Mathematics Enhancement Programme

TEACHING SUPPORT: Year 4

EXERCISES

The following exercises are taken from Year 4 Practice Books 4a and 4b. They illustrate more of the problem-solving questions rather than the routine ones. Do try these questions before looking at the solutions and suggested strategies.

- **1.** Write the numbers which have:
 - a) an even digit as their hundreds digit and 500 as their nearest ten.
 - b) an odd digit as their hundreds digit and 500 as their nearest ten.
 - c) the smallest even digit as their tens digit and 1010 as their nearest ten.

(p2, Q5)

- 2. How many 3-digit numbers can you make from these digits? 5 6 1
 - a) Complete the tree diagrams.

b) List the numbers.

 $(p5,\,Q2)$

3. I thought of a number, then added 900.

The result was a number less than 1000.

Write \checkmark if you think the statement is true and \mathbf{X} if you think it is false.

- a) The number I first thought of must be less than 100.
- b) The number I first thought of must be less than 99.
- c) The number I first thought of could be equal to 99.
- d) The number I first thought of cannot be more than 99.
- e) The number I first thought of could be equal to 10.
- f) The number I first thought of cannot be 100.

(p7, Q4)

4.	Esti	mate the product first, then do the multiplie	cation.		
	a)	E: E	7:	E:	
		7 3 × 6 1 4 6 × 3	2 4 6 × 3	3 4 6 × 3	
	b)	E: E: E	7:	E:	
		4 7 × 8 1 4 7 × 3	1 4 7 × 6	2 4 7 × 3	
					(p14, Q1)
5.	Writ	te the whole numbers up to 1000 which ha	eve 4 as the sum of	their digits.	
					(p15, Q1)
6.	Are	the statements true or false? Write T for the	rue and F for false	in each box.	
	a)	Every number which is a whole hundred	is divisible by 2.		
	b)	There is an even number which has 5 as	its units digit.		
	c)	Every number which is divisible by 5 is	a whole ten.		
	d)	217 is divisible by neither 5 nor 2.			
	e)	Every number which is a whole ten is div	visible by 2 and by	5.	
					(p29, Q1)
7.		te the whole numbers from to 50 in the correct set.	30 ≤ number ≤ 5 Multiple of 5		
			Multiple of 6		(p30, Q4)
8.	Writ	e in the boxes the numbers described.			
	a)	The smallest 4-digit: i) number	ii) oo	dd number	
	b)	The greatest 4-digit: i) number	ii) oo	dd number	
	c)	The greatest 4-digit number divisible by:	i) 5	ii) 10	
	d)	The greatest 4-digit number divisible by the same digit in its hundreds and thousa			(p33, O4)

- **9.** Estimate quickly, then calculate the sum.
 - a) 2653 + 1746

b) 1256 + 7902

	,	 	,	 	,	 	 ,	,	

c) 5343 + 2145

E:								
	 	 	 	 	4	 	 	

(p38, Q1)

10.

a) How many rectangles are in this diagram?

b) How many rectangles would be in 874 such diagrams?

- c) What is the **area** of the diagram? $A = \dots A$
- d) What is the **perimeter** of the diagram? $P = \dots P$

(p46, Q1)

11. a) In each diagram, mark

• angles **smaller** than a right angle in *blue* like this,

Η

- b) List the letters of the shapes for which each statement is true.
 - i) It is a square.
- iii) It is a quadrilateral.
- iv) It is a triangle.
- v) It has at least one right angle.
- vi) Every angle is a right angle.
- viii) All its angles are smaller than a right angle.
- ix) It has at least one angle larger than a right angle.
- x) All its angles are larger than a right angle.

(p49, Q2)

12. Complete these non-convex shapes so that they become **convex** shapes.

(p52, Q4)

13.

List the **similar** shapes.

Write the **area** inside each shape and the length of the **perimeter** below.

(p56, Q1)

14. Complete the fractions.

a)
$$\frac{1}{2} = \frac{\square}{4} = \frac{4}{\square} = \frac{\square}{6} = \frac{\square}{10} = \frac{10}{\square} = \frac{\square}{100} = \frac{\square}{\square}$$

b)
$$\frac{1}{4} = \frac{\square}{16} = \frac{2}{\square} = \frac{\square}{20} = \frac{8}{\square} = \frac{25}{\square} = \frac{\square}{\square} = \frac{\square}{\square}$$

c)
$$\frac{1}{3} = \frac{2}{\Box} = \frac{\Box}{12} = \frac{3}{\Box} = \frac{\Box}{15} = \frac{\Box}{24} = \frac{\Box}{30} = \frac{100}{\Box} = \frac{\Box}{\Box}$$

(p80, Q2)

- 15. a) $\frac{1}{5} + \frac{1}{5} + \frac{1}{5} =$ b) $\frac{3}{8} + \frac{2}{8} =$ c) $\frac{7}{12} \frac{2}{12} =$

- d) $\frac{11}{20} \frac{9}{20} =$ e) $\frac{7}{10} + \frac{3}{5} =$ f) $\frac{3}{4} \frac{3}{8} =$

(p83, Q4)

16. Compare the pairs of numbers and fill in the missing signs. (<, >, =) Use the diagrams to help you.

c)
$$0.04 \square 0.1 \frac{2}{10} \square \frac{18}{100} 0.27 \square 0.3$$

(p93, Q3)

1

17. Which quantity is greater? Fill in the missing signs.

a)
$$\frac{3}{10}$$
 m $\boxed{}$ 54 cm b) 0.9 kg $\boxed{}$ 90 g c) $\frac{1}{6}$ hour $\boxed{}$ 30 min

f)
$$4\frac{1}{2}$$
 weeks 29 days g) 84.3 cm 843 mm 8.43 m (p105, Q3)

18. Imagine these cubes built from unit cubes. Fill in the missing numbers.

Length of 1 edge ⊢	1	2	3	4	5	6
Area of cube						
Volume of cube						

(p109, Q1)

19. Follow the example. Complete the sentences. Use the number line to help you.

a)
$$8^{\circ}$$
C is greater than 3° C by 5° C.

$$8 - 3 = 5$$
, $5 + 3 = 8$

b)
$$3^{\circ}C$$
 is than $8^{\circ}C$ by $5^{\circ}C$.

$$3-8=$$
 , $+8=3$

$$8-0 = \boxed{} + 0 = 8$$

$$3 - (-2) = \boxed{ }$$
, $+ (-2) = 3$

$$-2-3 = \boxed{}, \boxed{} +3 = -2$$

f)
$$-2^{\circ}$$
C is than -5° C by 3° C. $-2 - (-5) =$ $+(-5) = -2$ (p134, Q4)

20. In an opaque bag there are 10 *black* and 30 *white* marbles.

What is the smallest number of marbles you must take out of the bag (with your eyes closed) to be **certain** of getting 2 marbles which are the same colour?

(p137, Q4)

21. Circle the nets which can make a cube. Colour their opposite faces in the same colour.

b)

(p138, Q5)

22. What is the smallest natural multiple of 2, 3, 4, 5 and 8?

(p140, Q2)

23. In an opaque bag, there are 5 black, 10 red and 5 white marbles.

What is the smallest number of marbles you must take out of the bag (with your eyes closed) to be **certain** of getting:

a) 3 marbles which are the same colour

b) a *red* marble?

(p140, Q3)

24. List in your exercise book all the numbers between 999 and 10 000 which have 4 as the sum of their digits. How many did you find?

(p140, Q4)

25. These shapes are **congruent**. What has been done to *Shape 1* to make *Shape 2*, *Shape 2* to make *Shape 3*, and so on? Write it in your exercise book.

(p141, Q2)

- **26.** Among 67 scientists at a conference,
 - 47 speak French,
 - 35 speak German,
 - 20 speak Spanish,
 - 12 speak French and Spanish,
 - 11 speak German and Spanish,
 - 5 speak all three languages.
 - a) Complete the *Venn* diagram.
 - b) How many scientists speak:

Spanish

20

67 scientists

(18)

(5)

(

47

(7)

French

(17)

c) How many scientists speak Spanish and German but not French?

German 35

d) How many scientists speak neither Spanish nor German nor French?

(p151, Q3)

		the		-																
	1	2	3	4	5	6	7	8	9	10	11			14		16	17	18	19	20
	21	22	23	24	25	26	27	28	29	30	31	32	33	34		36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50	51	52	53		55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
28.	The	e peri	mete	er of	a tria	angle	e is 1	0 cm	bers	the	leng	th of	each	ı side	e is	a wh	ole c	em.		(p161, Q2)
	Are	thes	se sta	iteme	ents 1	rue (or tal	lse?	Wri	te a	√ 1Î	true	and	a X	1f fa	ilse.				
	a) The triangle has only one side which is 1 cm long.																			
	b) The triangle could have only one side which is 2 cm long.																			
	c) The triangle has only one side which is 3 cm long.																			
	d)	Th	ne tri	angle	e has	only	one	side	e whi	ich is	s 5 cı	m loi	ng.							(p173, Q1)
																				(p1/3, Q1)