater than zero, negative numbers are less than zero; each positive number has an opposite negative number which is the same distance from zero but in the opposite direction; the distance of a number from zero, without its positive or negative sign, is its absolute value.)	Notes Individual work, monitored Responses shown in unison. Reasoning, agreement, selfcorrection, praising Ps circle '1 mark' for each correct number. Quick revision: Ps tell what they remember and T prompts where necessary.
5	Book 5, page 126 Q. 2 Read: Eggs are put in trays of 12. The trays are packed in boxes. Each box contains 180 eggs. How many trays are in each box? Show your working. You may get a mark. Set a time limit of 2 minutes. Remind Ps to check their answer. Review with whole class. Ps could show result on scrap paper or slates on command. P anwering correctly explain at BB to Ps who were wrong. Who agrees? Who did the calculation a different way? Mistakes discussed and corrected. Solution: Plan: $180 \div 12(=30 \div 2=15)$ or Answer: There are 15 trays in each box. Check: 15 15 $1 2 \longdiv { 1 8 0 } \quad \begin{array} { r } { 3 0 } \\ { 1 5 0 } \\ { \hline } \end{array}$ $\begin{array}{r}150 \\ \underline{180} \\ \hline\end{array}$	Individual work, monitored Reasoning, agreement, selfcorrection, praising (Elicit that reducing the dividend and divisor by the same number of times does not change the quotient.) Feedback for T
6	Book 5, page 126 Q. 3 Read: Calculate 7 eighths of 7000 . Set a time limit of 2 minutes. Ps may use their Ex. Bks. if they need more space. Review with whole class. Ps could show result on scrap paper or slates on command. P anwering correctly explain at BB to Ps who were wrong. Who agrees? Who did it a different way? Mistakes discussed and corrected. Solution:	Individual work, monitored Discussion, reasoning, checking, agreement, selfcorrection and marking, praising Accept any valid method. Feedback for T or $\begin{aligned} \frac{7}{8} \text { of } 1000 & =1000 \div 8 \times 7 \\ & =125 \times 7=875 \\ \frac{7}{8} \text { of } 7000 & =875 \times 7=6125 \end{aligned}$

BKT		Lesson Plan 126
Activity 7	Book 5, page 126 Q. 4 Read: Mr. Jones has two sizes of square paving stones. He uses them to make a path. The path measures 1.55 metres by 3.72 metres. Calculate the width of a small paving stone. Show your method. You may get a mark. Set a time limit of 3 minutes. Ps work in Pbs or Ex. Bks. Review with whole class. Ps could show the width on slates or scrap paper on command. Ps answering correctly explain reasoning at BB to Ps who were wrong. Who did the same? Who did it a different way? Deal with all methods used and class decides which is the simplest. Mistakes discussed and corrected. Solution: e.g. Length of path $=4$ sides of a large paving stone $=3.72 \mathrm{~m}$ Width of large paving stone: $3.72 \mathrm{~m} \div 4=0.93 \mathrm{~m}$ Width of small paving stone: $1.55 \mathrm{~m}-0.93 \mathrm{~m}=0.62 \mathrm{~m}$ or: Length of path $=6$ sides of a small paving stone $=3.72 \mathrm{~m}$ Width of small paving stone: $3.72 \mathrm{~m} \div 6=0.62 \mathrm{~m}$ or: Let the width of the small paving stone be x and the width of the large paving stone be y. Then in cm: $x+y=155 \mathrm{~cm}$, and $2 x+3 y=372 \mathrm{~cm}$ We can see from the diagram that $y=372 \mathrm{~cm}-2 \times(x+y)$ so $y=372 \mathrm{~cm}-2 \times 155 \mathrm{~cm}=372 \mathrm{~cm}-310 \mathrm{~cm}=62 \mathrm{~cm}$ Answer: The width of a small paving stone is 0.62 m or 62 cm .	Notes Individual trial first, monitored Drawn on BB or use enlarged copy master or OHP BB: \square \square Responses shown in unison. Discussion, reasoning, agreement, self-correction and marking, praising $\begin{array}{r} 0.93 \\ 4 \longdiv { 3 . 7 2 } \\ \hline 4 \end{array}$ $\begin{array}{lr}\text { This is the simplest } & 0.62 \\ \text { method - extra } & 6 \sqrt{3.72}\end{array}$ praise for Ps who used it. If no P used this method, T could show it, involving Ps where possible and referring to the diagram to ensure that Ps understand. T asks a P to say the answer in a sentence.
8	Book 5, page 126, Q. 5 Read: Solve this problem in your exercise book. Some children and their Dads went on a journey by train. There were 10 Dads with 1 child each, 10 Dads with 2 children each and 10 Dads with 3 children each. The group took up the 3 coaches at the front of the train and each child was in the same coach as his or her father. How could they sit so that that the number of Dads and the number of children were the same in each of the 3 coaches? Who thinks that they know what to do? Who has another idea? If no P can suggest anything, T helps class to solve it together. Solution: No of Dads $=30$, so 10 Dads in each coach No of children $=10 \times 1+10 \times 2+10 \times 3=10+20+30=60$ so 20 children in each coach. (i.e. 30 people in cach coach) BB: e.g. Coach 3 D D D D D D D D D D D D D D D D D D D D C C C C C C C C C C $5 \times 3+5 \times 1$ $5 \times 3+5 \times 1$ 10×2	Whole class activity (or individual or paired trial first if Ps wish and if Ps run out of time, T might leave the question open for solution, or finding a further solution, as optional homework) Discussion involving several Ps. Ps decide what to do and how to continue if they can. T intervenes only if necessary. Reasoning, agreement, praising Extra praise for Ps who realise that there is more than one solution. or C1: $4 \times 3+2 \times 2+4 \times 1$ C2: $4 \times 3+2 \times 2+4 \times 1$ C3: $2 \times 3+6 \times 2+2 \times 1$

$3 K 5$	R: Calculations with and without a calculator C: Revision: Numbers and calculations; sum and difference E: Word problems	Lesson Plan 127
Activity 1	Numbers a) Let's factorise 158 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: $\mathbf{1 5 8}=2 \times 79$ (2) (79) Positive factors: $1,2,79,158$ b) Let's define 158 in different ways. Class checks that definitions are correct and are unique to 158 and that there are no repeats. (e.g. 200% of $79,160-2,124+34,10^{2}+7^{2}+3^{2}$, etc.)	Notes Whole class activity Reasoning, agreement, praising At a good pace Extra praise for clever definitions. Feedback for T
2	What is the rule? Deal with one table at a time. What could the rule be? Agree on one form of the rule in words using the columns already completed. Then Ps come to BB to choose a column and fill in the missing number, or dictate to T , explaining reasoning. Class agrees/disagrees. Who can write the rule in a mathematical way? Who can write it another way? Class checks mentally with values from the table. BB: a) Rule: $a=b-4, \quad b=a+4, \quad b-a=4$ b) Rule: $u=v \times 3, \quad v=u \div 3, \quad\left(u \div v=3, \quad v \div u=\frac{1}{3}\right)$	Whole class activity Drawn on BB or use enlarged copy master or OHP Agreement on the rule At a good pace Reasoning, agreement, praising T asks Ps to give other pairs of values for each table. Feedback for T
3	Book 5, page 127 Q. 1 Read: Fill in the missing numbers and signs. $843+157=1000$ Think about why you have been given the sum of 843 and 157 ! Set a time limit. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $843+(157+36)=1000+36$ b) $843+(157+k)=1000 \square k$ c) $(843+41)+157=1000+41$ d) $(843+n)+157=1000+n$ e) $843+(157-69)=1000$ \square 69 f) $843+(157-t)=1000-t$ \square g) $(843-55)+157=1000-$ 55 \square h) $(843-u)+157=1000$ u \square	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, self-correction, praising Extra praise for Ps who realised the implication of the given sum: $843+157$ is on LHS of each equation and 1000 is on RHS, so whatever extra is done to LHS, the same must be done to RHS to keep the equation true.

$B K E$		Lesson Plan 127
Activity 3	(Continued) i) $(843+16)+(157+16)=1000$ j) $(843+x)+(157+x)=1000$ \square $+$ $2 \times x$ k) $(843+72)+(157-72)=$ \square 1000 1) $(843+y)+(157-y)=$ 1000 \square Discuss how the sum of the two numbers changes. T asks several Ps what they think, then generalises in a clear way. - The sum increases if we increase any term by a positive number. - The sum decreases if we reduce any term by a positive number. - If we increase one term and reduce the other term by the same number, the sum does not change.	Notes Elicit that: $\begin{aligned} & +72-72=0 \\ & +y-y=0 \end{aligned}$ Discussion, agreement, praising
4	Book 5, page 127 Q. 2 Read: Fill in the missing numbers and signs. $685-185=500$ Let's see how quickly you can do these by thinking in the same way as we did in Q.1. Set a time limit. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/ disagrees. Mistakes discussed/corrected. Solution: a) $(685+15)-185=500+15$ b) $(685+a)-185=500 \square a$ c) $685-(185+23)=500 \square 23$ d) $685-(185+b)=500-b$ e) $(685-45)-185=500-45$ f) $(685-c)-85=500 \square c$ g) $685-(185-30)=500 \square 30$ h) $685-(185-d)=500+d$ i) $(685+51)-(185+51)=500$ j) $(685+e)-(185+e)=500$ k) $(685+4)-(185-4)=500+8$ l) $(685+f)-(185-f)=500+2 \times f$ m) $(685-10)-(185+10)=500$ \square n) $(685-g)-(185+g)=500 \square 2 \times g$ Discuss how the difference between the two numbers changes. T asks several Ps what they think, then generalises in a clear way. - The difference increases if we increase the reductant or reduce the subtrahend by a positive number - The difference decreases if we reduce the reductant or increase the subtrahend by a positive number. - If we increase or decrease both the reductant and the subtrahend by the same amount, the difference does not change.	Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, self-correction, praising Elicit that a negative sign in front of the brackets applies to every number inside the brackets, so. e.g. in: c) $685-(185+23)$ $\begin{aligned} & =685-185-(+23) \\ & =685-185-23 \\ & =500-23 \end{aligned}$ g) $\begin{aligned} & 685-(185-0) \\ = & 685-185-(-30) \\ = & 685-185+30 \\ = & 500+30 \end{aligned}$ Discussion, agreement, praising

BKE		Lesson Plan 127
Activity 5	Book 5, page 127 Q. 3 Read: a) Nicola has £50. She buys 3 flowerpots and a spade. How much money does she have left? b) Seeds are $£ \mathbf{1} .49$ for a packet. Stephen has $£ 10$ to spend on seeds. What is the greatest number of packets he can buy? Set a time limit of 3 minutes. Ps write operations in Pbs or Ex. $B k s$. and write the results in the boxes. Review with whole class. Deal with one part at a time. Ps could show result on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Who did the same? Who did it another way? Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: e.g. a) Plan: $\begin{aligned} 50-(11.75 \times 3+9.55) & =50-(35.25+9.55) \\ & =50-44.80=5.20(£) \end{aligned}$ Answer: Nicola has $£ 5.20$ left. b) Plan: $\begin{align*} & £ 10 \div £ 1.49=1000 \mathrm{p} \div 149 \mathrm{p} \tag{array}\\ & 1000 \div 149 \approx 6.71 \text { (to } 2 \text { d.p.) } \end{align*}$ or $1000 \mathrm{p} \div 149 \mathrm{p}=6 \text { (times), r } 106 \mathrm{p}$ Answer: The greatest number of packets of seeds that Stephen can buy is 6 . (He will have $£ 1.06$ left.) 41 min \qquad	Notes Individual work, moniitored, less able Ps helped BB: Ps use a calculator if they wish or do the calculations in $E x$. $B k s$ if they prefer. Reasoning, agreement, selfcorrection and marking, praising Show calculations on BB to check that Ps understand what the calculator is doing . $\begin{array}{r} 11.75 \\ \times 3 \\ \frac{35.25}{21} \end{array} \begin{array}{r} 35.25 \\ +9.55 \\ \hline \frac{44.80}{11} \end{array} \begin{array}{r} 50.00 \\ -\frac{44.80}{5.20} \\ \hline \end{array}$ N.B. Dividing by a decimal or a fraction will be taught in Y6 - but Ps could solve this problem using a calculator, or by changing $£$ s to pence, or by trial and error.
6	Book 5, page 127 Q. 4 Read: How many positive 3-digit numbers less than 500 are there in which the middle digit is half of the sum of the two outside digits? Set a time limit of 3 minutes then review with whole class. Ps come to BB or dictate to T. Encourage a logical listing. Class points out any missed. Mistakes or omissions corrected. Solution: [20 numbers]	Individual (or paired) trial, monitored (or whole class activity if time is short or Ps are not very able) Reasoning, agreement, selfcorrection, praising Class applauds Ps who found all 18 without help. [Or T may leave the problem open for Ps to finish at home, then review before the start of Lesson 128.]

$B K$	R: Calculations with and without a calculator C: Revision: Numbers and calculations; product and quotient E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 128 \end{gathered}$
Activity 1	Numbers a) Let's factorise 159 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: $159=3 \times 53$ Positive factors: $1,3,53,159$ b) Let's define 159 in different ways. Class checks that definitions are correct and are unique to 159 and that there are no repeats. (e.g. 300% of $53,13^{2}-10,15.9 \times 10,15 \mathrm{~T}+9 \mathrm{U}$, etc.) 6 min	Notes Whole class activity Reasoning, agreement, praising At speed. T chooses Ps at random. Extra praise for clever definitions. Feedback for T
2	What is the rule? Deal with one table at a time. What could the rule be? Agree on one form of the rule in words using the columns already completed. Then Ps come to BB to choose a column and fill in the missing number, or dictate to T, explaining reasoning. Class agrees/disagrees. Who can write the rule in a mathematical way? Who can write it another way? Class checks mentally with values from the table. BB: a) Rule: $u=5-v, \quad v=5-u, \quad u+v=5$ b) Rule: $s=10000 \div t, \quad t=10000 \div s, \quad \mathrm{~s} \times t=10000)$ Reasoning: For 2nd column from the right: $10000 \div \frac{1}{2}$ or $\frac{1}{2}$ is contained in 1000020000 times. For last column on the right: $10000 \div 2.5$ or $10000 \div 2.5=\underbrace{20000 \div 5}_{\times 2}=\underline{4000}$ c)	Whole class activity Drawn on BB or use enlarged copy master or OHP Agreement on the rule At a good pace Reasoning, agreement, praising T asks Ps to give other pairs of values for each table. As dividing by a fraction or a decimal has not been taught yet, T might need to help Ps to reason in other ways, as shown. Extra praise if Ps think of any of these strategies by themselves. Rule: $y=x \times x+1$ $\begin{aligned} & {[x \times x=y-]} \\ & {[y-x \times x=1]} \end{aligned}$

BK5		Lesson Plan 128
Activity 3	Book 5, page 128 Q. 1 Read: Fill in the missing numbers and signs. $60 \times 20=1200$ Think about why you have been given the product of 60 and 20! Set a time limit. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) $(60 \times 3) \times 20=1200 \times 3$ b) $(60 \times n) \times 20=1200 \times n$ c) $60 \times(20 \times 4)=1200 \times 4$ d) $60 \times(20 \times m)=1200 \times m$ e) $(60 \div 3) \times 20=1200 \div 3$ f) $(60 \div s) \times 20=1200 \div s$ g) $60 \times(20 \div 4)=1200 \div 4$ h) $60 \times(20 \div t)=1200 \div t$ i) $(60 \times 2) \times(20 \times 2)=1200 \times 4$ j) $(60 \times u) \times(20 \times u)=1200 \times u \times u$ k) $(60 \div 4) \times(20 \div 4)=1200 \div 16$ 1) $(60 \div v) \times(20 \div v)=1200 \div v \times v$ m) $(60 \times 5) \times(20 \div 5)=1200$ n) $(60 \times a) \times(20 \div a)=1200$ Discuss how the product of the two numbers changes. T asks several Ps what they think, then generalises in a clear way. - If we multiply a factor of a product by a positive whole number, then the product is multiplied by that number. - If we divide a factor of a product by a positive whole number, then the product is divided by that number. - If we multiply one factor of a product by a positive whole number and divide another factor by the same number, the product does not change.	Notes Individual work, monitored, (helped) Written on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, self-correction, praising Extra praise for Ps who realised the implication of the given product: 60×20 is on LHS of each equation and 1200 is on RHS, so whatever extra is done to LHS, the same must be done to RHS to keep the equation true. T might show that: $2 \times 2=2^{2} \quad$ ' 2 squared' $u \times u=u^{2} \quad$ 'u squared' etc. Elicit that multiplying by 5, then dividing by 5 is the same as doing nothing, i.e. the product stays the same, Discussion, agreement, praising Feedback for T

$B K 5$		Lesson Plan 128
Activity 4	Book 5, page 128 Q. 2 Read: Fill in the missing numbers and signs. $1500 \div 30=50$ Let's see how quickly you can do these by thinking in the same way as we did in Q.1. Set a time limit. Review with whole class. Ps come to BB or dictate what T should write, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: a) $(1500 \times 2) \div 30=50 \times 2$ b) $(1500 \times a) \div 30=50 \times a$ c) $1500 \div(30 \times 2)=50 \div 2$ d) $1500 \div(30 \times a)=50 \div a$ e) $(1500 \div 2) \div 30=50 \div 2$ f) $(1500 \div a) \div 30=50 \leftrightarrows a$ g) $1500 \div(30 \div 2)=50 \times 2$ h) $1500 \div(30 \div a)=50 \times a$ i) $(1500 \times 2) \div(30 \div 2)=50 \times 4$ j) $(1500 \times a) \div(30 \div a)=50 \times a \times a$ k) $(1500 \div 2) \div(30 \times 2)=50 \div \div 4$ 1) $(1500 \div a) \div(30 \times a)=50 \div a \times a$ m) $(1500 \times 2) \div(30 \times 2)=50 \triangle \square$ n) $(1500 \times a) \div(30 \times a)=50$ o) $(1500 \div 2) \div(30 \div 2)=50$ p) $(1500 \div a) \div(30 \div a)=50$ Discuss how the quotient of the two numbers changes. T asks several Ps what they think, then generalises in a clear way. - If we multiply the dividend or the divisor by a positive whole number, then the quotient is multiplied by that number. - If we divide the dividend or divisor by a positive whole number, then the quotient is divided by that number. - If we multiply both the dividend and the divisor by the same positive whole number, the quotient does not change. - If we divide both the dividend and the divisor by the same positive whole number, the quotient does not change.	Notes Individual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit. Discussion, reasoning, agreement, self-correction, praising Agree that the boxes are not needed for m) to p) as the quotient does not change. Discussion, agreement, praising

$B K E$		Lesson Plan 128
Activity 5	Book 5, page 128 Q. 3 Read: Calculate 286×53. Show your working. You may get a mark. Set a time limit of 2 minutes. Ps may use their Ex. Bks. if they need more space. Encourage Ps to estimate first and to check their result. Review with whole class. Ps could show result on scrap paper or slates on command. P anwering correctly explain at BB to Ps who were wrong. Who agrees? Who did it a different way? Mistakes discussed and corrected. Solution: $\text { e.g. } \begin{array}{rlr} 286 \times 53 & =286 \times 50+286 \times 3 & \text { or } \\ & =2860 \times 5+858 & \\ & =14300+858 \\ & =15158 & \begin{array}{r} 285 \\ \times 58 \\ \hline \end{array} \\ & \frac{1430}{15158} \end{array}$	Notes Individual work, monitored Discussion, reasoning, checking (Ps could use a calculator), agreement, selfcorrection and marking, praising Accept any valid method. Feedback for T or $\begin{aligned} & 286 \times 53 \\ & =300 \times 53-14 \times 53 \\ & =3 \times 5300-(530+212) \\ & =15900-742 \\ & =15158 \end{aligned}$
6	Book 5, page 128, Q. 4 Read: What is the greatest 3-digit natural number in which the product of its digits is 108 ? Allow a minute for Ps to think about it and discuss with their neighbours. Who thinks they know what we should do? T asks several Ps for their ideas. If no P is on the right track, T gives a hint about factorising. Ps come to BB to draw a factor tree. Class agrees/disagrees. BB: $\mathbf{1 0 8}=2 \times \underbrace{2 \times 3}_{6} \times \underbrace{3 \times 3}_{9}$ (2) Elicit that the 3-digit number which fuflfils the condition has the digits 2, 6 and 9 and the greatest 3-digit natural number which is made up of these digits is 962 .	Whole class activity If T gives the hint to factorise, allow Ps to continue the solution without further intervention if they can. Class applauds any P who suggests factorising before T does. Discussion, reasoning, agreement, praising Feedback for T

BTK	R: Calculations C: Revision: Measurement. Units of measure E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 129 \end{gathered}$
Activity 1	Numbers a) Let's factorise 161 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: $161=7 \times 23$ b) Let's define 161 in different ways. Class checks that definitions are correct and are unique to 161 and that there are no repeats. (e.g. 700% of $23,16 \mathrm{~T}+1 \mathrm{U}, 5000-4839,10^{2}+8^{2}-3$, etc.) 8 min	Notes Whole class activity Reasoning, agreement, praising At speed round class Extra praise for clever definitions. Feedback for T
2	Quantities Let's exchange these quantities. For each part, elicit what kind of measures they are, what tools are used to measure them and the relationships between the different units. Ps come to BB to write missing values, or dictate what T should write, explaining reasoning. Class agrees/disagrees. BB: a) i) $143 \mathrm{~m} \mathrm{45} \mathrm{cm}=14345 \mathrm{~cm}$ ii) $375 \mathrm{~cm}=$ \square 3.75 m iii) $62 \mathrm{~cm} 4 \mathrm{~mm}=624 \mathrm{~mm}$ iv) $816 \mathrm{~mm}=81.6 \mathrm{~cm}=0.816 \mathrm{~m}$ v) $42 \mathrm{~km} 60 \mathrm{~m}=42060 \mathrm{~m}$ vi) $4950 \mathrm{~m}=$ \square 4.95 km b) i) $4 \text { litres } 5 \mathrm{cl}=405$ cl ii) $1230 \mathrm{cl}=$ \square 12.3 ℓ iii) $3 \mathrm{cl} 6 \mathrm{ml}=36 \mathrm{ml}$ iv) $720 \mathrm{ml}=72 \mathrm{cl}=0.72$ litres c) i) $61 \mathrm{~kg} \mathrm{80g}=61080 \mathrm{~g}$ ii) $5200 \mathrm{~g}=$ \square 5.2 kg iii) $4 \mathrm{t} 380 \mathrm{~kg}=4380 \mathrm{~kg}$ iv) $6025 \mathrm{~kg}=$ \square 6.025 t 20 min	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace Reasoning, agreement, praising Feedback for T Elicit that: a) Units of length: $1 \mathrm{~mm}<1 \mathrm{~cm}<1 \mathrm{~m}<1 \mathrm{~km}$ b) Units of capacity: $\begin{gathered} 1 \mathrm{ml}<1 \mathrm{cl}<1 \text { litre } \\ (\times 10)(\times 100) \end{gathered}$ c) Units of mass (weight): $\begin{aligned} & 1 \mathrm{~g}<1 \mathrm{~kg}<1 \text { tonne } \\ & (\times 1000)(\times 1000) \end{aligned}$
3	True or false? I will read out a statement. When I say, clap your hands once if you think it is true and hold your ears if you think it is false. a) 11 weeks are 77 days. $\begin{equation*} \text { [as } 1 \text { week }=7 \text { days, so } 11 \text { weeks }=11 \times 7 \text { days }=77 \text { days] } \tag{T} \end{equation*}$ b) The area of a square with sides of length 100 cm is $10 \mathrm{~m}^{2}$. $\begin{equation*} \left[\text { Area }=100 \mathrm{~cm} \times 100 \mathrm{~cm}=1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}\right] \tag{F} \end{equation*}$ c) $100 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}$ $\begin{align*} {\left[1 \mathrm{~cm}^{3}=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}\right.} & =10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 10 \mathrm{~mm} \tag{F}\\ & \left.=1000 \mathrm{~mm}^{3}\right] \end{align*}$ d) 2 hours 50 minutes $=2.50$ hours $\left[2.50 \text { hours }=2 \text { hours }+\frac{1}{2} \text { an hour }=2 \text { hours } 30 \mathrm{~min}\right]$	Whole class activity T could also have statements written on BB or SB or OHT. (or use any pre-agreed actions, or Ps write T or F on slates and show in unison) Ps with opposing responses explain reasoning and class decides who is correct. Discussion, reasoning, agreement, praising $\begin{equation*} \text { [or } 2 \mathrm{~h} 50 \min =2 \frac{5}{6} \mathrm{~h} \approx 2.83 \mathrm{~h} \text {] } \tag{F} \end{equation*}$

		Lesson Plan 129
Activity 3	(Continued) e) 7540 seconds $=2$ hours 5 minutes 40 seconds $\begin{align*} & {[2 \mathrm{~h}=120 \mathrm{~min}=7200 \mathrm{sec} ; 5 \mathrm{~min}=300 \mathrm{sec}} \tag{T}\\ & 7200 \mathrm{sec}+300 \mathrm{sec}+40 \mathrm{sec}=7540 \mathrm{sec}] \end{align*}$ d) The weight of 1 kg of apples is the same on the Earth as it is on the Moon. [Weight is the force of gravity. 1 kg of apples would be about 1 sixth lighter on the Moon than on the Earth - but itsmass would be the same so there would be the same amount to eat!]	Notes T repeats Ps' reasoning in a clearer way when necessary. Extra praise for Ps who explain this correctly.
4	Book 5, page 129 Q. 1 Read: These are the times when letters are collected from a post box. Read the question yourselves, write the answers in the boxes, then show them to me when I say. Set a time limit of 2 minutes. Review with whole class. Ps show answers to each part on slates or scrap paper on command. P answering correctly explains at table on BB to Ps who were wrong. Mistakes discussed and corrected. Solution: What is the latest time that letters are collected on Wednesdays? Carla posts a letter at 10 a.m. on Monday. How long will it be before it is collected? Next collection: 2 pm 10 am to 12 noon: 2 hours; 12 noon to 2 pm : 2 hours. Time before collection: $2+2=4$ (hours) Gareth posts a letter on Saturday at 4 p.m. When will it be collected from the post box? Next collection: Monday at 9 am	Individual work, monitored Table drawn on BB or use enlarged copy master or OHP BB: [Although calculators were allowed in the KS2 test, they are not needed!] Responses shown in unison. Agreement, self-correction and marking, praising (T points to a time in the table and Ps say it in other forms. e.g. 6.30 pm : 18:30, or 1830 hours, or half past 6 in the evening, etc.)
5	Book 5, page 129 Q. 2 Read: This diagram shows the distances of different towns from Birmingham. Who has been to one of these towns? When? Why? How? Read the questions yourselves, write the answers in your Pbs , then show me them when I say. Set a time limit of 2 minutes. Review with whole class. Ps show answers to each part on slates or scrap paper on command. P answering correctly explains at diagram on BB to Ps who were wrong. Mistakes discussed and corrected. Solution: Write the name of a town which is between 30 and 50 miles from Birmingham. (Derby or Stoke) Use the diagram to estimate the distance in miles from Birmingham to Mansfield. (e.g. 62 miles) Accept 60 to 65 miles, as dot is slightly more than half-way between 50 miles and 70 miles.	Individual work, monitored Ps tell what they know about some of the towns. Diagram drawn on BB or use enlarged copy master or OHP BB: Responses shown in unison. Agreement, self-correction and marking, praising (Ps estimate distances of other towns from Birmingham.)

R <		Lesson Plan 129
Activity 6	Book 5, page 129 Q. 3 Read the questions yourselves, write the answer to the first part in your Pbs and wrtite a sentence for the 2nd part in your Ex. Bks. Show me the answer to the first part when I say. Set a time limit of 3 minutes. Review with whole class. Ps show answer to 1 st part on slates or scrap paper on command. P answering correctly explains at table on BB to Ps who were wrong. Mistakes discussed and corrected. T asks several Ps to read their sentence about the 2 nd part. Who wrote much the same? Who wrote something different? Deal with all cases. Class decides who is correct and who is not. Solution: Emma parks her car at 9.30 am . She collects the car at 1.20 pm . How much does she pay? 9.30 am to $1.30 \mathrm{pm}: 4$ hours, 9.30 am to $1.20 \mathrm{pm}: 3 \mathrm{~h} 50 \mathrm{~min}$ (or 9.30 to 12 noon: $2 \mathrm{~h} 30 \mathrm{~min} ; 12$ noon to 1.20 pm : 1 h 20 min Time parked: $2 \mathrm{~h} 30 \mathrm{~min}+1 \mathrm{~h} 20 \mathrm{~min}=3 \mathrm{~h} 50 \mathrm{~min}$) So charge is for ' 3 to 4 hours', i.e. $£ 170$. Dan and Mark both use the car park. Dan says. 'I paid exactly twice as much as Mark but I only stayed 10 minutes longer.' In your exercise book, explain how Dan could be correct. e.g. 'Mark could have parked for 1 hour 54 minutes and paid 50 p , and Dan could have parked for 2 hours 4 minutes and paid $£ 1.00$.'	Notes Individual work, monitored Table drawn on BB or use enlarged copy master or OHP BB: Reasoning, agreement, selfcorrection nd marking, praising Accept any valid explanation for 2nd part. Praising only
7	Book 5, page 129 Q. 4 Read: Here is a sketch of a triangle. It is not drawn to scale. Draw the full size triangle accurately. Use an angle measurer (protractor) and a ruler. Set a time limit. of 3 minutes. Review with whole class. Ps come to BB to demonstrate and explain what they did, using BB ruler, (compasses) and protractor. Who did the same? Who drew it another way? Agree on the correct order of construction and that labelling the vertices makes the construction easier to describe. Steps: 1) Draw a horizontal line 10 cm long. BB : Label it AB. 2) Using the protractor, measure an angle of 48° at B and mark with a dot. (T demonstrates if necessary.) 3) Draw a line from B through the 48° mark and mark a point 7 cm from B. Label it C. 4) Join up up A and C to form triangle ABC .	Ps have protractors, rulers (and compasses) on desks. Individual trial in Ex. Bks, monitored Diagram drawn on BB or use enlarged copy master or OHP BB: Measuring the lengths of the sides can be done with a ruler or with a ruler and compasses. Discussion, demonstration, agreement, self-correction, praising/encouragement only Extension What can you tell me about the shape you have drawn? (e.g. plane shape, convex, 2-dimensional, acute-angled triangle, angles sum to 180°, unequal sides, etc.)

$B K$	R: Parallel and perpendicular lines C: Revision: shapes, polygons, solids E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 130 \end{gathered}$
Activity 1	Numbers a) Let's factorise 162 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. b) Let's define 162 in different ways. Class checks that definitions are correct and are unique to 162 and that there are no repeats. (e.g. 1 tenth of $1620,1 \mathrm{~h}+62 \mathrm{U}, 165-3,1.62 \times 100,18 \times 9$, etc.)	Notes Whole class activity Reasoning, agreement, praising At speed. T chooses Ps at random. Extra praise for clever definitions. Feedback for T
2	Plane shapes T says the name of a shape and Ps draw as many different types as they can in their Ex. Bks. Allow 1 minute. Review with whole class. Ps identify the different types from those already prepared by T (drawn or stuck on BB). Ps say what they know about each type. T prompts if any types are missed. a) Triangle e.g. BB: e.g. acute (all angles $<90^{\circ}$), right (one angle 90°) or obtuse (one angle $>90^{\circ}$) -angled triangles; equilateral, (equal sides), isosceles (at least 2 adjacent sides equal), scalene (3 different sides) Elicit /point out that: - All regular triangles are similar to each other. - All right-angled isosceles triangles are similar to each other. b) Square BB: (only 1 type: 4 right angles, 4 equal sides) Elicit /point out that: - All squares are similar to each other. - A square is a quadrilateral with equal angles and sides. - A square is a regular rectangle. (equal sides) c) Rectangle BB : \square Elicit that: - A rectangle is a quadraliteral which has 4 right angles (so opposite sides are equal). - A regular rectangle is a square. d) Rhombus BB: Elicit that: - A rhombus is a quadraliteral which has 4 equal sides. - A regular rhombus is a square. (equal angles) e) Parallelogram BB: - A parallelogram is a quadrilateral with 2 pairs of parallel sides.	Individual work, monitored, helped in drawing shapes Shapes drawn (or cut out and stuck) on BB or use enlarged copy master or OHP Whole class discussion of types, definitions and properties Involve all Ps. Also elicit that: A plane shape is an enclosed part of a plane and is 2-dimensional. A polygon is a plane shape with many straight sides, and with 2 adjacent sides meeting at every vertex. A triangle is a 3-sided polygon A quadrilateral is a 4-sided polygon. A pentagon is a 5 -sided polygon Elicit the names of other polygons too: 6-sides: hexagon 7 -sides: heptagon 8 -sides: octagon 9-sides: nonagon 10 -sides: decagon Rectangles, rhombi and squares are also parallelograms.

B ${ }^{5}$		Lesson Plan 130
Activity 2	(Continued) f) Trapezium BB: e.g. Elicit /point out that: - A trapezium is a quadrilateral with at least 2 parallel sides. - Parallelograms, rectangles, rhombi and squares are also trapeziums. g) Deltoid BB: e.g. Elicit that: - A deltoid is a quadraliteral which has 2 pairs of equal adjacent sides. - Rhombi and squares are also deltoids. h) Quadrilateral which has no special property (4-sided polygon) BB: e.g. i) Pentagon BB: e.g. Elicit that: - A pentagon is a 5 -sided polygon. - All regular pentagons are similar to each other. j) Circle BB: Elicit that: - All circles are similar to each other.	Notes Ps point out the concave deltoid. Again, Ps point out the concave shapes. Elicit that the circle is the only shape dealt with in the activity which is not a polygon, as it is bounded by a curved line.
3	Shapes Study these shapes. How could we put them into 3 groups? Ps suggest the headings, then dictate the shapes which belong in each group and why. Class agrees/disagrees. BB: Ps say what they know about each shape. Discuss the difference between open and closed lines. e.g. 1, 4 and 5 are open lines; the circumference line of a circle is a closed line, while the whole circle (i.e. the circumference and the part of the plane it encloses is a plane shape.	Whole class activity Drawn on BB or use enlarged copy master or OHP (If possible, T also has models of the solids.) Discussion, reasoning, agreement, praising Ps could draw or describe other shapes for each group. Feedback for T

BK5		Lesson Plan 130
Activity 4	Book 5, page 130 Q. 1 Read: The line on the grid is one side of a square. On the grid, draw the other three sides of the square. Use a ruler. Set a time limit of 1 minute. Review with whole class. P comes to BB to draw solution on grid, explaining how he or she decided where the other 2 vertices should be. Class agrees/ disagrees. Mistakes discussed and corrected. If we started at this vertex (T points to, e.g. LH given vertex), how would you describe to somebody else where to draw the other vertices on the grid? (e.g. from 1st to 2nd vertex: 2 Right, 1 Up 2nd to 3rd vertex: 1 Right, 2 Down 3rd to 4th vertex: 1 Down, 2 Left) 28 min	Notes Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction and marking, praising Feedback for T Solution:
5	Book 5, page 130 Q. 2 Read: Group these plane shapes by listing their numbers. What other name could we give to all these shapes? (polygons) Set a time limit of 3 minutes. Review with whole class. Ps come to BB or dictate to T. Class agrees/disagrees. Mistakes discussed and corrected Solution: T points to each polygon in turn and Ps say what they know about it. (e.g. name, convex or concave, parallel, perpendicular or equal sides, types of angles, regular, symmetrical, etc.)	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction and marking, praising Whole class activity At a good pace Praising, encouraging only

BK5	R: Coordinates C: Revision: Reflection, translation, rotation E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 131 \end{gathered}$
Activity	Numbers a) Let's factorise 163 and then list all its positive factors. Ps dictate to T or come to BB to try each of the prime numbers, 2, 3, 5,7 and 11 as divisors, using 'quick' methods where possible. Should we try dividing by 13 ? (No, as $13 \times 13=169>163$) Elicit that 163 is a prime number and its factors are 1 and 163 . b) Let's define 163 in different ways. Class checks that definitions are correct, are unique to 163 and there are no repeats. (100th of $16300,10^{2}+8^{2}-1^{2}, 0.163 \times 1000,1 \mathrm{H}+6 \mathrm{~T}+3 \mathrm{U}$, etc.)	Notes Whole class activity Reasoning, agreement, praising At speed in order round class Extra praise for clever definitions. Feedback for T
2	Symmetry Which of these shapes have reflective or line symmetry? Ps come to BB to point out the shapes, name them if they can and draw all their lines of symmetry. Class agrees/disagrees or points out any missed. BB: How could we put the shapes into two groups? (e.g. polygon/not a polygon, convex/concave, regular/irregular, right angle/no right angle, etc.)	Whole class acitivty Drawn or stuck on BB or use enlarged copy master or OHP At a good pace Agreement, praising What name can we give to all the shapes? (plane shapes) Feedback for T Praising, encouragement only
3	Transformations Thas grid on BB and Ps have grids on desks (or work in squared $E x$. Bks). T works on BB and Ps follow T's instructions on grid sheet or in Ex. Bks. a) 1. Start at a point where the grid lines meet (near the bottom and to the left of the grid). Move 3 units up, then 1 unit diagonally up to the right, then 4 units down, then 1 unit to the right, then 1 unit diagonally down to the left, then 1 unit diagonally up to the left to join the starting point. Label the shape (1). 2. Draw a vertical axis on the grid line 1 unit to the right of Shape 1. Label the axis A. 3. Reflect Shape 1 in the A axis. Label the image(2). 4. Draw a 2 nd vertical axis on the grid line 1 unit to the right of Shape 2. Label the axis B. 3. Reflect Shape 2 in the B axis. Label the image (3). How could we get from Shape 1 to Shape 3 in one movement? (By moving 8 units horizontally to the right.) What is this kind of movement in a plane called? (a translation) T shows it by drawing an arrow at right angles to the two vertical axes (as shown). Agree that each point on Shape 3 is 8 units to the right along the same grid line from the corresponding point on Shape 1 .	Whole class acitivity but individual drawing, monitored T and Ps can use grids on copy master. T should also have a cut out version of the shape to show the actual movements. Demonstrate with the model that each reflection can also be thought of as a rotation of 180° out of the plane around axis A and then around axis B . Discussion, agreement

BTKE		Lesson Plan 131	
Activity 3	(Continued) b) T and Ps use a new grid sheet (or a new page in Ex. Bks.) We have reflected a shape in two axes which were parallel to each other. Now lets reflect a shape in two axes which are perpendicular to each another. Again T works on BB or OHT and gives instructions to Ps who work on grid sheets or in Ex. Bks. 1. Start at a point where the grid lines meet (a little less than halfway down and to the left of the grid). Move 5 units up, then 1 unit diagonally down to the right, then 3 units down, then 1 unit to the right, then 1 unit diagonally down to the right, then 3 units to the left to join the starting point. Label the shape (1). 2. Draw a vertical axis on the grid line 2 units to the right of Shape 1. Label the axis y. 3. Reflect Shape 1 in the y axis. Label the image (2). 4. Draw a horizontal axis along the grid line 2 units below Shapes 1 and 2. Label the axis x. 3. Reflect Shape 2 in the x axis. Label the image (3). How could we get from Shape 1 to Shape 3 in one movement? (By rotating Shape 1 by 180° in the plane around the point where the x and y axes meet.) Elicit/tell that this point is called the origin. Who can think of another way to to get from Shape 1 to Shape 2, then from Shape 2 to Shape 3? (Rotation by 180° out of the plane around the y-axis, then by 180° out of the plane around the x axis.)	Notes Or use grid on copy master BB: parallel \|	perpendicular BB: Elicit that in a reflection the corresponding points on the original shape and its image are an equal distance from the mirror line. T demonstrates both rotations (within the plane and outside the plane) with a cut-out shape.
4	Book 5, page 131 Q. 1 Read: Use a ruler to draw the reflection of this shape in the mirror line. You may use a mirror or tracing paper. Set a time limit of 2 minutes. Encourage Ps to try it without the help of a mirror or tracing paper if they can. Review with the whole class. P comes to BB to draw the image, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: What can you tell me about the whole shape? (e.g. hexagon, 5 right angles +1 reflex angle, concave, etc.)	Individual work, monitored Mirrors and tracing paper should be available for less able Ps. Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection and marking, praising Feedback for T	

BK		Lesson Plan 131
Activity 5	Book 5, page 131 Q. 2 Read: Draw mirror lines on the diagrams which have reflective symmetry. Set a time limit of 2 minutes. Review with whole class. Ps come to BB to draw mirror lines, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: 31 min	Notes Individual work, monitored (helped) Drawn on BB or use enlarged copy master or OHP Reasoning, agreement, selfcorrection, praising What is the least number of dots we need to move to make the circular diagram symmetrical? (2)
6	Book 5, page 131 Q. 3 Read: Draw the reflection of each shape in its mirror line. Set a time limit. Ps finished first could come to BB to draw the reflections, keeping them hidden until needed. Review with whole class. Ps compare their shapes with those on BB. Ps agree with them or point out any errors. Mistakes discussed and corrected. Solution:	Individual work, monitored helped Drawn on BB or use enlarged copy master or OHP Discussion, agreement, selfcorrection, praising What geometric shapes can you see in the completed drawings? (circle, rectangle, trapezium, pentagon, heptagon)
7	Book 5, page 131, Q. 4 Read: Follow the instructions. Deal with one part at a time. Ps read the instructions and other Ps come to BB to draw the shapes, label them and write the coordinates, explaining reasoning. Class points out errors. Rest of Ps draw shapes on grid in Pbs and write the coordinates in Ex. Bks. Remind Ps that rotation by: $+90^{\circ}$ is anti-clockwise; -90° is clockwise. Solution: A $(1,1) ; B(3,1)$ C (3,5); $\mathrm{D}(1,3)$ a) $\mathrm{A}^{\prime}(1,-1) ; \mathrm{B}^{\prime}(3,-1)$ $\mathrm{C}^{\prime}(3,-5) ; \mathrm{D}^{\prime}(1,-33)$ b) $\mathrm{A}^{\prime \prime}(-1,-11) ; \mathrm{B}^{\prime \prime}(-3,-1$ $\mathrm{C}^{\prime \prime}(-3,-55) ; \mathrm{D}^{-1,-3}$ c) $\mathrm{A}^{\prime \prime}(7,-11) ; \mathrm{B}^{\prime \prime}(5,-1)$ $\left.\mathrm{C}^{\prime \prime \prime}(5,-55) ; \mathrm{D}^{\prime \prime \prime} 7,-33\right)$ d) $\left.\mathrm{A}^{*}\left(-1,1_{1}\right) ; \mathrm{B}^{*}-1,3,3\right)$ C* $\left.(-5,33) ; D^{*}-3,1,1\right)$	Whole class activity (or individual trial first if Ps wish and there is time) Drawn on BB or use enlarged copy master or OHP At a good pace Reasoning agreeement, praising T could have cut-out version of the shape for demonstration. Extra praise if Ps notice that an extra vertical grid line is necessary for Shape 5. Ps can measure where C^{*} should be. Ask what other transformations Ps notice, e.g. S3 \rightarrow S4 (translation -8 units) $\mathrm{S} 1 \rightarrow \mathrm{~S} 3$ (rotation by 180° around 0 , or reflection in O) etc.

BK5	R: Calculations C: Revision: Congruency, similarity. Perimeter, area E: Problems	Lesson Plan 132
Activity 1	Numbers a) Let's factorise 162 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. b) Let's define 164 in different ways. Class checks that definitions are correct and are unique to 164 and that there are no repeats. (e.g. 400% of 41,1 sixth of $984,1000-836,10^{2}+8^{2}$, etc.) 6 min \qquad	Notes Whole class activity Reasoning, agreement, praising At speed round class Extra praise for clever definitions. Feedback for T
2	Congruent shapes 1 First elicit the meaning of congruent and similar shapes. (conguent: exactly the same size and shape; similar: the same shape but not necessarily the same size; all congruent shapes are also similar). Let's form a larger similar shape from congruent unit shapes. T has various unit shapes drawn on BB (or stuck on BB and congruent cut-out shapes in a boxes on desk). Allow Ps a minute to think about it and draw shapes in Ex. Bks. then Ps come to BB to draw (or stick more unit shapes on BB to form) larger similar shapes. Class checks that they are similar. Elicit that the number of unit shapes required are the square numbers.) BB: a) Unit shape: \square (square) 4 9 $16 \quad 25,36,49, \ldots$ b) Unit shape: (isosceles triangle) $16,25,36,49, \ldots$ c) Unit shape: 4 9 $16,25,36,49, \ldots$ d) Unit shape: Impossible!	Whole class activity Drawn on BB or use copy masters, enlarged on card and cut out. (If possible, Ps have shapes on desk too and work in pairs to form the similar shapes.) BB: congruent same size and shape similar same shape Discussion, reasoning, agreement, praising Ps say what they know about each shape (name, angles, sides, etc.) 2 adjacent sides equal 1 pair of parallel sides, 1 pair of equal sides sides)

BKS		Lesson Plan 132
Activity 3	Congruent shapes 3 Let's make a larger similar shape from these congruent unit shapes. T has unit solids on desk and Ps come to front of class to make similar shapes. Class checks that they are correct. Elicit that the number of unit shapes required are the cubed numbers. BB: a) Unit shape: (cube) 8 27 $64,125, \ldots$ b) Unit shape: (cuboid) 8 $64,125, \ldots$ c) Unit shape: (pyramid) Impossible! d) Unit shape: (sphere) Impossible!	Notes Whole class activity If T has no real models, draw diagrams on BB or SB or OHT (If possible, Ps have solids on desk too and work in pairs to form the similar shapes.) Discussion, reasoning, demonstration, agreement, praising Ps say what they know about each shape.
4	Problems Listen to the problem and note the data in your Ex. Bks. Write a plan, do the calculation and show me the result when I say. Ps with correct responses explain solution at BB to Ps who were wrong. Who agrees? Who did it another way? Mistakes discussed and corrected. a) One side of a square is 2 m 18 cm long. What is the length of its perimeter in cm ? BB: $\quad P=218 \mathrm{~cm} \times 4=872 \mathrm{~cm} \quad(=8 \mathrm{~m} \mathrm{72} \mathrm{cm}=8.72 \mathrm{~m})$ b) The perimeter of a square is 4.72 m What is the length of a side? BB: $\quad P=4.72 \mathrm{~m}=472 \mathrm{~cm}$ $L=472 \mathrm{~cm} \div 4=118 \mathrm{~cm}=1 \mathrm{~m} 18 \mathrm{~cm}=1.18 \mathrm{~m}$ c) What is the perimeter and area of a rectangle which measures 1 m 40 cm by 65 cm ? BB: $\begin{aligned} & P=2 \times(140 \mathrm{~cm}+65 \mathrm{~cm})=2 \times 205 \mathrm{~cm}=410 \mathrm{~cm} \\ & A=140 \mathrm{~cm} \times 65 \mathrm{~cm}=9100 \mathrm{~cm}^{2} \end{aligned}$ Elicit that $1 \mathrm{~m}^{2}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=10000 \mathrm{~cm}^{2}$ So $9100 \mathrm{~cm}^{2}=0.91 \mathrm{~m}^{2}$	Individual work, monitored, helped T could have questions written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method. Feedback for T

BKE		Lesson Plan 132
Activity 5	Book 5, page 132 Q. 1 Read: Fill in the missing coordinates. What is the name of each shape? (trapezium) Elicit that the first number is the x-coordinate (horizontal axis) and the 2 nd number is the y-coordinate (vertical axis). Deal with one shape at a time or set a time limit. Review with whole class. Ps come to BB to point to revelant vertex and say and write the coordinates. Class agrees/disagrees. Mistakes discussed and corrected. Solution: What do you notice about the shapes? e.g. - $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} \cong A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}, A B C D \sim A^{\prime} B^{\prime} C^{\prime} D^{\prime} \sim A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ - ABCD has been enlarged by 2 times and then translated by 1 unit to the right and 1 unit up to form $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. - $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ has been rotated by 180° to form $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}^{\prime \prime}$ or $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has been reflected in the origin to form $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$	Notes Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, self-correction, praising Feedback for T Elicit, or remind Ps about, the notation for 'congruent to' and 'similar to' Elicit that the origin is the point where the x and y axes meet (where $x=0$ and $y=0$).
6	Book 5, page 132 Q. 2 Read: Here is a drawing of a model car. BB: Set a time limit of 3 minutes. Ps read rest of question them selves, write an operation, do the calculation and write the answers in the boxes. Ps may use Ex. Bks. if necessary. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps responding correctly explain at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected.	Individual work, monitored, helped Drawn on BB or use enlarged copy master or oHP Responses shown in unison. Discussion, reasoning, agreement, self-correction and marking, praising

		Lesson Plan 132
Activity		Notes
6	(Continued)	
	Solution:	
	What is the length of the model? Give your answer in centimetres, correct to one decimal place. Length of model: 8.7 cm	Elicit that 'correct to 1 decimal place' means 'to the nearest tenth of a cm'.
	The height of the model is 2.9 centimetres. The height of the real car is $\mathbf{5 0}$ times the height of the model. What is the height of the real car? Give your answer in metres. Show your method. You may get a mark. Height of real car $2.9 \mathrm{~cm} \times 50=29 \mathrm{~cm} \times 5=145 \mathrm{~cm}=1.45 \mathrm{~m}$ What is the length of the real car? Length of real car: $8.7 \mathrm{~cm} \times 50=87 \mathrm{~cm} \times 5=435 \mathrm{~cm}=4.35 \mathrm{~m}$	Whole class activity or extra work for quick Ps
Extension	40 m	
7	Book 5, page 132, Q. 3 Read: Solve the problem in your exercise book. The lengths of the sides of a rectangle are whole centimetres. The perimeter of the rectangle is 20 cm . a) How many different such rectangles are possible? Give the length of their sides. b) Which of them has the smallest and greatest areas and what are these areas? Allow Ps a minute to think about it and try it in Ex. Bks. Who thinks that they know what to do Who agrees? Who thinks something else? Ps suggest what to do and how to continue. T gives hints only if necessary. (If time is short, once Ps have agreed on answer to part a), part b) could be set as homework.) Solution: a) $P=2 \times(a+b)=20 \mathrm{~cm}$, so $a+b=20 \mathrm{~cm} \div 2=10 \mathrm{~cm}$ There are 5 possible rectangles. (Assuming that we do not mind the order of a and b.). b) i) Smallest possible area: $a=1 \mathrm{~cm}, b=9 \mathrm{~cm}$ $A=1 \mathrm{~cm} \times 9 \mathrm{~cm}=9 \mathrm{~cm}^{2}$ ii) Greatest possible area: $\begin{aligned} & a=5 \mathrm{~cm}, b=5 \mathrm{~cm} \\ & A=5 \mathrm{~cm} \times 5 \mathrm{~cm}=25 \mathrm{~cm}^{2} \end{aligned}$ 45 min	
		Whole class activity (or individual or paired trial first if Ps wish, or leave open and Ps finish at home)
		(If several Ps have an answer, ask them to show it on slates or scrap paper in unison.)
		Discussion, reasoning, agreement, praising Feedback for T
		Agree that: - the most irregular rectangle has the smallest area, - the most regular rectangle (a square) has greatest area.

$3 \pi 5$	R: Calculations C: Revision : Perimeter and area E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 133 \end{gathered}$
Activity 1	Numbers a) Let's factorise 166 and then list all its positive factors. Ps come to BB to draw the factor tree. Class agrees/disagrees. BB: $\mathbf{1 6 6}=2 \times 83$ (and 83 is not divisible by $2,3,5$ or 7) Positive factors: 1, 2, 83, 166 b) Let's define 166 in different ways. Class checks that definitions are correct and are unique to 166 and that there are no repeats. (e.g. 200% of 83,1 third of $498,16 \mathrm{~T}+6 \mathrm{U}, 1.66 \times 100$, etc. 6 min	Notes Whole class activity Reasoning, agreement, praising At speed. T chooses Ps at random. Extra praise for clever definitions Feedback for T
2	Properties What are some properties of these polygons? T says the name of the polygon and shows diagram on BB , labelling the vertices and sides. (If possible, Ps have sheets of paper to make the shape by folding or cutting, following T's demonstration.) Ps say what they know about it and T writes in a mathematical way on BB. T prompts if any are missed. Ps mark certain properties on the diagrams on BB (e.g. equal angles, equal sides, right angles, parallel lines). Elicit the general formula for calculating area and perimeter. BB: a) Rectangle: (quadrilateral with equal angles) e.g. It has at least 2 lines of symmetry. $a=c$ and $b=d$ It has 2 equal diagonals. $(\mathrm{AC}=\mathrm{BD})$ $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ $P=2 \times(a+b), A=a \times b$ b) Square: (regular quadrilateral) e.g. It has 4 lines of symmetry. $a=b=c=d$ It has 2 equal, perpendicular diagonals. $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ $P=4 \times a, A=a \times a\left(=a^{2}\right)$ c) Isosceles triangle: (triangle with at least 2 equal sides) $\begin{aligned} & \text { e.g. } \begin{array}{l} \text { It has at least one line of symmetry (CM) } \\ a=b \\ \angle \mathrm{~A}=\angle \mathrm{B} \end{array} \\ & P=2 \times a+c, A=(\text { Length of } \mathrm{AB} \times \text { length of } \mathrm{CM}) \div 2 \end{aligned}$ d) Right-angled isosceles triangle: e.g. It has one line of symmetry (CM) $\begin{aligned} & a=b \\ & \angle \mathrm{~A}=\angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=90^{\circ} \\ & \mathrm{CA} \perp \mathrm{CB} \text { and } \mathrm{CM} \perp \mathrm{AB} \\ & \mathrm{AM}=\mathrm{MB} \\ & P=2 \times a+c, A=(a \times a) \div 2 \end{aligned}$	Whole class activity Outline diagrams already prepared on BB or SB or OHT, then appropriate labels and symbols added during the discussions. Involve all Ps. Discussion, reasoning, agreement, praising T reminds Ps about notation where necessary. Point out that: - vertices are usually labelled with capital letters; - labelling usually starts at bottom LH vertex and goes anti-clockwise; - sides are labelled with the start and end points (e.g. AB) or with lower case letters, e.g a; - in rectangles and squares, side a is usually AB , i.e. adjacent to angle $\mathrm{A}(\angle \mathrm{A})$ - in triangles, side a is usually opposite angle A Reasoning for area of triangles: c) Area of dotted rectangle: width \times height $=\mathrm{AB} \times \mathrm{CM}$ Area of triangle ABC is half of the area of the rectangle, i.e. $(\mathrm{AB} \times \mathrm{CM}) \div 2$ d) Triangle ABC is half of the square with side a. Area of square: $a \times a$ Area of triangle: $(a \times a) \div 2$

BK5		Lesson Plan 133
Activity 2	(Continued) e) Equilateral triangle: (regular triangle) e.g. $\begin{aligned} & a=b=c \\ & \angle \mathrm{~A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ} \\ & \mathrm{CM} \perp \mathrm{AB} \\ & \mathrm{AM}=\mathrm{MB}(\mathrm{M} \text { is middle point of } \mathrm{AB}) \end{aligned}$ $P=3 \times a, A=(\text { Length of } \mathrm{AB} \times \text { length of } \mathrm{CM}) \div 2$	Notes Reasoning for the area is the same as c) N.B. The dotted rectangles also show how paper can be folded and/or cut to form the different types of triangle.
3	Area and perimeter Let's join up each formula to the matching shapes. Ps come to BB to choose a formula, read it aloud, say whether it is a perimeter or an area and join it to the matching shape or shapes, explaining reasoning. Class agrees/disagrees or points out missed joinings. Ask Ps to explain the formulae in words too. e.g. $A=\frac{e \times e}{2}$: 'The area of a square is equal to half of the product of its diagonals.'	Whole class activity Drawn (stuck) on BB or use enlarged copy master or OHP At a good pace T helps where necessary. Reasoning: e.g. $A=\frac{e \times f}{2}$ Point out congruent triangles. $A=\frac{e \times e}{2}$ Point out congruent triangles. Agreement, praising only
4	Book 5, page 133 Q. 1 Read: Draw one line from each shape to the rectangle which has the same area. Set a time limit of 2 minutes. Review with whole class. Ps come to BB to draw joining lines and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. (T could have the shapes already cut into pieces so that Ps can manipulate them to make the rectangles.) Solution:	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, demonstration, agreement, self-correction and marking, praising Elicit the name of the shapes. (2 scalene triangles, 1 rhombus)

RK5		Lesson Plan 133
Activity 5	Book 5, page 133 Q. 2 Read: On the grid, draw a triangle which has the same area as the shaded rectangle. Set a time limit of 2 minutes. Review with whole class. Ps come to BB to draw their triangles. Who agrees? Who drew a different one? Agree that there are many different solutions. (If all Ps drew the same triangle, T asks for other solutions or shows some and asks Ps if they are correct.) Solution: e.g. or	Notes Individual work, monitored Drawn on BB or use enlarged copy master or OHP Discussion, reasoning, agreement, self-correction and marking, praising Deal with all cases. Ps name the different triangles (right-angled, scalene, isosceles, obtuse-angled) Feedback for T
 6 	Book 5, page 133 Q. 3 Read: Lindy has 4 triangles, all the same size. She uses them to make a star. Calculate the perimeter of the star. Show your method. You may get a mark. Set a time limit of 2 minutes. Review with whole class. Ps show solution on slates or scrap paper on command. P answering correctly explains at BB to Ps who were wrong. Class agrees/disagrees. Mistakes discussed and corrected. Solution: $\begin{aligned} P & =7+13+7+13+7+13+7+13 \\ & =4 \times(7+13)=4 \times 20=80(\mathrm{~cm}) \end{aligned}$ What is the area of the star? Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: $A=4 \times \frac{5 \times 12}{2}=2 \times 5 \times 12=10 \times 12=120\left(\mathrm{~cm}^{2}\right)$	Individual work, monitored Drawn (stuck) on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising Agree that as the diagram is not to scale you cannot measure the perimeter. Whole class activity Agreement, praising

BK	R: Calculations C: Revision: Area, surface area, volume E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 134 \end{gathered}$
Activity 1	Numbers a) Let's factorise 167 and then list all its positive factors. Ps dictate to T or come to BB to try each of the prime numbers $2,3,5,7$ and 11 as divisors, using 'quick' methods where possible. Should we try dividing by 13 ? (No, as $13 \times 13=169>163$) Elicit that 167 is a prime number and its factors are 1 and 167 . b) Let's define 167 in different ways. Class checks that definitions are correct and are unique to 167 and that there are no repeats. (e.g. $1 \mathrm{H}+6 \mathrm{~T}+7 \mathrm{U}, 1.67 \times 100$, half of $334,2000-1833$, etc. 8 min	Notes Whole class activity Reasoning, agreement, praising At speed round class Praising, encouragement only
2	Solids T has various solids on desk (and if possible, Ps have some too). What name can we give to all these shapes? (Solids) How could we put them into 2 groups? (e.g. all plane faces and at least one curved face) Elicit/remind Ps that a solid which has only plane faces is called a polyhedron. (BB) T holds up one solid at a time and Ps say what they know about it . (e.g. name, number and types of faces, number of edges and vertices; equal, parallel, perpendicular faces and edges; etc.) T prompts if necessary. Elicit the general formula for calculating the surface area and volume of solids 1) to 3). e.g. BB: Solids Cube e.g. It has 6 congruent square faces, 12 equal edges and 8 vertices. Any 2 adjacent faces are perpendicular to one another. Any 2 opposite faces are parallel to one another. If the length of each of its edges is a, then Surface Area $=6 \times(a \times a) \quad\left[=6 a^{2}\right]$ Volume $=a \times a \times a \quad\left[=a^{3}\right]$ 2) Square-based prism e.g. It has 2 congruent square faces and 4 congruent rectangular faces. It has 12 edges (8 of one length, 4 of another length) and 8 vertices. Any 2 adjacent faces are perpendicular to one another. Any 2 opposite faces are parallel to one another. If the length of its short edge is a, and its long edge is b, then $\begin{array}{ll} \text { Surface Area }=2 \times(a \times a)+4 \times(a \times b) & {\left[=2 a^{2}+4 a b\right]} \\ \text { Volume }=a \times a \times b & {\left[=a^{2} b\right]} \end{array}$ 3) Cuboid e.g. It has 6 faces, 12 edges and 8 vertices. Any 2 adjacent faces are perpendicular. Any 2 opposite faces are parallel and congruent. If the length of its edges are a, b and c, then $\begin{aligned} & \text { Surface Area }=2 \times(a \times b)+2 \times(b \times c)+2 \times(c \times a) \\ & \text { Volume }=a \times b \times c \\ & {[=a b c]} \end{aligned}$	Whole class activity Thas models to show and also axiomatic diagrams drawn on BB (or use enlarged copy master or OHP) Involve all Ps. Thelps with the correct wording. Agreement, praising Point out/elicit that: - a prism is a polyhedron which has at least one pair of opposite, parallel, congruent faces; - every cube is a special square-based prism and is also a cuboid; - every square-based prism is a special cuboid. T might also give specific lengths of edges and ask Ps to calculate the surface area and volume. e.g. Cube of side 3 cm : $A=6 \times 3 \times 3=54\left(\mathrm{~cm}^{2}\right)$ $V=3 \times 3 \times 3=27\left(\mathrm{~cm}^{3}\right)$ [T could show the short forms of the formulae.] $[=2 a b+2 b c+2 c a]$

$B K E$		Lesson Plan 134
Activity 2	(Continued) 4) Regular rectangle-based prism e.g. It has 5 faces; 2 faces are congruent triangles and 3 faces are congruent rectangles. The rectangular faces are perpendicular to the triangular faces. The 2 triangular faces are parallel to each other. It has 9 edges, 6 of them of one length and 3 of them of another length. 5) Cylinder e.g. It has 2 congruent circular faces (base and top) and one curved surface which is perpendicular to the base. It has 2 circular edges and no vertices. 6) Sphere e.g. It has 1 curved surface, no edges and no vertices. Each point on it surface is an equal distance from its centre point. 7) Cone e.g. It has 1 circular face and one curved surface. It has 1 circular edge and one vertex. 8) Regular square-based pyramid e.g It has 5 faces, 1 square face and 4 congruent triangular faces. It has 8 edges (4 of one length and 4 of another length) and 5 vertices.	Notes (Other solids can be substituted for some of those shown.) Point out that a pyramid is not a prism as it has no parallel faces. Feedback for T
3	Polyhedra table Let's fill in the table for the polyhedra (plural of polyhedron) we have just been talking about. Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: Polyhedra $\begin{aligned} & e+2=f+v \\ & e-f-v=2 \\ & e=f+v-2, \text { etc. } \end{aligned}$ What do you notice? (e.g. Number of edges $+2=$ number of faces + number of vertices) Who could write it mathematically? Who could write it another way? Ps check each form with values from table.	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Agreement, praising Discussion on the rule Checking, agreement, praising [Euler's polyhedra theorem]

BKT	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 135 \end{gathered}$
Activity 1	Factorising a) Let's factorise 168 and list all its positive factors. Ps come to BB to draw tree diagram, show the number as the product of its prime factors and list all its positive factors. Class agrees/ disagrees. Positive factors: $1,2,3,4,6,7,8,12,14,21,24,28,42,56,84,168$ b) Let's define 168 in different ways. Ps dictate to T. Class checks that the definition is valid, is unique to 168 and is not a repeat.. e.g. $16 \mathrm{~T}+8 \mathrm{U}, 5000-4832,0.168 \times 1000,10^{2}+8^{2}+2^{2}$, etc.	Notes Whole class activity Reasoning, agreement, praising Involve as many Ps as possible. Ps can join up the factor pairs. T chooses Ps at random Extra praise for clever definitions
2	Find a rule Let's find a rule and complete the table. Ps suggest a rule in words using the completed columns. Ps come to BB to choose a column and write missing number, explaining reasoning. CTåss points out errors. Who can write the rule in a mathematical way? Who agrees? Who can think of another way to write it? Class checks that they are correct using values from table. BB: a) Rule: $f=-(2 \times e), \quad e=-(f \div 2)$ [i.e. f is the opposite of 2 times e, or e is the opposite of half of f] b) Rule: $v=3 \times u-1, u=(v+1) \div 3,[(v+1) \div u=3]$ c) Rule: $y=x \times x+1, \quad x \times x=y-1$	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Bold numbers were missing. Reasoning, checking, agreement, praising Feedback for T Extension Ps suggests values for extra columns in each table.

BTK		Lesson Plan 135
Activity 5	Book 5, page 135 Q. 3 Read: Tom, Amy and Helen want to go on a boat trip. There are three boats. Set a time limit of 3 minutes. Ps read question themselves, do calculation in Ex. Bks. and write results in relevant boxes in Pbs. Review with whole class. T chooses a P to read each part of the question and Ps show answer on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Who agrees? Who did it another way? etc. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: How much does it cost altogether for three people to go on the Lark? BB: $£ 2.75 \times 3=£ 8.25$ Answer: It costs $£ 8.25$ for 3 people to go on the Lark. Tom and Amy go on the Heron. They leave at 2.15 pm. At what time do they return? BB: e.g. $2.15 \mathrm{pm}+70 \mathrm{~min}=2.15 \mathrm{pm}+1 \mathrm{~h} 10 \mathrm{~min}=3.25 \mathrm{pm}$ Answer: Tom and Amy return at 3.25 pm. Helen goes on the Kestrel and gets back at 4.15 pm. At what time did the boat leave? BB: e.g. $90 \mathrm{~min}=1 \mathrm{~h} 30 \mathrm{~min}$ $4.15 \mathrm{pm}-1 \mathrm{~h} 30 \mathrm{~min}=3.15 \mathrm{pm}-30 \mathrm{~min}=2.45 \mathrm{pm}$ Answer: The boat left at 2.45 pm .	Notes Individual work, monitored Written on BB or use enlarged copy master or OHP BB: Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising Extension (or optional h/work) Which boat trip is the best value for money? e.g. Lark: $50 \mathrm{~min} \rightarrow £ 2.75$ $10 \mathrm{~min} \rightarrow £ 2.75 \div 5$ $=£ 0.55=55 \mathrm{p}$ Heron: $70 \mathrm{~min} \rightarrow £ 3.50$ $10 \mathrm{~min} \rightarrow £ 3.50 \div 7$ $=£ 0.50=50 \mathrm{p}$ Kestrel: $90 \mathrm{~min} \rightarrow £ 4.20$ $10 \mathrm{~min} \rightarrow £ 4.20 \div 9$ $=£ 0.4 \dot{6} \approx 47 \mathrm{p}$ The Kestrel is the best value.
6	Book 5, page 135 Q. 4 Set a time limit of 2 minutes. Ps read question themselves, write answers in boxes in Pbs and write explanation for a) in Ex. Bks. Review with whole class. T chooses a P to read each part of the question and Ps show answer on scrap paper or slates on command. In a), T chooses Ps answering correctly to read their explanations. Class decides which is best. Mistakes discussed and corrected. Solution: The inner ring on this spinner is divided into 12 equal sections. a) On which number is the pointer most likely to stop? Explain your answer in your exercise book. BB: Number 1: $\frac{3}{12} ; \quad$ Numbers 2, 4: $\frac{1}{12}+\frac{1}{12}=\frac{2}{12}$ Number 3: $\frac{2}{12}+\frac{2}{12}=\frac{4}{12} ; \quad$ Number 5: $\frac{1}{12}$ The pointer is most likely to stop on the number 3, as it takes up more of the circle than the other numbers. b) What is the probability of getting an even number? $p(\text { even number })=p(2)+p(4)=\frac{2}{12}+\frac{2}{12}=\frac{4}{12}=\frac{1}{3}$	Individual work, monitored Diagram drawn (stuck) on BB or use enlarged copy master or OHP BB: Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T Extension What is the probability of getting an odd number? $p(\text { odd })=1-\frac{1}{3}=\frac{2}{3}$

BKE	R: Calculations C: Revision and practice E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 136 \end{gathered}$
Activity 1	Numbers a) Let's factorise 169 and then list all its positive factors. Ps try the prime numbers $2,3,5,7$ and 11 in turn, using quick methods where they can. Should we try 13? (Yes) BB: $13 \times 13=130+39=169$ So $169=13 \times 13$ and its positive factors are $1,13,169$. What is special about it? (It is a square number.) \quad BB: 13169 b) Let's define 169 in different ways. (e.g. $13^{2}, 170-1,100$ th of $16900,0.169 \times 1000$, etc.) 6 min	Notes Whole class activity Extra praise if Ps remember $169=13 \times 13$ from the trials of previous numbers. Reasoning, agreement, praising At speed round class Extra praise for unexpected definitions
2	Sequences Let's think of different rules for continuing these sequences. T writes first 3 terms on BB and a P suggests a rule. The next Ps dictate the following terms until T decides when to stop. Class points out any errors. Who can think of another rule? Ps continue the sequence in other ways where possible. BB: a) $1.1,2.2,4.4$, (e.g. $8.8,17.6,35.2,70.4,140.8, \ldots \quad[\times 2]$ (or 1.1, 2.2, 4.4, 1.1, 2.2, .. [Cycle repeating] (or 7.7, 12.1, 17.6, 24.2, ...) [Difference increasing by 1.1] $\text { (or } 5.5,7.7,8.8,11.0,12.1, \ldots \text {) } \quad[+1.1,+2.2]$ b) $84,28,9 \frac{1}{3},\left(3 \frac{1}{9}, 1 \frac{1}{27}, \frac{28}{81}, \frac{28}{243}, \ldots\right) \quad[\div 3]$ $\text { or } \frac{28}{3},\left(\frac{28}{9}, \frac{28}{27}, \frac{28}{81}, \ldots\right)$ c) $1,3,7$, (e.g. $13,21,31,43,57,73,91,101, \ldots$) [Difference increasing by 2] (or $15,31,63,127,255,511,1023, \ldots$) [Difference is increasing by 2 times; or each term is twice the previous term +1]	Whole class activity Discussion on possible rules At a good pace In good humour! Agreement, (correcting) praising Accept any valid rule if reasoned correctly. Extra praise for unexpected rules
3	Book 5, page 136 Q. 1 Allow 2 minutes. Ps read the questions themselves and write the relevant numbers in the boxes. Review with whole class. A P reads each part of question, then Ps show numbers on scrap paper or slates on command. Ps answering correctly explain to Ps who were wrong. Mistakes discussed and corrected. Solution: Rob has some number cards.. He holds up a card. He says, 'If I multiply the number on this card by 5, the answer is 35.' What is the number on the card? BB: $35 \div 5=7 \quad$ or \square $\times 5=35$, \square $=7$	Individual work, monitored Encourage Ps to read questions carefully and to check their answers. Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising N.B. Although these are simple inverse operations on the multiplication table, some Ps might have difficulty in understanding the long text.

		Lesson Plan 136
Activity 6	Book 5, page 136 Q. 4 Allow 2 minutes. Ps read question themselves, write operation and do calculation in Ex. Bks. then write result in Pbs. Review with whole class. T chooses a P to read out the question, then Ps show result on scrap paper or slates on command. P answering correctly explains at BB to Ps who were wrong. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. T asks a P to say the answer in a sentence. Solution: Parveen buys 3 small bags of peanuts. She gives the shopkeeper $£ 2$ and gets 80 p change. What is the cost in pence of one bag of peanuts? Show your working in your exercise book. (40 p) BB: e.g. Let the cost of one bag be x. Plan: $\quad x=(200 \mathrm{p}-80 \mathrm{p}) \div 3=120 \mathrm{p} \div 3=40 \mathrm{p}$ Answer: The cost of one bag of peanuts is 40 p . 35 min	Notes Individual work, monitored Responses shown inunison. Discussion, reasoning, agreement, self-correction and marking, praising Feedback for T $\begin{aligned} \text { or } 3 \times \square & =200-80 \\ 3 \times \square & =120 \\ \square & =120 \div 3=40(\mathrm{p}) \end{aligned}$
7	Book 5, page 136 Q. 5 Allow 2 minutes. Ps read question themselves, work out the answer in Ex. Bks. then write numbers in Pbs. Review with whole class. P comes to BB to write sequence and explain how he or she worked it out. Who agrees? Who thought in a different way? Mistakes discussed and corrected. Solution: Kalid makes a sequence of numbers. The first number is 2. The last number is 18. His rule is to add the same amount each time. Write in the missing numbers. BB: e.g. Each difference: $(18-2) \div 4=16 \div 4=4$ Sequence: 40 min	Individual work, monitored [Although calculators were allowed in the KS2 test, they are not needed.] Discussion, reasoning, agreement, self-correction and marking, praising Ps who could not solve the problem, write correct calculation in Pbs.
8	Book 5, page 136, Q. 6 Read: In the year 2002, a man's age in years was equal to the sum of the digits of the year in which he was born. How old was he in 2002? T gives Ps a couple of minutes to think about it and discuss with their neighbours if they wish. Who has an idea what to do? Who agrees? Who would do it another way? etc. Expect Ps to suggest trial and error, as using algebra is rather difficult at this stage. If no P has an idea, T starts and Ps continue the trials. Solution: e.g. Try 50 years: birth year: $2002-50=1952$. Sum of digits $=17 \times$ Try 25 years: birth year: $2002-25=1977$. Sum of digits $=24 x$ Try 22 years: birth year: $2002-22=1980$ Sum of digits $=18 \times$ Try 21 years: birth year: $2002-21=1981$ Sum of digits $=19 \times$ Try 20 years: birth year: $2002-20=1982$. Sum of digits $=20 \checkmark$ Answer: The man was 20 years old in 2002.	Whole class activity (or individual or paired trial first if Ps wish) Discussion involving several Ps. Reasoning, agreement, (selfcorrection), praising In this problem, trial and error is actually easier than using algebra! An algebraic solution is given below for Ts in case a bright P suggests it.

BKE	R: Calculations C: Puzzles and challenges E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 137 \end{gathered}$
Activity 1	Numbers a) Let's factorise 171 and then list all its positive factors. P comes to BB to draw a tree diagram, explaining reasoning. Class points out errors. BB: b) Let's define 171 in different ways. (e.g. $13^{2}+2,1000-829,1.71 \times 100,1 \mathrm{H}+7 \mathrm{~T}+1 \mathrm{U}$, etc.) 6 min	Notes Whole class activity At a good pace Reasoning, agreement, praising T chooses Ps at random. Extra praise for unexpected definitions
2	Find a rule Let's find a rule and complete the table. Ps suggest a rule in words using the completed columns. Ps come to BB to choose a column and write missing number, explaining reasoning. Class points out errors. Who can write the rule in a mathematical way? Who agrees? Who can think of another way to write it? Class checks that they are correct using values from table. BB: a) $\begin{aligned} \text { Rule: } & P=2 \times(a+b)[=2 \times a+2 \times b] \\ & b=P \div 2-a, a=P \div 2-b \end{aligned}$ What could the table be about? (If a and b are positive numbers, we can think of the table being about the perimeter of a rectangle, where a and b are different sides and P is the perimeter.) What other quadrilaterals could it also refer to? (parallelograms and deltoids) b) Rule: $A=\frac{e \times f}{2}, \quad[f=2 \times A \div e, e=2 \times A \div f]$ What could the table be about? (If e and f are positive numbers, we can think of the table being about the area of a deltoid or rhombus, where e and f are the diagonals; or if we think of e and f as being the perpendicular sides of a right angled triangle, then A would be its area; or if we think of e as the base of an isosceles triangle and f as its height, then A would be its area.)	Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace Bold numbers were missing. Reasoning, checking, agreement, praising BB: Discussion, agreement, praising If no P has an idea, T makes suggestions and asks Ps what they think about it. T draws diagrams on BB to help Ps understand the formula. BB:

BK5		Lesson Plan 137
Activity 2	(Continued) c) Rule: $A=\frac{e \times e}{2},[e \times e=A \times 2]$ What could the table be about? (If e is positive, we can think of it as being the diagonal of a square and A is its area.) T shows it on BB . \qquad 16 min \qquad	Notes BB:
3	Book 5, page 137 Q. 1 Allow 2 minutes. Ps read question themselves and write numbers in boxes in Pbs. Review with whole class. Ps could show number for each part on scrap paper or slates on command. T asks Ps with wrong numbers why their answers are wrong. Mistakes corrected. (If a P has a valid unexpected answer, ask rest of class whether it is correct.) Solution: Milly and Ryan play a number game: What's my number? Milly: Is it under 20? Is it a multiple of 3? Yes Is it a multiple of 5? Yes What is the number? Milly and Ryan play the game again.	Individual work, monitored Although calculators were allowed in the KS2 test, they are not necessary! Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising [Also accept $0,-15,-30$, $-45, \ldots$ or elicit them!] (as 21 is not a prime number)
4	Book 5, page 137 Q. 2 Allow 2 minutes. Ps read question themselves and answer in $P b s$. Review with whole class. For each part, a P reads the question, then Ps show the fraction on scrap paper or slates on command. Ps answering correctly explain reasoning to Ps who were wrong. P comes to BB to mark the fraction on the number line. Mistakes discussed and corrected. Solution: Here are two bags. Each bag has $\mathbf{3}$ white balls and one black ball in it. A ball is taken from one of the bags without looking. What is the probability that it is a black ball? Give your answer as a fraction. In each bag, the black ball is 1 out of 4 , so p (black) $=\frac{1}{4}$ All the balls from both bags are now mixed together in a new bag. Put a cross on this line to show the probability of taking a black ball from the new bag The black balls are 2 out of 8 , so p (black) $=\frac{2}{8}=\frac{1}{4}$	Individual work,monitored Diagrams drawn on BB or use enlarged copy master or OHP (or real bags of marbles) Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising BB: BB:

$B K E$		Lesson Plan 137
Activity 5	Book 5, page 137 Q. 3 Read: Write the positive whole numbers which are not greater than 20 in the Venn diagram. What special name do we give to positive whole numbers? (natural numbers) Set a time limit. Review with whole class. Ps come to BB to write the numbers in the correct set, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that zero is neither positive nor negative, so cannot be included. What is the rule for the intersection of the 2 sets? (Divisible by 5 and by 3 , or divisible by 15) Solution:	Notes Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Differentiation by time limit. Reasoning, agreement, selfcorrection, praising Feedback for T Extension T points to each part of the diagram and Ps describe the numbers which belong there. P describes a set of numbers and another P shows where they are on the diagram.
 6	Book 5, page 137 Q. 4 Read: List the whole numbers greater than 500 and less than 900 in which the digits are increasing. Try it out in your exercise book first. Set a time limit. Encourage a logical listing. Review with whole class. Ps come to BB or dictate numbers to T. Class agrees/disagrees or points out missed numbers. Mistakes and omissions corrected. Solution: 567, 568, 569, 578, 579, 589; 678, 679, 689; 789 (10) Ps think of questions to ask about the numbers. (e.g. What is the difference between the greatest and smallest numbers? What is the sum of the even numbers? Which of the numbers are divisible by 3 ? How could they be grouped? etc.)	Individual work, monitored (or whole class activity if time is short - Ps come to BB or dictate to T) Agreement, self-correction, praising Whole class activity Extra praise for clever questions
7	Book 5, page 137 Q. 5 Read: When we add two numbers from four natural numbers, the sums are: 3, 3, 4, 5, 6 and 6 . What are the four numbers? Ps try it out in Ex. Bks first and discuss with their neighbours. Review with whole class. Ps who have an answer, or think that they know what to do, come to BB to explain. Who agrees? Who thought of a different way to do it? etc. If no P has an idea, or to check a solution given by Ps , T suggests drawing a digram as below. Ps come to BB to write the sums beside the joining lines and to fill in the numbers in the circles. Ps draw diagram in Ex. Bks and write the 4 numbers in Pbs. $\text { Solution: } \begin{aligned} & 3=2+1 \quad \text { (twice) } \\ & 4=3+1 \\ & \text { or } 2+2 \\ & 5=4+1 \\ & \text { or } 3+2 \\ & 6=5+1 \end{aligned} \text { or } 4+2 \text { or } 3+3 \text { }$	Individual trial first, monitored (or whole class activity if time is short) Discussion, reasoning, agreement, checking, (selfcorrection), praising Extra praise for Ps who solved it without help from T. Accept trial and error but also show the method opposite. Answer: The four numbers are $1,2,2$ and 4.

BK5	R: Calculations C: Measurement outside (or inside) the dlassroom E: Challenges	$\begin{gathered} \text { Lesson Plan } \\ 138 \end{gathered}$
Activity	Measurement: Introduction T divides the class into groups of about 4 Ps. Each group is given a measuring tape, protractor and/or compass. T quickly revises how to use the measuring tools, with Ps coming to front of class to demonstrate and explain. Revise the units of measure too. Ps make notes on their notepads if needed. T sets a task for each group. e.g. making a plan of the school buildings (playing fields, classroom, library, dining hall, etc.) Discuss how the task should be done and what measurements will be needed. (Make a rough sketch first and write the actual measurements on it - lengths of walls, width of spaces, angles of corners, etc.) Ps ask questions if they are unsure about anything. 10 min	Notes Whole class activity Ps have measuring tools, notepads or clipboards, pencils etc. for making sketches and notes. T arranges the tasks so that the groups do not get in each other's way (e.g. they could all have the same task but start measuring at different places, or each group could have a different task).
2	Estimation Before we start, let's practise estimating. e.g. How long do you think the front wall of the school is? Show me a 10 m by 10 m square on the classroom floor. What angle do you think is between this wall and that one? etc. T asks several Ps what they think and class decides which are possible and which are not. (T teases in a lighthearted way Ps who make outlandish estimates or who use inappropriate units.) Ps can also suggest things which relate to their given task for the class to estimate.	Whole class activity This estimation practice is to help Ps to realise when a measurement is obviously wrong and should be done again and to get them used to using appropriate units of measure. Praising, encouragement only
3	Group measurement Set a time limit of 20 minutes. Ps decide what should be measured and who will measure what. All information is shared among the group and all Ps in the group make a rough sketch and note the collected information. Ps should note on their sketch any lengths they could not measure, or make estimates (e.g. no. of paces or footsteps). e.g. Sketch of School We could not measure this side.	Group work T continuously goes from group to group, helping, making suggestions, pointing out missed measurements or any which should be checked, and monitoring what Ps have written and drawn. In good humour! T keeps each group aware of how much time is left. Praising, encouragement only
4	Back in the classroom a) The groups report on their data and draw a rough sketch on the BB. Rest of Ps point out any missed measurements or unlikely values. b) Ps decide on a suitable scale and draw an accurate plan of their sketch in Ex. Bks. c) Ps calculate areas and perimeters from their plans in Ex. Bks.	Quick whole class review, then individual (or paired) work in drawing a plan and calculating, monitored closely, helped Ps could finish the tasks for homework.
Extra questions	The extra questions on page 138 of the Pb are mainly challenges and can be used as voluntary homework, or as a competition, or for Ps to do when they have finished other tasks early, or in case the weather prevents Ps from measuring outside. Solutions are on the following page.	If used as a lesson, individual trial first, then whole class review as usual.

BK5		Lesson Plan 138
	Book 5, page 138 Solutions: Q. 1 Factorise 172 and list its positive factors. $\mathbf{1 7 2}=2 \times 2 \times 43$ (2) 86 Positive factors: $1,2,4,43,86,172$ (2) (43)	Notes
	Q. 2 The digits of a 4-digit number greater than 5000 follow each other in increasing order. Another 4-digit number has those digits too, but in decreasing order. A third 4-digit number has those digits too. What are the three numbers if we know that their sum is 26352?	Expect Ps to use trial and error but in a logical way, as shown.
	Q. 3 We want to place 12 spotlights in the ceiling so that they are in 6 straight lines and there are 4 spotlights in each line. Draw different arrangements. e.g.	Other arrangements are possible.
	Q. 4 The edges of a cube are to be coloured either red or blue so that each face has at least one red edge. What is the least number of edges which should be coloured red? Draw a diagram to show your answer. 3 edges coloured red are enough. e.g.	
	Q. 5 Each diagram is the map of a field in which there are 4 wells. Show how the field could be divided into 4 congruent parts so that each part has exactly one well. a) b)	Elicit that each shape is a hexagon

$B K E$	R: Calculations C: Puzzles E: Challenges	$\begin{gathered} \text { Lesson Plan } \\ 139 \end{gathered}$
Activity 1	Numbers a) Let's factorise 173 and then list all its positive factors. Ps dictate or come to BB to try each of the prime numbers, $2,3,5,7$, 11 and 13 as divisors, using 'quick' methods where possible. Should we try dividing by the next prime number, 17 ? (No, as $17 \times 17=289>173$) Elicit that 173 is a prime number and its factors are 1 and 173. b) Let's define 173 in different ways. Ps make suggestions and class checks that they are correct, not duplicates and unique to 173 . (e.g. $13^{2}+2^{2}, 2000-1800-27,6 \times 25+23,100$ th of 17300 , etc. 8 min	Notes Whole class activity At a good pace Ps explain reasoning or do divisions at side of BB or use a calculator. Class agrees/disagrees Praising At speed round class Extra praise for clever definitions
2	Problem Listen carefully, note the data and try to solve the problem You can discuss it with your neighbour if you wish. The day before yesterday, Suzanne was 10 years old and next year she will be 13 years old. What is the date of Suzanne's birthday? After about 4 minutes, Ps who have an answer show it on slates or scrap paper on command. Ps with correct answer explain reasoning to class with the aid of a calendar. If no P has an answer, either leave the question open for Ps to solve at solve at home if they wish, or T helps class to solve it together. Reasoning: If today is the 1st of January, the day before yesterday was the 30th December last year when Suzanne was 10 years old. Yesterday (31st of December last year) was Suzanne's birthday and she was 11 years old. This year she will be 12 years old on 31 December, and next year she will be 13 years old on 31 st December.	Individual or paired trial first, monitored T repeats slowly to give Ps time to think and discuss. Responses shown in unison. Discussion, reasoning, agreeement, praising Class applauds any Ps who deduced the correct answer without help. BB: Today: e.g. 1 Jan 2003 30 Dec 2002: 10yrs 31 Dec 2002: 11 yrs 31 Dec 2003: 12 yrs 31 Dec 2004: 13 yrs

BK5		Lesson Plan 139
Activity 3	Number sets Let's write the whole numbers between 0 and 25 in the Venn diagram using the flow chart to help us. Ps deal with the numbers in increasing order, coming to BB to show the route through the flow chart and then to write the number in the correct place in the Venn diagram. Class agrees/disagrees. BB: Elicit what each part of the Venn diagram means. A: Divisible by 4 B: Divisible by 6 C: Not divisible by 4 D: Not divisible by 6 E: Divisible by neither 4 nor 6 . F: Divisible by 4 but not by 6 . G: Divisible by both 4 and 6. (i.e. divisible by 12) H: Divisible by 6 but not by 4 .	Notes Whole class activity Drawn on BB or use enlarged copy master or OHP At a good pace (Eventually Ps will be able to say where a number should go without using the flow chart.) Agreement, praising Discussion, reasoning, agreement, praising T might show set notation: e.g. $\mathrm{A} \cup \mathrm{B}$ (read as 'A union B', means all the numbers which are in either set A or set B) $\mathrm{A} \cap \mathrm{B}$ (read as 'A intersection B^{\prime}, and means all the numbers which are in set A and in set B)
4	Book 5, page 139 Q. 1 Read: Fill in the missing numbers so that the product of any two adjacent numbers is the number directly above them. Set a time limit. Ps do necessary calculations in Pbs or Ex Bks. Review with whole class. Ps come to BB to fill in the missing numbers, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution:	Individual work, monitored, (helped) Drawn on BB or use enlarged copy master or OHP Bold numbers are given. Reasoning, agreement, selfcorrection, praising Feedback for T

BKS		Lesson Plan 139
Activity 5	Book 5, page 139 Q. 2 Set a time limit of 2 minutes. Ps read the question themselves, circle the appropriate response in Pbs and write a sentence of explanation for their choice. Review with whole class. T chooses a P to read out the question and Ps show 'Yes' or 'No' on slates or scrap paper or with pre-agreed actions. T chooses several Ps with different (or the same) responses to read their explanations to class. Class decides who is correct and which explanation is best. Mistakes corrected. Demonstrate with a real coin if necessary. Solution: Sannir spins a fair coin and records the results. In the first four spins, heads comes up each time. Sannir, says, 'A head is more likely than a tail.' Is he correct? Circle Yes or No. Give a reason for your answer. Reason: e.g. He is not correct because there are 2 possible outcomes, a head or a tail, and as the coin is fair, each outcome is equally likely.	Notes Individual work, monitored Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising Feedback for T Elicit that: $p(\mathrm{H})=p(\mathrm{~T})=\frac{1}{2}$
6	Book 5, page 139 Q. 3 Set a time limit of 3 minutes. Ps read the question themselves, write a plan, do the calculation (with or without a calculator) and write the result in the box in Pbs. Review with whole class. T chooses a P to read out the question and Ps show results on slates or scrap paper on command. P answering correctly explains at BB to Ps who were wrong. Show the written calculations too. Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: A shop sells sheets of sticky labels. On each sheet there are 36 rows and 18 columns of labels. How many lables are there altogether in 45 sheets? Show your method. You may get a mark. (29 160) BB: e.g. Plan: $\underbrace{36 \times 18 \times 45=29160}$ on each sheet Answer: There are 29160 labels on 45 sheets. 40 min	Individual work, monitored Drawn on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning, agreement, selfcorrection and marking, praising Extension If we need 1300 labels, how many sheets do we need to buy? (3 , as $648+648=1296$, so we need 1 more sheet)

RK5	R: Calculations C: Visiting the market (supermarket, post office, station, etc.) E: Challenges	Lesson Plan 140
Activity 1	Visiting the market: Before setting off T divides the class into groups of about 4 Ps. Talk about where the class is going and elicit Ps' own experiences of the place. Elicit the kind of jobs done there and the types of products sold. Discuss the units of measure which might be used there. (e.g. £s, pence; kg, g; litres, cl, pints; etc.) T sets a task for each group. (e.g. Group A will find out and note down the prices of different vegetables at different stalls. Group B will do the same for different types of fruit. Group C will find out the prices of different types of cheeses and milk. Group D : meat. Group E: flowers, etc.) Stress that not only is the item and price to be noted down but also what amount you can get for that price. Look out for special offers too! Ps ask questions if they are unsure about anything.	Notes Whole class activity Ideally the destination should be within close walking distance of the school and arranged in advance. Ps have notepads or clipboards, pencils, etc. Each group could choose the items they would like to find out about - but they should be decided on before Ps set off. e.g. Vegetables: potatoes, tomatoes, onions, carrots, cabbage, celery, mushrooms, cauliflower, green beans.
2	On arrival T tells Ps how much time they have and where and when they should all meet up. The groups go their different ways and Ps decide the best way to collect and note down the information. T continuously goes from group to group, helping, making suggestions about additional information, pointing out missed prices or any which should be checked, and monitoring what Ps have written and drawn. T also keeps each group aware of how much time is left. Ps meet up again and walk back to school.	Group work (It would be helpful if other adults were attached to the groups - classroom assistants or clerical staff or parents might volunteer!) All done in good humour! Praising, encouragement only
3	Back in the classroom Ps from each group give a brief summary of what they found out and the kinds of differences they noticed among similar items. (e.g. apples grown locally might be cheaper than imported apples; 2 litres of milk might be cheap today because its sell-by date is tomorrow; washed potatoes are more expensive than unwashed ones; etc.) T sets the homework task: e.g. Each P in a group writes in detail about one or two items, e.g. giving the cheapest, most expensive and average prices and what they consider to be the best buy that day and why.	Quick whole class review, then discussion on the task set and how the data collected could be presented (table, bar chart, pictogram, etc.) If time, Ps start their task in the classroom and finish it at home
Extra questions	The extra questions on page 140 of the $P b$ are mainly challenges and can be used as voluntary homework, or as a final competition, or in case the weather prevents Ps from venturing outside. Solutions are on the following page.	If used as a lesson, individual trial first then whole class review, as usual.

BK5		Lesson Plan 140
Activity	Book 5, page 140 Solutions: Q. $1 \quad$ Factorise 174 and list its positive factors. Positive factors: $1,2,3,6,29,58,87,174$	Notes
	Q. 2 Freddy Fox decided that from that day forward he would always tell the truth on Mondays, Wednesdays and Fridays but he would always tell lies on the other days of the week. One day he said, 'Tomorrow I will tell the truth.' On which day of the week do you think he said this? Reasoning: e.g. He could not have said it on a Sunday, Tuesday or Thursday because these are the days he told lies. He could not have said it on a day before he told a lie, i.e. on a Monday, Wednesday or Sunday, as he told the truth on these days and he would have said, 'Tomorrow I will tell a lie.' He must have said it on a Saturday, because he told lies on that day and would also have told a lie the next day, Sunday.	
	Q. 3 Two barrels of equal size contain oil. One of the barrels is full and the other is half full. Their masses are 86 kg and 53 kg . What is the mass of an empty barrel? e.g. By reasoning: Difference between the two barrels: $86 \mathrm{~kg}-53 \mathrm{~kg}=33 \mathrm{~kg}$ So the mass of half the liquid a barrel holds is 33 kg . Mass of all the liquid a barrel holds: $33 \mathrm{~kg} \times 2=66 \mathrm{~kg}$ Mass of an empty barrel: $86 \mathrm{~kg}-66 \mathrm{~kg}=20 \mathrm{~kg}$ Using algebra: e.g. Let b be the mass of an empty barrel and m be the mass of the liquid in a full barrel. $\begin{gathered} b+m=86 \mathrm{~kg} \\ b+\frac{m}{2}=53 \mathrm{~kg} \\ \hline \end{gathered}$ Subtracting: $\begin{aligned} & \frac{m}{2}=33 \mathrm{~kg}, \text { so } m=66 \mathrm{~kg} \\ & b=86 \mathrm{~kg}-66 \mathrm{~kg}=20 \mathrm{~kg} \end{aligned}$	As 86 kg and 53 kg are made up of the mass of an empty barrel + the liquid it contains.

PTE		Lesson Plan 140
	(Continued) Q. 4 Andy, Betty, Cindy and Danny are walking down a mountain and need to go through a narrow, dark tunnel but have to overcome these difficulties. - They have a torch which has only 12 minutes of power left. - Andy is able to walk through the tunnel in 1 minute, Betty in 2 minutes, Cindy in 4 minutes and Doris in 5 minutes. - They are all scared of the dark so each of them will need the torch. - The tunnel is so narrow that only 2 of them can walk through it at the same time. Is it possible for them all to get through the tunnel? If so, how could they do it? If not, why not? Yes, they could all get through the tunnel. A + B go through at the same time (2 minutes) A returns with the torch. (1 minute) Total time: $\mathrm{C}+\mathrm{D}$ go though at the same time. (5 minutes) 12 minutes B returns with the torch. (2 minutes) A and B go through together. (2 minutes)	Notes
	Q. 5 Write the natural numbers from 1 to 9 into a 3 by 3 grid so that: - the sum of the 3-digit numbers formed in the top and middle rows is equal to the 3-digit number in the bottom row; - the sum of the 3-digit numbers formed in the left and middle columns is equal to the 3-digit number formed in the right column. e.g. or Check: $718+236=954$ $146+583=729$ $729+135=864$	Vertical numbers are read downwards.

