What has been done to Triangle 1 to form the other shapes? Describe each transformation in your exercise book.

2
Draw the lines of symmetry and mark the centres of rotation.
a)

b)

c)

d)

e)

f)

3
a) On a coordinate grid, draw a pentagon with vertices at these points.
A $(-3,2)$
B $(0,2)$
C $(1,3)$
D $(1,4)$
$\mathrm{E}(-3,4)$
b) Change the coordinates of the points according to the instructions and draw the new shapes. Describe how the original pentagon's shape and size changes.
i) Keep the x coordinate the same and multiply the y coordinate by (-1).
ii) Subtract 4 from both coordinates.
iii) Multiply both coordinates by (-1).
iv) Multiply both coordinates by 2 .
v) Divide both coordinates by (-2).
c) List the similar shapes.
d) List the congruent shapes.

Draw the lines of symmetry and mark the centres of rotation.
a)

b)

c)

d)

e)

f)

g)

h)

Page 81

A boat sailed from one bank of the river to the opposite parallel bank, staying perpendicular to both banks during the crossing.

This drawing shows the positions of the boat seen from above at equal intervals of time.
The arrow shows the direction in which the river was flowing.
Complete the drawing.

Finish

Start
a) Rotate trapezium ABCD by 60° around the point O in a clockwise direction and show its route on the triangular grid.
b) Complete the statements.
$\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{AB} \quad a^{\prime}=$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=\quad b^{\prime}=$
$\mathrm{C}^{\prime} \mathrm{D}^{\prime}=\quad c^{\prime}=$
$\mathrm{D}^{\prime} \mathrm{A}^{\prime}=\quad d^{\prime}=$
$\angle \mathrm{B}^{\prime}=\quad \angle \mathrm{C}^{\prime}=$
$\mathrm{B}^{\prime} \mathrm{D}^{\prime}=\quad \mathrm{A}^{\prime} \mathrm{C}^{\prime}=$
$\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \quad \square \mathrm{ABCD}$
a) Draw these rectangles in your exercise book.
i) $\quad a=2 \mathrm{~cm}, b=1.5 \mathrm{~cm}$
ii) $\quad a=6 \mathrm{~cm}, b=4.5 \mathrm{~cm}$
iii) $\quad a=4 \mathrm{~cm}, b=3.5 \mathrm{~cm}$
iv) $a=3 \mathrm{~cm}, b=4 \mathrm{~cm}$
v) $a=1.5 \mathrm{~cm}, b=2 \mathrm{~cm}$
vi) $a=5 \mathrm{~cm}, b=2 \mathrm{~cm}$
b) List the similar rectangles.
c) List the congruent rectangles.

A sprinkler was moved 60 m E from its 1st position to its 2nd position, then 30 m SW from its 2 nd position to its 3 rd position.

a) On the sketch, draw the direct route between its 1st and 3rd positions.
b) Measure this distance on the sketch and calculate its real length in metres.

a) Draw the letter P on a sheet of paper. Colour it green.
b) Fold the sheet of paper along line t. Pierce the vertices of the shape, unfold the sheet then draw the mirror image of the shape on the other part of the sheet. Colour it red.
c) Complete the sentences.
i) The red shape is the \square
\square of the green shape.
ii) The red shape and the green shape are \square .
iii) The red and green shapes are in symmetrical positions to \square t.

Reflect each shape in the given mirror line or axis. Use different colours.

b)

c)

Reflect each shape in the given axis. Use a different colour for each reflection.

a) Draw an axis (mirror line) in your exercise book and label it t.
b) Place pairs of dried peas on the page so that they are mirror images of each other. Draw points to mark their positions and label the points. (e.g. A and A')
c) Do the same with pairs of matchsticks. Draw line segments to mark their positions.

1
Find points in the clearings which are an equal distance from:
a) trees A and B
b) paths c and d

c) paths e and f.

2
Draw the mirror image of each child's route.
a)

b)

c)

d)

3

4 Reflect the line segment in the given axis. Construct and label its mirror image.
a)

b)

c)

d)

e)

f)

g)
$g_{m} f_{\mathrm{G}}^{\mathrm{H}}$

What has been done to Shape 1 to form the other shapes? Describe each transformation in your exercise book. Colour the shape which is not similar.

a) Draw a sketch for each of these triangles, then construct them accurately in your exercise book. Use a ruler, a pair of compasses and a protractor.
i) $\quad \angle \mathrm{A}=30^{\circ}, b=3 \mathrm{~cm}, c=4 \mathrm{~cm}$
ii) $\angle \mathrm{A}=50^{\circ}, b=c=20 \mathrm{~mm}$
iii) $\angle \mathrm{C}=65^{\circ}, a=c=4 \mathrm{~cm}$
iv) $\angle \mathrm{A}$ is a right angle, $b=15 \mathrm{~mm}, c=20 \mathrm{~mm}$
v) $\quad a=2.5 \mathrm{~cm}, b=1.5 \mathrm{~cm}, \angle \mathrm{~A}=90^{\circ}$
vi) $\angle \mathrm{A}=100^{\circ}, b=30 \mathrm{~mm}, c=40 \mathrm{~mm}$
b) List the similar triangles. c) List the congruent triangles.

3
Reflect each shape in the given mirror line, t. Colour the mirror image.

Draw an axis (mirror line) in your exercise book and label it t.
Draw a shape on one side of the axis and label its vertices. Draw its mirror image and label it appropriately. Reflect this mirror image in another axis which is not parallel to t.

Complete the reflection of the clock in axis m, then reflect its mirror image in axis n.

Reflect triangle ABC in axis m, then reflect $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in axis n.
Label the vertices of the 2 nd mirror image appropriately.

m

3
Reflect quadrilateral ABCD in axis m, then reflect $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ in axis n.
Label the vertices of the 2 nd mirror image appropriately. (The 2 axes are perpendicular.)

Reflect triangle ABC in axis m, then reflect $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in axis n.
Label the vertices of the 2 nd mirror image appropriately.

Page 86

Construct the mirror image of each triangle. Colour the mirror image red and label its vertices appropriately.
a)

b)

c)

d)

2
a)

Write the steps needed to reflect point A in axis m.
b) Carry out the construction on this diagram.
A \times

a) Write the steps needed to reflect any straight line in any axis. Draw an axis m and a straight line e. Reflect line e in m.
b) Write down the steps needed to reflect any angle in any axis. Draw an axis m and an angle α. Reflect angle α in m.
c) Write down the steps needed to reflect any circle in any axis. Draw an axis m and a circle k. Reflect circle k in m.

Solve each problem by folding a thin sheet of paper.
a) Draw any line e on a sheet of paper. Draw two different points at different distances from the line e.

By folding the paper, find a point on e which is an equal distance from A and B.
b) Draw three different points: A, B and C , on a sheet of paper.

By folding the paper, find a point which is an equal distance from A, B and C .

1
Draw lines of symmetry on the shapes.

3

6
7

2
Construct the lines of symmetry.
a)

b)

c) \times B
$\stackrel{\times}{\text { A }}$
d)

3
a) Fold a rectangular sheet of paper along one of its diagonals and cut along the fold.
b) Use the two pieces formed to make different polygons by placing equal sides together. Measure the sides and angles of these polygons and note the values.
c) In your exercise book, draw a sketch of each of the polygons you form and mark on the sketch the size of the angles and the lengths of the sides.

Fill in the missing items.
a) This symmetrical triangle has \square equal sides and is called an isosceles triangle.
b) If a triangle has 2 equal sides, it is \square

c) $\mathrm{AC}=\square ; \quad \angle \mathrm{A} \square \angle \mathrm{B} ; \quad \angle \mathrm{ACD}=\angle \square$
d) The equal sides are called the \square of the triangle.
e) AB is the \square of the triangle.
f) The line of symmetry bisects the \square and is perpendicular to it.
g) $\mathrm{AB} \perp \square$; $\mathrm{AD} \square \mathrm{DB}$
h) CD is the \square of triangle ABC from its base.

If a triangle has $\mathbf{3}$ equal sides, it is called a regular or an equilateral triangle.
Complete the statements.
a) $\angle \mathrm{A}=\square=\square$;
$\mathrm{AB} \perp$ \square AD \square DB
b) Any equilateral triangle is an \square triangle.
c) An equilateral triangle has \square lines of symmetry.
d) DC is the \square of the equilateral triangle.

a) Measure the sides of this right-angled triangle.
$a \approx$ \square $\mathrm{cm}, \quad b \approx$ \square cm
$c \approx$ \square cm
b) Measure its angles.
$\angle \mathrm{A} \approx \square^{\circ}, \angle \mathrm{B} \approx \square^{\circ}$
$\angle \mathrm{C} \approx$ \qquad ced triangle.
c) What is the sum of its three angles? $\quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \approx$ \square
d) Prove that $\angle \mathrm{A}+\angle \mathrm{B}=90^{\circ}$ in your exercise book.
e) Reflect triangle ABC in the line AC .
i) What shape is formed from the triangle and its mirror image?
ii) What is the sum of the angles of the new shape?

2
a) Complete this sketch to show the construction of a triangle. (Step 1 is already given.)
b) In your exercise book, construct this isosceles triangle.

Base: $a=3.5 \mathrm{~cm} \quad$ Arms: $b=c=5 \mathrm{~cm}$

In your exercise book, draw a sketch to show your construction plan, then construct these isosceles triangles accurately. Label them appropriately.
a) $a=6 \mathrm{~cm}$
b) $a=4 \mathrm{~cm}$
$h=3 \mathrm{~cm}$
$\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
c) $\quad a=4.5 \mathrm{~cm}$
$b=3 \mathrm{~cm}$
a) Measure the angles of the isosceles triangles you drew in Questions 2 and 3. Write your results below these sketches.
$\underbrace{C}_{a=3.5 \mathrm{~cm}} b=5 \mathrm{~cm}$
$\angle \mathrm{A} \approx$

$\angle \mathrm{A} \approx$
$\angle \mathrm{B}=\angle \mathrm{C}=$
$\angle \mathrm{B}=\angle \mathrm{C} \approx \quad \angle \mathrm{B}=\angle \mathrm{C}=\quad \angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{C} \approx$
b) Calculate the area of the shaded triangle.

The pentagon ABCDE was reflected in axis m then its mirror image was reflected in axis n. Draw the two axes and label them. Label the two mirror images appropriately.

What single transformation could have been done instead of the two reflections?

Work in your exercise book.
a) Draw a point, A. Draw any axis, m. Reflect point A in m.

Label the mirror image appropriately.
b) Draw a line segment, BC. Draw any axis, n. Reflect BC in n. Label the mirror image appropriately.
c) Draw any polygon and label its vertices. Draw any axis, t. Reflect the polygon in t. Label the mirror image appropriately.
d) Draw any circle, k. Mark a point P on its circumference. Label its centre O . Draw any axis, s. Reflect circle k in s. Label the mirror image of point P .
e) Write down the steps needed to reflect any polygon in any axis.

Draw a sketch of each triangle first, then construct it accurately. Mark on your diagram all the important information. Write below it the type of triangle it is.
a) Triangle ABC: $a=7 \mathrm{~cm}, b=c=10 \mathrm{~cm}$
b) Triangle DEF: $\angle \mathrm{D}=\angle \mathrm{E}=\angle \mathrm{F}, \mathrm{DE}=7 \mathrm{~cm}$
c) Triangle GHI: $\angle \mathrm{G}=35^{\circ}, \mathrm{GH}=55 \mathrm{~mm}, \mathrm{HI}=33 \mathrm{~mm}$.

Fill in the missing words.
a) An equilateral triangle has angles of \square - and has three \square sides.
b) An isosceles triangle has at least \square equal \square
c) An equilateral triangle is also an \square triangle.
d) A triangle which has sides in the ratio of $3: 4: 5$ is a \square triangle.
e) A triangle with 3 different sides is called a \square triangle.
f) There is no triangle which has a \square angle.
g) The sum of the angles of any triangle is \square -

Reflect the triangles in the side indicated. Write the name of the polygon formed by the original shape and its mirror image.
a)

b)

d)

e)

f)

g)

h)

A

I
C
C
To the left of AC construct an isosceles triangle which has $\mathbf{2 ~ c m ~ a r m s . ~}$
To the right of AC construct another isosceles triangle which has $\mathbf{3} \mathbf{~ c m}$ arms.
We say that AC is the common base of the two triangles.

What kind of polygon have you formed?

Reflect:

a) point B in line AC
b) point B in line $A C$
c) the linear shape in line EF .
B_{x}

Join B and B ' to A and C .
Join B and B^{\prime} to A and C .

What is ABCB'?
What is ABCB'?
What is $\mathrm{AA}^{\prime} \mathrm{D}^{\prime} \mathrm{D}$?

Complete the sentences. Draw an example of each quadrilateral in your exercise book.
a) A quadrilateral is called a \square if its diagonals bisect each other.
b) A quadrilateral with equal angles is called a \square
c) A quadrilateral with equal sides is called a \square
d) A regular quadrilateral is called a \square
a) Construct this deltoid accurately using the data given in the sketch.

Sketch

b) Calculate the area of the deltoid. (Find right-angled triangles.)
c) Measure the angles of the deltoid and add them together.
\sum angles $=$ \qquad
d) Measure the sides of the deltoid and add their lengths together.

$$
P=\square
$$

2
a) Complete the drawing of a rhombus. Label its vertices.
b) Calculate the area of the rhombus.

c) Measure its angles and add them together.
d) Measure its sides and calculate its perimeter.

3
a) Construct a square which has sides 3.5 cm long.
b) Calculate its area.
c) Calculate its perimeter.
d) Calculate the sum of its angles.
e) Draw and measure its diagonals.
f) Measure the the angles formed by the diagonals.

4
a) Construct a rectangle which has sides 4 cm and 3 cm long.
b) Calculate its area.
c) Calculate its perimeter.
d) Calculate the sum of its angles.
e) Draw and measure its diagonals.
f) Measure the angles formed by its diagonals.
a) What is the name of this shape?
b) Measure its diagonals.
c) Measure its sides.
d) Calculate its perimeter.
e) Measure its angles and add them together.

f) Calculate its area.
a) Construct an equilateral triangle with 4 cm sides. Label its vertices.
b) Reflect it in the line BC. Label the mirror image of A with D . What kind of shape is ABDC?

c) Reflect the second triangle in line BD . Label the mirror image of C with E .
d) What shape do the three triangles form altogether?

Measure or calculate its angles and add them together.

2 Calculate the missing angles in the table if $\mathrm{AB}=\mathrm{AC}$ and the given angle is:

a)

α	β	γ	α^{*}	$\beta *$	γ^{*}	$\alpha+\beta+\gamma$	$\alpha^{*}+\beta^{*}+\gamma^{*}$
40°							
		65°					
					120°		

Each of the angles below is 60°. Construct:
a) a 45° angle on this diagram
b) a 120° angle on this diagram
c) a 90° angle on this diagram.

Describe the steps needed to find the centre of the circle.
A chord, AB , and its perpendicular bisector, line e, have been drawn.

Construct a trapezium which has these dimensions.
Base: $a=5.2 \mathrm{~cm}$,
Height: $h=3.4 \mathrm{~cm}$

$$
\angle \alpha=60^{\circ}
$$

Sketch

Divide the whole $\left(360^{\circ}\right)$ central angle of the circle into 3 equal parts.

Draw the radii and join up the $\mathbf{3}$ points where the radii meet the circumference.

What shape have you drawn?

2 Divide the whole $\left(360^{\circ}\right)$ central angle of the circle into 4 equal parts.

Draw the radii and join up the $\mathbf{4}$ points where the radii meet the circumference in order.

What shape have you drawn?

3 Divide the whole $\left(360^{\circ}\right)$ central angle of the circle into 5 equal parts.

Draw the radii and join up the $\mathbf{5}$ points where the radii meet the circumference in order.

What shape have you drawn?

4 Divide the whole $\left(360^{\circ}\right)$ central angle of the circle into 6 equal parts.

Draw the radii and join up the $\mathbf{6}$ points where the radii meet the circumference in order.

What shape have you drawn?

5
Divide the whole (360°) central angle of the circle into $\mathbf{8}$ equal parts.

Draw the radii and join up the $\mathbf{8}$ points where the radii meet the circumference in order.

What shape have you drawn?

List the numbers of the shapes which match the descriptions.

a) It has line symmetry.
b) It has rotational symmetry.
c) It is a regular shape.
d) It has an obtuse angle.
e) It has only acute angles.
f) It is a trapezium.
g) It is a deltoid.
h) It is a rhombus.
i) It is not a polygon.
a) Construct these polygons accurately in your exercise book. Label the vertices.
i) An equilateral triangle which has sides of length 4.5 cm .
ii) An isosceles triangle which has a base side 3 cm and base angles 35°.
iii) A right-angled triangle which has base length 7.5 cm and height 10 cm .
iv) A scalene triangle which has $43 \mathrm{~mm}, 37 \mathrm{~mm}$ and 25 mm sides.
v) A deltoid which has diagonals of length 6 cm and 9.5 cm .
vi) A right-angled trapezium which has a base of 4.5 cm , a height of 38 mm and one of its base angles is 30°.
b) Write true statements about each polygon using words or mathematical notation.
a) Find the centre of this circle.
b) Write down the steps you used to find it.
c) What length is the radius of the circle?
d) What length is the diameter of the circle?

1
List the numbers of the shapes which match the descriptions.

5

a) It has line symmetry.
b) It has rotational symmetry.
c) It has rotational symmetry of 60°.
d) It has rotational symmetry of 120°.
e) It has rotational symmetry of 72°.
f) It has rotational symmetry of 90°.
g) It has rotational symmetry of 180°.

Mark the centre of rotation. Write the smallest angle of rotation.
a)

b)

c)

d)

a) Reflect points A and B in point O .
b) Join up the points $\mathrm{A}, \mathrm{B}^{\prime}, \mathrm{A}^{\prime}, \mathrm{B}$ and A in order.

What shape have you formed?
$\underset{\times}{A}$
B ×
c) Join A to A^{\prime} and B to B^{\prime}. What do you notice?

Draw any lines of symmetry and mark the centres of rotation.
a)

b)

c)

d)

Form a regular polygon with congruent triangles so that the line segments from the centre of the polygon to its vertices divide the whole central angle into angles of 30°.
a) How many vertices does the polygon have?
b) What size are its angles ?
c) What is the sum of its angles?

These polygons have been formed from 4 congruent right-angled triangles.
a) Write the names of the shapes.
i)

ii)

iii)

b) Calculate the sum of the angles in each polygon in your exercise book.

2

a) Measure the angles of the small internal triangles and of the large triangles.
b) Prove that the sum of the angles in each triangle is 180°.
a) Mark the centres of rotation.

ii)

b) By how many degrees has each shape been rotated?
i)
ii)
iii) \qquad
c) Draw on the diagrams the paths taken by the vertices when they were rotated.

(Use compasses.)

5
Construct: a) a 90° angle
b) a 45° angle.
c) a 240° angle.

2
Work in your exercise book.
Draw two parallel lines, then draw a line which crosses both of them. Label the angles as shown in the sketch.
a) Measure the angles formed and write down the values.
b) List the angles which are equal.
c) Find other relationships among the angles.

Calculate the sizes of the unknown angles.

b)

c)

4
a) Construct these angles in your exercise book and write their names below them.
i) 75°
ii) 210°
iii) 135°
b) Draw an angle of 40°.

Calculate with angles. $\left(1^{\circ}=60^{\prime}\right)$
a) $22^{\circ} 20^{\prime}$
b) 180°
$38^{\circ} 30^{\prime}$
$-\quad 68^{\circ} 32^{\prime}$
c) $72^{\circ} 43^{\prime}$
$-28^{\circ} 51^{\prime}$
d) $16^{\circ} 42^{\prime} \times 5=$
$+75^{\circ} 75^{\prime}$
\qquad
e) $13^{\circ} 24 \div 6=$
f) $173^{\circ} 15^{\prime} \div 10=$

Solve these problems in your exercise book.

1
The temperature was $16^{\circ} \mathrm{C}$ at 07:00.
a) By 12:00 the temperature had risen by 60%. What was the temperature at $12: 00$?
b) By $18: 00$, the mid-day temperature had fallen by 60%. What was the temperature at 18:00?

On 20 November 2003, 1 EUR (Euro) was worth 0.7021 GBP (£).
a) Calculate the value of 1 GBP in Euros on that day.

b) i) If $1 \mathrm{GBP}=1.42 \mathrm{EUR}$, what is the Euro equivalent of 532 GBP ?
ii) What percentage of 1 Euro is 1 GBP?
c) i) If 1 EUR $=0.7 \mathrm{GBP}$, what is the GBP equivalent of 532 Euros?
ii) What percentage of 1 GBP is 1 Euro?

On 20 November 2003, 1 GBP was worth 1.6998 USD (\$).
a) If $1 \mathrm{GBP}=1.7$ USD, how many $£ s$ can you get for 1 USD?

b) i) If $1 \mathrm{GBP}=1.7 \mathrm{USD}$, what is the USD equivalent of 532 GBP ?
ii) What percentage of 1 USD is 1 GBP?
c) i) If 1 USD $=0.59 \mathrm{GBP}$, what is the GBP equivalent of 532 USD?
ii) What percentage of 1 GBP is 1 USD ?

On 20 November 2003, 1 GBP was worth 185.11 JPY (Japanese Yen).
a) If 1 GBP $=185 \mathrm{JPY}$, how many $£ \mathrm{~s}$ can you get for 1 Japanese Yen?
b) i) If $1 \mathrm{GBP}=185 \mathrm{JPY}$, what is the JPY equivalent of 532 GBP ?
ii) What percentage of 1 Japanese Yen is 1 GBP?
c) i) If $1 \mathrm{JPY}=0.0054 \mathrm{GBP}$, what is the GBP equivalent of 532 JPY ?
ii) How much more or less than 1% of $£ 1$ is 1 Japanese Yen?
a) The price of a bicycle is $£ 60+$ VAT. Calculate its gross price if the Value Added Tax (VAT) is 15% of the net price.
b) The gross price of a computer is $£ 450$, including VAT. Calculate the net price if the VAT is 12.5% of the net price.
c) How much is the VAT on a product which can be bought for $£ 37.50$ but its net price is $£ 30$?

Mark the centre of rotation. Write the smallest angle of rotation.
a)

b)

c)

d)

Draw these angles.
a) 25°
b) 85°
c) 118°
d) 190°
e) 345°.

3 Measure the marked angles.

\qquad
\qquad

$\cdots+$

Calculate the size of angle x. The diagrams are not drawn to scale.
a)

c)

a) The temperature rose from $-6^{\circ} \mathrm{C}$ to $12^{\circ} \mathrm{C}$.

By how many degrees did the temperature rise?
b) The price of a wrought iron garden gate is $£ 240$, excluding VAT at 17.5%.

What price will we actually have to pay for the gate?
c) Three angles in a quadrilateral are measured accurately by computer as $41^{\circ} 56^{\prime}, 63^{\circ} 45^{\prime}$ and $122^{\circ} 8^{\prime}$. What is the size of the 4th angle?
d) How many spokes are on a wheel if the angle between the spokes is 18° ?
e) Molly went on holiday to the USA and changed her money to US dollars.

The exchange rate was 1 GBP $=1.6$ USD.
Molly came back from her holiday with $60 \$$, which was 15% of the money she had taken. How many £s did Molly change to USD?

2
Convert the quantities.
a) $45.8 \mathrm{~kg}=\square \mathrm{g} ; 718 \mathrm{~g}=\square \mathrm{kg} ; 5.1 \mathrm{t}=\square \mathrm{kg}$
b) 3.4 litres $=\square \mathrm{cl}=\square \mathrm{ml} ; \quad 216 \mathrm{cl}=\square$ litres; $470 \mathrm{ml}=\square$ litres
c) $2.9 \mathrm{~km}=\square \mathrm{m} ; 53 \mathrm{~cm}=\square \mathrm{m} ; 4280 \mathrm{~mm}=\square \mathrm{m}$
d) $233 \mathrm{~min}=\square \mathrm{hr} ; \quad 10.4 \mathrm{hr}=\square \mathrm{min} ; \quad 45 \mathrm{sec}=\square \mathrm{min}$
a) If 1 EUR (Euro) $=7.4$ DK (Danish Kroner) and $£ 1=1.4$ EUR:
i) how many Danish Kroner is $£ 1$ worth
ii) how many $£ \mathrm{~s}$ is 1 DK worth?
b) Calculate 18% of 360 DK and give your answer in $£ \mathrm{~s}$.

On 1 January, Martin put $£ 3600$ into an account which had an interest rate of 4% per year.
a) Calculate the yearly interest for Martin's account.
b) If Martin did not touch his account, how much money would be in his account:
i) 1 year later
ii) 2 years later?
c) What percentage of his starting amount would be in his account:
i) 1 year later
ii) 2 years later?

5
Mr. Yamamoto is a very clever businessman. His software company has made a profit of 262 million JPY this year. The company's value is now 140% of what it was last year.
a) By what percentage has his company's value increased?
b) What was the value of the company at the end of last year?
(JPY means Japanese Yen)
c) What is the value of the company now?

Calculate the whole quantity if:
a) $\frac{3}{8}$ of it is 210 kg
b) 35% of it is $£ 1812.30$
c) $2 \frac{1}{2}$ of it is $11 \frac{2}{3} \mathrm{~m}^{2}$
d) 130% of it is 32.5 miles.

$$
1 \text { foot } \approx 30 \mathrm{~cm}
$$

a) Calculate the height in $\mathbf{c m}$ of:
i) a child who is 5 feet tall
ii) a boy who is 5.9 feet tall
iii) a basketball player who is 7.1 feet tall.
b) Calculate the height in feet of:
i) a man who is 186 cm tall
ii) a man who is 162 cm tall.

$$
1 \text { inch } \approx 25.4 \mathrm{~mm}, 1 \text { zoll } \approx 26.3 \mathrm{~mm}
$$

a) Calculate what percentage:
i) $\quad 1$ inch is of 1 zoll
ii) 1 zoll is of 1 inch.
b) Convert 52.6 cm into: i) zolls ii) inches

3

$$
1 \text { mile } \approx 1.6 \mathrm{~km}, 1 \text { Nautical mile } \approx 1.85 \mathrm{~km}
$$

a) A French sailor reported that his ship had sailed 620 km . How would an English sailor have reported sailing the same distance?
b) Michael Schumacher, the German racing driver, did a road test on his car and said that he had covered a distance of 410 km .

If David Coulthard, the Scottish racing driver, had done the same road test, what distance would he say that he had covered?

László, a Hungarian farmer, has a farm covering 120 hectares. Ian, a British farmer, has a farm covering 375 acres.
a) What is the ratio of:
i) Ian's land to László's land
ii) László's land to Ian's land?
b) By what percentage is Ian's land greater than László's land?

$$
1 \mathrm{~kg} \approx 2.2 \text { pounds (lb) }
$$

Sarah bought $1 \frac{1}{2} \mathrm{lb}$ of meat for $£ 12$ in a butcher's shop. Olga bought 500 g of the same kind of meat for $£ 7$ in the supermarket.
a) Who had the better bargain?
b) What would 1 kg of the meat cost in each shop?

```
1 foot }\approx30.5\textrm{cm},1\mathrm{ yard }\approx91.5\textrm{cm
```

The members of a school's athletics team were training for a competition and their coach noted how far they could run in a set time.
a) Leslie ran 610 yards 2 feet. Cora ran 90% of Leslie's distance in the same time. How many metres did Cora run?
b) Jane ran 502 m 88 cm . Adam ran 120% of Jane's distance in the same time. How many yards did Adam run?

2

$$
{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}: \frac{9}{5} \times x+32,{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}: \frac{5}{9} \times(x-32)
$$

a) "It's 32° here and I'm cold!" said Kate on the phone in London. "It's 32° here and I'm hot!" Lucia answered from Sao Paolo in Brazil.

Who is correct? Give a reason for your answer.
b) Convert to degrees Celsius:
i) $0^{\circ} \mathrm{F}$
ii) $50^{\circ} \mathrm{F}$
iii) $104^{\circ} \mathrm{F}$
c) Convert to degrees Fahrenheit:
i) $100^{\circ} \mathrm{C}$
ii) $30^{\circ} \mathrm{C}$
iii) $-10^{\circ} \mathrm{C}$
a) 4 h 16 min 37 sec $+5 \mathrm{~h} 57 \mathrm{~min} 43 \mathrm{sec}$
b) $17 \mathrm{~h} 31^{\prime} 18^{\prime \prime}$

- 6 h 50' $32^{\prime \prime}$
c) 168 h
- $19 \mathrm{~h} 26^{\prime} 41^{\prime \prime}$

4
Calculate the arrival time if a plane took off at:
a) 3.24 pm and the flight lasted 9 hours 44 minutes
b) $\quad 11.45 \mathrm{am}$ and the flight lasted 3 hours 16 minutes
c) 21:18 and the flight lasted 5 hours 33 minutes.

Calculate our journey time if we left at:
a) $9: 35 \mathrm{am}$ and arrived at 11.56 am
b) $\quad 9.35 \mathrm{am}$ and arrived at 13:25
c) $09: 35$ and arrived at 4.10 pm
d) 09:35 and arrived at 07:25 the next day.

When the time is 09:00 in Exeter in the UK, it is 10:00 in Kassel in Germany.
a) David left Exeter at 7.30 am and arrived in Kassel at 15:15.

How long did his journey take?
b) A month later, Werner left Kassel at 08:30 and arrived in Exeter at 14:15. How long did his journey take?
a)

c)
b)

Write the perimeter and area inside each rectangle.

a
d)

b

Measure the necessary data, then calculate the area and perimeter as required.
a)

a
c)

a) The landing strip at an airport is 4 km long and 200 m wide.

What is the area of the landing strip?
b) A park is square-shaped and its sides are 3.1 km long.
i) How much fencing is needed to enclose it?
ii) What is the area of the park?

The length of one side of a triangular park is 2.6 km and the opposite corner is 2.1 km from this side.

Calculate the area of the park.

Use a calculator to work out the missing values.
a) If $£ 1 \approx 1.43$ Euros,

1 Euro $\approx £$ \square
c) If $1 \mathrm{USD} \approx 0.62 \mathrm{GBP}$,
$1 \mathrm{GBP} \approx \square$ USD
b) If 1 Euro \approx 7.47 Danish Kroner,
$1 \mathrm{DK} \approx \square$ EUR
\square
d) If $£ 1 \approx 183.2 \mathrm{JPY}$, $1 \mathrm{JPY} \approx £ \square$

2 a) Jenny put $£ 375$ into a bank account and did not touch the account for a year. By the end of the year the balance in her account was $£ 397.50$.
What was the interest rate on her account?
b) If Jenny did not touch her account for another year, how much would she have in her account at the end of that year?

Convert:
a) i) 312 ft to metres
ii) 11 m to feet
$[1 \mathrm{ft} \approx 30 \mathrm{~cm}$]
b) i) 36.4 cm to inches
ii) 13 inches to mm
[1 inch $\approx 25.4 \mathrm{~mm}$]
c) i) 580 lb to kilograms
ii) 37 kg to pounds $\quad[1 \mathrm{~kg} \approx 2.2 \mathrm{lb}]$
d) i) $22^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
ii) $28^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
[see page 103, Q.2]

How long did these journeys take?
a) Departure time: 0835 hours
b) Departure time: 17:55
c) Departure time: 10.15 am
d) Departure time: 6.35 pm

Arrival time: 1410 hours
Arrival time: 03:22
Arrival time: 12.24 am
Arrival time: 18.52

Draw these rectangles to scale in your exercise book.
a) Its area is $16 \mathrm{~cm}^{2}$ and its perimeter is 16 cm .
b) $A=24 \mathrm{~cm}^{2}, P=28 \mathrm{~cm} \quad$ c) $A=72 \mathrm{~cm}^{2}, P=34 \mathrm{~cm}$
a) $A=54 \mathrm{~cm}^{2}$

$a=9 \mathrm{~cm}$
$b=$ \qquad
b) $A=42 \mathrm{~cm}^{2}$

$a=12 \mathrm{~cm}$
$h=$ \qquad
c) $h=3.8 \mathrm{~cm}$

d) $h=5.3 \mathrm{~cm}$
$a=4.4 \mathrm{~cm}$ $A=37.1 \mathrm{~cm}^{2}$

$A=$ \qquad $a=$ \qquad

1
Calculate the area of these squares.
a) $\quad a=27 \mathrm{~cm}$
b) $a=365 \mathrm{~mm}$
c) $a=2.3 \mathrm{~m}$
d) $e=15 \mathrm{~cm}$
e) $e=72 \mathrm{~mm}$

2 Fill in the missing numbers if $A=a^{2}$.

a	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A																

The area of a square is $1156 \mathrm{~cm}^{2}$. Follow these methods to find the length of its sides.
a) Between which two whole tens is the length of each side?

Now find a by trial and error.
b) First factorise 1156, then work out the value of a.

Fill in the missing numbers if $a=\sqrt{A}$ (or $a^{2}=A$)

A	1	4	9	16	25	36	49	64	81	100	121	144	169	196	225
a															

Work out (or approximate) the side of each square if its area is:
a) i) $25 \mathrm{~cm}^{2}$
ii) $250 \mathrm{~cm}^{2}$
iii) $2500 \mathrm{~cm}^{2}$
b) i) $64 \mathrm{~cm}^{2}$
ii) $\quad 6.4 \mathrm{~cm}^{2}$
iii) $0.64 \mathrm{~cm}^{2}$.

Work out the square roots. Use a calculator where necessary.
a) i) $\sqrt{100}=$
ii) $\sqrt{10000}=$
iii) $\sqrt{1000000}=$
b) i) $\sqrt{256}=$
ii) $\sqrt{2.56}=$
iii) $\sqrt{25600}=$
c) i) $\sqrt{0.25}=$
ii) $\sqrt{25}=$
iii) $\sqrt{2500}=$
d) i) $\sqrt{1.96}=$
ii) $\sqrt{196}=$
iii) $\sqrt{19.6} \approx$

These are 3 different boxes for storing unit cubes.

a) How many cubes will fit along the front edge of the bottom layer in each box?
b) How many: i) rows ii) cubes can be put in each bottom layer?
c) Fill in the table.

	Along an edge	In a layer	Total number of cubes
A			
B			
C			

a) How many faces, edges and vertices has each of these shapes:
i) cuboid
ii) square-based prism
iii) cube?
b) How many faces are perpendicular to each face of a cuboid?
c) How many edges are parallel with each edge of a cuboid?
d) How many edges meet at each vertex of a cuboid?

3
a) Calculate the volume of a cube which has 5 cm long edges.
b) What is the volume of a cube which has edge length e ?

4
a) Calculate the volume of a cuboid which has a base edge 3 cm long and a height of 8 cm . (It is a square-based prism.)
b) What is the volume of a square-based cuboid which has base edge a and height h ?
a) Calculate the volume of a cuboid which has edges $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm long.
b) What is the volume of a cuboid with edges a, b and c ?
a) The surface area of each face of an ice cube is $49 \mathrm{~cm}^{2}$. Calculate:
i) the volume of the ice cube
ii) its mass, if $1 \mathrm{~cm}^{3}$ of ice weighs 0.91 g .
b) The surface area of a square-based prism is $64 \mathrm{~cm}^{2}$ and its base edge is 2 cm . What is the volume of the prism?

1
Write the areas and volumes below the diagrams, as required.
a)

$$
A=
$$

b)

$A=$
c)

2.3 m
d)

e)

$A=$
f)

$A=$
$A=$
$V=$
$V=$
$V=$

2

A cuboid was cut into two equal pieces.
This is the net of one of the halves.
Calculate the surface area and the volume of this prism.

3
What is the volume of a cube if its edge is $1,2,3,4,5,6$ or 7 units?
Fill in the table to show the volumes for different edge lengths.

a (units)	1	2	3	4	5	6	7	8	9	10
V (unit cubes)										

a) An empty cubic box contains $8000 \mathrm{~cm}^{3}$ of air. How long is its edge?
b) i) How many metres long is the edge of a $1 \mathrm{~km}^{3}$ cube?
ii) What is the surface area of the cube?
c) i) How many centimetres long is the edge of a $1 \mathrm{~m}^{3}$ cube?
ii) What is the surface area of the cube?
d) How many mm long is the edge of a $729000 \mathrm{~cm}^{3}$ cube?

Use the table in Question 3 to help you.
a) Complete the table.

x	1	-1	4	0	2.5	-2	5
y	0.6						

b) Represent the pairs of values as dots in the coordinate grid.
Join up the points with a line.

a) Read the corresponding values from the graph and complete the table.

a	0	1	2	3		5
A	0					

b) What is the rule?
c) What could a and A represent?

Complete the table so that a is the edge of a cube and A is its surface area.

Write the rule in different ways.
$A=$
$a=$

The area of a rectangle is $5 \mathrm{~cm}^{2}$.
a) How long is side b if side a is:
i) 1 cm
ii) 0.5 cm
iii) $2 \frac{1}{2} \mathrm{~cm}$
iv) 5 cm
v) 3 cm ?
b) Show the data in a table in your exercise book.
c) Represent the pairs of values on the coordinate grid. Join up the dots.

Fill in the missing values if a is the edge of a cube and V is the volume of the cube.

a	0.1	0.9	1.1			$\frac{2}{3}$		10		
V				64	1		$\frac{27}{8}$		125	1000
$V=$	$a=$									
$V=$										

1
a) What is the area of a square if the length of a side is:
i) 5 cm
ii) 1.9 cm
iii) 23 mm
iv) 4.7 km
v) 0.1 m ?
b) What is the length of a side of a square if its area is:
i) $16 \mathrm{~cm}^{2}$
ii) $\quad 100 \mathrm{~m}^{2}$
iii) $169 \mathrm{~m}^{2}$
iv) $256 \mathrm{~m}^{2}$
v) $\quad 1225 \mathrm{~m}^{2}$?

2
a) A cube has edge length 13 cm .
i) What is its volume?
ii) What is its surface area?
b) The surface area of a cube is $486 \mathrm{~cm}^{2}$.
i) What is the length of an edge?
ii) What is its volume?
c) The volume of a square-based cuboid is $100 \mathrm{~cm}^{3}$ and its height is 4 cm .
i) What is the length of one of its base edges?
ii) What is its surface area?

3 Complete the table for different sizes of cubes.
($a=$ edge length, $V=$ volume, $A=$ surface area)

$a(\mathrm{~cm})$		0.2		6			3.7			11
$V\left(\mathrm{~cm}^{3}\right)$			125			0.001			1000	
$A\left(\mathrm{~cm}^{2}\right)$	6				864			96		

Work out the square roots. Use a calculator where necessary.
a) i) $\sqrt{81}=$
ii) $\sqrt{8100}=$
iii) $\sqrt{0.81}=$
b) i) $\sqrt{169}=$
ii) $\sqrt{1.69}=$
iii) $\sqrt{16900}=$
c) i) $\sqrt{1.44}=$
ii) $\sqrt{144}=$
iii) $\sqrt{1440000}=$
a) Read the data from the graph.

Write corresponding values for x and y in the table.

x	0						
y	0						

b) What is the rule (formula)?
c) What could x and y represent?

