	R: Calculations C: Ratio and proportion. Direct proportion. Graphs E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 111 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{111}=3 \times 37 \quad$ Factors: 1, 3, 37, 111 - $\underline{286}=2 \times 11 \times 13$ Factors: 1, 2, 11, 13, 22, 26, 143, 286 - $\underline{461}$ is a prime number Factors: 1, 461 (as not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>461$) - $\underline{1111}=11 \times 101$ Factors: 1, 11, 101, 1111 8 min	Notes Individual work, monitored (or whole class activity) BB: 111, 286, 461, 1111 T decides whether Ps can use calculators. Reasoning, agreement, selfcorrection, praising e.g.
2	Ratio and proportion 1 a) Here are 8 blue marbles and 2 red marbles. i) What is the ratio of the number of blue marbles to the number of red marbles? Ps dictate what T should write on BB. Class agrees/disagrees. BB: blue : red $=8: 2$ (Read as 'the ratio of blue to red is equal to 8 to 2 '.) T : This ratio shows that the number of blue marbles is BB: $8 \div 2=\underline{4}$ times the number of red marbles. ii) What is the ratio of the number of red marbles to the number of blue marbles? Ps dictate what T should write on BB. Class agrees/disagrees. BB: red: blue $=2: 8$ (Read as 'the ratio of red to blue is equal to 2 to 8 '.) T : This ratio shows that the number of red marbles is $\mathrm{BB}: 2 \div 8=\frac{1}{4}$ of the number of blue marbles. iii) What equation could we write about the relationship between the blue and the red marbles? Ps dictate to T. $\mathrm{BB}: B=4 \times R \quad$ or $\quad R=\frac{1}{4} \times B \quad\left(=\frac{B}{4}\right)$ iv) What part of the marbles are blue? $\quad\left(\frac{8}{10}=\frac{4}{5}\right.$ are blue $)$ v) What part of the marbles are red? $\left(\frac{2}{10}=\frac{1}{5}\right.$ are red $)$ b) Let's draw diagrams to show these ratios. i) $3: 5$ ii) $4: 1$ Ps come to BB to draw and explain. Class agrees/disagrees. BB: e.g. i) or $3: 5$	Whole class activity T has real marbles to display or coloured discs stuck or drawn on BB. Involve many Ps. Discussion, reasoning, agreement, praising Ps could suggest a context for each ratio. ii) e.g. $4: 1$ or

		Lesson Plan 111
Activity 4	PbY6, page 111, Q. 1 Deal with one part at a time. T (P) reads out the question, Ps calculate mentally or in Ex. Bks. and show ratios on scrap paper or slates on command. Ps responding correctly explain reasoning to Ps who were wrong. Class checks that they are correct. Mistakes corrected. Solution: a) i) How many times 4 is 16 ? ii) Write their ratio. $\begin{aligned} & (16 \div 4=\underline{4} \text { times }) \\ & (16: 4=\underline{4: 1}) \end{aligned}$ b) i) How many times 16 is 4 ? $\left(4 \div 16=\frac{4}{16}=\frac{1}{4}\right.$ times $)$ ii) Write their ratio. $(4: 16=1: 4)$ c) i) How many times $\frac{1}{2}$ is $\frac{2}{3}$? $\quad\left(\frac{2}{3} \div \frac{1}{2}=\frac{2}{3} \times \frac{2}{1}=\frac{4}{3}\right.$ times $)$ ii) Write their ratio in whole numbers. $\left(\frac{2}{3}: \frac{1}{2}=\frac{4}{6}: \frac{3}{6}=\underline{4: 3}\right)$ d) i) How many times $\frac{2}{3}$ is $\frac{1}{2} ? \quad\left(\frac{1}{2} \div \frac{2}{3}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}\right.$ times $)$ ii) Write their ratio in whole numbers. $\left(\frac{1}{2}: \frac{2}{3}=\frac{3}{6}: \frac{4}{6}=\underline{3: 4}\right)$ e) i) What part of 8 is 5 ? ($\frac{5}{8}$) ii) What part of 5 is 8 ? ($\frac{8}{5}$)	Notes Whole class activity but individual calculation Responses shown in unison Reasoning, agreement, checking, self-correction, praising Check: $4 \times 4=16$ Check: $\stackrel{4}{6}_{16} \times \frac{1}{4_{1}}=4$ Check: $\frac{1}{2_{1}} \times \frac{2}{3}=\frac{2}{3}$ Check: ${ }^{\frac{1}{3}}{ }_{3} \times \frac{1}{3} \frac{3}{4}_{2}=\frac{1}{2}$ Check: $\frac{5}{8}$ of $8=\frac{5}{8_{1}} \times \stackrel{1}{8}=5$ Check: $\frac{8}{5}$ of $5=\frac{8}{5_{1}} \times \frac{1}{5}=8$
5	PbY6b, page 111 Q. 2 Set a time limit. Ps read problem themselves, do necessary calculations and write answer as a sentence in Ex.Bks. Review with whole class. T chooses Ps to read out each question, then Ps show answer on scrap paper or slates on command. Ps with correct answers explain reasoning at BB. Who agrees? Who worked it out another way? Mistakes discussed/corrected. Solution: e.g. The ratio of boys to girls in a school is 11:10. a) How many girls are in the school if there are 220 boys? B: $\mathrm{G}=11: 10=220: \underline{200} \quad$ (ratio multiplied by 20) Answer: There are 200 girls in the school. b) What percentage of the number of girls is the number of boys? $\frac{B}{G}=\frac{11}{10}=\frac{110}{100} \rightarrow 110 \%$ Answer: The number of boys is 110% of the number of girls. c) What part of the number of pupils in the school are the boys? $\mathrm{B}+\mathrm{G}=220+200=420 ; \quad \frac{220}{420}=\frac{22}{42}=\frac{11}{21}(\approx 0.52)$ Answer: Eleven twenty-firsts of the pupils are boys.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method of solution but give extra praise for the methods shown below. Feedback for T or $11 \div 10=1.1 \rightarrow \underline{110 \%}$ or $\mathrm{B}+\mathrm{G}=11+10=21$; $B=\frac{11}{21}$

		Lesson Plan 111
Activity 6	PbY6b, page 111 Q. 3 Read: Paul intends to plant 150 trees in his orchard. He has divided the orchard into two parts in the ratio 2:3. How many trees should he plant in: a) the smaller part of the orchard? b) the larger part of the orchard? What does the diagram have to do with the problem? (Rectangle represents whole orchard, i.e. 150 trees; shaded units form the smaller part, unshaded units the larger part) Set a time limit of 2 minutes. Ps write plans, do calculations and write answers as sentences in Ex. Bks. Review with whole class. Ps show answers on scrap paper or slates on command. Ps with correct answers explain reasoning at BB, referring to diagram. Who agrees? Who did it another way? Mistakes discussed and corrected. Solution: e.g. a) Plan: $150 \div(2+3)=150 \div 5=30 ; 2 \times 30=\underline{60}$ or $\quad \frac{2}{5}$ of $150=\frac{2}{5_{1}} \times 150=\underline{60}$ Answer: He should plant 60 trees in the smaller part. b) Plan: $3 \times 30=\underline{90}$ or $150-60=\underline{90}$ or $\quad \frac{3}{5}$ of $150=\frac{3}{5_{1}} \times 150=\underline{90}$ Answer: He should plant 90 trees in the larger part.	Notes Individual work, monitored, (helped) Grid drawn on BB: Whole orchard: 150 trees Remind Ps to check results. Responses shown in unison. Discussion, reasoning, agreement, checking, selfcorrection, praising Check: $60: 90=6: 9=2: 3$ and $60+90=150$
7	PbY6b, page 111 Q. 4 Read: From 1 kg of fresh apples you can get 150 g of dried apple. Why is there such a difference in mass? (Most of an apple is water and this water is lost through evaporation during the drying process.) Set a time limit or deal with one part at a time. Ps work in Ex. Bks. Review with whole class. Ps could show results on scrap paper or slates on command. Ps with correct answers explain to Ps who were wrong. Mistakes discussed and corrected. Solution: e.g. a) What part of the fresh apples is the dried apple? $\frac{150}{1000}=\frac{15}{100}=\frac{3}{20}=0.15$ Answer: The dried apple is 0.15 of the fresh apple. ii) What percentage of the fresh apples is the dried apple? $\frac{15}{100} \rightarrow 15 \%$ Answer: The dried apple is 15% of the fresh apple.	Individual work, monitored, (helped) Table drawn on BB or use enlarged copy master or OHP Responses shown in unison. Reasoning,agreement, selfcorrection, praising Accept fractions or decimals. T chooses Ps to say the answers in sentences.

		Lesson Plan 111
Activity 8	(Continued) b) How much milk produces 17 lb of butter? Plan: $3 \mathrm{lb} \rightarrow 25$ litres $\begin{aligned} 1 \mathrm{lb} \rightarrow & 25 \text { litres } \div 3\left(=8 \frac{1}{3} \text { litres }\right) \\ 17 \mathrm{lb} \rightarrow & 25 \text { litres } \div 3 \times 17 \\ & \left(=8 \frac{1}{3} \text { litres } \times 17=141 \frac{2}{3} \text { litres }\right) \end{aligned}$ or $\quad 25$ litres $\div 3 \times 17$ (= $141 \frac{2}{3}$ litres) $\begin{gathered} \text { or } \mathrm{M}: \mathrm{B}=3: 25=17: y \\ {\left[y=\frac{25}{3} \times 17=\frac{425}{3}=141 \frac{2}{3}\right)} \\ \text { or } \times \frac{17}{3}\left(\begin{array}{r} 25 \text { litres } \rightarrow 3 \mathrm{lb} \\ 25 \text { litres } \times \frac{17}{3} \leftarrow 17 \mathrm{lb} \\ = \end{array}+\frac{141 \frac{17}{3}}{3}\right. \text { litres } \end{gathered}$ Answer: 141 and 2 thirds litres of milk produces 17 lb of butter. What can you say about the quantities of milk and butter? (They are in direct proportion to one another, because if one quantity increases or decreases by a certain number of times, so does the other quantity.)	Notes $\begin{aligned} & 8 \frac{1}{3} \times 17=136+\frac{17}{3} \\ & =136+5 \frac{2}{3}=141 \frac{2}{3} \end{aligned}$ $\begin{array}{\|l\|l\|l} & 2 & 5 \\ \times & 1 & 7 \\ \hline 1 & 7 & 5 \\ +2 & 5 & 0 \\ \hline 4 & 2 & 5 \\ \hline 1 & & \\ \hline \end{array}$

	R: Calculations. Direct proportion C: Inverse proportion E: Graphs. Problems	$\begin{gathered} \text { Lesson Plan } \\ 112 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{112}=2 \times 2 \times 2 \times 2 \times 7=2^{4} \times 7$ Factors: 1, 2, 4, 7, 8, 14, 16, 28, 56, 112 - $\underline{287}=7 \times 41$ Factors: 1, 7, 41, 287 - $\underline{462}=2 \times 3 \times 7 \times 11$ - $\underline{1112}=2 \times 2 \times 2 \times 139=2^{3} \times 139$ Factors: 1, 2, 4, 8, 139, 278, 556, 1112 8 min	Notes Individual work, monitored (or whole class activity) BB: 112, 287, 462, 1112 T decides whether Ps can use calculators. Reasoning, agreement, selfcorrection, praising e.g.
2	Direct proportion Think about what happens when you turn on a tap and run water into a bucket. Do you think that the amount of water in the bucket is in direct proportion to the time it is running? Ask several Ps what they think. Ps will probably think that it is, because if we increase the time by 2 (3,4,) times, the amount of water in the bath will also increase by $2,(3,4)$ times - but one condition for this to be true is that the water runs from the tap at a constant rate. (Extra praise for Ps who think of this.) If no P mentions it, T brings it up (see opposite). a) Suppose that we turn on a tap and water trickles into a measuring jug at a constant rate of 0.5 cl every second. BB: 0.5 cl per second Let's complete this table to show how much water will be in the jug after different lengths of time. Ps come to BB or dictate to T , explaining reasoning. Class points out errors. What does the bottom row show? (The amount of water coming out of the tap every second - it is always the same.) BB: What is the rule for the table? Ps come to BB or dictate to T. Class checks that it is correct. Elicit different forms of the rule. $\text { Rule: } v=0.5 \times t, \quad t=v \div 0.5, \quad \frac{v}{t}=0.5(t \neq 0)$ b) Let's show the data in a table. Ps come to BB to plot points on pre-prepared axes. Class points out errors. Is it correct to join up the points? (Yes, as the water was running continuously.) What do you notice about the graph line? (It is a ray, starting at $(0,0)$ and slanting up to the right.) We can say that the time and the volume of water are in direct proportion.	Whole class activity (If possible, T demonstrates.) Discussion involving several Ps. Praising only If we shut down the tap to a trickle and then open it up to a gush, would the time and amount of water still be in direct proportion to one another? (No, as time would continue the same but the bucket would fill at different rates.) Drawn on BB or use enlarged copy master or OHP Agreement, praising Elicit that in the 1st column, dividing 0 by 0 makes no sense.

		Lesson Plan 112
Activity 3	Inverse porportion Draw (make) different rectangles which have an area of $12 \mathrm{~cm}^{2}$. Note the different lengths of the sides, a and b, in a table. e.g. \square $b=1 \mathrm{~cm}$ \square $b=2 \mathrm{~cm}$ $a=12 \mathrm{~cm}$ \square $b=1.5 \mathrm{~cm}$ $a=4 \mathrm{~cm}$ $a=8 \mathrm{~cm}$ Let's collect the data from the whole class. T draws table on BB and Ps dictate values for a and b. Class checks that $a \times b=12 \mathrm{~cm}^{2}$. BB: e.g. What do you notice about the pairs of values? Elicit/point out that: - If side a changes to twice (3 times, half) its size, then side b changes to half (1 third, twice, etc.) its size. - The changes in the two sides are reciprocals of each other. - The product of each pair of values is always 12. (12 is constant) T: We say that the lengths of two adjacent sides of rectangles which have equal areas are in inverse proportion to one another. (As one value increases by a certain number of times, the other value decreases by that number of times and vice versa.)	Notes Individual or paired work, drawing (or cutting out), monitored Tables drawn in Ex. Bks. At a good pace. Extra praise for non-integer sides (or T could hint that the sides need not be whole cm) At a good pace Agreement, praising What is the rule for the table? $\begin{aligned} & a=12 \div b, b=\frac{12}{a}, \\ & a \times b=12(\text { or } a b=12) \end{aligned}$ Whole class discussion Involve several Ps. Agreement, praising BB: inverse proportion
4	PbY6b, page 112 Q. 1 Read: The human voice travels through the air at 330 metres per second. a) Complete the table. b) Draw a graph to show the relationship between time and distance. c) Fill in the missing words. Deal with one part at a time under a time limit. Ps do necessary calculations in Ex Bks. Ask Ps to write the rule for the table. Review with whole class. Ps come to BB to fill in missing values, plot the points and complete the sentence. Class agrees/disagrees. Mistakes discussed and corrected. Solution: $330 \mathrm{~m}=0.33 \mathrm{~km}$ Rule: $T=D \div 0.33, D=0.33 \times T, \quad \frac{D}{T}=0.33$	Individual work, monitored, helped (or plotting the points done with the whole class) Drawn/written on BB or use enlarged copy master or OHP Differentiation by time limit and by extra task (Quicker Ps could be asked to add extra columns to table. e.g. 10 seconds $\rightarrow 3.3 \mathrm{~km}$ 15 seconds $\rightarrow 4.95 \mathrm{~km}$) Reasoning, agreement, selfcorrection, praising Class checks rule with values from table.

		Lesson Plan 112
Activity 4	(Continued) Q. 1 b) Distance (km) c) The graph is a straight line (or ray). Distance and time are in direct proportion. (Because as time increases by a certain number of times, the distance also increases by that number of times. 25 min	Notes Extra praise for Ps who realised that time and distance are in direct proportion, so the graph line should be straight, and as $D=0$ when $T=0$, we need only mark the $(20,6.6)$ point and join it to $(0,0)$, then it is easier to plot the other points. Ps whose graph line was not straight could use this method to correct it. Accept rough approximate positions of the points as long as Ps have drawn a straight line through them.
5	PbY6b, page 112 Q. 2 Read: Different vehicles travelled at different average speeds over a 40 km route. a) Complete the table to show the time taken at certain average speeds. b) Draw a graph in your exercise book to show the relationship between average speed (in km per hour) and time (in hours). c) Complete the sentence. Deal with one part at a time or set a time limit. Ps do necessary calculations in Ex Bks. Ask Ps to write the rule for the table. Review the table with whole class and mistakes corrected before Ps draw the graph. (If necessary, draw the graph and plot points with the whole class, with Ps working on BB and rest of Ps working in Ex. Bks.) Otherwise, set a time limit, then review. Ps come to BB to plot points, explaining reasoning. Class agrees/ disagrees. Mistakes discussed and corrected. Discuss whether Is it correct to join up the dots? (Yes, as time and speed are continuous.) Should we join them with a curved or a straight line? (Agree that a curved line fits the points better.) Ps show missing word on slates or scrap paper on command. Ps answering correctly explain reasoning. (The graph shows that as speed decreases by a certain number of times, time increases by that number of times.) Solution: a) Rule: $T=40 \div S, \quad S=40 \div T, \quad S \times T=40$ c) Speed and time are in inverse proportion.	Individual work, monitored, helped (or part b) done with the whole class) Drawn/written on BB or use enlarged copy master or OHP (Less able Ps could be given large copies of table and grid.) Differentiation by time limit Reasoning, agreement, selfcorrection, praising Class checks rules with values from table. Discussion about how to draw the graph line and what it shows. Involve several Ps. b)

		Lesson Plan 112
Activity 8	PbY6b, page 112, Q. 5 Read: Which of the formulae has elements which are in: i) direct ii) inverse proportion? First agree on actions to show what Ps think. (e.g. standing up for direct, remaining seated for inverse) Then T points to each formula in turn and Ps respond on command. Ps with different responses explain reasoning and class decides who is correct. What do you notice about these 3 formulae? What could they be about? Solution: i) Direct proportion: $A=8 \times b, b=\frac{A}{8}, 8=\frac{A}{b}$ They are all different forms of the same formula. (A could be the area of a rectangle which has one side 8 units long and b could be the length of the other side.) T: The numerator and denominator of fractions which are equal to 8 are always in direct proportion. Ps check this on BB: $8=\frac{8}{1}=\frac{16}{2}=\frac{24}{3}=\ldots$ ii) Indirect proportion: $100=e \times f, e=\frac{100}{f}, f=\frac{100}{e}$ Elicit that they are also different forms of the same formula, but note that e and f cannot be equal to zero, as it is makes no sense to divide by zero! (e and f could be the sides of a rectangle which has an area of 100 square units.) T : The two factors of equal products are always in inverse proportion. 45 min	Notes
8	PbY6b, page 112, Q. 5 Read: Which of the formulae has elements which are in: i) direct ii) inverse proportion? First agree on actions to show what Ps think. (e.g. standing up for direct, remaining seated for inverse) Then T points to each formula in turn and Ps respond on command. Ps with different responses explain reasoning and class decides who is correct. What do you notice about these 3 formulae? What could they be about? Solution: i) Direct proportion: $A=8 \times b, b=\frac{A}{8}, 8=\frac{A}{b}$ They are all different forms of the same formula. (A could be the area of a rectangle which has one side 8 units long and b could be the length of the other side.) T : The numerator and denominator of fractions which are equal to 8 are always in direct proportion. Ps check this on BB: $8=\frac{8}{1}=\frac{16}{2}=\frac{24}{3}=\ldots$ ii) $\underline{\text { Indirect proportion: }} 100=e \times f, e=\frac{100}{f}, f=\frac{100}{e}$ Elicit that they are also different forms of the same formula, but note that e and f cannot be equal to zero, as it is makes no sense to divide by zero! (e and f could be the sides of a rectangle which has an area of 100 square units.) T: The two factors of equal products are always in inverse proportion. 45 min	Whole class activity (or short individual trial first if Ps wish)
		Written (stuck) on BB or SB or OHT
		(or formulae could be written on pieces of card and stuck to BB and Ps put those with direct proportion on one side and indirect proportion on the other side of BB.)
		At a good pace
		In good humour
		Responses given in unison. Reasoning, agreement, praising
		After agreement, Ps write 'd' or 'I' below each formula in Pbs.
		Extra praise if a P notices this without hint from T.
		Ps check: e.g.
		$\begin{aligned} & 100=1 \times 100=2 \times 50 \\ & =4 \times 25=5 \times 20=\ldots \end{aligned}$

16	R: Calculation C: Ratio and proportion E: Word problems. Percentage	$\begin{gathered} \text { Lesson Plan } \\ 113 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{113}$ is a prime number Factors: 1, 113 (as not exactly divisible by $2,3,5,7$ and $11^{2}>113$) - $\underline{288}=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3=2^{5} \times 3^{2}$ Factors: 1, 2, 3, 4, 6, 8, 9, 12, 16 $288,144,96,72,48,36,32,24,18 \downarrow$ [To Ts: We can tell how many factors there are from the powers. $288 \text { has }(5+1) \times(2+1)=6 \times 3=\underline{18} \text { factors.] }$ - 463 is a prime number Factors: 1, 463 (as not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>463$) - $1113=3 \times 7 \times 53 \quad$ Factors: 1, 3, 7, 21, 53, 159, 371, 1113 [To Ts: 1113 has $(1+1) \times(1+1) \times(1+1)=2 \times 2 \times 2=\underline{8}$ factors]	Notes Individual work, monitored (or whole class activity) BB: 113, 288, 463, 1113 T decides whether Ps can use calculators. Reasoning, agreement, selfcorrection, praising e.g. [Note that: $\left.3=3^{1}, 7=7^{1}, 54=54^{1}\right]$
2	PbY6b, page 113 Q. 1 Read: In a mix of concrete, the ratio of gravel to sand to cement is $6: 2: 1$. What part of the concrete mix is gravel (sand, cement)? Ps dictate to T and T writes on BB. (See below.) Read: a) Draw a pie chart to show the components of the concrete. What is a pie chart? (A circle divided into appropriate-sized sectors to represent data.) Elicit from Ps the steps needed to draw one. T (P) works on BB under direction of class using BB ruler, compasses and protractor. Rest of Ps work in Ex. Bks. e.g. 1. Draw a circle with compasses, mark its centre and draw a radius. 2. Calculate the angles required. 3. Measure amd mark them using a protractor. (Place protractor so that point where its horizontal and vertical lines meet is on the centre point of the circle and its horizontal line is along the drawn radius.) 3. Draw the other two radii, then colour each segment in a different colour and label them appropriately. BB: Ratio of the components in concrete Gravel: $\frac{6}{9}=\frac{2}{3}\left(240^{\circ}\right)$ Pie Chart cement Sand: $\frac{2}{9}$ $\left(80^{\circ}\right)$ Cement: $\frac{1}{9}$	Individual work but class kept together on the steps. Agreement, praising (see below) Discussion, agreement, praising Involve several Ps. T reminds Ps if necessary. Elicit how to ascertain the size of the angles from the parts: e.g. BB: $G+S+C: 360^{\circ}$ G: $\frac{2}{3}$ of 360° $\begin{aligned} & =360^{\circ} \div 3 \times 2 \\ & =120^{\circ} \times 2=240^{\circ} \end{aligned}$ S: $\frac{2}{9}$ of 360° $\begin{aligned} & =360^{\circ} \div 9 \times 2 \\ & =40^{\circ} \times 2=80^{\circ} \end{aligned}$ C: $\frac{1}{9}$ of $360^{\circ}=360^{\circ} \div 9$ $=\underline{40^{\circ}}$

		Lesson Plan 113
Activity 4	PbY6b, page 113 Q. 3 Read: Dianne measured the table with her hand and its length was 6 handspans. Then she measured the length of the table in metres and it was $\frac{6}{5}$ m. a) What is the length of Dianne's handspan in metres? b) Write the length of her handspan in centimetres and millimetres. Set a time limit of 2 minutes. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps with correct answers explain reasoning at BB. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) Dianne's handspan: $\frac{6}{5} \mathrm{~m} \div 6=\frac{1}{5} \mathrm{~m} \quad(=0.2 \mathrm{~m})$ b) $\frac{1}{5} \mathrm{~m}=20 \mathrm{~cm}=200 \mathrm{~mm}$ Compare Dianne's handspand with the handspan in Question 2 and with Ps' own handspans. (Less than the handspan in Q. 2 but more than most pupils' handspans, so Dianne is probably an adult.) Discuss the merits of using standard units (they never change and are the same for everyone) and non-standard units (useful for estimating when rulers, etc. are not available).	Notes Individual work, monitored, (helped) Responses shown in unison. Reasoning, agreement, selfcorrection, praising Ps could write their own handspans in inches, cm and m in back of $E x$. Bks. Ps could say whether they prefer using Imperial or metric units and why. (Metric units are easier to calculate.)
5	PbY6b, page 113 Q. 4 Read: From 1 kg of fresh ham we can get about 625 g of smoked ham. Why is there less ham when it is smoked? (The smoking process dries out the ham, so water is lost in evaporation.) Who likes ham? Who likes smoked ham better than non-smoked? Set a time limit. Ps read questions themselves and solve them in Ex. Bks. under a time limit. Review with whole class. Ps could show results on scrap paper or slates on command. Ps responding correctly explain reasoning at BB . Who did the same? Who did it a different way? etc. Mistakes discussed and corrected. T chooses Ps to say the answers as sentences. Solution: a) What percentage of the mass of the fresh ham is lost by smoking? Amount lost: $1000 \mathrm{~g}-625 \mathrm{~g}=375 \mathrm{~g}$; Part lost: $\frac{375}{1000}=\frac{37.5}{100} \rightarrow \underline{37.5 \%}$ Answer: 37.5% of the mass of fresh ham is lost by smoking.	Individual work, monitored, helped Ps may use calculators. Differentiation by time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method of solution with correct reasoning. Feedback for T

16		Lesson Plan 113
Activity 5	(Continued) b) How much smoked ham can we get from 6 kg of fresh ham? 1 kg of fresh ham $\rightarrow 625 \mathrm{~g}$ of smoked ham 6 kg of fresh ham $\rightarrow 625 \mathrm{~g} \times 6=3750 \mathrm{~g}$ $=\underline{3.75 \mathrm{~kg} \text { of smoked ham }}$ Answer: We can get 3.75 kg of smoked ham from 6 kg of fresh ham. c) How much fresh ham is needed to produce 6 kg of smoked ham? 0.625 kg of smoked ham $\rightarrow 1 \mathrm{~kg}$ of fresh ham 1 kg of smoked ham $\rightarrow 1 \mathrm{~kg} \div 0.625=1000 \mathrm{~kg} \div 625$ $=1.6 \mathrm{~kg}(\text { fresh ham })$ 6 kg of smoked ham $\rightarrow 1.6 \mathrm{~kg} \times 6=\underline{9.6 \mathrm{~kg}}$ of fresh ham Answer: We need 9.6 kg of fresh ham to produce 6 kg of smoked ham.	Notes c) $\begin{aligned} & \text { or } 6 \mathrm{~kg} \div 0.625 \\ & =6000 \mathrm{~kg} \div 625=\underline{9.6 \mathrm{~kg}} \end{aligned}$ (To find the whole when we know a part, divide the given value by the part.) or $62.5 \% \rightarrow 6 \mathrm{~kg}$ $\begin{aligned} 1 \% \rightarrow & 6 \mathrm{~kg} \div 62.5 \\ & =0.096 \mathrm{~kg} \\ 100 \% \rightarrow & 0.096 \mathrm{~kg} \times 100 \\ & =\underline{9.6 \mathrm{~kg}} \end{aligned}$
6	PbY6b, page 113 Q. 5 Read: The areas of two rectangular gardens are equal. The first garden is 64 m long and 30 m wide. The length of the second garden is 120% of the length of the first garden. a) How wide is the second garden? b) What part of the width of the first garden is the width of the second grden? Set a time limit or deal with one at a time. Review with the whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly come to BB or dictate to T , explaining reasoning. Who did the same? Who worked it out in a different way? etc. Mistakes discussed and corrected. T chooses Ps to give the answers in sentences. Solution: a) Length of 2nd garden: 120% of $64 \mathrm{~m}=64 \mathrm{~m} \times 1.2=76.8 \mathrm{~m}$ Area of each garden: $64 \mathrm{~m} \times 30 \mathrm{~m}=1920 \mathrm{~m}^{2}$ Width of 2nd garden: $1920 \mathrm{~m}^{2} \div 76.8 \mathrm{~m}=19200 \mathrm{~m} \div 768$ $=\underline{25 \mathrm{~m}}$ Answer: The second garden is 25 m wide. b) Part of width of 1st garden: $\frac{25}{30}=\frac{5}{6}$ Answer: The width of the 2 nd garden is 5 sixths of the width of the first garden. Elicit/point out that the length and width of different rectangles which have equal areas are in inverse proportion to one another. (As one increases by a certain number of times, the other decreases by that same number of times, and vice versa.)	Individual work, monitored, helped (Revert to whole class activity if majority of Ps are struggling, with Ps suggesting what to do under T's guidance.) Calculators are not really needed. Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising If no P does so, T could show a solution using inverse proportion and ask Ps if it is correct. BB: $a=64 \mathrm{~m}, \quad b=30 \mathrm{~m}$ $\begin{aligned} & a^{\prime}=\frac{6}{5} \times 64 \mathrm{~m} \\ & b^{\prime}=\frac{5}{6} \times 30 \mathrm{~m}=\underline{25 \mathrm{~m}} \end{aligned}$ (Use reciprocal value, as both areas are equal.) T checks: $a \times \frac{6}{5} \times b \times \frac{5}{6}=a \times b$ Dividing both sides by $a \times b$: $\frac{1}{5}_{1}^{1} \times \frac{5}{6}^{1}=1$

		Lesson Plan 113
Activity 7	PbY6b, page 113, Q. 6 Read: Write different plans to answer each question. Deal with one part at a time. Ps write plans in Ex. Bks, coming to BB or dictating to T when they think of a new one. Class agrees/disagrees. Ps choose one to work out the answer (using calculators) and dictate to T. Solution: a) What is 32% of $£ 524.50$? Plans: e.g. $£ 524.50 \times 0.32(=\underline{£ 167.84})$ or $£ 524.50 \times \frac{32}{100}\left(=£ 524.50 \times \frac{8}{25}\right)$ or $£ 524.59 \div 100 \times 32$ b) What is 106% of $£ 524.50$? Plans: e.g. $£ 524.50 \times 1.06(=\underline{£ 555.97})$ or $£ 524.50 \times \frac{106}{100}\left(=£ 524.50 \times \frac{53}{50}\right)$ or $£ 524.59 \div 100 \times 106$ c) What is p\% of $£ 524.50$? Plans: e.g. $\quad £ 524.50 \times \frac{p}{100}$ or $£ 524.59 \div 100 \times p=£ 5.2459 \times p$ 40 min	Notes Whole class activity At a good pace Involve many Ps. Reasoning, agreement, checking, praising If Ps miss one, T shows it and asks if it is correct. or $\begin{aligned} 100 \% & \rightarrow £ 524.50 \\ 1 \% & \rightarrow £ 524.50 \div 100 \\ 32 \% & \rightarrow £ 524.50 \div 100 \times 32 \end{aligned}$ or $100 \% \rightarrow £ 524.50$ $1 \% \rightarrow £ 524.50 \div 100$ $106 \% \rightarrow £ 524.50 \div 100 \times 106$ or $£ 524.50+£ 524.50 \times 0.06$ Extra praise for Ps who think of these without help from T.
8	PbY6b, page 113, Q. 7 Read: Write different plans to answer each question. Deal with one part at a time. Ps come to BB or dictate to T. Class agrees/ disagrees. Highlight the preferred plans (see below) and Ps use one of them to work out the answer. Solution: a) 25% of which length is 72.5 cm ? Plans: e.g. $72.5 \mathrm{~cm} \div 0.25(=7250 \mathrm{~cm} \div 25=\underline{290 \mathrm{~cm})}$ or $\quad 72.5 \mathrm{~cm} \div \frac{25}{100}\left(=72.5 \mathrm{~cm} \div \frac{1}{4}=72.5 \mathrm{~cm} \times 4\right)$ or $\quad 72.5 \mathrm{~cm} \div 25 \times 100 \quad$ or $72.5 \mathrm{~cm} \times \frac{100}{25}$ b) 125% of which length is 72.5 cm ? Plans: e.g. $72.5 \mathrm{~cm} \div 1.25(=7250 \mathrm{~cm} \div 125=\underline{58 \mathrm{~cm})}$ $\begin{aligned} & \text { or } \quad 72.5 \mathrm{~cm} \div \frac{125}{100}\left(=72.5 \mathrm{~cm} \div \frac{5}{4}=72.5 \mathrm{~cm} \times \frac{4}{5}\right) \\ & \text { or } \quad 72.5 \mathrm{~cm} \div 125 \times 100 \quad \text { or } 72.5 \mathrm{~cm} \times \frac{100}{125} \end{aligned}$ or c) What is the whole length if p\% of it is 72.5 cm ? Plans: e.g. $72.5 \mathrm{~cm} \div \frac{p}{100}$ or $72.5 \mathrm{~cm} \div p \times 100$	Whole class activity At a good pace Involve many Ps. Reasoning, agreement, checking, praising If Ps miss one, T shows it and asks if it is correct. or $\begin{aligned} 25 \% & \rightarrow 72.5 \mathrm{~cm} \\ 1 \% & \rightarrow 72.5 \mathrm{~cm} \div 25 \\ 100 \% & \rightarrow 72.5 \mathrm{~cm} \div 25 \times 100 \end{aligned}$ or $\begin{aligned} 125 \% & \rightarrow 72.5 \mathrm{~cm} \\ 1 \% & \rightarrow 72.5 \mathrm{~cm} \div 125 \\ 100 \% & \rightarrow 72.5 \mathrm{~cm} \div 125 \times 100 \end{aligned}$ or $\begin{aligned} & \mathrm{p} \% \rightarrow 72.5 \mathrm{~cm} \\ & 1 \% \rightarrow 72.5 \mathrm{~cm} \div p \\ & 100 \% \rightarrow 72.5 \mathrm{~cm} \div p \times 100 \end{aligned}$

16	R: Ratio, proportion C: Percentages E: Wrord problems	$\begin{gathered} \text { Lesson Plan } \\ 114 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $114=2 \times 3 \times 19 \quad$ Factors: 1, 2, 3, 6, 19, 38, 57, 114 - $\underline{289}=17 \times 17=17^{2} \quad$ Factors: 1, 17, 289 (square number) - $\underline{464}=2 \times 2 \times 2 \times 2 \times 29=2^{4} \times 29$ Factors: $1,2,4,8,16,29,58,116,232,464-\begin{array}{l}\text { No. of factors: } \\ (4+1) \times(1+1) \\ \text { - } 1114=2 \times 557 \quad \text { Factors: } 1,2,557,1114\end{array}=5 \times 2=\underline{10}$ (557 is a prime number, as not exactly divisible by $2,3,5,7,11$, $13,17,19,23$, and $27^{2}>557$)	Notes Individual work, monitored (or whole class activity) BB: 114, 289, 464, 1114 Ps can use calculators. Reasoning, agreement, selfcorrection, praising
2	Percentages 1 a) If the whole amount is 200 kg , what is: $1 \%(50 \%, 10 \%, 75 \%, 20 \%, 150 \%, 1$ quarter, 2 fifths, 7 quarters, etc.)? P: e.g. 1% of $200 \mathrm{~kg}=1$ hundredth of $200 \mathrm{~kg}=2 \mathrm{~kg}$, etc. b) What is the whole amount if: 10% is $21 \mathrm{~m}^{2}$ (40% is 8 litres, 75% is $60 \mathrm{~kg}, 200 \%$ is 40 minutes, etc.)? P: e.g. ' 10% means 1 tenth, so the whole amount is $21 \mathrm{~m}^{2} \times 10$, which equals $210 \mathrm{~m}^{2}$. c) What percentage of 600 m is: $12 \mathrm{~m}(60 \mathrm{~m}, 30 \mathrm{~m}, 120 \mathrm{~m}, 1200 \mathrm{~m}$, etc.)? P: e.g. 1% of 600 m is 6 m , so 12 m is 2% of 600 m , or 12 m is $\frac{12}{600}=\frac{2}{100}$ which is 2% of 600 m Ps can suggest some percentages and quantities too if there is time. 14 min	Whole class activity T chooses Ps at random. Accept any valid reasoning. Class points out errors. Ps may explain orally or write calculation on slates first or on BB or draw a diagram if necessary. e.g. 40% is 8 litres 8 litres whole quantity: 8 litres $\div 4 \times 10=\underline{20}$ (litres) or 10% is 2 litres, so 100% is 20 litres. Reasoning, agreement, praising
3	Percentages 2 Let's review how to calculate a percentage value of a whole amount. a) How can we work out 30% of 410 kg ? Ps come to BB or dictate what T should write. Who agrees? Who would do it another way? Accept any valid method but highlight: BB: $410 \mathrm{~kg} \div 100 \times 30=4.1 \mathrm{~kg} \times 30=41 \mathrm{~kg} \times 3=\underline{123 \mathrm{~kg}}$ or \square $410 \mathrm{~kg} \times 0.3$ $=\underline{123 \mathrm{~kg}}$ We could show both methods in a diagram. T draws framework on BB (or on OHT) and Ps say what should be where.	Whole class activity Discussion, reasoning, agreement, praising Other possibilities: $\begin{aligned} & 100 \% \rightarrow 410 \mathrm{~kg} \\ & 10 \% \rightarrow 41 \mathrm{~kg} \\ & 30 \% \rightarrow \underline{123 \mathrm{~kg}} \\ & \text { or } 410 \mathrm{~kg} \times \frac{30}{100} \\ &=41 \phi \mathrm{~kg} \times \frac{3}{10}=\underline{123 \mathrm{~kg}} \end{aligned}$

		Lesson Plan 114
Activity 4	PbY6b, page 114 Q. 1 Let's see how many of these you can do in 3 minutes. Start . . . now! Stop! Review with whole class. T chooses a P to read each question and Ps show answers on scrap paper or slates on command. Ps with correct answers explain reasoning on BB. Class agrees/disagrees. Mistakes discussed and corrected Solution: a) What part is: i) 350 of 400 $\left[\frac{350}{400}=\frac{35}{40}=\frac{7}{8}=\underline{0.875}\right]$ ii) 350 of $250 ? \quad\left[\frac{350}{250}=\frac{35}{25}=\frac{7}{5}=1 \frac{2}{5}=\underline{1.4}\right]$ b) What is the ratio between: i) 350 and 400 $[350: 400=35: 40=\underline{7: 8]}$ ii) 350 and 250? $[350: 250=35: 25=7: 5]$ c) What percentage is: i) 350 of 400 $\begin{aligned} {\left[\frac{350}{400}=\right.} & \frac{87.5}{100} \rightarrow 87.5 \% \\ \text { or } 400 & \rightarrow 100 \% \\ 4 & \rightarrow 1 \% \\ 350 & \rightarrow 350 \div 4=\underline{87.5}(\%) \end{aligned}$ ii) 350 of $250 ? \quad\left[\frac{350}{250}=\frac{35}{25}=\frac{140}{100} \rightarrow 140 \%\right]$	Notes Individual work, monitored (helped) Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method of calculation. Elicit the decimal forms too. or $0.875 \rightarrow 87.5 \%$ or $(350 \div 400) \times 100$ or $1.4 \rightarrow 140 \%$ or $(350 \div 250) \times 100$
5	PbY6b, page 114 Q. 2 Read: The ratio of the population of 3 cities (A, B and C) is $5: 7: 8$. What part of the population of the 3 cities is the population of $\mathrm{A}(\mathrm{B}, \mathrm{C}) ? \quad\left(\mathrm{~A}: \frac{5}{20}=\frac{1}{4} ; \mathrm{B}: \frac{7}{20} ; \mathrm{C}: \frac{8}{20}=\frac{4}{5}\right.$) Set a time limit (or deal with one part at a time). Ps read questions themselves and solve them. (Part a) in Pbs; b), c) and d) in Ex. Bks.) Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Who did the same? Who did it another way? etc. Deal with all methods used. Mistakes discussed and corrected. T chooses Ps to say each answer in a sentence. Solution: a) Colour this strip in different colours to show the ratio. BB:	Individual work, monitored, (helped) Strip drawn on BB or SB or OHT Differentiation by time limit Responses shown in unison. Discussion, reasoning, agreement, self-correcting, praising T could ask Ps to find out the population of their own city, town or village

		Lesson Plan 114
Activity 5	(Continued) b) How many people live in each city if the population of B is 80000 more than the population of A ? e.g. $\mathrm{B}-\mathrm{A}: \frac{7}{20}-\frac{5}{20}=\frac{2}{20} \rightarrow 80000$, so $\frac{1}{20} \rightarrow 40000$ A: $\frac{5}{20} \rightarrow 40000 \times 5=\underline{200000}$ B: $\frac{7}{20} \rightarrow 40000 \times 7=\underline{280000}$ C: $\frac{8}{20} \rightarrow 40000 \times 8=\underline{320000}$ Answer: City A has 200000 people, City B has 280000 people and City C has 320000 people. c) How many people live in the three cities altogether? e.g. $\mathrm{A}+\mathrm{B}+\mathrm{C}=200000+280000+320000=\underline{800000}$ or $\mathrm{A}+\mathrm{B}+\mathrm{C}=\frac{20}{20} \rightarrow 40000 \times 20=\underline{800000}$ Answer: There were 800000 people living in the three cities. d) What is the ratio of the population in each city to the total in all three cities? $\begin{aligned} & \mathrm{A}: T=5: 20=1: 4=\frac{1}{4}=0.25 \rightarrow 25 \% \\ & \mathrm{~B}: T=7: 20=\frac{7}{20}=\frac{35}{100}=0.35 \rightarrow 35 \% \\ & \mathrm{C}: T=8: 20=2: 5=\frac{2}{5}=0.4 \rightarrow 40 \% \end{aligned}$	Notes Accept any valid method of calculation with correct reasoning. Extra praise for this. Accept the ratios in any correct form but in the review make sure that all forms are dealt with. Check: $25 \%+35 \%+40 \%=100 \%$
6	PbY6b, page 114 Q. 3 Read: In a garder, 30% of the area is used to grow flowers, 20% of the area is used to grow vegetables and the remaining area is used to grow fruit. a) Calculate the area of the garden if the vegetable plot is $220 \mathrm{~m}^{2}$. b) Calculate the area used to grow: i) flowers ii) fruit. c) What is the ratio of the three different parts of the garden? Set a time limit or deal with one part at a time. Review with whole class. Ps come to BB to write solutions and explain reasoning. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: e.g. a) $20 \% \rightarrow 220 \mathrm{~m}^{2} ; 100 \% \rightarrow 220 \mathrm{~m}^{2} \times 5=\underline{1100 \mathrm{~m}^{2}}$ or $A=220 \mathrm{~m}^{2} \div 20 \times 100=11 \mathrm{~m}^{2} \times 100=\underline{1100 \mathrm{~m}^{2}}$ Answer: The area of the garden is 1100 square metres.	Individual work, monitored, helped Briefly discuss gardens. Who has a garden? What kind of flowers (fruit, vegetables) do you grow? What takes up most of your garden? What do you like best about it? Where is your favourite spot? etc. Reasoning, agreement, selfcorrection, praising Accept any valid method with correct reasoning. Feedback for T

16		$\begin{gathered} \text { Lesson Plan } \\ 115 \end{gathered}$
Activity	Factorising 115, 290, 465 and 1115. Revision, activities, consolidation PbY6b, page 115 Solutions: Q. 1 a) $\begin{aligned} 0.4: 0.12: 3.3: 4.18 & =40: 12: 330: 418 \\ & =\underline{20: 6: 165: 209} \end{aligned}$ b) $\frac{3}{5}: \frac{2}{3}: \frac{1}{6}: \frac{11}{15}=\frac{18}{30}: \frac{20}{30}: \frac{5}{30}: \frac{22}{30}=\underline{18: 20: 5: 22}$ c) $12 \frac{1}{2} \%: 42 \%: 64.5 \%: 11 \%=\underline{25: 84: 129: 22}$ Q. 2 a) B: $\frac{6}{24}=\frac{1}{4} ; \quad \frac{1}{4}$ of $36 \mathrm{lb}=\underline{9 \mathrm{lb}}$ G: $\frac{7}{24} \times \stackrel{3}{36} \mathrm{lb}=\frac{21}{2} \mathrm{lb}=\underline{10.5 \mathrm{lb}}$ $\mathrm{L}: \frac{5}{24}{ }_{2} \times 36 \mathrm{3} \mathrm{lb}=\frac{15}{2} \mathrm{lb}=7.5 \mathrm{lb}$ $\mathrm{R}: \frac{4}{24}=\frac{1}{6} ; \frac{1}{6}$ of $36 \mathrm{lb}=\underline{6 \mathrm{lb}}$ S: $\frac{2}{24}=\frac{1}{12} ; \frac{1}{12}$ of $36 \mathrm{lb}=\underline{3 \mathrm{lb}}$ b) i) Number of boys: $\frac{11}{25} \times 13505 \underline{594}$ Number of girls: $\frac{14}{25} \times 13505=540+216=\underline{756}$ ii) Number of teachers: $1350 \div 45 \times 2$ $\begin{aligned} & =270 \div 9 \times 2 \\ & =30 \times 2=\underline{60} \end{aligned}$ c) $R: \frac{7}{37} \rightarrow 126$ beads, so $\frac{1}{37} \rightarrow 18$ beads B: $\frac{13}{37} \rightarrow 18 \times 13=180+54=\underline{234}$ (beads) G: $\frac{17}{37} \rightarrow 18 \times 17=180+126=\underline{306}$ (beads)	Notes $\underline{115}=5 \times 3$ Factors: 1, 5, 13, 115 $\underline{290}=2 \times 5 \times 29$ Factors: 1, 2, 5, 10, 29, 58 145, 290 $\underline{465}=3 \times 5 \times 31$ Factors: 1, 3, 5, 15, 31, 93, 155, 465 $\underline{1115}=5 \times 223$ Factors: 1, 5, 223, 1115 (or set factorising as homework at the end of Lesson 114 and review at the start of Lesson 115)

	R: Ratio, proportion C: Assigning probabilities. Equally likely outcomes E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 116 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{116}=2 \times 2 \times 29=2^{2} \times 29$ Factors: 1, 2, 4, 29, 58, 116 - $\underline{291}=3 \times 97 \quad$ Factors: 1, 3, 97, 291 - $\underline{466}=2 \times 233 \quad$ Factors: 1, 2, 233, 466 - $\underline{1116}=2 \times 2 \times 3 \times 3 \times 31=2^{2} \times 3^{2} \times 31$ Factors: 1, 2, 3, 4, 6, 9, 12, 18, 31 \downarrow $1116,558,372,279,186,124,93,62,36$ [No. of factors: $(2+1) \times(2+1) \times(1+1)=3 \times 3 \times 2=\underline{18}]$ 8 min	Notes Individual work, monitored (or whole class activity) BB: 116, 291, 466, 1116 (Reasoning, agreement, selfcorrection, praising
2	Percentage Let's express these fractions, decimals, divisions and ratios as percentages. Ps come to BB or dictate what T should write. Class agrees/disagrees. BB: e.g. a) i) $\frac{3}{4}=0.75 \rightarrow \underline{75 \%}$ ii) $\frac{15}{10}=\frac{150}{100} \rightarrow \underline{150 \%}$ iii) $\frac{4}{9}=0.4444 \ldots \rightarrow \underline{44 . \dot{4} \%}$ b) i) $0.27 \rightarrow \underline{27 \%}$ ii) $0.987 \rightarrow \underline{98.7 \%}$ iii) $1.24 \rightarrow \underline{124 \%}$ iv) $0.3 \dot{5} \rightarrow \underline{35.5 \%}$ c) i) $1 \div 2=0.5 \rightarrow \underline{50 \%}$ ii) $3 \div 100=0.03 \rightarrow \underline{3 \%}$ iii) $11 \div 10=1.1 \rightarrow \underline{110 \%}$ d) i) $4: 20=\frac{2}{10} \rightarrow \underline{20 \%}$ ii) $7: 2=\frac{7}{2}=3.5 \rightarrow \underline{350 \%}$ iii) $5: 8=\frac{5}{8}=0.625 \rightarrow \underline{62.5 \%}$	Whole class activity Written on BB or SB or OHT At a good pace Involve several Ps. Reasoning, agreement, praising Elicit or remind Ps that, e.g. to change a fraction to a decimal, divide the numerator by the denominator, or (if possible) change to an equivalent fraction which has denominator 100; 0.4444. . . means that each next smaller unit (to infiinity) has value 4; we write it as $0 . \dot{4}$ and read it as 'zero point four recurring'
3	Word problems Deal with one at a time. Who can think of a word problem for this plan? Allow Ps a minute to think about it, then Ps suggest questions. Class decides whether they match the given plan and chooose the one they like best. Ps work out the result and answer in context. BB: e.g. [If 6 workmen can lay 216 m a) \square of pavement in a day, what \square $216 \div 6 \times 5 \quad$ length of pavement could 5 workmen lay in a day?] b) 1610×0.27 [What is 0.27 of $£ 160$? or What is 27% of 1610 m ?] c) $72 \div 0.8 \quad$ [If 80% of the distance between A and B is 72 km , what is the whole distance?]	Whole class activity Involve several Ps. At a good pace Agreement, praising a) 216 $\begin{aligned} \div 6 \times 5 & =36 \times 5 \\ & =\underline{180} \end{aligned}$ b) $\left.\begin{array}{\|c\|c:c\|c\|} \hline & 6 & 1 & 0 \\ \hline \times & 0 & 2 & 7 \\ \hline 1 & 1 & 2 & 7 \end{array}\right)$ $\text { c) } \begin{aligned} & 72 \div 0.8 \\ = & 720 \div 8 \\ = & \underline{90} \end{aligned}$

		Lesson Plan 116
Activity 4	PbY6b, page 116 Q. 1 Read: Two green marbles and one pink marble come out of a machine one after the other in a random order. Calculate the probability of each of these outcomes. Tell me what you know about probability. [It is the chance an event has of happening. It is measured on a scale of 0 (no chance) to 1 (certain). The probabilities in between can be given as fractions, or decimals, or percentages.] What do we need to do first before we can answer the questions? (List all the possible outcomes.) Encourage a logical listing in Ex. Bks. Set a time limit. Review with whole class. Ps could show probabilities on scrap paper or slates on command. Ps answering correctly explain reasoning at BB . Mistakes discussed and corrected. Solution: a) The first marble is pink. $\left[\frac{2}{6}=\frac{1}{3}\right]$ b) The first marble is green. $\left[\frac{4}{6}=\frac{2}{3}\right]$ c) The order of the three marbles is green, green, pink. $\left[\frac{2}{6}=\frac{1}{3}\right]$ d) The order of the marbles is green, pink, green. $\left[\frac{2}{6}=\frac{1}{3}\right]$	Notes Individual work, monitored helped Initial review of what Ps have remembered. If Ps have forgotten about probabillity, elicit the possible outcomes (on BB) first before Ps answer the questions. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T (or Ps stick coloured circles on BB: e.g. pink, light green and dark green) (or $1-\frac{1}{3}=\frac{2}{3}$) Feedback for T
5	PbY6b, page 116 Q. 2 Read: A computer program writes the letters A, B and C in a random order. What is the probability of each of these outcomes? What should you do first? (List all the possible outcomes.) Encourage a logical listing in Ex. Bks. Set a time limit. Review with whole class. Ps could show probabilities on scrap paper or slates on command. Ps answering correctly explain reasoning at BB . Mistakes discussed and corrected. Solution: 6 possible outcomes: ABC BAC CAB ACB BCA CBA a) The first letter is A. $\left[\frac{2}{6}=\frac{1}{3}\right]$ b) The second letter is A. $\left[\frac{2}{6}=\frac{1}{3}\right]$ c) The third letter is C. $\left[\frac{2}{6}=\frac{1}{3}\right]$ d) The order is $B, C, A . \quad\left[\frac{1}{6}\right]$	Individual work, monitored helped If Ps are still unsure, list the outcomes on BB with whole class first. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Extension Ps describe other outcomes and choose Ps to say their probabilities.

		Lesson Plan 116
Activity 6	PbY6b, page 116 Q. 3 Read: A computer program writes the digits 1, 2, 3 and 4 in a random order. What is the probability of each of these outcomes? Set a short time limit for listing the possible outcomes in Ex. Bks. then review quickly. A, how many outcomes did you write? Who agrees? Who had more? Tell us what they are. Ps correct any mistakes/omissions before answering the questions. Review probabilities. Ps could show them on scrap paper or slates on command. Ps answering correctly explain reasoning at BB. Mistakes discussed and corrected. Solution: a) The first digit is 3 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ b) The first digit is 1 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ c) The second digit is 3 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ d) The second digit is 1 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ e) The last digit is 2 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ f) The last digit is 4 . $\left[\frac{6}{24}=\frac{1}{4}\right]$ g) The first two digits are 4, 3 in this order. $\left[\frac{2}{24}=\frac{1}{12}\right]$ h) The order is 3, 1, 2, 4. [$\left.\frac{1}{24}\right]$	Notes Individual work, monitored helped Or list outcomes on BB with the whole class first, with Ps dictating and T writing in a logical order. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Ps point out the relevant outcomes on the list. Feedback for T
7	PbY6b, page 116 Q. 4 Read: A computer program writes 2-digit, positive, whole numbers at random. What is the probability of each of these outcomes? What are the possible outcomes? Ps come to BB or dictate to T. After 3 or 4 have been dictated, T asks if it is possible to work out the number of outcomes without lising them all. (For each of the 9 possible numbers (1 to 9) for the tens digit there are 10 possible numbers (0 to 9) for the units digit, so $\underline{90}$ possible outcomes.) Agree that 0 cannot be used for the tens digit, as the number would then really be a 1 -digit number, not a 2 -digit number. Set a short time limit for writing the probabilities beside the outcomes described in Pbs.	Whole class activity to start Involve several Ps. BB: $10,11,12, \ldots, 98,99$ $\begin{array}{c\|c} \mathrm{T} & \mathrm{U} \\ \hline(9) & (10) \end{array} \quad 9 \times 10=\underline{90}$ Extra praise for a P who reasons like this without help from T. Individual work, monitored, helped

16		Lesson Plan 116
Activity 7	(Continued) Review probabilities with the whole class. Ps could show them on scrap paper or slates on command. Ps answering correctly explain reasoning at BB. Mistakes discussed and corrected. Solution: a) The number is 37 . b) The first digit is 8 . $\left[\frac{10}{90}=\frac{1}{9}\right]$ c) The last digit is 5 . $\left[\frac{9}{90}=\frac{1}{10}\right]$ d) The first digit is 0 . [0] (Impossible - 2-digit no.) e) The last digit is 0 . $\left[\frac{9}{90}=\frac{1}{10}\right]$ f) The number is even. $\left[\frac{45}{90}=\frac{1}{2}\right]$	Notes Responses shown in unison. Reasoning, agreement, selfcorrection, praising Extension Ps could think of other outcomes and ask Ps to give their probabilities, or give a probability and ask other Ps for a matching outcome. $10,12,14,16,18, \ldots$ For each of the 9 possible tens, there are 5 possible even digits.
8 Erratum In $P b s$, 2nd 'b)' should be 'c)'	PbY6b, page 116 Q. 5 Read: In a primary school, the number of girls is 176, which is 55% of the total number of pupils at the school. a) How many boys attend this school? b) How many pupils attend this school? c) If a computer program prints out the files of all the pupils in a random order, what is the probability of the computer selecting a file belonging to: i) a girl ii) a boy? Deal with one at a time or set a time limit. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps answering correctly explain reasoning at BB . Who did the same? Who worked it out another way? etc. Mistakes discussed and corrected. Solution: e.g. a) G: 55%, B: $100 \%-55 \%=45 \%$ Plan: $55 \% \rightarrow 176$ $\begin{aligned} 5 \% & \rightarrow 176 \div 11=16 \\ 45 \% & \rightarrow 16 \times 9=\underline{144} \end{aligned}$ Answer: There are 144 boys at this school. b) Plan: $\mathrm{G}+\mathrm{B}: 176+144=\underline{320}$ Answer: 320 pupils attend this school. c) i) p (a girl) is 176 out of 320 , i.e. 55% (as given in question) ii) p (a boy) is 144 out of 320 , ie. 45% (as calculated above) Answer: The probability of the computer printing a girl's file is 55% and of printing a boy's file is 45%.	Individual work, monitored, helped Ps calculate in Ex.Bks and write the answers in sentences. Responses shown in unison. Reasoning agreement, selfcorrection, praising Accept any valid method of solution with correct reasoning. Deal with all methods used by Ps. or $100 \% \rightarrow 16 \times 20=\underline{320}$ Accept fraction or decimal forms too - but unnecessary! Elicit that a probability can be expressed as a ratio, a fraction, a decimal or a percentage.

16	R: Calculation C: Simple probabilities E: Analysing games	$\begin{gathered} \text { Lesson Plan } \\ 117 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{117}=3 \times 3 \times 13=3^{2} \times 13$ Factors: $1,3,9,13,39,117$ - $\underline{292}=2 \times 2 \times 73=2^{2} \times 73$ Factors: 1, 2, 4, 73, 146, 292 - 467 is a prime number Factors: 1, 467 (as not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>467$) - $\underline{1117}$ is a prime number Factors: 1,467 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37^{2}>1117$)	Notes Individual work, monitored (or whole class activity) BB: 117, 292, 467, 1117 Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|lr\|l} 117 & 3 & 292 & 2 \\ 39 & 3 & 146 & 2 \\ 13 & 13 & 73 & 73 \\ 1 & & 1 & \end{array}$
2	PbY6b, page 117 Q. 1 Read: A cash box contains gold and silver coins. The ratio of gold coins to silver coins is 47 to 53. The number of silver coins is 159. a) How many: i) gold coins ii) coins are in the cash box? b) If you take out a coin with your eyes shut, what is the probability of the coin being gold? Give your answer as a percentage. Set a time limit of 2 minutes. Ps work in Ex. Bks. Review with whole class. Ps could show answers on scrap paper or slates on command. Ps who answer correctly explain reasoning at BB. Class agrees'disagrees. Mistakes discussed and corrected. Solution: e.g. a) i) Gold coins: $159 \div 53 \times 47=3 \times 47=$ 141 ii) Total coins: $141+159=\underline{300}$ Answer: In the cash box there are 141 gold coins. There are 300 coins altogether. b) $p(\mathrm{a}$ gold coin $)=\frac{141}{300}=\frac{47}{100} \rightarrow \underline{47 \%}$	Individual work, monitored (helped) Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising $\text { or } \begin{aligned} \mathrm{G}: \mathrm{S} & =47: 53 \\ & =x: 159 \\ x=47 & \times 3=\underline{141} \end{aligned}$ What is the probability that the coin is silver? (53\%)

		Lesson Plan 117
Activity 3	Roulette Who knows how to play the game of roulette? Allow Ps to explain if they can, otherwise T does so. - Roulette consists of a wheel with the numbers 0 to 36 (not in order) in pockets around its edge and a roulette table with the numbers 0 to 36 in a grid. Some of the numbers are coloured red, some black. If each number has an equal chance, what is the probability of each of the numbers winning? (1 chance out of 37) - You place your bet on a number on the grid. The teller spins the wheel in one direction and throws an ivory ball in the other direction. The number that the ball falls into when the wheel stops wins. - If we bet on a single number and it wins, the bank pays 36 times the bet (including zero). - If we bet on 2 adjacent numbers on the table and either of them wins, the bank pays 18 times our bet. What do you think the bank will pay if we bet on 3 numbers and one of them wins? Ask several Ps what they think and why. Elicit what we could win if we bet on $3,(4,6,12,18)$ numbers. BB: 3 numbers: 4 numbers: $\text { e.g. } \begin{array}{\|l\|} \hline \frac{6}{7} \\ \hline 8 \\ \hline \end{array} \rightarrow 12 \times \text { bet }$ e.g.10 13 11 14$\rightarrow 9 \times$ bet 6 numbers: e.g.15 18 16 19 17 20$\rightarrow 6 \times$ bet 12 numbers: $\rightarrow 3 \times$ bet e.g. 1 to 12,13 to 24 or 25 to 36 or $1,4,7,11, \ldots, 36$ or $2,5,8,11, \ldots, 36$ or $3,6,9,12, \ldots, 36$ 18 numbers: $\rightarrow 2 \times$ bet (e.g. even or odd, red or black, high or low, etc.) - If we bet on zero and it wins, all the other bets lose!	Notes Whole class activity If possible, T has a model roulette wheel and layout to demonstrate how they are used, otherwise show the wheel on the copy master) Involve Ps when possible. BB: e.g. $p(8)=\frac{1}{37}$ Ask a P to give an example. e.g. You bet $£ 2$ on number 10. If it wins the bank pays you $£ 2 \times 36=\underline{£ 72}$ Do you think it is worth doing? Some Ps might think so, but extra praise if Ps point out that: - you have already paid $£ 2$, so you have won only $£ 70$; - the chance of winning is $\frac{1}{37}$ - the chance of not winning (i.e. the bank wins) is $\frac{36}{37}$! This is why casinos make so much money!
4	PbY6b, page 117 Q. 2 Read: In a game of Roulette, a wheel is spun and a ball comes to rest on one of the numbers 0 to 36. The even numbers from 2 to 36 are red numbers. What is the probability of each of these outcomes? Set a time limit or deal with one at a time. Ps do necessary calculations and write results in Ex. Bks. Review with whole class. Ps show probabilities on scrap paper or slates on command. Ps answering correctly explain reasoning to Ps who were wrong. Mistakes discussed and corrected. Solution: a) 0 wins $\left(\frac{1}{37} \approx 2.7 \%\right)$ b) 21 wins ($\frac{1}{37} \approx 2.7 \%$) c) 7 or 8 wins $\left(\frac{2}{37} \approx 5.4 \%\right)$ d) 31 or 34 wins ($\frac{2}{37} \approx 5.4 \%$)	Individual work monitored, helped (or whole class activity if Ps are unsure or not very able) Differentiation by time limit Responses shown in unison. Discussion, reasoning, agreement, self-correction, praising (More able Ps could be asked to give the probabilities as percentages, using a calculator to divide the numerator by the denominator and rounding appropriately.)

		Lesson Plan 117
Activity 4	(Continued) e) 24 or 25 or 26 wins $\left(\frac{1}{37}+\frac{1}{37}+\frac{1}{37}=\frac{3}{37} \approx 8.1 \%\right)$ f) $12 \leq n \leq 17$ wins. $\left(\frac{6}{37} \approx 16.2 \%\right)$ as 6 possible numbers g) $1 \leq n \leq 12$ wins. $\quad\left(\frac{12}{37} \approx 32.4 \%\right)$ as 12 possible numbers h) The winning number gives a remander of 2 when divided by 3 . $\left(\frac{12}{37} \approx 32.4 \%\right) \text { as } 12 \text { possible numbers }$ i) A red number wins. $\left.\left(\frac{18}{37}\right) \approx 48.6 \%\right)$ as 18 possible numbers j) The numbers 25 to 36 do not win. ($\frac{25}{37} \approx 67.6 \%$) Which of the outcomes has most chance of happening? (j) Do you think that this would be one of the bets we could make in a real game of roulette? (No, the bank always makes sure that it has more chance of winning than we have!)	Notes $\begin{aligned} & 2,5,8,11,14,17,20,23 \\ & 26,29,32,35 \\ & 2,4,6,8,10,12,14,16,18,20 \\ & 22,24,26,28,30,32,34,36 \end{aligned}$ 25 numbers can win (0 to 24) Also point out that when zero comes up, nobody wins, so the bank keeps the money people have bet.
5	PbY6b, page 117 Q. 3 Read: In a pack of 52 playing cards, there are 13 cards (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) in each of 4 suites: Diamonds and Hearts (red), Clubs and Spades (black). If possible, T has a pack of large cards to show to class. Who has played cards? What games did you play? Did you win? Set a time limit. Ps read question themselves and answer in Ex. Bks. Encourage Ps to write in this form: BB: p (an Ace) = Review with whole class. T chooses Ps to give the answers and explain their reasoning. Who agrees? Who thinks something else? Why? etc. Mistakes discussed and corrected. Solution: If you take a card from the pack at random, what is the probability that the card is: a) an Ace $\left(\frac{4}{52}=\frac{1}{13}\right)$ b) $19 \quad\left(\frac{4}{52}=\frac{1}{13}\right)$ c) $a \operatorname{Club}\left(\frac{13}{52}=\frac{1}{4}\right)$ d) a red card $\left(\frac{26}{52}=\frac{1}{2}\right)$ e) a Queen of Diamonds $\left(\frac{1}{52}\right)$ f) a Jack or a King of Spades $\left(\frac{2}{52}=\frac{1}{26}\right)$ g) an Ace of Clubs or a King of Hearts $\left(\frac{2}{52}=\frac{1}{26}\right)$ h) not an Ace? $\left(\frac{48}{52}=\frac{12}{13}\right)$ or $1-\frac{1}{13}=\frac{12}{13}$	Individual work, monitored, helped or T has packs of cards to hand round class, especially for Ps who have never played cards. Reasoning, agreement, selfcorrection, praising Involve several Ps. At a good pace Feedback for T Extension Ps think of other outcomes and choose Ps to say their probabilities. T gives a probability and Ps think of an outcome to match it.

		Lesson Plan 117
Activity 6	PbY6b, page 117, Q. 4 Read: These are the probabilities for certain outcomes when throwing a dice. Write a question to match each probability. Deal with one at a time (or one row at a time under a time limit) Review with whole class. T chooses Ps to read out their questions. Class decides wheter they are valid. Ps who made a mistake or could not think of a question, write the one they like best from those offered. Solution: e.g. (but many others possible) a) $\frac{1}{6}$ (throwing a 4) b) 0 (throwing a 7) c) $\frac{5}{6}$ (not throwing a 6) d) 1 (an odd or an even number) e) $\frac{1}{3}$ (throwing a 1 or a 2) f) $\frac{1}{2}$ (throwing at least a 4) g) $\frac{2}{3}$ (throwing an odd number or a 2) h) $33 \frac{1}{3} \%$ [as e)] i) 50% [as f] j) 100% [as d)]	Notes Individual work, monitored Elicit that a dice is a cube with 6 faces, so the numbers 1 to 6 can be thrown. Differentiation by time limit Reasoning, agreement, selfcorrection, praising Give extra praise for creative answers (e.g. using 'or' or 'not') Feedback for T
7	PbY6b, page 117, Q. 5 Read: These are the probabilities for certain outcomes when 4 coins are tossed one after the other. Write an outcome to match each probability. What coud the outcome be if one coin is tossed? (H or T) What could the outcomes be if 4 coins are tossed? Let's call the 4 coins A, B, C and D and write the possible outcomes in this table. Ps come to BB or dictate to T. Class points out errors. BB: Elicit that there are 16 possible outcomes (each shown in a column). T states the probability and Ps suggest possible outcomes to match it. Class decides whether or not they are valid. Ps write a correct outcome beside the probability in Pbs. Solution: e.g. a) 0 (5 Tails) b) $\frac{1}{16}$ (4 Heads) c) $\frac{2}{16}=\frac{1}{8}$ (First 3 are Tails) d) $\frac{3}{16}$ (HHTH or HHTT or THTH, in order) e) $\frac{4}{16}=\frac{1}{4}\left(3 \mathrm{H}+1 \mathrm{~T}\right.$, in any order) f) $\frac{5}{16}(3 \mathrm{~T}+1 \mathrm{H}$ or THTH$)$ g) $\frac{6}{16}=\frac{3}{8}$ (First 3 are Heads or $3 \mathrm{~T}+1 \mathrm{H}$)	Whole class activity Initial discussion on the context. Table drawn on BB or use enlarged copy master or OHP (Ps could also have table on desks to complete.) At a good pace Agreement, praising Reasoning, checking on table, agreement, praising Accept and praise any valid outcome. (One possible outcome for each probabiity is given opposite but others are possible.)

		Lesson Plan 117
Activity 7	(Continued) h) $\frac{7}{16}$ (The first 2 are Heads or the first 3 are Tails or THTH in order) i) $\frac{8}{16}=\frac{1}{2}$ (The first is a Tail) j) $\frac{9}{16}$ (The first is a Head or TTTT) k) $\frac{10}{16}=\frac{5}{8}$ (The first is a Tail or the first 3 are Heads) 1) $\frac{11}{16}$ (The first is a Tail or the first 3 are Heads or HTHH in order) m) $\frac{12}{16}$ (The first is a Head or the first 2 are Tails) n) $\frac{13}{16}$ (The first is a Head or the first 2 are Tails or THTH in order) o) $\frac{14}{16}=\frac{7}{8}$ (The first 3 are not all Tails) p) $\frac{15}{16}$ (Not HHHH) q) $\frac{16}{16}=1$ (The first is a Head or a Tail) r) $50 \%=\frac{8}{16}$ (The first is not a Tail)	Notes

		Lesson Plan 118
Activity 4	PbY6b, page 118 Q. 1 Read: Calculate the sums. Set a time limit of 3 minutes. Encourage Ps to estimate first and to check their results (against estimate and by adding in opposite direction for vertical addition). Review with whole class. Ps come to BB to do calculations, explaining reasoning with place-value detail. Class agrees/ disagrees. Mistakes discussed and corrected. Solution: b) 4 3 0 2 7 2 1 4 5 9 0 8, 3 +1 1 1 6 9 6 6 9 0 1 1 1 c) $\frac{4}{9}+1 \frac{3}{5}=1+\frac{20+27}{45}=1+\frac{47}{45}=2 \frac{2}{45}$ d) $43.2+10 \frac{4}{5}=43.2+10.8=\underline{54}$ 25 min	Notes Individual work, monitored Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Feedback for T Elicit/remind Ps that to add two fractions with different denominators, first change them to equivalent fractions with a common denominators (i.e. the lowest common multiple of the two denominators). or $\begin{aligned} 43.2+10 \frac{4}{5} & =43 \frac{1}{5}+10 \frac{4}{5} \\ & =\underline{54} \end{aligned}$
5	PbY6b, page 118 Q. 2 Read: Calculate the differences. Set a time limit of 3 minutes. Encourage Ps to check their results (by addition, or subracting difference from reductant). Review with whole class. Ps come to BB to do calculations, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) c) $\begin{aligned} 2 \frac{1}{4}-\frac{5}{6} & =2+\frac{3-10}{12}=2-\frac{7}{12}=1 \frac{5}{12} \\ \text { or } & =1 \frac{5}{4}-\frac{5}{6}=1+\frac{15-10}{12}=1 \frac{5}{12} \end{aligned}$ d) $23 \frac{3}{4}-15.05=23.75-15.05=\underline{8.7}$	Individual work, monitored Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Accept any other valid method of subtraction with correct reasoning. Feedback for T

		Lesson Plan 118
Activity 6	PbY6b, page 118 Q. 3 Read: Calculate the products. Set a time limit of 2 minutes. Encourage Ps to check their results (by division). Review with whole class. Ps come to BB to do calculations, explaining reasoning. Who agrees? Who did it another way? Mistakes discussed and corrected. Solution: a) b) c) $\begin{aligned} 4 \frac{2}{5} \times \frac{3}{7} & =\frac{22}{5} \times \frac{3}{7}=\frac{66}{35}=1 \frac{31}{35} \\ \text { or } & =4 \times \frac{3}{7}+\frac{2}{5} \times \frac{3}{7}=\frac{12}{7}+\frac{6}{35} \\ & =1 \frac{5}{7}+\frac{6}{35}=1+\frac{25+6}{35}=1 \frac{31}{35} \end{aligned}$	Notes Individual work, monitored, c) helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Elicit/remind Ps that the number of decimal digits in the product should be the same as the number of decimal digits in the multiplier and multiplicand combined. Feedback for T
7	PbY6b, page 118 Q. 4 Read: Calculate the quotients. Set a time limit of 2 minutes. Encourage Ps to check their results (using multiplication or dividing the dividend by the quotient). Review with whole class. Ps come to BB to write calculations and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: b) c) $5 \frac{1}{3} \div \frac{2}{5}=\frac{16}{3} \times \frac{5}{2}=\frac{40}{3}=13 \frac{1}{3}$	Individual work, monitored, c) helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Discuss how the divisions would be answered if written horizontally and what to do about the remainders. (Write as a fraction or round to an appropriate number of decimal digits.) In c), elicit that to divide by a fraction, multiply by its reciprocal value (i.e. the value which mulitplies it to make 1) Feedback for T

16	R: Calculations C: Patterns, relationships. Word Problems. General formulae E: Making predictions : "What if . . .'	$\begin{gathered} \text { Lesson Plan } \\ 119 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{119}=7 \times 17 \quad$ Factors: $1,7,17,119$ - $\underline{294}=2 \times 3 \times 7 \times 7=2 \times 3 \times 7^{2}$ Factors: 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294 - $\underline{469}=7 \times 67 \quad$ Factors: 1, 7, 67, 469 - $\underline{1119}=3 \times 373 \quad$ Factors: 1, 3, 373, 1119	Notes Individual work, monitored (or whole class activity) BB: 119, 294, 469, 1119 Reasoning, agreement, selfcorrection, praising e.g.
2	Ladder Game Let's play a 3-rung ladder game! Rule: There are 2 players, A and B. A says a natural number from 1 to 3 . \mathbf{B} adds 1,2 , or 3 to it and says the result. A adds 1,2 or 3 to \mathbf{B} 's number, and so on. The first player to say ' 20 ' is the winner. a) T plays against the class, with T starting. e.g. $\mathrm{T}: \mathbf{1}, \mathrm{P}_{1}: 4, \mathrm{~T}: \mathbf{7}, \mathrm{P}_{2}: 8, \mathrm{~T}: \mathbf{9}, \mathrm{P}_{3}: 11, \mathrm{~T}: \mathbf{1 2}, \mathrm{P}_{4}: 14, \mathrm{~T}: \mathbf{1 6}$, $\mathrm{P}_{5}: 19, \mathrm{~T}: \underline{\mathbf{2 0}} \quad \mathrm{T}$ wins! b) T plays against the class, with Ps starting. e.g. $\mathrm{P}_{1}: 3, \mathrm{~T}: \mathbf{4}, \mathrm{P}_{2}: 5, \mathrm{~T}: \mathbf{8}, \mathrm{P}_{3}: 10, \mathrm{~T}: \mathbf{1 2}, \mathrm{P}_{4}: 15, \mathrm{~T}: \mathbf{1 6}, \mathrm{P}_{5}: 17$, T: $\underline{\mathbf{2 0}}$ T wins! c) Ps play the game in pairs, taking turns to start. Ask the pairs to note who starts and who wins each time. d) Which player should always win? The player who starts or the player who goes second? What should you do to make sure that you win? If you want to finish on '20', you must say ' 16 '. To get to 16 , you should say ' 12 '. To get to 12 you should say ' 8 '. To get to 8 you should say ' 4 '. So the strategy is to aim for $4,8,12$ and, most important of all, 16, as from there you cannot lose! i.e. i.e. $4 \rightarrow 8 \rightarrow 12 \rightarrow 16 \rightarrow \underline{20}$	Whole class activity, then paired work In good humour! T explains how to play it but gives no hints about how to ensure winning. [T's strategy: Aim to say ' 4 ', or ' 8 ', or ' 12 ', or '16' and thus '20'.] After Ps have played it themselves, discuss with the whole class possible strategies. Allow Ps to make suggestions first, then T gives hints only if necessary. Elicit that: - if A starts, B should win! - A can win but only if \mathbf{B} does not know the winning strategy or makes a mistake.

		Lesson Plan 119
Activity 8	PbY6b, page 119, Q. 6 T chooses a P to read out the question and Ps show answer on scrap paper or slates on command. Ps with correct answers explain reasoning, and check with the relevant operation. Solution: a) The difference between two numbers is 2.1. What is the larger number if the smaller number is x ? Larger number: $\underline{2.1+x}$ Check: $2.1+x-x=2.1$ b) Laura has n stamps. Laura and George have 125 stamps altogether. How many stamps does George have? G: $125-n$ Check: $n+125-n=125$	Notes Whole class activity Allow time for Ps to think. Responses shown in unison. Reasoning, checking, agreement, praising If disagreement, check with actual values for x and n. Feedback for T

16		$\begin{gathered} \text { Lesson Plan } \\ 120 \end{gathered}$
Activity	Factorising 120, 295, 470 and 1120. Revision, activities, consolidation PbY6b, page 120 Solutions: Q. 1 a) i) p (lemon) $=\frac{3}{15}=\frac{1}{5}$ ii) $p($ strawberry $)=\frac{2}{15}$ iii) p (neither lemon nor strawberry) $=\frac{10}{15}=\frac{2}{3}$ iv) p (not blackcurrant) $=\frac{9}{15}=\frac{3}{5}$ v) p (orange or lemon) $=\frac{3}{15}+\frac{4}{15}=\frac{7}{15}$ vi) $p($ banana $)=\underline{0}$ b) 49 [No. of lemon jellies in bag: 1 fifth of $60=60 \div 5=12$ No. of sweets which are not lemon jellies: $60-12=48$ So the 1 st 48 sweets taken out of the bag could be the blackcurrant, the orange and the strawberry jellies, but the 49th sweet must be a lemon jelly.] Q. $2 \quad$ a) $\frac{3}{7}+\frac{3}{4}=\frac{12+21}{28}=\frac{33}{28}$ b) $\frac{5}{8}+\frac{7}{8}=\frac{12}{8}=\frac{3}{2}=1 \frac{1}{2}$ c) $\frac{7}{11}+\frac{1}{2}=\frac{14+11}{22}=\frac{25}{22}=1 \frac{3}{22}$ d) $\frac{4}{9}+\frac{9}{13}=\frac{52+81}{117}=\frac{133}{117}=1 \frac{16}{117}$ e) $\frac{5}{6} \times \frac{1}{6}=\frac{5}{36}$ f) $\frac{\frac{1}{11}}{12} \times \frac{7}{11_{1}}=\frac{7}{12}$ g) $\frac{3}{\frac{15}{24}} \times \frac{6^{1}}{55}=\frac{3}{11}$ h) $\frac{11}{52} \times \frac{4^{1}}{13}=\frac{11}{169}$ Q. 3 a) i) ii) b) i) $\begin{array}{\|r\|r\|l\|l\|l\|l\|} \hline & 8 & 3 & 5 & 0 & 6 \\ -\quad 6 & 3 & 0 & 41 & 9 \\ \hline 2 & 0 & 4 & 5 & 7 \\ \hline \end{array}$ ii)10 10 10 10 5 4 2 1. 1 9 - 21 7 4 51 2 2 6 7 5 9 9 iii) $5 \frac{2}{5}-3.8=5.4-3.8=\underline{1.6}$	Notes $\underline{120}=2^{3} \times 3 \times 5$ Factors: 1, 2, 3, 4, 5, 6, 8, 10, $12,15,20,24,30,40,60,120$ $\underline{295}=5 \times 59$ Factors: 1, 5, 59, 295 $\underline{470}=2 \times 5 \times 47$ Factors: 1, 2, 5, 10, 47, 94, 235, 470 $\underline{1120}=2^{5} \times 5 \times 7$ Factors: 1, 2, 4, 5, 7, 8, 10, $14,16,20,28,32,35,40,56$, $70,80,112,140,160,224,280$, 560, 1120 [Number of factors: $\begin{aligned} & (5+1) \times(1+1) \times(1+1) \\ & =6 \times 2 \times 2=24] \end{aligned}$ (or set factorising as homework at the end of Lesson 119 and review at the start of Lesson 120)

16	R: Natural numbers C: Mutliples, factors. Calculations with remainders E: Problems: reasoning and checking	$\begin{gathered} \text { Lesson Plan } \\ 121 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{121}=11 \times 11=11^{2} \quad$ Factors: $1,11,121$ - $\underline{296}=2 \times 2 \times 2 \times 37=2^{3} \times 37$ Factors: 1, 2, 4, 8, 37, 74, 148, 296 - $471=3 \times 157 \quad$ Factors: 1, 3, 157, 471 - $\underline{1121}=19 \times 59 \quad$ Factors: 1, 19, 59, 1121	Notes Individual work, monitored (or whole class activity) BB: 121 296, 471, 1121 Reasoning, agreement, selfcorrection, praising $\left.\begin{array}{l} \text { e.g. } \\ 121 \\ 11 \\ 11 \\ 11 \end{array}\right)$
2	Factors and multiples Study this diagram. What do the arrows mean? P comes to BB to explain, using one of the arrows as an example. Class agrees/disagrees. BB: (Each arrow points from a number towards its multiple. e.g. 84 is a multiple of 3 , because 3 is a factor of 84 , or since $3 \times 28=84$) What about the arrow pointing from a number to itself? (e.g. 7 is a multiple of 7 and 7 is also a factor of 7 , as $7 \times 1=\underline{7}, 7 \div \underline{7}=1$) \qquad 10 min \qquad	Whole class activity Drawn on BB or use enlarged copy master or OHP Ps come to BB to point to each of the other arrows and explain in a similar way. Agreement, praising
3	PbY6b, page 121 Q. 1 Read: The base set is the set of positive whole numbers. a) Write 4 numbers which have exactly 2 factors. b) Write a number which has exactly one factor. c) Write 3 numbers which have exactly 3 factors. d) Write 3 numbers which have exactly 4 factors. Set a time limit. Ps check numbers on slates or in Ex. Bks before listing in Pbs. Review with whole class. T asks some Ps for examples. Who had the same? Who had another number? Class decides which numbers are valid. Elicit what kind of numbers are in each category. Solution: a) e.g. 2, 11, 19, 157 (Prime numbers) A prime number is exactly divisible only by itself and 1. b) 1 (The unit number) c) e.g. $4(1,2,4), 9(1,3,9), 25(1,5,25)$ These are the squares of prime numbers. d) e.g. $6(1,2,3,6), 10(1,2,5,10), 15(1,3,5,15)$ Each number is the product of 2 different prime numbers.	Individual work, monitored, helped Differentiation by time limit What do we call the set of positive whole numbers? (Natural numbers $\rightarrow \mathrm{N}$) Discussion, reasoning, agreement, self-correction, praising After agreeing on the type of numbers in a list, Ps could suggest a few more examples where possible. $\begin{aligned} \text { e.g. } 6 & =2 \times 3, \quad 10=2 \times 5, \\ 15 & =3 \times 5, \text { etc. } \end{aligned}$

		Lesson Plan 121
Activity 4		Notes
	PbY6b, page 121	Individual work, monitored, helped
	Q. 2 Read: Simplify these fractions.	
	What does simplify mean? (To change to it simplest form.) How can we do that? (By dividing the numerator and denominator by their greatest common factor.) Set a time limit. Ps can reduce the fractions in steps if necessary.	Differentiation by time limit
	Review with whole class. Ps could show fractions on scrap paper or slates on command. Ps with different results explain reasoning at BB . Class decides who is correct. Mistakes discussed and corrected. Solution:	Responses shown in unison. Reasoning, agreement, selfcorrection, praising
	a) $\frac{42}{60}=\frac{7}{10}$ b) $\frac{36}{48}=\frac{3}{4}$ c) $\frac{56}{40}=\frac{7}{5}=1 \frac{2}{5}$ d) $\frac{140}{56}=\frac{20}{8}=\frac{5}{2}=2 \frac{1}{2}$	BB: $56 \text { (2) } 140 \mid(2)$
	T shows this method for simplifying large numerators and denominators in one step. Factorise each number (as opposite) and circle their common factors. Their product is the highest comon factor of the 2	28 (2) 70 (2) 14 2 35 5 7 (7) 7 (7) 1 1
	numbers: $(2 \times 2 \times 7=\underline{28})$ $140 \div 28=\underline{5}, 56 \div 28=\underline{2}$, i.e. the factors not circled	So we only need to write the factorision as above!
Extension	Peter worked out the greatest common factor of 140 and 56 like this. Who can explain it? Is his method correct?	Whole class discussion. Involve several Ps.
	BB: $140 \div 56=2$, r $28 \quad 56 \div 28=2$ Explanation: e.g	T gives hint about differences if Ps do not think of it.
	If x is the greatest common factor of 140 and 56 , then x is also a factor of $140-56=84$.	Extra praise if Ps think of it without help from T.
	So x is the greatest common factor of 84 and 56 and x is also a factor of $84-56=28$.	
	So x is the greatest common factor of 56 and 28 and x is also a factor of 56-28 = 28 .	
	So x is the greatest common factor of 28 and 28 , which is 28 . i.e. $x=28$	
	[22 min	

		Lesson Plan 121
Activity 5	PbY6b, page 121 Q. 3 Read: Decide whether the sum is exactly divisible by 3, then do the calculation. How can we decide? (If each term is divisible by 3 then the whole sum will be divisible by 3 .) Set a time limit. Ps check each term first, writing any remainder below the term before working our the result. Review with whole class. Ps show by pre-agreed actions in unison whether they think each sum is divisible by 3 , (e.g. standing up if Yes, remaining seated if No) Ps with different responses explain reasoning at BB . Class decides who is correct. Mistakes discussed and corrected. Solution: a) $\begin{aligned} & (36+18+27+45) \div 3 \\ & \left.\begin{array}{l} (\text { Exactly divisible by } 3, \text { as each } \\ 0 \quad 0 \quad 0 \quad 0 \end{array} \quad \text { term is exactly divisible by } 3\right) \\ & =12+6+9+15=\underline{42} \end{aligned}$ b) $(36+14+66+19) \div 3$ (Exactly divisible by 3, as the sum $\begin{array}{llll}0 & 2 & 0 & 1\end{array}$ of the remainders is $2+1=3$, $=135 \div 3=\underline{45}$ which is divisible by 3) c) $(45+73+46+90) \div 3$ (Not exactly divisible by 3 , as the $\begin{array}{llll}0 & 1 & 1 & 0\end{array}$ sum of the remainders is $1+1=2$, $=254 \div 3=\underline{84, r 2}$ which is not divisible by 3)	Notes Individual work, monitored (helped) Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, self-correction, praising Extra praise if Ps realise that the remainders can also form groups of 3 .
6	PbY6b, page 121 Q. 4 Read: Decide whether the sum is exactly divisible by 4, then do the calculation. Set a time limit of 3 minutes. Ps write remainders below terms first, then work out the result. Review with whole class. Ps show by pre-agreed actions whether they think a sum is divisible by 4. Ps with different responses explain reasoning at BB . Class decides who is correct. Mistakes discussed and corrected. Solution: a) $\begin{array}{ll} (33+41+62+240) \div 4 & \text { (Exactly divisible by } 4, \text { as the sum } \\ 1 \quad 1220 & \text { of the remainders is } 1+1+2=4, \\ =376 \div 4=\underline{94} & \text { which is divisible by } 4) \end{array}$ b) $(44+60+20+12) \div 4$ (Exactly divisible by 4, as each $0 \quad 0 \quad 0 \quad 0$ term is divisible by 4) $=11+15+5+3=\underline{34}$ c) $(26+27+28+29) \div 4$ (Not exactly divisible by 4 , as the $\begin{array}{llll}2 & 3 & 0 & 1\end{array}$ $=110 \div 4=\underline{27, r 2}$ $2+3+1=6$, which is not exactly divisible by 4) 30 min	Individual work, monitored (helped) Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, self-correction, praising Extra praise if Ps reason that the remainders form another group of 4 .

		Lesson Plan 121
Activity 7	PbY6b, page 121 Q. 5 Read: Decide whether the difference is exactly divisible by 5 then do the calculation. Set a time limit of 3 minutes. Ps write remainders below reductant and subtrahend first, then work out the result. Review with whole class. Ps show by pre-agreed actions whether they think a difference is divisible by 5 . Ps with different responses explain reasoning at BB. Class decides who is correct. Mistakes discussed and corrected. Solution: a) $\begin{aligned} & (75-40) \div 5 \\ & 0 \quad 0 \\ & =15-8=7 \end{aligned}$ b) $(78-43) \div 5$ 33 $=35 \div 5=\underline{7}$ c) $\begin{aligned} & (82-35) \div 5 \\ & 2 \quad 0 \\ & =47 \div 5=\underline{9, r 2} \end{aligned}$ d) $(36-14) \div 5$ 14 $=22 \div 5=\underline{4, r 2}$ e) $(54-26) \div 5$ $4 \quad 1$ $=28 \div 5=\underline{5, r 3}$ f) $\begin{aligned} & (90-36) \div 5 \\ & 0 \quad 1 \\ & =54 \div 5=\underline{10, r 4} \end{aligned}$ (Exactly divisible by 5, as the reductant and subtrahend are exactly divisible by 5) (Exactly divisible by 5, as the difference between the remainders: $3-3=0$, is divisible by 5) (Not exactly divisible by 5, as the difference betwen the remainders is $2-0=2$, which is not exactly divisible by 5) (Not exactly divisible by 5 as the difference betwen the remainders is $1-4=-3$, which is not divisible by 5) (Difference betwen the remainders is $4-1=3$, which is not exactly divisible by 5) (Not exactly divisible by 5 as the difference betwen the remainders is $0-1=-1$, which is not divisible by 5)	Notes Individual work, monitored (helped) Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, self-correction, praising Extra praise if a P realises this. Note that the remainder of the division is not -3 . There are 7 groups of 5 in 36 and 2 groups of 5 in 14. $7-2=\underline{5}$, but one of these 5 s must be combined with -3 : $-3+5=2$, so the actual result of the division is $4, \mathrm{r} 2$. [18 whole groups of 5 in 90, 7 whole groups of 5 in 35 , and $18-7=11$, but one of these 5 s must be combined with the $-1:-1+5=\underline{4}$, so the actual result of the division is $10, \mathrm{r} 4$.]
8 Erratum In $P b s$, 'is' should be part of a)	PbY6b, page 121 Q. 6 Read: Which digit could be written in the box so that the sum inside the brackets : a) is exactly divisible by 7 b) gives a remainder of 3 when divided by 7 c) gives a remainder of 6 when divided by 7 ? Set a time limit of 3 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class checks that they are correct. Mistakes corrected. Solution: a) \square $=2$ or 9 (as 35 and 28 are multiples of 7 , the middle term must also be a multiple of 7 , i.e. $4 \underline{2}$ or $4 \underline{9}$) b) \square $=5$ (missing term must be 3 more than a multiple of 7) c) \square $\square=8$ or 1 (missing term must be 7 more than a multiple of 7) 40 min	Individual work, monitored, helped Written on BB or SB or OHT BB: $(35+4 \square+28) \div 7$ (or Ps could show middle term on slates in unison) Reasoning, checking, agreement, self-correction, praising Check: a) $4 \underline{2} \div 7=6,4 \underline{9} \div 7=7$ b) $4 \underline{5} \div 7=6, r \underline{3}$ (no others) c) $4 \underline{8} \div 7=6, r \underline{6}$ $4 \underline{1} \div 7=5, r \underline{6}$

16	R: Calculation C: Tests of divisibility. Calculations with remainders E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 122 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{122}=2 \times 61$ Factors: 1, 2, 61, 122 - $\underline{297}=3 \times 3 \times 3 \times 11=3^{3} \times 11$ Factors: 1, 3, 9, 11, 27, 33, 99, 297 - $\underline{472}=2 \times 2 \times 2 \times 59=2^{3} \times 59$ Factors: 1, 2, 4, 8, 59, 118, 236, 472 - $\underline{1122}=2 \times 3 \times 11 \times 17$ Factors: 1, 2, 3, 6, 11, 17, 22, 33 1122, 561, 374, 187, 102, 66, 51, 34	Notes Individual work, monitored (or whole class activity) BB: 122 297, 472, 1122 Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|lr\|l} 122 & 2 & 297 & 3 \\ 61 & 61 & 99 & 3 \\ 1 & & 33 & 3 \\ & & 11 & 11 \\ 472 & 2 & 1122 & 2 \\ 236 & 2 & 561 & 3 \\ 118 & 2 & 187 & 11 \\ 59 & 59 & 17 & 17 \\ 1 & & 1 & \end{array}$
2	PbY6b, page 122 Q. 1 Read: Write five 3-digit numbers which are exactly divisible by: a) 2 b) 5 c) 10 . Allow 3 minutes. Tell Ps to use the natural numbers as their base set. Ps write possible numbers in Ex. Bks. Review with whole class. T asks a few Ps for their numbers. Class points out errors. Review the general 'tests' for divisibility by 2,5 or 10 . Solution: a) e.g. $104,236,450,788,910$ (any even number is divisible by 2) b) e.g. $105,235,450,780,915$ (any number with units digit 0 or 5 is divisible by 5) c) e.g. $100,130,600,800,900$ (any whole 10 is divisible by 10 , i.e. any number which has zero in its units column)	Individual work, monitored, (helped) BB: Base set The natural numbers Agreement, correcting, praising Discussion/agreement on the 'rules'. Feedback for T
3	PbY6b, page 122 Q. 2 Read: Write five 4-digit numbers which are exactly divisible by: a) 4 b) 25 c) 100 Allow 4 minutes. Ps write possible numbers in Ex. Bks. Review with whole class. T asks a few Ps for their numbers. Class points out errors. Review the general test for divisibility by 4,25 or 100 . Solution: e.g. a) $4000,7232,3320,8596,2248$ b) $5500,6925,4850,7175,2025$ c) $6000,9300,5200,8800,1700$ (To be divisible by 100 , the tens and units digits should be 0 .)	Individual work, monitored Agreement, self-correcting, praising Elicit that if the last two digits of a number are divisible by 4 , then the whole number is divisible by 4 (as every whole 100 is divisible by 4). Similarly for 25 .

		Lesson Plan 122
Activity 4	PbY6b, page 122 Q. 3 Read: Write four 5-digit numbers which are exactly divisible a) by 2 and by 5 b) by 4 and by 25 . Set a time limit of 3 minutes. Again, Ps chooose from the base set of natural numbers and write numbers in Ex. Bks. Review with whole class. T asks a few Ps for their numbers. Class points out errors. Agree on the tests for divisibility. Solution: a) e.g. $13430,76000,21560,55550$ (any number which is a multiple of 10 , as $2 \times 5=10$, and 2 and 5 are prime numbers) b) e.g. $26400,41100,70900,11100$ (any number which is a multiple of 100 , as $4 \times 25=100$, and 4 and 25 have no common factors apart from 1) 24 min	Notes Individual work, monitored Agreement, sef-correction, praising Elicit/remind Ps that the lowest common multiple of: - 2 prime numbers, or - 2 numbers with no common factors apart from 1 is their product.
5	PbY6b, page 122 Q. 4 Read: Decide on the remainder before doing the calculation by writing the remainder for each term below it. Deal with one at a time or set a time limit. Review with whole class. Ps could show remainders on scrap paper or slates on command. Ps answering correctly explain reasoning at BB, writing the result too. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) $\begin{aligned} & (45+63+18) \div 3 \\ & 0 \quad 0 \quad 0 \quad \text { (so divisible by } 3) \\ & =15+21+6=\underline{42} \end{aligned}$ b) $(41+72+81) \div 3$ $\begin{aligned} & 20000 \quad \text { (remainder 2, so not divisible by } 3 \text {) } \\ & =194 \div 3=\underline{64, \mathrm{r} 2} \end{aligned}$ c) $(53+90+19) \div 3$ $\begin{array}{ccc} 200 & 1 \\ = & 162 \div 3=\underline{54} \end{array}$ d) $\begin{aligned} & (1000+100+10+6) \div 3 \\ & \quad 1 \quad 1 \quad 1 \quad 0(\text { remainder } 3 \text {, which is divisible by } 3) \\ & =1116 \div 3=\underline{372} \end{aligned}$ e) $(300+20+4) \div 3$ $\begin{array}{llll} 0 & 2 & 1 & \text { (remainder } 3 \text {, which is divisible by } 3 \text {) } \end{array}$ $=324 \div 3=\underline{108}$ f) $\begin{aligned} & (4000+100+70+1) \div 3 \\ & \quad 1 \quad 1 \quad 1 \quad 1 \quad(\text { and } 4 \div 3=1, \underline{r 1}, \text { so not divisible) } \\ & =4171 \div 3=\underline{1390, r 1} \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, selfcorrection, praising Does anyone notice a quick way to determine the remainders? Ps might remember from previous years or might just notice it now. (The remainder when a number is divided by 3 is the same as the remainder when the sum of its digits is divided by 3.) If no P remembers or notices, T points it out.

		Lesson Plan 122
Activity 6	PbY6b, page 122 Q. 5 Read: Write the remainder after dividing each number by 9. Think about what we have just said when doing this exercise! Set a short time limit. Review with whole class. Ps come to BB to write remainders and explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) 100 [1] b) 200 [2] c) $800 \quad[8]$ d) 900 [0] e) 1000 [1] f) 2000 [2] g) 6000 [6] h) 9000 [0] i) 819 [0] j) 7368 [6] k) 12534 [6] 1) 88888 [4] Elicit that the same strategy works for 9 as for 3: the remainder is the same as when the sum of the digits in the number is divided by 9 . T (or Ps) might point out that if the sum of the remainders is a 2-digit number, then those 2 digits can be added together too. Details: e.g. 819: $8+1+9=18$, and $8+1=9$ (so divisible by 9) 7368: $7+3+6+8=24$, and $2+4=6$, so remainder is $\underline{6}$ $12534: 1+2+5+3+4=15$, and $1+5=\underline{6}$, so remainder is $\underline{6}$ 88 888: $\quad 5 \times 8=40,4+0=4$, so remainder is 4 .	Notes Indiviual work, monitored, helped Written on BB or use enlarged copy master or OHP Differentiation by time limit Reasoning, agreement, selfcorrection, praising Extra praise if a P suggests adding the 2 digits without hint from T but accept and praise e.g. $40 \div 9=4, r \underline{4}$ etc.
7	PbY6b, page 122 Q. 6 Read: Decide on the remainder before doing the calculation by writing the remainder for each term below it. Deal with one at a time or set a time limit. Review with whole class. Ps could show remainders on scrap paper or slates on command. Ps answering correctly explain reasoning at BB, writing the result too. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) $\begin{aligned} & (45+63+18) \div 9 \\ & 0 \quad 0 \quad 0 \\ & =5+7+2=\underline{14} \end{aligned}$ $0 \quad 0 \quad 0 \quad \text { (no remainder, so divisible by } 9 \text {) }$ b) $\begin{aligned} & (41+72+81) \div 9 \\ & 50000 \\ & =194 \div 9=\underline{21, r} 5 \end{aligned} \text { (remainder 5, so not divisible by } 9 \text {) }$ c) $\begin{aligned} & (53+90+19) \div 9 \\ & 8001 \\ & =162 \div 9=\underline{18} \end{aligned} \text { (remainder } 9, \text { which is divisible by } 9 \text {) }$ d) $\begin{aligned} & (1000+100+10+6) \div 9 \\ & \quad 1 \quad 1 \quad 1 \quad 6 \text { (remainder } 9 \text {, which is divisible by } 9 \text {) } \\ & =1116 \div 9=\underline{124} \end{aligned}$ e) $\begin{aligned} & (300+20+4) \div 9 \\ & 3 \quad 2 \quad 4 \\ & =324 \div 9=\underline{36} \end{aligned} \text { (remainder 9, which is divisible by } 9 \text {) }$ f) $\begin{aligned} & (4000+100+70+1) \div 9 \\ & \quad 4 \quad 1 \quad 7 \quad 1 \quad(\text { and } 13 \div 9=1, \underline{\mathrm{r} 4}, \text { so not divisible) } \\ & =4171 \div 9=\underline{463, \mathrm{r} 4} \end{aligned}$	Individual work, monitored, helped Written on BB or SB or OHT Responses shown in unison. Reasoning, agreement, selfcorrection, praising Ask 1 or 2 Ps to say the 'rule' in their own words. or $1+3=\underline{4}$, so remainder is 4 .

16		Lesson Plan 122
Activity		Notes
8	PbY6b, page122	Individual work, monitored
	Q. 7 Read: Write the remainder after dividing each number by 3. Set a short time limit. Review with whole class. Ps come to BB to write remainders and explain reasoning. Class agrees/disagrees.	(or if time is short, whole class activity with Ps coming to BB)
	Mistakes discussed and corrected.	Written on BB or use enlarged copy master or OHP
	a) $100[1] \quad$ b) $200[2] \quad$ c) $800 \quad[2] \quad$ d) $900 \quad[0]$	Differentiation by time limit
	e) $1000[1] \quad$ f) $2000[2] \quad$ g) 6000 [0] \quad h) $9000 \quad$ [0]	Reasoning, agreement, self-
	i) $819[0] \quad$ j) $7368[0] \quad$ k) $12534[0] \quad$ l) 88888 [1]	correction, praising
	Show details if there is disagreement. e.g.	T points out that instead of dividing by 3 , we could
	819: $8+1+9=18$, and $8+1=9$ (so divisible by 3) 7368: $7+3+6+8=24$, and $2+4=6$ (so divisible by 3)	subtract the nearest (smaller)
	7368: $7+3+6+8=24$, and $2+4=6$ (so divisible by 3) 12 534: $1+2+5+3+4=15$, and $1+5=6$ (so divisible by 3)	multiple of 3, e.g. $4-3=1$, so remainder is 1 .
	88 888: $5 \times 8=40,4+0=4,4 \div 3=1, r \underline{1}$ (not divisible)	so remainder is 1 .
	Ask individual Ps to explain in their own words how to calculate the remainder quickly when dividing by $2,3,4,5,9$, 10,25 or 100 . 45 min	Class agrees/disagrees.
		Praising

16	R: Calculation C: Tests of divisibility E: Problems. Reasoning and checking results	$\begin{gathered} \text { Lesson Plan } \\ 123 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{123}=3 \times 41$ Factors: 1, 3, 41, 123 - $\underline{298}=2 \times 149$ Factors: 1, 2, 149, 298 - $\underline{473}=11 \times 43$ Factors: 1, 11, 43, 473 - $\underline{1123}$ is a prime number Factors: 1,1123 (as not exactly divisible by $2,3,5,7,11,17,19,23,29$ and 31, and $37^{2}>1123$)	Notes Individual work, monitored (or whole class activity) BB: 123, 298, 473, 1123 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g. $\left.\begin{array}{r\|ll\|l\|l} 123 & 3 & & 473 & 11 \\ 41 & 41 & & 43 & 43 \\ 1 & & 298 & 2 & 1 \end{array} \right\rvert\,$
2	Tests for divisibility Let's revise how to work out whether a natural number is exactly divisible by a certain number, and if it is not, what the remainder will be. T says the divisor and chooses Ps to describe the test, say how to calculate the remainder and to write examples (divisible and not divisible) on BB. Class points out errors. e.g. a) Divisor is 2 The number is divisible by 2 if its units digit is divisible by 2 (or even). If the number is not divisible by 2 (or odd), the remainder is 1 . b) Divisor is 3 The number is divisible by 3 if the sum of its digits is divisible by 3 . If the number is not divisible by 3 , the remainder is the same as when the sum of its digits is divided by 3 . c) Divisor is 4 The number is divisible by 4 if the last 2 digits are divisible by 4 . If the number is not divisible by 4 , the remainder is the same as when the last two digits are divided by 4 . d) Divisor is 5 The number is divisible by 5 if its units digit is 5 or 0 . If the number is not divisible by 5 , the remainder is the same as when the units digit is divided by 5 . e) Divisor is 9 The number is divisible by 9 if the sum of its digits is divisible by 9 . If the number is not divisible by 9 , the remainder is the same as when the sum of its digits is divided by 9 . f) Divisor is 10 The number is divisible by 10 if the units digit is 0 . If the number is not divisible by 10 , the remainder is the units digit. g) Divisor is 25 The number is divisible by 25 if the last 2 digits are divisible by 25 . If the number is not divisible by 25 , the remainder is the same as when the last two digits are divided by 25 .	Whole class activity Involve all Ps. At a good pace. Agreement, praising e.g. BB: $8756 \rightarrow 6$, divisible by 2 $3725 \rightarrow 5 \rightarrow \mathrm{r} 1$ e.g. $4353 \rightarrow 15 \rightarrow$ divisible by 3 $2917 \rightarrow 19 \rightarrow 10 \rightarrow \mathrm{r} 1$ e.g. $1948 \rightarrow 48 \rightarrow$ divisible by 4 $235710 \rightarrow 10 \rightarrow \mathrm{r} 2$ e.g. BB: $36910 \rightarrow 0$, divisible by 5 $327 \rightarrow 7 \rightarrow \mathrm{r} 2$ e.g. $4356 \rightarrow 18 \rightarrow$ divisible by 9 $1885 \rightarrow 22 \rightarrow 4 \rightarrow \mathrm{r} 4$ e.g. $4350 \rightarrow 0 \rightarrow$ divisible by 10 $2917 \rightarrow 7 \rightarrow$ r 7 e.g. $3875 \rightarrow 75 \rightarrow$ divisible by 25 $6422 \rightarrow 22 \rightarrow$ r 22

16		Lesson Plan 123
Activity 3	PbY6b, page 123 Q. 1 Read: a) Write four 5-digit numbers which are exactly divisible by 9. b) Increase the numbers so that when the new numbers are divided by 9: i) there is a remainder of 1 ii) there is a remainder of 4 . c) Decrease the original numbers so that when the new numbers are divided by 9 there is a remainder of 8 . Set a time limit. T monitors all Ps closely to check that they understand the task and to note Ps with different types of numbers. Review with whole class. T chooses a few Ps to come to BB to write their numbers and to explain how they adjusted them. Class checks that they are correct. Solution: e.g.	Notes Individual work, monitored, helped, corrected Reasoning, checking with the appropriate divisibility test, agreement, praising (Most Ps might change only the units digits but show that other place-values can be changed too.)
4	PbY6b, page 123 Q. 2 Read: a) Write four 4-digit numbers which are exactly divisible by 3. b) Increase the numbers so that the new numbers are exactly divisible by 9 . c) Increase the original numbers so that when the new numbers are divided by 3: i) there is a remainder of 1 ii) there is a remainder of 2 . Set a time limit. Again, T monitors all Ps closely and note Ps with different types of numbers. Review with whole class. T chooses a few Ps to come to BB to write their numbers and to explain how they adjusted them. Class checks that they are correct. Solution: e.g.	Individual work, monitored, helped, corrected Reasoning, checking with the appropriate divisibility test, agreement, praising

		Lesson Plan 123
Activity 5	PbY6b, page 123 Q. 3 Read: a) Circle the numbers which are divisible by 2 and also by 3 . b) Calculate the remainder when each number is divided by 6 . Set a time limit of 3 minutes. Ps circle the numbers and write the remainders beneath in Pbs. (If necessary, Ps can do divisions in Ex. Bks.) Review with whole class. T points to each number in turn and Ps stand up if they think it is divisible by 2 and by 3 and/or show its remainder when divided by 6 . Agree that numbers which are divisible by 2 and by 3 are also exactly divisible by 6 . T chooses Ps to explain their thinking or show their calculations. Who did the same? Who thought (calculated) in a different way? Mistakes discussed and corrected. Solution: a) 23461 (Odd numbers not possible. Add digits in other 3 numbers and divide their sum by 3.) b) $\underline{23461} \div 6=3910, \mathrm{r} \underline{1}$ (or 23460 is even and the sum of its digits is divisible by 3 so it is also divisible by 6 , so 23461 gives a remainder of $\underline{1}$ when divided by 6) 72 534: divisible by 2 and by 3 , so divisible by 6 , so r $\underline{0}$. $\underline{183} \div 6=20, \mathrm{r} \underline{3}$ or $183=180+\underline{3}$, so remainder is $\underline{3}$ $\underline{5606} \div 6=934$, r $\underline{2}$ or $5606=5400+180+24+\underline{2}$, so r $\underline{2}$ (or 5604 is divisible by 2 and by 3, so also by 6 , so 5606 when divided by 6 will give a remainder of 2.) 444: divisible by 2 and by 3 , so divisible by 6 , so $\underline{0}$.	Notes Individual work, monitored Written on BB or SB or OHT: BB: $23461 \quad 72534183$ 5606444 Challenge the more able Ps to think of other ways to determine the remainders. Responses shown in unison. In good humour! Praising Discussion, reasoning, agreement, self-correction, praising Extra praise if Ps thought of alternatives to division, otherwise T could show them and ask Ps if they are correct.
6	PbY6b, page 123, Q. 4 Read: a) Write the natural numbers from 150 to 170 in the Venn diagram. What is a natural number? (a positive whole number) Ps ome to BB one after the other to write the numbers from 150 to 170 in the correct place on diagram on BB, explaining reasoning. Rest of class write numbers in Pbs too and point out any errors. BB: T : We call the part of the diagram where two sets overlap the intersection of the 2 sets. What do you notice about the numbers in this intersection? (T points) (They are multiples of 12.)	Whole class activity (or individual work if Ps wish, under a time limit) Drawn on BB or use enlarged copy master or OHP At a good pace. In good humour. Agreement, praising BB: intersection Agreement, praising

		Lesson Plan 123
Activity 6	(Continued) What about the other factors of 12 ? Is a number divisible by 12 if it is divisible by 2 and by 6 ? (No, e.g. 18 is divisible by 2 and by 6 but not by 12) Read: Complete this sentence. Ps read out the sentence, stressing the numbers to be written in the boxes. T fills them in on BB and Ps in Pbs. BB: A natural number is divisible by 12 only if it is divisible by and by 4 .	Notes T asks several Ps what they think. Ask Ps who say 'No/ for an example to show they are correct. In unison. Praising
7	PbY6b, page 123 Q. 5 Read: a) Wrrite the natural numbers from 150 to 170 in the correct place in the table. b) Complete this sentence. Deal with one part at a time or set a time limit. Review with whole class. Ps come to BB to choose a rectangle and fill in the numbers, explaining reasoning. Class agrees/ disagrees. Mistakes, omissions corrected. T chooses a P to read out the sentence, then Ps show missing number on slates or scrap paper on command. T asks Ps with different answers to explain why they chose their numbers. Class decides who is correct. Mistakes corrected. Solution: a) b) If a natural number is divisible by 4 and by 6, then it is also divisible by 12 .	Individual work, monitored, helped Drawn on BB or use enlarged copy master or OHP At a good pace. Reasoning, agreement, selfcorrections, praising Responses shown in unison. Resaoning, agreement, selfcorrection, praising Some Ps might have written ' 24 ' but 12 is divisible by 4 and 6 but not by 24 . It is really the same concept as Q.4. $4=\underline{2} \times 2, \quad 6=\underline{2} \times 3$ One of the 2 s is common to 4 and 6 , so the lowest common multiple of 4 and 6 is $\begin{aligned} & 2 \times 2 \times 3=\underline{12} \\ & (=4 \times 3, \text { as in Q. } 4) \end{aligned}$ (If a number is divisible by 6 , it is also divisible by 3.)
8	PbY6b, page 123, Q. 6 a) Read: Write a number which is exactly divisible by 7,11 and 13 . Allow Ps a minute to think and calculate, then Ps show numbers on scrap paper or slates on command. (1001) Ps with correct answer explain reasoning. (7, 11 and 13 are all prime numbers with no common factors apart from 1, so their lowest common multiple is their product) BB: e.g. $7 \times 11 \times 13=11 \times 91=910+91=\underline{1001}$ b) Read: Multiply 215 by 7, then multiply the product by 11, then multiply this product by 13. Explain the result in your exercise book. Ps come to BB to do each step of the multiplications. Class points out errors. Extra praise if a P points out that there is no need to do all these multiplications - just add $215000+215=\underline{215215}$	Whole class activity (or individual work if Ps wish) Responses shown in unison. Reasoning (with T's help if necessary), agreement, praising BB: b) \qquad $\left.\begin{array}{\|c\|c\|c\|c\|}\hline 1 & 5 & 0 & 5 \\ \hline & \times & 1 & 1 \\ \hline 1 & 6 & 5 & 5\end{array}\right)$ $\begin{array}{\|c\|c\|c\|c\|c\|} \hline & 1 & 6 & 5 & 5 \\ \hline & & & \times & 1 \\ \hline & 4 & 9 & 6 & 6 \\ \hline 1 & 6 & 5 & 5 & 5 \\ \hline 2 & 1 & 5 & 2 & 0 \\ \hline 1 & 1 & 1 & 1 & \\ \hline \end{array}$ It's the same as: $\begin{aligned} & 215 \times 1001 \\ & =215000 \\ & +215 \\ & =\quad 215215 \end{aligned}$

176	R: Natural numbers C: Fractions and decimals E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 124 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{124}=2 \times 2 \times 31=2^{2} \times 31$ Factors: 1, 2, 4, 31, 62, 124 - $\underline{299}=13 \times 23$ Factors: 1, 13, 23, 299 - $\underline{474}=2 \times 3 \times 79$ Factors: 1, 2, 3, 6, 79, 158, 237, 474 - $\underline{1124}=2 \times 2 \times 281=2^{2} \times 281$ Factors: 1, 2, 4, 281, 562, 1124	Notes Individual work, monitored (or whole class activity) BB: 124, 299, 474, 1124 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising
2	Revision: Long division Let's do these divisions together and check the results. Ps come to BB or dictate each step, explaining with place-value detail. Ps write calculation in Ex. Bks. too. How can we check the result? (with multiplication) Again, Ps come to BB or dictate what T should write and Ps write it in Ex. Bks too. BB: a) Check: b) Check: Elicit different ways of writing the result in b). e.g. BB: $448448 \div 1536=291$, r 1472 $\begin{aligned} & \text { or }=291 \frac{1472}{1536}=291 \frac{184}{192}=291 \frac{23}{24} \\ & \text { or } \approx 292 \text { (to the nearest unit) } \end{aligned}$	Whole class activity Written on BB or use enlarged copy master or OHP At a good pace. Class points out errors. Reasoning, agreement, praising Feedback for T or Ps might suggest using a calculator to work out the result as a decimal. (291.9583)

		Lesson Plan 124
Activity 3	Solving equations Let's work out what the letters stand for by solving these equations. Ps come to BB or dictate what T should write at each step, explaining reasoning. Ps write solutions in Ex. Bks. at the same time. How can we check our result? (Substitute the value for the letter in the equation and check that the equation is true.) BB: a) $\begin{array}{ll} \left(a-3 \frac{2}{3}\right)+2=5 & \text { b) } \\ 20-\left(b+2 \frac{3}{4}\right)=7 \\ a-3 \frac{2}{3}=5-2=3 & b+2 \frac{3}{4}=20-7=13 \\ a=3+3 \frac{2}{3} & b=13-2 \frac{3}{4}=11-\frac{3}{4} \\ a=6 \frac{2}{3} & b=10 \frac{1}{4} \end{array}$ 17 min	Notes Whole class activity Written on BB or SB or OHT At a good pace. Reasoning, checking, agreement, praising Feedback for T Checks: $\text { a) } \begin{aligned} & \left(6 \frac{2}{3}-3 \frac{2}{3}\right)+2 \\ = & 3+2=\underline{5} \boldsymbol{V} \end{aligned}$ $\text { b) } \begin{aligned} & 20-\left(10 \frac{1}{4}+2 \frac{3}{4}\right) \\ = & 20-13=\underline{7} \boldsymbol{V} \end{aligned}$
4	PbY6b, page 124 Q. 1 Read: Calculate: a) five times $3 \frac{1}{4}$ b) one fifth of $\frac{3}{7}$ c) half of $2 \frac{4}{5}$ Set a time limit of 2 minutes. Ps write operations in Ex. Bks. Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Who did the same? Who did it another way? Solution: a) $\begin{aligned} 5 \times 3 \frac{1}{4} & =15+\frac{5}{4}=15+1 \frac{1}{4}=16 \frac{1}{4} \\ \text { or } & =5 \times \frac{13}{4}=\frac{65}{4}=16 \frac{1}{4} \end{aligned}$ b) $\frac{3}{7} \div 5=\frac{3}{35}$ (or $\frac{1}{5}$ of $\frac{3}{7}=\frac{1}{5} \times \frac{3}{7}=\frac{3}{35}$) c) $2 \frac{4}{5} \div 2=1 \frac{2}{5}$ (or $2 \frac{4}{5} \div 2=\frac{14}{5} \div 2=\frac{7}{5}=1 \frac{2}{5}$)	Individual work, monitored Written on BB or SB or OHT Responses shown in unison Reasoning, agreement, self-correction, praising Feedback for T What does $\frac{3}{35}$ actually mean? (1 unit has been divided into 35 equal parts and we have taken 3 of the parts)
5	PbY6b, Page 124 Q. 2 Read: Write these fractions in decreasing order in your exercise book. What should you do first to make the comparison easier? (Write the fraction as equivalent fractions with a common denominator.) Set a time limit of 3 minutes, then review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: (Lowest common $\frac{8}{10}=\frac{4}{5}>\frac{3}{4}=\frac{75}{100}>\frac{11}{20}>\frac{3}{6}$ multiple of $2,4,5$ and 20 is 20) \rightarrow	Individual work, monitored, (helped) Written on BB or SB or OHT $\mathrm{BB}: \frac{3}{4}, \frac{8}{10}, \frac{3}{6}, \frac{75}{100}, \frac{4}{5}, \frac{11}{20}$ Reasoning, agreement, selfcorrection, praising, e.g. $\begin{aligned} & \rightarrow \frac{3}{4}, \frac{4}{5}, \frac{1}{2}, \frac{3}{4}, \frac{4}{5}, \frac{11}{20} \\ & \rightarrow \frac{15}{20}, \frac{16}{20}, \frac{10}{20}, \frac{15}{20}, \frac{16}{20}, \frac{11}{20} \end{aligned}$

		Lesson Plan 124
Activity 6	PbY6b, page 124 Q. 3 Read: Practise calculation. Deal with one at a time under a short time limit. Ps calculate in Pbs (or in Ex. Bks if they need more space) then show result on scrap paper or slates on command. Ps with correct answer explain reasoning at BB to Ps who were wrong. Who did the same? Who did it a different way? Mistakes discussed and corrected. Accept any valid method of calculation. Solution: e.g. a) $1 \frac{2}{5}+2 \frac{2}{3}+3 \frac{4}{5}-4 \frac{1}{2}=2+\frac{6}{5}+\frac{2}{3}-\frac{1}{2}=3+\frac{1}{5}+\frac{2}{3}-\frac{1}{2}$ $\begin{aligned} & =3+\frac{6+20-15}{30} \\ & =3 \frac{11}{30} \end{aligned}$ b) $234 \times 0.34=\underline{79.56}$ c) $\left(34 \frac{3}{5}-12.4\right) \times 5=(34.6-12.4) \times 5=22.2 \times 5=\underline{111}$ d) $\left(3 \frac{1}{4}+2 \frac{1}{2}\right) \times \frac{2}{5}=5 \frac{3}{4} \times \frac{2}{5}=\frac{23}{4_{2}} \times \frac{1}{5}=\frac{23}{10}=2 \frac{3}{10}$ $\text { or }=(3.25+2.5) \times 0.4=5.75 \times 0.4=\underline{2.3}$ e) $\left(7 \frac{3}{4}+9 \frac{4}{5}\right) \div \frac{3}{7}=\left(16+\frac{15+16}{20}\right) \times \frac{7}{3}=16 \frac{31}{20} \times \frac{7}{3}$ $=\frac{351}{20} \times \frac{7}{3_{1}}=\frac{819}{20}=40 \frac{19}{20}$ f) $48.3 \div 1.5=483 \div 15=161 \div 5=\underline{32.2}$	Notes Individual work, monitored, helped Written on BB or SB or OHT Responses shown in unison Discussion, reasoning, agreement, self-correction, praising Elicit that as 2, 3 and 5 are prime numbers, their lowest common multiple is their product BB: 2 3 4 \times 0 3 4 9 3 6 +7 0 2 0 7 9.5 6 Elicit that: - calculations in brackets should be done first; - the product of long multiplication involving decimals should have the same number of decimal digits as the two factors combined; - to divide by a fraction, multiply by its reciprocal value.
7	PbY6b, page 124 Q. 4 Read: Write a plan, do the calculation, check it and write the answer in a sentence. Deal with one at a time. Ps read question themselves and solve it in Ex. Bks. under a short time limit. Review with whole class. T chooses a P to read out the question, them Ps show results on scrap paper or slates on command. Ps with different answers explain reasoning at BB. Class points out errors and agrees on correct answer. Who did it the same way? Who did it another way? etc. Mistakes discussed and corrected. A P says the answer in a sentence. Solution: a) If an adult eats on average $\frac{7}{10} \mathrm{~kg}$ of bread each day, how much bread might be eaten by a family of 6 adults in a week? Plan: $\frac{7}{10} \mathrm{~kg} \times 6 \times 7=0.7 \mathrm{~kg} \times 42=29.4 \mathrm{~kg}$ Answer: In 1 week, 6 adults might eat 29.4 kg of bread.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T or $\frac{7}{10_{5}} \times 42=\frac{147}{5}=29 \frac{2}{5}$ (on average!) (kg)

16		$\begin{gathered} \text { Lesson Plan } \\ 125 \end{gathered}$
Activity	Factorising 125, 300, 475 and 1125. Revision, activities, consolidation PbY6b, page 125 Solutions: Q. 1 a) $(177-4 \underline{2}) \div 5$, or $(177-4 \underline{7}) \div 5$ b) $(84+5 \underline{6}) \div 7$ c) $(38 \underline{1}-\underline{6} 5) \div 4$, or $(38 \underline{3}-\underline{75}) \div 4$, or $(38 \underline{5}-\underline{6} 5) \div 4$, etc. d) $(2 \underline{1} 6-1 \underline{2}) \div 6$, or $(2 \underline{1} 6-1 \underline{8}) \div 6$, or $(2 \underline{2} 6-1 \underline{0}) \div 6$, etc. e) $(78 \underline{7}-17) \div 10$, or $(78 \underline{7}-\underline{2} 7) \div 10$, or $(78 \underline{7}-\underline{3} 7) \div 10$, etc. f) $(1 \underline{1} 5+\underline{6}) \div 11$, or $(1 \underline{2} 5+\underline{7}) \div 11$, or $(1 \underline{3} 5+\underline{8}) \div 11$, etc. Q. $2 \quad$ a) $\quad 1723 \quad \underline{3978} \quad 1254 \quad 8350 \quad \underline{1011}$ b) e.g. (but many others possible) Q. 3 a) b) A number which is divisible by $\underline{3}$ and by $\underline{4}$ and by $\underline{6}$ is also divisible by $\underline{12}$. c) Ps could label each section with a letter or use different colours to identify them. (Many statements are possible.) Q. 4 a) $4 \frac{1}{6}+\frac{1}{4}+8 \frac{2}{3}-11 \frac{1}{2}=1+\frac{2+3+8-6}{12}=1 \frac{7}{12}$ b) $364 \times 4.36=\underline{1587.04}$	Notes $\underline{125}=5^{3}$ Factors: 1, 5, 25, 125 $\underline{300}=2^{2} \times 3 \times 5^{2}$ Factors: 1, 2, 3, 4, 5, 6, 10, 12, $15,20,25,30,50,60,75,100$, 150, 300 [Number of factors: $\begin{aligned} & (2+1) \times(1+1) \times(2+1) \\ & =3 \times 2 \times 3=18] \\ & \underline{475}=5^{2} \times 19 \end{aligned}$ Factors: 1, 5, 19, 25, 95, 475 $\underline{1125}=3^{2} \times 5^{3}$ Factors: 1, 3, 5, 9, 15, 25, $45,75,125,225,375,1125$ (or set factorising as homework at the end of Lesson 124 and review at the start of Lesson 125)

16	R: Calculations C: Revision: fractions, decimals, percentages.Quotient as a fraction or a decimal E: Word problems	$\begin{gathered} \text { Lesson Plan } \\ 126 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{126}=2 \times 3 \times 3 \times 7=2 \times 3^{2} \times 7$ Factors: 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126 - $\underline{301}=7 \times 43 \quad$ Factors: 1, 7, 43, 301 - $\underline{476}=2 \times 2 \times 7 \times 17=2^{2} \times 7 \times 17$ Factors: 1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476 - $\underline{1126}=2 \times 563 \quad$ Factors: 1, 2, 563, 1126 (563 is a prime number, as not divisible by $2,3,5,7,11,13,17,19$ and 23 , and $29^{2}>563$)	Notes Individual work, monitored (or whole class activity) BB: 126, 301, 476, 1126 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g.
2	Fractions and decimals a) Who can explain what 3 eighths means? Ps explain in different ways. Class agrees/disagrees. e.g. P_{1} : Divide 1 unit into 8 equal parts and take 3 of the parts. $\mathrm{P}_{2}: \frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} ; \quad \mathrm{P}_{3}: \frac{1}{8} \times 3=\frac{3}{8}$; P_{4} : P_{5} : Divide each of 3 units into 8 equal parts P_{6} : and take 1 part from each unit. $\mathrm{P}_{6}: \frac{1}{8}$ of $3=\frac{3}{8} ; \mathrm{P}_{8}: 3 \div 8=\frac{3}{8} ; \quad \mathrm{P}_{9}: \frac{375}{1000}$; $\mathrm{P}_{10}: 3 \div 8=0.375 ; \frac{3}{8} \rightarrow 37.5 \% ; \mathrm{P}_{11}:$ The ratio $3: 8=\frac{3}{8} ;$ etc. b) Who can explain what 0.81 means? Ps explain in different ways. Class agrees/disagrees. e.g. $\begin{aligned} & \mathrm{P}_{12}: 0.81=\frac{81}{100} ; \mathrm{P}_{13}: 0.81 \rightarrow 81 \% ; \mathrm{P}_{14}: 0.81=81 \div 100 \\ & \mathrm{P}_{15}: 0.81=81: 100 ; \mathrm{P}_{16}: 0.81=\frac{1}{100} \times 81 ; \mathrm{P}_{17}: 0.81=1-0.19 \end{aligned}$	Whole class activity Involve several Ps. Agreement, praising T shows any of those opposite which Ps do not and asks class if it is correct. Accept any valid meaning, e.g. $\begin{aligned} & \frac{3}{8} \\ \text { or } & \frac{1}{4} \times \frac{3}{2} \\ \text { or } & \div 8 \times 3 \end{aligned}$ Extra praise for creativity! etc.
3	PY6b, page 126 Q. 1 Read: Write the quotient as a fraction and as a decimal in your exercise book. Deal with one row at a time under a time limit. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that to change a fraction to a decimal, if possible convert to an equivalent fraction with a denominator which is a whole 10 (or 100 or 1000) or divide the numerator by the denominator.	Individual work, monitored, helped Some more difficult items could be done with the whole class. Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising

		Lesson Plan 126
Activity		Notes
7	PbY6b, page 126, Q. 5	Whole class activity
	Read: The length of an aluminium cuboid is 150 cm , which is 150% of its width.	(or individual trial first if Ps wish and there is time)
	The height of the cuboid is $\frac{3}{5}$ of its width. If the mass of $1 \mathrm{~m}^{3}$ of aluminium is 2700 kg , what is the mass of the cuboid?	Show a model or draw a diagram of a cuboid on BB.
	Allow Ps a minute to think about it and discuss with their neightbours if they wish.	Involve several Ps.
	Ps who have ideas suggest what to do first and how to continue. Class agrees/disagrees or suggests better alternatives. T gives hints only if	Discussion, reasoning, agreement, praising
	necessary (e.g. converting the dimensions to metres before doing the calculations for volume and mass).	Extra praise for Ps who suggest this without hint from
	Solution: e.g.	
	$\text { Length: } \begin{aligned} & 150 \mathrm{~cm}=1.5 \mathrm{~m}, \quad \text { Width: } \begin{aligned} & 150 \% \end{aligned} \rightarrow 150 \mathrm{~cm} \\ & 100 \% \end{aligned} \rightarrow 100 \mathrm{~cm}=1 \mathrm{~m}$	
	Height: $\frac{3}{5}$ of $100 \mathrm{~cm}=\frac{3}{-5} \times{ }^{20}+00 \mathrm{~cm}=60 \mathrm{~cm}=0.6 \mathrm{~m}$	Height: $\frac{3}{5} \times 1 \mathrm{~m}=\underline{0.6 \mathrm{~m}}$
	Volume: $(1.5 \times 1 \times 0.6) \mathrm{m}^{3}=(1.5 \times 0.6) \mathrm{m}^{3}=0.9 \mathrm{~m}^{3}$	
	Mass: $2700 \mathrm{~kg} \times 0.9=270 \mathrm{~kg} \times 9=\underline{2430 \mathrm{~kg}}$	
	Answer: The mass of the aluminium cuboid is 2430 kg .	Class says the answer in a sentence in unison.

	R: Calculations C: Revision: Fractions, decimals, percentages. Word problems E: Problems with ratio and proportion	$\begin{gathered} \text { Lesson Plan } \\ 127 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 5 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 127 is a prime number Factors: 1, 127 (as not divisible by $2,3,5,7,11$, and $13^{2}>127$) - $302=2 \times 151$ Factors: 1, 2, 151, 302 - $\underline{477}=3 \times 3 \times 53=3^{2} \times 53$ Factors: 1, 3, 9, 53, 159, 477 - $\underline{1127}=7 \times 7 \times 23=7^{2} \times 23$ Factors: $1,7,23,49,161,1127$ 7 min	Notes Individual work, monitored (or whole class activity) BB: 127, 302, 477, 1127 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising
2	Solving inequalities Which side is greater? How much greater? Ps come to BB to fill in missing signs and explain reasoning. Who agrees? Who thinks something else? Ps give examples or counter examples to support what they think. BB: a) $a+3 \bigodot a+5 \quad$ (e.g. $a=10: \quad 10+3<10+5)$ (Elicit that the sign is also correct if $a=0$ and if a is negative.) b) $\begin{gather*} b \times 3<b \times 5 \quad(\text { if } b>0, \text { i } \\ \text { e.g. if } b=2: \quad 2 \times 3<2 \times 5 \\ \text { or } \quad \text { if } b=\frac{6}{5}: \quad \frac{2}{5} \times 3<\frac{2}{5} \times 5 \tag{2}\\ \left(1 \frac{1}{5}\right) \end{gather*}$ but if b is a negative number, $b \times 3>b \times 5$ $\text { e.g. if } b=(-4): \quad(-4) \times 3>(-4) \times 5$ $(-12) \quad(-20)$ or if $b=\underline{0}: \quad b \times 3=b \times 5$ (0) (0) c) Elicit that the missing sign could be $<,=$, or $>$. e.g $\quad c \times 0 \circlearrowleft c \quad$ (if c is a positive number) or $\quad c \times 0=c \quad($ if $c=0)$ or $\quad c \times 0>c \quad$ (if c is a negative number) $\text { e.g. if } c=-2: \quad(-2) \times 0 \quad-2$	Whole class activity Written on BB or SB or OHT At a good pace Involve several Ps. Discussion, reasoning, agreement, praising If Ps do not mention zero and negative numbers, T asks about them. $\text { e.g. } c=5: 5 \times 0 \circlearrowleft 5$

		Lesson Plan 127
Activity 3	PbY6b, page 127 Q. 1 Read: Write the numbers in increasing order. Set a time limit of 2 minutes. Ps work in Ex. Bks. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Ask Ps to show their approximate positions on a number line drawn on BB. Solution: $\text { a) } \begin{array}{r} 0.8, \\ \frac{2}{3}, \end{array}-0.9, \quad \frac{1}{2}, \quad \frac{4}{5}, \quad-\frac{3}{5}, ~+\frac{24}{30} \frac{20}{30}-\frac{27}{30} \quad \frac{15}{30} \quad \frac{24}{30}-\frac{18}{30} 0$ $\text { b) } \begin{array}{r} 2 \frac{4}{5}, \quad \frac{3}{4},-\frac{1}{2}, \quad \frac{4}{6},-\frac{3}{2} \\ -\frac{3}{2}<-\frac{1}{2}<\frac{4}{6}<\frac{3}{4}<2 \frac{4}{5} \end{array}$	Notes Individual work, monitored (helped) Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Feedback for T or accept comparison of one pair at a time, e.g. $-0.9=-\frac{9}{10}<-\frac{3}{5}=-\frac{6}{10}$ Extra praise for Ps who realised that the ordering in b) can be done without changing all the fractions to equivalent fractions. We need only compare: $\frac{3}{4}=\frac{9}{12}>\frac{4}{6}=\frac{8}{12}$
4	PbY6b, page 127 Q. 2 Read: a) Round 7812529 to the nearest: i) 10 ii) 100 iii) 1000 iv) 1000000 . b) Round 5.465 to the nearest: i) unit ii) tenth iii) hundredth. Set a short time limit. Ps work in Ex. Bks. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: a) i) $7812529 \approx 7812530$ (to the nearest 10) ii) $7812529 \approx 7812500$ (to the nearest 100) iii) $7812529 \approx 7813000$ (to the nearest 1000) iv) $7812529 \approx 8000000$ (to the nearest 1000000) b) i) $5.465 \approx 5$ (to the nearest 1) ii) $5.465 \approx 5.5$ (to the nearest 10 th, or to 1 d.p.) iii) $5.465 \approx 5.47$ (to the nearest 100th, or to 2 d.p.)	Individual work, monitored, (helped) Numbers written on BB or SB or OHT Differentiation by time limit Reasoning, agreement, selfcorrection, praising Elicit/remind Ps that: - the digit '5' rounds up to the next greater place value - when rounding a number, round the whole number, not one digit at a time. Feedback for T

		Lesson Plan 127
Activity 5	PbY6b, page 127 Q. 3 Read: Solve these equations. Set a time limit or deal with one row at a time. Ps write operations in Ex. Bks and check results by substituting the value for the letter in each equation to see whether it is true. Review with the whole class. Ps could show results on scrap paper or slates on command. Ps with different answers explain reasoning at BB . Class checks mentally and agrees on the correct answer. Mistakes discussed and corrected. Solution: a) $2.75+a=7.1, \quad a=7.1-2.75=\underline{4.35}$ b) $b+\frac{2}{7}=1 \frac{4}{5}, \quad b=1 \frac{4}{5}-\frac{2}{7}=1+\frac{28-10}{35}=1 \frac{18}{35}$ c) $c-8.02=3.8$, $c=3.8+8.02=\underline{11.82}$ d) $5-d=3 \frac{5}{8}, \quad d=5-3 \frac{5}{8}=2-\frac{5}{8}=\underline{1 \frac{3}{8}}$ e) $7.2 \times e=36$, $e=36 \div 7.2=360 \div 72=\underline{5}$ f) $f \div 4.2=10.5$, $f=10.5 \times 4.2=42+2.1=\underline{44.1}$ g) $\frac{4}{3} \div g=\frac{2}{5}$, $g=\frac{4}{3} \div \frac{2}{5}=\frac{2^{4}}{3} \times \frac{5}{2_{1}}=\frac{10}{3}=\underline{3 \frac{1}{3}}$ h) $\frac{5}{6} \div h=0$, There is no possible value for h. i) $\frac{72}{i}=1.2, \quad i=72 \div 1.2=720 \div 12=\underline{60}$	Notes Individual work, monitored, helped Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection, praising Also ask Ps to give the general method for finding the missing component. T reminds Ps of the names of the components where necessary. e.g. a) and b): to find the unknown term in a 2 -term addition, subtract the known term from the sum. c): to calculate the reductant, add the difference to the subtrahend etc. (as there is no value which can multiply zero to make 5 sixths)
6	PbY6b, page 127 Q. 4 Deal with one question at a time under a time limit. Ps read questions themselves, write a plan, estimate, calculate and check the result and write the answer in a sentence in Ex. Bks. Review with the whole class. T chooses a P to read out the question and Ps show results on scrap paper or slates on command. Ps with correct answers explain reasoning at BB. Who agrees? Who did it a different way? Mistakes discussed and corrected. Solutions: a) James had a 6.25 m length of wire. He used 125 cm one day, then he used 1.6 m on the next day, then $2 \frac{1}{2} \mathrm{~m}$ on the day after that. How much wire was left? $\begin{aligned} \text { Plan: } & 6.25 \mathrm{~m}-(1.25+1.6+2.5) \mathrm{m} \\ & =6.25 \mathrm{~m}-5.35 \mathrm{~m}=0.9 \mathrm{~m}=\underline{90 \mathrm{~cm}} \end{aligned}$ Answer: James had 90 cm of wire left.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising Feedback for T or $6.25-1.25-1.6-2.5$ (m)

		Lesson Plan 127
Activity 6	(Continued) Solutions: b) The sides of a rectangular park are 800 m and $1 \frac{1}{4} \mathrm{~km}$ long. What is: i) the perimeter of the park ii) the area of the park? i) Plan: $\begin{aligned} P & =2 \times(800+1250) \mathrm{m} \\ & =2 \times 2050 \mathrm{~m}=4100 \mathrm{~m}=4.1 \mathrm{~km} \end{aligned}$ Answer: The perimeter of the park is 4.1 kilometres. ii) Plan: $\begin{aligned} \text { an: } A & =(0.8 \times 1.25) \mathrm{km}^{2}=\underline{1 \mathrm{~km}^{2}} \\ \text { or } A & =\left(\frac{2}{10_{2}} \times \frac{5}{4}\right) \mathrm{km}^{2}=\frac{2}{2} \mathrm{~km}^{2}=\underline{1 \mathrm{~km}^{2}} \end{aligned}$ Answer: The area of the park is one square kilometre. c) Calum has 45 stamps. Vanessa has $\frac{8}{9}$ of that number and George has 120% of that number. How many stamps do Vanessa and George each have? Plan: V : $45 \times \frac{8}{9}=\underline{40}(\mathrm{stamps})$ G: $45 \times 1.2=\underline{54}(\mathrm{stamps})$ Answer: Vanessa has 40 stamps and George has 54 stamps.	Notes BB: or $\begin{aligned} P & =2 \times(0.8+1.25) \mathrm{km} \\ & =2 \times 2.05 \mathrm{~km} \\ & =\underline{4.1 \mathrm{~km}} \end{aligned}$ or $\begin{aligned} A & =(800 \times 1250) \mathrm{m}^{2} \\ & =(8 \times 125000) \mathrm{m}^{2} \\ & =1000000 \mathrm{~m}^{2} \\ & =\underline{1 \mathrm{~km}^{2}} \end{aligned}$ or $\begin{aligned} \mathrm{V}: & 45 \div 9 \times 8=5 \times 8=\underline{40} \\ \mathrm{G}: & 45 \div 100 \times 120 \\ & =45 \div 10 \times 12 \\ & =4.5 \times 12=\underline{54} \end{aligned}$
7	PbY6b, page 127 Q. 5 Deal with one part at a time or set a time limit. Ps read question themselves, write plans, do the calculations and write the answer in a sentence in Ex. Bks. Review with whole class. T chooses a P to read out the question and Ps show results on scrap paper or slates on command. Ps answering correctly explain reasoning at BB. Who did the same? Who calculated in a different way? Mistakes discussed and corrected. T chooses a P to say the answer in a sentence. Solution: a) A box of sugar lumps weighs 650 g and each lump of sugar weighs 2 g . If 6 sugar lumps were eaten: i) what mass of sugar was left Plan: $650 \mathrm{~g}-2 \mathrm{~g} \times 6=650 \mathrm{~g}-12 \mathrm{~g}=\underline{638 \mathrm{~g}}$ Answer: There were 638 g of sugar left in the box. ii) how many lumps were left? Plan: $638 \div 2=319$ (lumps) Answer: There were 319 lumps of sugar left in the box. b) The sugar content in a jar of honey is 83%. How much sugar is there in 45 kg of honey? Plan: 83% of $45 \mathrm{~kg}=45 \mathrm{~kg} \times 0.83=\underline{37.35 \mathrm{~kg}}$ Answer: There are 37.35 kg of sugar in 45 kg of honey.	Individual work, monitored, helped Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method of solution. Feedback for T

		Lesson Plan 127
Activity 7	(Continued) Solutions: c) The weight of $1 \mathrm{~cm}^{3}$ of steel is 300% of the weight of $1 \mathrm{~cm}^{3}$ of aluminium. i) What is the ratio of the weight of a $25 \mathrm{~cm}^{3}$ aluminium cuboid and that of a $25 \mathrm{~cm}^{3}$ steel cuboid? Plan: a: s $=100: 300=\underline{1: 3}$ Answer: The ratio of the weights of the aluminium and steel cuboids is 1 to 3 . ii) What is the mass of the aluminium cuboid if the steel cuboid's is 202.5 g ? Plan: $\quad \mathrm{M}_{\mathrm{a}}=202.5 \mathrm{~g} \div 3=67.5 \mathrm{~g}$ Answer: The mass of the aluminium cuboid is 67.5 g . iii) How many grams is $1 \mathrm{~cm}^{3}$ of steel? Plan: $25 \mathrm{~cm}^{3} \rightarrow 202.5 \mathrm{~g}$ $1 \mathrm{~cm}^{3} \rightarrow 202.5 \mathrm{~g} \div 25=40.5 \mathrm{~g} \div 5=\underline{8.1 \mathrm{~g}}$ Answer: One cm^{3} of steel weighs 8.1 g . iv) How many grams is $1 \mathrm{~cm}^{3}$ of aluminium? Plan: $25 \mathrm{~cm}^{3} \rightarrow 67.5 \mathrm{~g}$ $1 \mathrm{~cm}^{3} \rightarrow 67.5 \mathrm{~g} \div 25=13.5 \mathrm{~g} \div 5=\underline{2.7 \mathrm{~g}}$ Answer: One cm^{3} of aluminium weighs 2.7 g . T : We say that the density of steel is 8.1 g per cm^{3} and the density of aluminium is $2.7 \mathrm{~g} \mathrm{per} \mathrm{cm}^{3}$.	Notes Discuss the concepts of mass and weight. The mass of an object depends on the quantity and density of the material it is made from. Mass is constant, wherever the object is in space. Weight is how heavy something is and takes into account the force of gravity, which is different on different planets (e.g. on the Moon, objects weigh less than on Earth as there is less gravational force.) As the force of gravity on Earth is the same all over its surface, and as long as we are not concerned about what an object weighs on another planet, we could think of mass and weight as being essentially the same. $\text { or } 8.1 \mathrm{~g} \div 3=\underline{2.7 \mathrm{~g}}$ BB: $\begin{aligned} & \underline{\text { density }}_{\text {steel }}=8.1 \mathrm{~g} / \mathrm{cm}^{3} \\ & \underline{\text { density }} \text { aluminium }=2.7 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$

		Lesson Plan 128
Activity 3 Erratum In Pbs in a): 2nd 'iv)' should be 'v'	PbY6b, page 128 Q. 1 Read: 84\% of an apple is water. a) How much water is in these quantities of apples? i) 1 kg ii) 2 kg iii) 5 kg iv) $3 \frac{1}{2} \mathrm{~kg}$ v) 0.4 kg b) What amount of apples contains these quantities of water? i) 420 g ii) 2.52 kg Set a time limit or deal with part a) then part b). Ps work in Ex. Bks. Review with whole class. Ps come to BB or dictate what T should write. Who agrees? Who did it another way? Who made a mistake? What was your mistake? Make sure that you have corrected it. Solution: e.g. a) i) 1 kg of apples contains $\underline{0.84 \mathrm{~kg} \text { of water }}$ ii) 2 kg of apples $\rightarrow 0.84 \mathrm{~kg} \times 2=1.68 \mathrm{~kg}$ of water iii) 5 kg of apples $\rightarrow 0.84 \mathrm{~kg} \times 5=\underline{4.2 \mathrm{~kg}}$ of water iv) $3 \frac{1}{2} \mathrm{~kg}$ of apples $\rightarrow 0.84 \mathrm{~kg} \times 3.5$ $=2.52 \mathrm{~kg}+0.42 \mathrm{~kg}=\underbrace{2.94 \mathrm{~kg}}_{\text {(of water) }}$ v) 0.4 kg of apples $\rightarrow 0.84 \mathrm{~kg} \times 0.4=\underline{0.336 \mathrm{~kg}}$ $(=336 \mathrm{~g}) \text { of water }$ b) i) 420 g of water $\rightarrow 420 \mathrm{~g} \div 0.84=42000 \mathrm{~g} \div 84$ $\begin{aligned} & =6000 \mathrm{~g} \div 12 \\ & =500 \mathrm{~g} \text { (of apples) } \end{aligned}$ ii) 2.52 kg of water $\rightarrow 2.52 \mathrm{~kg} \div 0.84=252 \mathrm{~kg} \div 84$ $\begin{aligned} & =21 \mathrm{~kg} \div 7 \\ & =\underline{3 \mathrm{~kg}} \text { (of apples) } \end{aligned}$	Notes Individual work, monitored, (helped) Reasoning, agreement, selfcorrection, praising Accept any valid method of solution. Feedback for T or $84 \% \rightarrow 420 \mathrm{~g}$ $\begin{aligned} 1 \% & \rightarrow 420 \mathrm{~g} \div 84=5 \mathrm{~g} \\ 100 \% & \rightarrow 500 \mathrm{~g} \end{aligned}$ or $2.52 \mathrm{~kg} \div 84 \times 100$ $=252 \mathrm{~kg} \div 84=\underline{3 \mathrm{~kg}}$
4	PbY6b, page 128 Q. 2 Read: Two fifths of a garden had already been landscaped. Five gardeners were employed to complete the job. If they shared the remaining work equally, what part of the whole garden were they each responsible for? I will give you 3 minutes to solve this problem. Start . . . now! Stop! If you have an answer, show me it . . . now! $\left(\frac{3}{25}\right)$ A, come and tell us how you got your answer. Who did the same? Who did it another way? etc. Mistakes discussed and corrected. Solution: e.g. Part of garden still to be landscaped: $1-\frac{2}{5}=\frac{3}{5}$ Part to be landscaped by each gardener: $\frac{3}{5} \div 5=\underline{\underline{25}}$	Individual work, monitored (helped) Responses shown in unison. Reasoning, agreement, selfcorrection, praising T also notes Ps who have wrong answers and asks them how they did the calculation. Ps themselves (or the class) point out what they did wrong.

		Lesson Plan 128
Activity 5	PbY6b, page 128 Q. 3 Read: Charlie spent his time between 2 o'clock and 6 o'clock in the afternoon doing different things. He went shopping for $\frac{2}{5}$ of the time, played with a friend for $\frac{1}{4}$ of the time and read a book for $\frac{1}{6}$ of the time. a) What part of the time did Charlie spend doing other activities? b) How many minutes did Charlie spend on other activities? Set a time limit of 4 minutes. Ps work in Ex. Bks. Review with whole class. Ps show results on scrap paper or slates on command. Ps answering correctly come to BB to explain reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Solution: e.g. a) Plan: $1-\left(\frac{2}{5}+\frac{1}{4}+\frac{1}{6}\right)=1-\frac{24+15+10}{60}$ $=1-\frac{49}{60}=\underline{\underline{11}}$ Answer: Charlie spent 11 sixtieths of the time doing other activities. b) Plan: $6 \mathrm{~h}-2 \mathrm{~h}=4 \mathrm{~h}$; $\frac{11}{60} \text { of } 4 \mathrm{~h}=\frac{11}{60} \times 240 \mathrm{~min}=\underline{44 \mathrm{~min}}$ Answer: Charlie spent 44 minutes on other activities.	Notes Individual work, monitored, helped If you had 4 hours free time one afternoon, what would you like to do? T asks several Ps. Differentiation by time limit. Responses shown in unison. Reasoning, agreement, selfcorrection, praising Accept any valid method (e.g. working out how much time Charlie spent on each activity) but also show the solutions given opposite.
6	PbY6b, page 128, Q. 4 Read: When experiments in television broadcasting first began in 1923, scientists could only transmit images across a distance of 2.5 metres. Which two things in the classroom are 2.5 m apart? Ps make suggestions then other Ps check with a tape measure. Class applauds the nearest estimate. Read: Some years, later, a Hungarian engineer, Denes Mihaly, who was working in Berlin in Germany, managed to transmit images across a distance of 1000 m . Which places are about 1000 m from the school? Ps suggest some and class agrees/disagrees. Elicit that $1000 \mathrm{~m}=1 \mathrm{~km}$. T chooses Ps to read one question at a time. Allow Ps time to think and calculate, then Ps show answers on command. Ps with different answers explain reasoning at BB . Class agrees on the correct answer. Ps write agreed answers beside questions in $P b s$. Solution: a) How many times more is 1000 m than 2.5 m ? (400) b) What percentage is 1000 m of 2.5 m ? (40 000\%) c) Write their ratio with whole numbers. $(1000: 2.5=\underline{400: 1})$	Whole class activity or T has a 2.5 metre length of string prepared to quickly check Ps' estimates. T should have some places already in mind in case Ps' have no idea or are very inaccurate. Responses shown in unison. Reasoning, agreement, praising a) $\begin{aligned} 1000 \div 2.5 & =2000 \div 5 \\ & =\underline{400} \end{aligned}$ b) $400 \times 100 \%=\underline{40000 \%}$

		Lesson Plan 128
Activity 7	PbY6b, page 128 Q. 5 Read: Emma bought shares in the stock market for $£ 100000$ but very soon their value began to fall. To avoid losing too much money, she sold half of her shares at a 15\% loss. Two weeks later, the value of her shares rose again and reached a level which was 20% more than the amount she had paid for them. She then sold the rest of her shares. How much profit or loss did she make on the shares? First talk about the stock market to clarify the context. Ps say what they know and T has information prepared in case Ps know very little. Set a time limit. Ps solve problem in Ex. Bks. and write the answer in a senetence. Review with whole class. Ps show results on scrap paper or slates on command. Ps with different answers explain reasoning. Class points our errors and agrees on correct answer. Who had the correct answer but did it a different way? Mistakes discussed and corrected. Solution: e.g. Value of shares bought: $£ 100000$ Loss made on 1st sale: $£ 50000 \times 0.15=£ 7500$ Profit made on 2nd sale: $£ 50000 \times 0.2=£ 10000$ Difference: $£ 10000-£ 7500=\underline{£ 2500}$ Answer: Overall, Emma made a profit of $£ 2500$.	Notes Individual work, monitored, helped Initial whole-class brief discussion on the stock market. Some Ps or T might have their own shares or T could show share values in a newspaper or on the internet. Differentaition by time limit. Responses shown in unison. Reasoning, agreement, self-correction, praising or Income from the 2 sales: $\begin{aligned} & £ 50000 \times 0.85=£ 42500 \\ & £ 50000 \times 1.2=£ 60000 \\ & £ 42500+£ 60000=£ 102500 \\ & \text { Profit: } £ 102500-£ 100000 \\ & \quad=\underline{£ 2500} \end{aligned}$
8	PbY6b, page 128, Q. 6 Read: $\frac{2}{5}$ of Tom's money is the same as $\frac{3}{4}$ of Frank's money. a) If Frank has $£ 220$, how much does Tom have? b) What ratio is: i) Tom's to Frank's money ii) Frank's to Tom's money? Allow Ps a minute to think about it and discuss with their neighbous. Ps suggest what to do first and how to continue. Class agrees/disagrees or makes alternative suggestions. T helps only if necessary. Ps could write a solution in Ex. Bks. too. Solution: e.g. a) $\frac{2}{5}$ of $\mathrm{T}=\frac{3}{4}$ of $£ 220=£ 220 \div 4 \times 3=£ 55 \times 3=£ 165$ Tom has: $£ 165 \div 2 \times 5=£ 82.50 \times 5=\underline{£ 412.50}$ b) i) $\begin{aligned} \mathrm{T}: \mathrm{F} & =412.5: 220 \\ & (=15: 8) \end{aligned}$ [T shows: $\mathrm{T} \times \frac{2}{5}=\mathrm{F} \times \frac{3}{4}$, ii) $\begin{aligned} \mathrm{F}: \mathrm{T} & =220: 412.5 \\ & (=8: 15) \end{aligned}$ $\frac{\mathrm{T}}{\mathrm{F}}=\frac{3}{4} \div \frac{2}{5}=\frac{3}{4} \times \frac{5}{2}=\frac{15}{8}$ So $T: F=\underline{15: 8, F: T=8: 15] ~}$	Whole class activity (or individual trial first if Ps wish and there is time) Drawn on BB or SB or OHT Discussion, reasoning, agreement, praising Involve several Ps. Extra praise for a plan in one line for a): $\begin{aligned} & \mathrm{T}: £ 2220 \times \frac{3}{4_{1}} \div \frac{2}{5} \\ & \quad=£ 165 \times \frac{5}{2}=£ \frac{825}{2} \\ & \text { Check: }=\underline{£ 412.50} \\ & 412.5: 220 \\ & =825: 440 \\ & =165: 88=\underline{15: 8} \end{aligned}$

176	R: Calculations C: Revision: fractions, decimals and percentages E: Problems	$\begin{gathered} \text { Lesson Plan } \\ 129 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{129}=3 \times 43 \quad$ Factors: 1, 3, 43, 129 - $\underline{304}=2 \times 2 \times 2 \times 2 \times 19=2^{4} \times 19$ Factors: 1, 2, 4, 8, 16, 19, 38, 76, 152, 304 - $\underline{479}$ is a prime number Factors: 1, 479 (as not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>479$) - 1129 is a prime number Factors: 1, 1129 (as not exactly divisible by $2,3,5,7,11,13,17,19,23,29,31$ and $37^{2}>1129$)	Notes Individual work, monitored (or whole class activity) BB: 129, 304, 479, 1129 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g.
2	Review of addition T writes an addition on B and Ps dictate the sum. e.g. $12.3+4.5=16.8$ Let's use this result to help us calculate the sum if we: a) increase one term $\begin{aligned} & \text { e.g. }(12.3+2)+4.5=16.8+2=\underline{18.8} \\ & \text { or } 12.3+(4.5+0.2)=16.8+0.2=\underline{17} \\ & \text { or }(12.3+a)+4.5=12.3+(4.5+a)=\underline{16.8+a} \end{aligned}$ b) increase both terms $\begin{aligned} & \text { e.g. }(12.3+1)+(4.5+2)=16.8+1+2=\underline{19.8} \\ & \text { or }(12.3+a)+(4.5+b)=\underline{16.8+a+b} \end{aligned}$ c) decrease one term $\begin{aligned} & \text { e.g. }(12.3-0.3)+4.5=16.8-0.3=\underline{16.5} \\ & \text { or } 12.3+(4.5-4)=16.8-4=\underline{12.8} \\ & \text { or }(12.3-a)+4.5=12.3+(4.5-a)=16.8-a \end{aligned}$ d) decrease both terms $\text { e.g. }(12.3-1.3)+(4.5-1)=16.8-(1.3+1)=16.8-2.3=\underline{14.5}$ $\text { or }(12.3-a)+(4.5-b)=\underline{16.8-(a+b)} \text { or } \underline{16.8-a-b}$ e) increase one term and decrease the other term $\begin{aligned} & \text { e.g. }(12.3+3)+(12.3-3)=16.8+3-3=\underline{16.8} \\ & \text { or } \quad(12.3-1)+(4.5+0.5)=16.8-1+0.5=\underline{16.3} \\ & \text { or } \quad(12.3+a)+(12.3-b)=\underline{16.8+a-b} \end{aligned}$	Whole class activity Written on BB or SB or OHT Ps come to BB or dictate what T should write. Class points out errors. At a good pace Agreement, praising Elicit generalisations after each type. Ps dictate what T should write. Class agrees/ disagrees. Ps point out what they have noticed, e.g. If we increase (decrease) one of the terms in a 2 -term addition by a certain amount, the sum also increases (decreases) by that amount. If we increase one term and decrease the other term in a 2 -term addition by the same amount, the sum does not change. etc.

16		Lesson Plan 129
Activity 3	PbY6b, page 129 Q. 1 Read: Do the multiplications. Set a time limit. Ask Ps to give the results as decimals too. Allow Ps to use a calculators. Review with whole class. Ps come to BB or dictate what T should write. Class agrees/disagrees. Mistakes corrected Solution: a) $\frac{1}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{7} \times \frac{5}{7} \times \frac{6}{7}=\frac{720}{117649} \approx 0.00612$ b) $\frac{1}{2_{1}} \times \frac{2^{1}}{1} \times \frac{3^{1}}{4_{1}} \times \frac{4}{5}_{1}^{1} \times \frac{5}{6}_{1}^{6} \times \frac{6^{1}}{7}=\frac{1}{7}=0 . \dot{1} 4285 \dot{7} \approx 0.143$ c) $-\frac{1}{9} \times \frac{7^{1}}{8} \times \frac{3^{1}}{5} \times\left(-\frac{1}{1} \frac{6}{7}\right) \times\left(-\frac{1}{1} \frac{5}{6}\right)=-\frac{1 \times 1 \times 1 \times 1 \times 1}{3 \times 2 \times 1 \times 1 \times 1}$ $\begin{aligned} & \text { Ask Ps to say to how many decimal } \\ & \text { digits (or places) they have rounded. }\end{aligned}=-\frac{1}{6}=0.1 \dot{6}(\approx 0.167)$ 20 min	Notes Individual work, monitored, helped Written on BB or SB or OHT Reasoning, agreement, selfcorrection, praising Elicit/remind Ps that: - when multiplying fractions, first simplify where possible, i.e. divide any numerator and denominator which have common factors by their greatest common factor, before multiplying the remaining numerators and then the remaining denominators - $(-) \times(-)=(+)$ $(-) \times(+)=(-)$
4	PbY6b page 129 Q. 2 Read: Solve the equation then check your result. How can you check your result? (Substitute the result for the letter in the equation and check that the equation is true.) Set a time limit. Ps work in Pbs (or in Ex. Bks. if they need more space). Review with whole class. Ps could show results on scrap paper or slates on command. Ps answering correctly explain at BB to Ps who were wrong. Class checks that they are correct. Mistakes discussed and corrected. Solution: a) $\left(x+1 \frac{4}{5}\right)+6=10, x=10-6-1 \frac{4}{5}=4-1 \frac{4}{5}=2 \frac{1}{5}$ Check: $2 \frac{1}{5}+1 \frac{4}{5}+6=4+6=10$ b) $2 \frac{3}{5} \times y=\frac{13}{7}, \quad y=\frac{13}{7} \div \frac{13}{5}=\frac{113}{7} \times \frac{5}{13}=\frac{5}{7}$ Check: $2 \frac{3}{5} \times \frac{5}{7}=\frac{13}{5} \times \frac{5}{7}^{1}=\frac{13}{7}$ e) $z \div 4=3 \frac{1}{4}, \quad z=3 \frac{1}{4} \times 4=\frac{13}{4_{1}} \times-\frac{1}{4}=\underline{13}$ Check: $13 \div 4=\frac{13}{4}=3 \frac{1}{4}$	Individual work, monitored, helped Written on BB or SB or OHT Differentiation by time limit Responses shown in unison. Reasoning, agreement, selfcorrection praising Feedback for T a) or $x+1 \frac{4}{5}=4$ $x=2 \frac{1}{5}$ or $z=3 \frac{1}{4} \times 4=12+1=\underline{13}$

16		$\begin{gathered} \text { Lesson Plan } \\ 130 \end{gathered}$
Activity Erratum In $P b$: 2nd 'g)' should be 'j)'	Factorising 130, 305, 480 and 1130. Revision, activities, consolidation PbY6b, page 130 Solutions: Q. 1 a) $0.75=\frac{75}{100}=\frac{3}{4}=3 \div 4$ b) $1.6=\frac{16}{10}=\frac{8}{5}=8 \div 5$ c) $0 . \dot{1}=\frac{1}{9}=1 \div 9$ d) $1.8=\frac{18}{10}=\frac{9}{5}=9 \div 5$ e) $0 . \dot{6}=\frac{6}{9}=\frac{2}{3}=2 \div 3$ f) $0.625=\frac{5}{8}=5 \div 8$ g) $2.5=\frac{25}{10}=\frac{5}{2}=5 \div 2$ h) $1.125=1 \frac{1}{8}=\frac{9}{8}=9 \div 8$ i) $0.375=\frac{3}{8}=3 \div 8$ j) $0.1 \dot{6}=\frac{1}{6}=1 \div 6$ Q. 2 Q. 3 a) i) $13.64=13 \frac{64}{100}=13 \frac{16}{25}$ ii) $9.015=9 \frac{15}{1000}=9 \frac{3}{200}$ iii) $0.875=\frac{7}{8} \quad($ as 0.875 is $7 \times 0.125)$ iv) $0 . \dot{7}=\frac{7}{9} \quad($ as $0 . \dot{7}=7 \times 0 . \dot{1})$ v) $5.55=5 \frac{55}{100}=5 \frac{11}{20}$ b) i) $\frac{11}{25}=\frac{44}{100}=\underline{0.44}$ ii) $1 \frac{5}{8}=\underline{1.675}$ iii) $\frac{19}{20}=\frac{95}{100}=\underline{0.95}$ iv) $\frac{1}{6}=1 \div 6=0.1 \dot{6}$ v) $\frac{3}{11}=3 \div 11=0.272727 \ldots=0.2 \dot{7}$ (or $0 . \overline{27}$)	Notes $\underline{130}=2 \times 5 \times 13$ Factors: 1, 2, 5, 10, 13, 26, 65, 130 $\underline{305}=5 \times 61$ Factors: 1, 5, 61, 305 $\underline{480}=2^{5} \times 3 \times 5$ Factors: 1, 2, 3, 4, 5, 6, 8, 10, $12,15,16,20,24,30,32,40$, 48, 60, 80, 96, 120, 160, 240, 480 [No. of factors: $\begin{aligned} & (5+1) \times(1+1) \times(1+1) \\ & =6 \times 2 \times 2=\underline{24}] \\ & \underline{1130}=2 \times 5 \times 113 \end{aligned}$ Factors: 1, 2, 5, 10, 113, 226, 565, 1130 (or set factorising as homework at the end of Lesson 129 and review at the start of Lesson 130) As colour cannot be shown, one set of equal numbers is shaded and the numbers in each of the other sets are joined together. Encourage Ps to learn by heart the decimals for: $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}$

Y6	R: Calculations C: Review and practice: diagnostic test E: Generalisation	$\begin{gathered} \text { Lesson Plan } \\ 131 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 131 is a prime number Factors: 1, 131 (as not exactly divisible by $2,3,5,7,11$, and $13^{2}>131$) - $306=2 \times 3 \times 3 \times 17=2 \times 3^{2} \times 17$ Factors: 1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 306 - $\underline{481}=13 \times 37$ Factors: 1, 13, 37, 481 - $\underline{1131}=3 \times 13 \times 29$ Factors: 1, 3, 13, 29, 39, 87, 377, 1131	Notes Individual work, monitored (or whole class activity) BB: 131, 306, 481, 1131 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising $\begin{aligned} & \text { e.g. } \\ & \begin{array}{r\|lr\|l} 481 & 13 \\ 306 & 2 & 37 & 37 \\ 153 & 3 & 1 & \\ 51 & 3 & \\ 17 & 17 & 1131 & 3 \\ 1 & & 377 & 13 \\ & & 29 & 29 \\ & & 1 & \end{array} \end{aligned}$
2	Review of subtraction T writes a subtraction on BB and Ps dictate the difference. e.g. BB: $125.7-35.2=\underline{90.5}$ Let's use this result to help us calculate the difference if we make changes. a) Increase the reductant. $\begin{aligned} & \text { e.g. }(125.7+2.5)-35.2=90.5+2.5=\underline{93} \\ & \text { or } \quad(125.7+a)-35.2=90.5+a \end{aligned}$ b) Increase the subtrahend. $\begin{aligned} & \text { e.g. } 125.7-(35.2+1)=90.5-1=\underline{89.5} \\ & \text { or } 125.7-(35.2+a)=90.5-a \end{aligned}$ c) Decrease the reductant. $\text { e.g. }(125.7-4.5)-35.2=90.5-4.5=\underline{86}$ $\text { or }(125.7-a)-35.2=90.5-a$ d) Decrease the subtrahend. $\begin{aligned} & \text { e.g. } 125.7-(35.2-2)=90.5+2=\underline{92.5} \\ & \text { or } 125.7-(35.2-a)=90.5+a \end{aligned}$ e) Increase the reductant and decrease the subtrahend by the same amount. e..g. $(125.7+1)-(35.2-1)=90.5+1+1=\underline{92.5}$ $\text { or } \quad(125.7+a)-(35.2-a)=90.5+a+a=90.5+2 a$ f) Decrease the reductant and increase the subtrahend by the same amount. e..g. $(125.7-1)-(35.2+1)=90.5-1-1=\underline{88.5}$ $\text { or } \quad(125.7-a)-(35.2+a)=90.5-a-a=90.5-2 a$ g) Increase the reductant and increase the subtrahend by the same amount. e..g. $(125.7+10)-(35.2+10)=90.5+10-10=\underline{90.5}$ or $\quad(125.7+a)-(35.2+a)=90.5+a-a=\underline{90.5}$ (no change) h) Decrease the reductant and decrease the subtrahend by the same amount. e..g. $(125.7-5)-(35.2-5)=90.5-5+5=\underline{90.5}$ or $(125.7-a)-(35.2-a)=90.5-a+a=\underline{90.5}$ (no change)	Whole class activity Written on BB or SB or OHT Ps come to BB or dictate what T should write. Class points out errors. At a good pace Agreement, praising Elicit a generalisation after each type. Ps dictate what T should write. Class agrees/ disagrees. Ps point out what they have noticed, e.g. If we increase the reductant (or decrease the subtrahend) by a certain amount, the difference increases by that amount. If we decrease the reductant (or increase the subtrahend) by a certain amount, the difference decreases by that amount. If we increase or decrease the reductant and the subtrahend by the same amount, the difference does not change. etc.

		Lesson Plan 131
Activity 4	TEST 1, Part B PbY6b, page 131 Q. 5 Write: a) two 4-digit natural numbers which are divisible by 2,5 and 6 . (Lowest common multiple of 2, 5 and 6 is 30, so numbers must be multiples of 30 . e.g. 3330,4590) b) two 5-digit natural numbers which are divisible by 3, 4 and 25. Lowest common multiple of 3,4 and 25 is 300 , so numbers must be multiples of 300 . e.g. 96300,51900)	Notes (or must have units digit 0 to be divisible by 5 and by 2 and the sum of its digits must be a multiple of 3 , as $6=2 \times \underline{3}$) (or must be a whole 100 to be divisible by 4 and by 25 , and the sum of its other 3 digits must be a multiple of 3)
	Q. 6 List these fractions in increasing order: $\frac{3}{5}, \frac{7}{10}, \frac{1}{2}, \frac{60}{100}, \frac{13}{20}, \frac{14}{20}$ Solution: Write the fractions as equivalent fractions with a common denominator. (20) $\begin{aligned} & \frac{3}{5}=\frac{12}{20} ; \quad \frac{7}{10}=\frac{14}{20} ; \quad \frac{1}{2}=\frac{10}{20} ; \quad \frac{60}{100}=\frac{12}{20} ; \\ & \frac{10}{20}<\frac{12}{20}=\frac{12}{20}<\frac{13}{20}<\frac{14}{20}=\frac{14}{20} \end{aligned}$	
	Q. $7 \quad 72$ radishes are tied in equal bundles, with no radishes left over. How many radishes could be in each bundle? $\begin{aligned} 72 & =(\underline{72} \times 1)=\underline{36} \times 2=\underline{24} \times 3=\underline{18} \times 4 \\ & =\underline{12} \times 6=\underline{9} \times 8=\underline{8} \times 9=\underline{6} \times 12=\underline{4} \times 18 \\ & =\underline{3} \times 24=\underline{2} \times 36=(\underline{1} \times 72) \end{aligned}$ or Ps might show the result in a table: BB:	i.e. the positive factors of 72
	Q. 8 a) Draw a point, then draw two 3 cm segments from the point so that the angle they form is 60°. Ps use ruler and compasses, or a protractor, to draw the angle. b) If each of the two segments is half of a diagonal of the same rectangle, construct the rectangle. c) Measure the necessary dimensions, then calculate: i) the perimeter of the rectangle $P \approx(3 \mathrm{~cm}+5.2 \mathrm{~cm}) \times 2=8.2 \mathrm{~cm} \times 2=16.4 \mathrm{~cm}$ ii) the area of the rectangle. $A \approx(3 \times 5.2) \mathrm{cm}^{2}=15.6 \mathrm{~cm}^{2}$ $55 \min$	Construction Draw an angle of 60° with 3 cm long arms. Extend both arms on the other side of the vertex by 3 cm . Join the ends of the arms to form a rectangle.
	Class applauds Ps who have all questions correct (or fewest errrors)	Feedback for T

	R: Calculations C: Review and practice: diagnostic test E: How the product changes	$\begin{gathered} \text { Lesson Plan } \\ 132 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $132=2 \times 2 \times 3 \times 11=2^{2} \times 3 \times 11$ Factors: 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132 - 307 is a prime number Factors: 1,307 (as not exactly divisible by $2,3,5,7,11,13,17$ and $19^{2}>307$) - $\underline{482}=2 \times 241$ Factors: 1, 2, 241, 482 (241 is not exactly by $2,3,5,7,11,13$, and $17^{2}>241$) - $\underline{1132}=2 \times 2 \times 283=2^{2} \times 283$ (283 is not exactly divisible by $2,3,5,7,11,13$, and $17^{2}>283$) Factors: 1, 2, 4, 283, 566, 1132	Notes Individual work, monitored (or whole class activity) BB: 132, 307, 482, 1132 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g. $\begin{array}{r\|lr\|l} 132 & 2 & 482 & 2 \\ 66 & 2 & 241 & 241 \\ 33 & 3 & 1 & \\ 11 & 11 & & \\ 1 & & & \end{array}$ $\begin{array}{r\|l} 1132 & 2 \\ 566 & 2 \\ 283 & 283 \\ 1 & \end{array}$
2	Review of multiplication T writes a multiplication on BB and Ps dictate the product. e.g. BB: $436 \times 2.8=1220.8$ Let's use this result to help us calculate the product if we make changes. a) Increase the multiplicand by a certain number of times. e.g. $(436 \times 2) \times 2.8=1220.8 \times 2=\underline{2441.6}$ or $(436 \times a) \times 2.8=1220.8 \times a$ b) Increase the multiplier by a certain number of times. e.g. $436 \times(2.8 \times 2)=1220.8 \times 2=\underline{2441.6}$ or $436 \times(2.8 \times a)=1220.8 \times a \quad$ [same result as a)] c) Decrease the multiplicand by a certain number of times. e.g. $(436 \div 4) \times 2.8=1220.8 \div 4=\underline{305.2}$ or $\quad(436 \div a) \times 2.8=1220.8 \div a$ d) Decrease the multiplier by a certain number of times. e.g. $436 \times(2.8 \div 7)=1220.8 \div 7=\underline{174.4}$ or $436 \times(2.8 \div a)=1220.8 \div a \quad$ [same result as c$)$] e) Increase both factors by different numbers of times. $\begin{aligned} & \text { e..g. }(436 \times 0.1) \times(2.8 \times 2)=1220.8 \times 0.1 \times 2=\underline{244.16} \\ & \text { or } \quad(436 \times a) \times(2.8 \times b)=1220.8 \times a \times b[=1220.8 \times a b] \end{aligned}$ f) Decrease both factors by different numbers of times. $\text { e..g. } \begin{aligned} (436 \div 4) \times(2.8 \div 2)=1220.8 \div(4 \times 2) & =1220.8 \div 8 \\ & =\underline{152.6} \end{aligned}$ $\text { or } \quad(436 \div a) \times(2.8 \div b)=1220.8 \div(a \times b)(=1220.8 \div a b]$ g) Multiply one factor and divide the other factor by the same number. e..g. $(436 \times 4) \times(2.8 \div 4)=1220.8 \times 4 \div 4=\underline{1220.8}$ or $(436 \times a) \times(2.8 \div a)=1220.8 \times a \div a=\underline{1220.8}$	Whole class activity Written on BB or SB or OHT Ps come to BB or dictate what T should write. Class points out errors. At a good pace Agreement, praising Elicit a generalisation after each type. Ps dictate what T should write. Class agrees/ disagrees. Ps point out what they have noticed, e.g. If we increase (decrease) one of the factors in a multiplication by a certain number of times, the product also increases (decreases) by that number of times. If we increase one factor in a 2-term multiplication by a certain number of times and decrease the other factor by the same number of times, the product does not change. (no change)

16		Lesson Plan 132
Activity 4	TEST 2, Part B PbY6b, page 132 Q. 4 A group of 8 people in an office earned these amounts over a period of 4 weeks. lst week: £3684, 2nd week: £3341, 3rd week: £3435.40, 4th week: $£ 3256.80$ How much did each person earn on average over the 4-week period? Plan: e.g. $£(3684+3341+3435.40+3256.80) \div 8$ $\begin{aligned} & =£ 13717.20 \div 8 \\ & =\underline{£ 1714.65} \end{aligned}$ Answer: Each person earned on average $£ 1714.65$ over the 4-week period. Q. 5 In a recipe for making bread, 1 kg of flour produces 1.8 kg of dough. After the dough has been kneaded and proved, it is put into the oven to bake. During baking, the dough loses $\frac{1}{5}$ of its mass. How much bread can be made from 2 kg of flour using this recipe? $\begin{aligned} & \text { Plan: e.g. } 1.8 \mathrm{~kg} \times 2 \times \frac{4}{5}=3.6 \mathrm{~kg} \times 0.8=\underline{2.88 \mathrm{~kg}} \\ & \begin{aligned} \text { or ratio of flour : dough : bread } & =1: 1.8: 1.8 \times 0.8=1.44 \\ & =2: 3.6: \underline{2.88} \quad(\times 2) \end{aligned} \end{aligned}$ Answer: 2.88 kg of bread can be made from 2 kg of flour. Q. 6 Dad cut these lengths from a 2.5 m plank of wood: $\frac{4}{5} m, \frac{3}{4} m$ and $\frac{5}{8} m$. What length of plank was left? Plan: e.g. $2.5 \mathrm{~m}-\left(\frac{4}{5}+\frac{3}{4}+\frac{5}{8}\right) \mathrm{m}$ $\begin{aligned} & =2 \frac{1}{2} \mathrm{~m}-\frac{32+30+25}{40} \mathrm{~m} \\ & =2 \frac{1}{2} \mathrm{~m}-\frac{87}{40} \mathrm{~m}=2 \frac{20}{40} \mathrm{~m}-2 \frac{7}{40} \mathrm{~m}=\frac{13}{40} \mathrm{~m} \end{aligned}$ Answer: There was $\frac{13}{40}$ (or 0.325) of a metre of plank left.	Notes Accept any valid method of solution. or 1 kg flour $\rightarrow 1.8 \mathrm{~kg}$ dough 2 kg flour $\rightarrow 3.6 \mathrm{~kg}$ dough Amount of bread: ${ }^{0.72} 3.6 \mathrm{~kg} \times \frac{4}{5_{1}}=\underline{2.88 \mathrm{~kg}}$ or convert to decimals: $\begin{aligned} & 2.5 \mathrm{~m}-(0.8+0.75+0.625) \mathrm{m} \\ & =2.5 \mathrm{~m}-2.175 \mathrm{~m} \\ & =\underline{0.325 \mathrm{~m}} \end{aligned}$

		Lesson Plan 132
Activity 4	(Test 2, Part B continued) Q. 7 a) Construct an angle of 45°. b) Mark a point 4 cm from the vertex on one of the arms of the angle. c) Draw a line which is perpendicular to the arm at this point and extend it to cut the other arm, forming a triangle. d) Measure the sides and angles of this triangle. N.B. Pupils need not label points M to R. They are labelled here to make the explanation of the construction easier (as given opposite). In c), Ps may use a set square or protractor instead of compasses to draw BC.) e) What kind of triangle have you drawn? (Right-angled isosceles triangle) f) Calculate its area and perimeter. $A=\frac{4 \times 4}{2} \mathrm{~cm}^{2}=8 \mathrm{~cm}^{2}, \quad P \approx(4+4+5.7) \mathrm{cm}=\underline{13.7 \mathrm{~cm}}$	Notes Construction e.g. 1. Construct an angle of 90°. - Set compasses to an appropriate width and keep that width throughout. - Mark a point A and draw a ray. - With compass point on A, draw an arc around A to cut the ray at M. - With compass point on M, draw an arc to cut the 1st arc at N . - With compass point on N , draw an arc to cut the 1st arc at O. - With compass point on N , then on O , draw 2 arcs which intersect at P. - Draw a ray from A through P. $P \hat{A} M=90^{\circ}$. 2. Construct the bisector of PÂM to form a 45° angle. - With compass point on M, then on Q (the intersection of the 1 st arc and AP) draw 2 arcs which intersect at R. - Draw a ray from A through R. $R \hat{A} M=45^{\circ}$. Follow the rest of the instructions as given, extending the arms (rays) if necessary.
	Class applauds Ps who have all questions correct (or the fewest errrors).	Feedback for T

16	R: Calculations C: Review and practice: diagnostic test E: How the quotient changes	$\begin{gathered} \text { Lesson Plan } \\ 133 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{133}=7 \times 19 \quad$ Factors: 1, 7, 19, 133 - $\underline{308}=2 \times 2 \times 7 \times 11=2^{2} \times 7 \times 11$ Factors: 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 - $\underline{483}=3 \times 7 \times 23 \quad$ Factors: $1,3,7,21,23,69,161,483$ - $\underline{1133}=11 \times 103 \quad$ Factors: 1, 11, 103, 1133 8 min	Notes Individual work, monitored (or whole class activity) BB: 133, 308, 483, 1133 Ps may use calculators. Reasoning, agreement, selfcorrection, praising $\begin{array}{r\|lr\|lr\|l} \text { e.g. } & 133 & 7 & 483 & 3 \\ 308 & 2 & 19 & 19 & 161 & 7 \\ 154 & 2 & 1 & & 23 & 23 \\ 77 & 7 & 1133 & 11 & 1 & \\ 11 & 11 & 103 & 103 \\ 1 & & 1 & \end{array}$
2	Review of division T writes a divison on BB and Ps dictate the quotient. e.g. $\mathrm{BB}: \quad 15.6 \div 5.2=$ \square 3 (because $\underline{3} \times 5.2=15.6$) Let's use this result to help us calculate the quotient if we make changes. a) Increase the dividend by a certain number of times. $\begin{aligned} & \text { e.g. }(15.6 \times 2) \div 5.2=3 \times 2=\underline{6} \\ & \text { or }(15.6 \times a) \div 5.2=3 \times a \quad[=3 a] \end{aligned}$ b) Increase the divisor by a certain number of times. $\begin{aligned} & \text { e.g. } 15.6 \div(5.2 \times 3)=3 \div 3=1 \\ & \text { or } 15.6 \div(5.2 \times a)=3 \div a \end{aligned} \quad\left[=\frac{3}{a}\right]$ c) Decrease the dividend by a certain number of times. $\text { e.g. }(15.6 \div 3) \div 5.2=3 \div 3=1$ $\text { or } \quad(15.6 \div a) \div 5.2=3 \div a$ (same as b)) d) Decrease the divisor by a certain number of times. e.g. $15.6 \div(5.2 \div 2)=3 \times 2=\underline{6}$ or $15.6 \div(5.2 \div a)=3 \times a \quad[=3 a]$ (same as a)) e) Increase the dividend and divisor by the same number of times. $\text { e..g. }(15.6 \times 2) \div(5.2 \times 2)=3 \times 2 \div 2=\underline{3} \quad \text { (no change) }$ $\text { or } \quad(15.6 \times a) \div(5.2 \times a)=3 \times a \div a=\underline{3}$ f) Decrease the dividend and divisor by the same number of times. e..g. $(15.6 \div 2) \div(5.2 \div 2)=3 \div 2 \times 2=\underline{3} \quad$ (no change) or $\quad(15.6 \div a) \div(5.2 \div a)=3 \div a \times a=3$ g) Increase the dividend and decrease the divisor by the same number of times. e.g. $(15.6 \times 2) \div(5.2 \div 2)=3 \times 2 \times 2=\underline{12}$ or $\quad(15.6 \times a) \div(5.2 \div a)=3 \times a \times a \quad\left[=3 \times a^{2}=3 a^{2}\right]$ h) Decrease the dividend and increase the divisor by the same number of times e..g. $(15.6 \div 3) \div(5.2 \times 3)=3 \div 3 \div 3=\frac{1}{3}$ or $\quad(15.6 \div a) \div(5.2 \times a)=3 \div a \div a=3 \div a^{2} \quad\left[=\frac{3}{a^{2}}\right]$	Whole class activity Written on BB or SB or OHT Ps come to BB or dictate what T should write. Class points out errors. At a good pace Agreement, praising Elicit a generalisation after each type. Ps dictate what T should write. Class agrees/ disagrees. Ps point out what they have noticed, e.g. If we increase the dividend or decrease the divisor by a certain number of times, the quotien increases by that number of times. If we decrease the dividend or increase the divisor by a certain number of times, the quotient decreases by that number of times. If we increase or decrease the dividend and divisor by the same number of times, the quotient stays the same. etc. T could show the forms in square brackets to familiarise Ps with algebraic notation.

		Lesson Plan 133
Activity 2	(Continued) i) Increase the dividend and divisor by a different number of times, e.g. the dividend by a and the divisor by b. BB: $(15.6 \times a) \div(5.2 \times b)=3 \times a \div b \quad\left[=\frac{3 a}{b}\right]$ Ask Ps to suggest values for a and b and elicit that a can be any positive or negative whole number or fraction or decimal.	Notes Ps come to BB or dictate to T. Agreement, praising
3	\qquad TEST 3, Part A PbY6b, page 133 Q. 1 a) $\frac{3}{4} \times \frac{5}{7}=\frac{15}{28}$ b) $\frac{12}{15} \times \frac{1}{6_{1}}=\frac{2}{15}$ c) $1 \frac{3}{5} \times \frac{5}{8}=\frac{1,8}{5_{1}} \times \frac{5}{8}^{1}=1$ d) $2 \frac{1}{3} \times 3 \frac{1}{4}=\frac{7}{3} \times \frac{13}{4}=\frac{91}{12}=\underline{7 \frac{7}{12}}$	This $P b$ page could be used as a diagnostic test in 2 parts: Part A: Q. 1-5 Part B: Q. 6-10 Allow 25 minutes for each part (working and review). Review Part A interactively with the whole class before continuing with Part B.
	Q. 2 Write each percentage as a fraction and as a decimal. a) $43 \% \rightarrow \frac{43}{100}=\underline{0.43}$ b) $206 \% \rightarrow \frac{206}{100}=2 \frac{6}{100}=2 \frac{3}{50}=\underline{2.06}$	parts during a single lesson, Part B could be set as homework and reviewed interactively before the start of Lesson 134. If not done as a test but as
	Q. 3 What are these parts of 838 km ? a) $\begin{aligned} 0.67 \text { of } 838 \mathrm{~km} & =838 \mathrm{~km} \times 0.67 \\ & =\underline{561.46 \mathrm{~km}} \end{aligned}$ b) $\begin{aligned} 838 \mathrm{~km} \times 4 \frac{1}{3} & =838 \mathrm{~km} \times 4+838 \mathrm{~km} \div 3 \frac{561}{11} \\ & =3352 \mathrm{~km}+279 . \dot{3} \mathrm{~km}=3631 . \dot{3} \mathrm{~km} \end{aligned}$ c) 86% of $838 \mathrm{~km} \rightarrow 838 \mathrm{~km} \times 0.86=720.68 \mathrm{~km}$	question at a time, reviewing interactively and discussing and correcting mistakes after each question as usual. Accept any valid method. $\left.\begin{array}{\|r\|c\|c\|c\|} \hline & 8 & 3 & 8 \\ \times \times & 0 & 8 & 6 \\ \hline 5 & 0 & 2 & 8 \\ +6 & 7 & 0 & 4 \end{array}\right)$
	Q. 4 A container was $\frac{4}{5}$ full of honey. Then 2 thirds of this honey was sold. a) What part of the container still contains honey? If 2 thirds were sold, then 1 third is left. Plan: $\frac{1}{3}$ of $\frac{4}{5}=\frac{4}{5} \div 3=\frac{4}{\underline{15}}$ or $\frac{1}{3}$ of $\frac{4}{5}=\frac{1}{3} \times \frac{4}{5}=\frac{4}{\underline{15}}$ Answer: Four fifteenths of the container still contains honey.	Show in a diagram. BB:

16		Lesson Plan 133
Activity 3	(Test 3, Part A continued) b) If the container has a capacity of 50 litres: i) how much honey was sold Plan: $\frac{2}{3}$ of $\frac{4}{5}$ of 50 litres $=\frac{2}{3} \times \frac{4}{5_{1}} \times 50 \text { litres }=\frac{80}{3} \text { litres }=\underline{26 \frac{2}{3}} \text { litres }$ Answer: Twenty-six and 2 thirds litres of honey were sold. ii) how much honey was left? Plan: $\frac{1}{3}$ of $\frac{4}{5}$ of 50 litres $=\frac{1}{3} \times \frac{4}{5_{1}} \times 50 \text { litres }=\frac{40}{3} \text { litres }=13 \frac{1}{3} \text { litres }$ or $\frac{2}{3} \rightarrow 26 \frac{2}{3}$ litres, $\frac{1}{3} \rightarrow 26 \frac{2}{3}$ litres $\div 2=13 \frac{1}{3}$ litres Answer: Thirteen and 1 third litres of honey were left.	Notes or Amount in container at start: $\frac{4}{5} \text { of } 50 \text { litres }=40 \text { litres }$ Amount sold: $\begin{aligned} \frac{2}{3} \times 40 \text { litres } & =\frac{80}{3} \text { litres } \\ & =26 \frac{2}{3} \text { litres } \end{aligned}$ Amount left: $\left(40-26 \frac{2}{3}\right)$ litres $=13 \frac{1}{3}$ litres
	Q. 5 A jewellery firm bought $3.6 m^{2}$ of gold leaf. First 15% of the gold leaf was used, then $\frac{2}{9}$ of it, then 0.4 of it. a) How much gold leaf was used altogether? Plan: $(3.6 \times 0.15)+\left(3.6 \times \frac{2}{91}\right)+(3.6 \times 0.4) \mathrm{m}^{2}$ $=(0.54+0.8+1.44) \mathrm{m}^{2}=\underline{2.78 \mathrm{~m}^{2}}$ Answer: Altogether, $2.78 \mathrm{~m}^{2}$ of gold leaf was used. b) If the firm employed 10 craftsmen, how much gold leaf did each craftsman use on average? Plan: $2.78 \mathrm{~m}^{2} \div 10=\underline{0.278 \mathrm{~m}^{2}}$ Answer: Each craftsman used $0.278 \mathrm{~m}^{2}$ of gold leaf on average.	N.B. This is easier than adding the three parts together first, as in fraction form, the lowest common multiple of 100,9 and 10 is 900 , and in decimal form, $\frac{2}{9}=0 . \dot{2}$, a recurring decimal.

16		Lesson Plan 133
Activity 4	(Test 3, Part B continued) Q. 9 During a sale, the price of a $£ 185$ suit was reduced by 13%, then reduced again by 15%. a) By how many $£ s$ was the price reduced? Original price: $£ 185$ 1st reduction: $£ 185 \times 0.13=£ 24.05$ Price after 1st reduction: $£ 185-£ 24.05=£ 160.95$ 2nd reduction: $£ 160.95 \times 0.15=£ 24.1425 \approx £ 24.14$ Total reductions: $£ 24.05+£ 24.14=£ 48.19$ Answer: The price was reduced by $£ 48.19$. b) What was the new price? Plan: $£ 185-£ 48.19=£ 136.81$ Answer: The new price was $£ 136.81$.	Notes
	Q. 10 Construct a rhombus which has an angle of 60° and a longer diagonal of length 7 cm . Maasure the necessary data then calculate the perimeter and area of the rhombus. Elicit that a rhombus is a parallelogram which has equal sides. Its diagonals cross at right angles and bisect each other. BB: $\left(\mathrm{D} \hat{\mathrm{A} B}=\mathrm{A} \hat{\mathrm{B} D}=\mathrm{B} \hat{\mathrm{D}} \mathrm{A}=60^{\circ}, \mathrm{A} \hat{\mathrm{B}} \mathrm{C}=\mathrm{A} \hat{\mathrm{D}} \mathrm{C}=120^{\circ}\right.$, but the size of the angles is not required for area and perimeter) $\begin{aligned} & P \approx 4 \mathrm{~cm} \times 4=\underline{16 \mathrm{~cm}} \\ & A=\frac{\mathrm{BD} \times \mathrm{AC}}{2} \approx \frac{4 \times 7}{2} \mathrm{~cm}^{2}=\frac{28}{2} \mathrm{~cm}^{2}=\underline{14 \mathrm{~cm}^{2}} \end{aligned}$	Construction e.g. 1. Mark a point A and draw the longer diagonal, AC , 7 cm long. 2. Construct angles of 30° above and below AC at A. $\angle \mathrm{A}=60^{\circ}$ 3. Construct the perpendicular bisector of AC and label B and D the points where the bisector cuts the arms of angle A . BD is the other diagonal of the rhombus. 4. Join B and D to C. ABCD is a rhombus. Triangles ABD and BCD are congruent equilateral triangles. The area of the rhombus ABCD is half the area of the dotted rectangle shown opposite, i.e. half of BD $\times \mathrm{AC}$.
	Class applauds Ps who have all questions correct (or the fewest errrors) and also the most improved score from Test 2.	Feedback for T

	R: Calculations C: Review and practice: diagnostic test E: Generalisation	$\begin{gathered} \text { Lesson Plan } \\ 134 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{134}=2 \times 67 \quad$ Factors: 1, 2, 67, 134 - $\underline{309}=3 \times 103 \quad$ Factors: 1, 3, 103, 309 - $\underline{484}=2 \times 2 \times 11 \times 11=2^{2} \times 11^{2}=(2 \times 11)^{2}$ (square number) Factors: 1, 2, 4, 11, 22, 44, 121, 242, 484 - $\underline{1134}=2 \times 3 \times 3 \times 3 \times 3 \times 7=2 \times 3^{4} \times 7$ Factors: 1, 2, $3, \quad 6, \quad 7, \quad 9,14,18,21,27$ $1134,567,378,189,162,126,81,63,54,42 \downarrow$ [No. of factors: $(1+1) \times(4+1) \times(1+1)=2 \times 5 \times 2=20]$ 8 min	Notes Individual work, monitored (or whole class activity) BB: 134, 309, 484, 1134 Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g.
2	Generalisation in addition T writes an addition on BB: $a+b=c$ Let's see how the result changes if we increase or decrease the terms. Ps suggest changes (using positive and negative whole numbers, fractions and decimals) and choose other Ps to dictate the result. e.g. a) Increase a by 1.2: BB: $\quad(a+1.2)+b=c+1.2$ b) Increase b by $\left(-\frac{3}{4}\right)$: $a+\left[b+\left(-\frac{3}{4}\right)\right]=c-\frac{3}{4}$ c) Decrease a by $\left(-2 \frac{1}{3}\right)$: $\left[a-\left(-2 \frac{1}{3}\right)\right]+b=c+2 \frac{1}{3}$ d) Increase a and b by different amounts: $(a+0.1)+(b+0.7)=c+0.8$ e) Decrease a and increase b by the same amount: $(a-5)+(b+5)=c$ f) Increase a by 3 times: $(a \times 3)+b=a+b+(a \times 2)=c+a \times 2$ T : We could write it like this: $\text { BB: } c+2 a, \quad \text { as } a \times 2=a+a=2 a$ What is the result of this addition? What does it mean? $\begin{array}{ll} \text { BB: } \quad & 2 a+5 a=(7 a) \\ & (=2 \times a+5 \times a=7 \times a) \end{array}$	Whole class activity At a good pace In good humour Class points out errors. Agreement, praising If there is disagreement, ask Ps to check result by using actual values for a and b. Ask Ps to explain the generalisations in words too. e.g. If we increase or decrease either term in a 2 -term addition by a certain amount, the result also increases or decreases by that amount. If we increase one term and decrease the other term by the same amount in a 2 -term addition, the result does not change.

Q. $2 \quad$ a) $5 \div \frac{2}{3}=5 \times \frac{3}{2}=\frac{15}{2}=\underline{7 \frac{1}{2}}$
b) $16 \div 4 \frac{1}{2}=16 \div \frac{9}{2}=16 \times \frac{2}{9}=\frac{32}{9}=3 \frac{5}{9}$
c) $54 \div 5 \frac{1}{5}=54 \div \frac{26}{5}=54 \times \frac{5}{26}_{13}=\frac{135}{13}=10 \frac{5}{13}$
d) $100 \div\left(8 \frac{1}{4}-7 \frac{1}{2}\right)=100 \div\left(7 \frac{5}{4}-7 \frac{2}{4}\right)=100 \div \frac{3}{4}$
$=100 \times \frac{4}{3}=\frac{400}{3}=\underline{133 \frac{1}{3}}$
Q. 3 What is the whole quantity if:
a) $\frac{1}{4}$ of it is $28 \mathrm{~kg}: \quad[28 \mathrm{~kg} \times 4=\underline{112 \mathrm{~kg}}]$
b) $\frac{2}{3}$ of it is 28 litres: [28 litres $\div 2 \times 3=14$ litres $\times 3$

$$
=\underline{42 \text { litres }}
$$

or $28 \div \frac{2}{3}={ }^{14} 28 \times \frac{3}{2_{1}}=\underline{42}$ (litres)]

Notes

This $P b$ page could be used as a diagnostic test in 2 parts:

Part A: Q. 1-4
Part B: Q. 5-8
Allow 20 minutes for each part (working and review).
Review Part A interactively with the whole class before continuing with Part B.
If there is no time for the two parts during a single lesson,
Part B could be set as homework and reviewed interactively before the start of Lesson 135.
If done as practice, deal with one question at a time and review interactively after each question as usual, with any mistakes discussed and corrected.

Extension

Also elicit the mode of the data (most common): $+2^{\circ} \mathrm{C}$ and median (middle in ordered set of data):
$\frac{-1+0}{2}=-\frac{1}{2}=-0.5\left({ }^{\circ} \mathrm{C}\right)$ As there is an even number of data values, the median is the mean of the 2 middle values.

Elicit that to divide by a fraction, multiply by its reciprocal value, i.e. the value which multiplies it to result in 1, or the fraction which has the numerator and denominator values exchanged.

$$
\begin{aligned}
\text { or } 28 \div \frac{1}{4} & =28 \times \frac{4}{1} \\
& =\underline{112}(\mathrm{~kg})
\end{aligned}
$$

Accept any correct method but elicit that to calculate the whole amount when we know the value of part of it,we can divide the known value by the part.

	Use as 2 parts of Test 5 (Part A: Q.1-3, Part B: Q.4-6) reviewing Part A before continuing with Part B, or use as individual practice, reviewing after each question as usual.	$\begin{gathered} \text { Lesson Plan } \\ 135 \end{gathered}$
Activity	Factorising 135, 310, 485 and 1135. Revision and practice. PbY6b, page 135 Solutions: Q. $1 \quad$ a) $236.8-46.3=\underline{190.5}$ b) $236.8-(46.3+2)=190.5-2=\underline{188.5}$ c) $(236.8-5.6)-46.3=190.5-5.6=\underline{184.9}$ d) $236.8-(46.3-3)=190.5+3=\underline{193.5}$ e) $(236.8+2)-(46.3-1)=190.5+2+1=\underline{193.5}$ f) $(236.8-1)-(46.3+1)=190.5-1-1=\underline{188.5}$ g) $(236.8+10)-(46.3-10)=190.5+10+10=210.5$ h) $(236.8-6)-(46.3-6)=190.5-6+6-\underline{190.5}$ i) $(236.8+a)-(46.3+b)=190.5+a-b$ j) $(236.8-3 c)-(46.3-5 c)=190.5-3 \mathrm{c}+5 \mathrm{c}=\underline{190.5+2 c}$ Q. 2 a) $325 \times 1.5=325+162.5=\underline{487.5}$ b) $(325 \times 3) \times 1.5=487.5 \times 3=\underline{1462.5}$ c) $325 \times(1.5 \times 3)=487.5 \times 3=\underline{1462.5}$ d) $(325 \div 5) \times 1.5=487.5 \div 5=\underline{97.5}$ e) $325 \times(1.5 \div 3)=487.5 \div 3=\underline{162.5}$ f) $(325 \times 0.2) \times(1.5 \times 4)=487.5 \times 0.2 \times 4=487.5 \times 0.8$ $=\underline{390}$ g) $(325 \div 4) \times(1.5 \div 3)=487.5 \div 4 \div 3=487.5 \div 12$ $=\underline{40.625}$ h) $(325 \times 11) \times(1.5 \div 11)=487.5 \times 11 \div 11=\underline{487.5}$ i) $(325 \div a) \times(1.5 \div b)=487.5 \div a \div b=487.5 \div a b$ j) $(325 \times a) \times(1.5 \div b)=487.5 \times a \div b=487.5 \times \frac{a}{b}$ Q. 3 a) $(x+2.3)+y=z+2.3$ b) $x+\left[y+\left(-\frac{4}{5}\right)\right]=z-\frac{4}{5}$ c) $\left[x-\left(-3 \frac{1}{4}\right)\right]+y=z+3 \frac{1}{4}$ d) $(x+1.2)+(y+1.6)=z+1.2+1.6=\underline{z}+2.8$ e) $(x-7)+(y+7)=z-7+7=\underline{z}$ f) $(x \times 4)+y=(x \times 3)+x+y=\underline{3 x+z}$	Notes $\underline{135}=3^{3} \times 5$ Factors: 1, 3, 5, 9, 15, 27, 45, 135 $\underline{310}=2 \times 5 \times 31$ Factors: 1, 2, 5, 10, 31, 62, 155, 310 $\underline{485}=5 \times 97$ Factors: 1, 5, 97, 485 $\underline{1135}=5 \times 227$ Factors: 1, 5, 227, 1135 (or set factorising as homework at the end of Lesson 134 and review at the start of Lesson 135)

16		Lesson Plan 136
Activity 2	(Continued) b) $\mathrm{BB}:\{0.001,0.01,0.1,1\}$ i) range: $1-0.001=\underline{0.999}$ ii) median: (set is already in order, with an even no. of values) $\text { BB: }(0.01+0.1) \div 2=0.11 \div 2=\underline{0.055}$ iii) mode: All the data values iv) mean: $[0.001+0.01+0.1+1] \div 4=1.111 \div 4=\underline{0.27775}$ 15 min	Notes
3	TEST 6, Part A PbY6b, page 136 Q. 1 A man walks at an average speed of $4 \frac{2}{5} \mathrm{~km} / \mathrm{hour}$. How far does he walk in $2 \frac{2}{3}$ hours? Solution: Plan: $4 \frac{2}{5} \mathrm{~km} \times 2 \frac{2}{3}=\frac{22}{5} \mathrm{~km} \times \frac{8}{3}=\frac{176}{15} \mathrm{~km}=11 \frac{11}{15} \mathrm{~km}$ Answer: The man walks 11 and 11 fifteenths kilometres in 2 and 2 thirds hours.	This $P b$ page could be used as a diagnostic test in 2 parts: Part A: Q. 1-5 Part B: Q. 6-8 Allow 20 minutes for each part (working and review). Review Part A interactively with the whole class before continuing with Part B. If there is no time for the two parts during a single lesson, Part B could be set as homework and reviewed interactively before the start
	Q. 2 What is the whole quantity if: a) $\frac{6}{7}$ of it is $60 \mathrm{~kg}: \quad 60 \mathrm{~kg} \div \frac{6}{7}={ }_{6}^{10} 00 \mathrm{~kg} \times \frac{7}{6_{1}}=\underline{70 \mathrm{~kg}}$ b) 55% of it is $£ 273.02$: $\begin{aligned} £ 273.02 \div 0.55 & =£ 27302 \div 55 \\ =£ 2482 \div 5 & =\underline{£ 496.40} \end{aligned}$ c) $1 \frac{3}{5}$ of it is $14 \frac{2}{5}$ litres: 14.4 litres $\div 1.6=144$ litres $\div 16$ $=72$ litres $\div 8=\underline{9 \text { litres }}$	If done as practice, deal with one question at a time and review interactively after each question as usual, with any mistakes discussed and corrected. $\begin{aligned} & \text { or } 14 \frac{2}{5} \div 1 \frac{3}{5}=\frac{72}{5} \div \frac{8}{5} \\ & =\frac{92}{5_{1}} \times \frac{5}{8}_{1}^{1}=\underline{9} \text { (litres) } \end{aligned}$
	Q. 3 If $a=12 \div 3 \frac{1}{3}$ and $b=12 \div 2 \frac{3}{4}$, what is the value of: a) $a\left[=12 \div 3 \frac{1}{3}=12 \div \frac{10}{3}={ }^{6} 12 \times \frac{3}{10}=\frac{18}{5}=3 \frac{3}{5}\right]$ b) $b\left[=12 \div 2 \frac{3}{4}=12 \div \frac{11}{4}=12 \times \frac{4}{11}=\frac{48}{11}=4 \frac{4}{11}\right]$ c) $a+b\left[=3 \frac{3}{5}+4 \frac{4}{11}=7+\frac{33+20}{55}=7 \frac{53}{55}\right]$ d) $a-b\left[=3 \frac{3}{5}-4 \frac{4}{11}=-1+\frac{33-20}{55}=-1+\frac{13}{55}=-\frac{42}{55}\right]$ e) $a \div b\left[=\frac{18}{5} \div \frac{48}{11}=\frac{3}{5} \times \frac{11}{48}=\frac{33}{40}\right]$ f) $b \div a\left[=\frac{48}{11} \div \frac{18}{5}=\frac{8}{{ }^{48}} \times \frac{5}{11}=\frac{40}{33}=1 \frac{7}{33}\right]$	$\text { or }=12 \times \frac{3}{10}=\frac{36}{10}=\underline{3.6}$ but it is best to stay in fraction form for the remaining calculations
		f) or $\frac{a}{b}=\frac{33}{40}$, so $\frac{b}{a}=\frac{40}{33}$ (as $\frac{b}{a}$ is the reciprocal of $\frac{a}{b}$)

16		Lesson Plan 136	
Activity 3	(Test 6, Part A continued) Q. 4 If $1 \frac{2}{5}$ of a number is $8 \frac{2}{3}$, what is $3 \frac{2}{5}$ of the same number? $\begin{aligned} 1 \frac{2}{5}=\frac{7}{5} & \rightarrow 8 \frac{2}{3} \\ \frac{1}{5} & \rightarrow 8 \frac{2}{3} \div 7=\frac{26}{3} \div 7=\frac{26}{21}=1 \frac{5}{21} \\ \frac{5}{5} & \rightarrow 1 \frac{5}{21} \times 5=5 \frac{25}{21}=6 \frac{4}{21} \text { (This is the number.) } \\ 3 \frac{2}{5} \text { of } 6 \frac{4}{21} & =\frac{17}{5_{1}} \times \frac{130}{21}=\frac{442}{21}=21 \frac{1}{21} \end{aligned}$ Answer: Three and 2 fifths of the same number is $21 \frac{1}{21}$.	Notes or the plan written in one line: Allow calculators for this question. BB: or $=30.8 \mathrm{~cm} \times 0.6=\underline{18.48 \mathrm{~cm}}$	
	Q. 5 Here is some information about the dimensions of an aluminium cuboid: $a=38.5 \mathrm{~cm}, b=80 \% \text { of } a, b=1 \frac{2}{3} \text { of } c \text {. }$ Dimensions: $b=38.5 \mathrm{~cm} \times 0.8=\underline{30.8 \mathrm{~cm}}$ $\begin{aligned} & 1 \frac{2}{3} \text { of } c=30.8 \mathrm{~cm} \\ & \begin{aligned} c=30.8 \mathrm{~cm} \div 1 \frac{2}{3}= & 30.8 \mathrm{~cm} \div \frac{5}{3} \\ & =30.16 \\ = & 30.8 \mathrm{~cm} \times \frac{3}{5_{1}}=\underline{18.48 \mathrm{~cm}} \end{aligned} \end{aligned}$ a) Calculate the volume of the cuboid. $\begin{aligned} V=a \times b \times c & =38.5 \times 30.8 \times 18.48\left(\mathrm{~cm}^{3}\right) \\ & =\underline{21913.584 \mathrm{~cm}^{3}} \end{aligned}$ b) Calculate the mass of the solid if $1 \mathrm{~cm}^{3}$ of aluminium weighs 2.7 g . $\begin{aligned} M=21913.584 \times 2.7 \mathrm{~g} & =59166.6768 \mathrm{~g} \\ & \approx 59167 \mathrm{~g}=\underline{59.167 \mathrm{~kg}} \end{aligned}$		
4	TEST 6, Part B PbY6b, page 136 Q. 6 a) Draw a square and label its vertices, sides and diagonals. b) Write true statements about the square,using words or mathematical notation. e.g. $a=b=c=d ; \quad e=f ; \quad e \perp f$, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ $\mathrm{DA} \perp \mathrm{AB}, \mathrm{BC} \perp \mathrm{AB}, \mathrm{AB} \\| \mathrm{CD}$, etc. A square is a regular rectangle. A square has 4 lines of symmetry and rotational symmetry. etc.	BB: Extra praise for unexpected statements. e.g. All squares are similar.	

	R: Calculations C: Review and practice: diagnostic test (Geometry) E:	$\begin{gathered} \text { Lesson Plan } \\ 137 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 137 is a prime number Factors: 1, 137 (as not exactly divisible by $2,3,5,7,11$, and $13^{2}>137$) - $\underline{312}=2 \times 2 \times 2 \times 3 \times 13=2^{3} \times 3 \times 13$ Factors: $\begin{array}{r}1, \\ 312,\end{array} \quad 156,104,78,52,39,26,24 \downarrow$ - 487 is a prime number Factors: 1, 487 (as not exactly divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>487$) - $\underline{1137}=3 \times 379$ Factors: 1, 3, 379, 1137 (379 is not divisible by $2,3,5,7,11,13,17,19$, and $23^{2}>379$)	Notes Individual work, monitored (or whole class activity) BB: 137, 312, 487, 1137 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising e.g. [No. of factors of 312 : $\begin{aligned} & (3+1) \times(1+1) \times(1+1) \\ & =4 \times 2 \times 2=\underline{16} \end{aligned}$
2	TEST 7, Part A PbY6b, page 137 Q. 1 a) Draw an isosceles triangle and label its vertices. b) Draw its lines of symmetry. (Only 1 line of symmetry: the bisector of $\angle \mathrm{C}$ and also the perpendicular bisector of AB) c) Write 4 true statements about the triangle in words or using mathematical notation. e.g. $\quad \mathrm{AC}=\mathrm{BC}$ (They are mirror images of one another.) $\begin{aligned} & \mathrm{AT}=\mathrm{TB}, \quad \Delta \mathrm{ATC} \cong \Delta \mathrm{BTC}(\cong \text { means 'congruent' }) \\ & \angle \mathrm{A}=\angle \mathrm{B}, \quad \mathrm{ACT}=\mathrm{BC} \mathrm{~T}, \mathrm{CT} \perp \mathrm{AB} \end{aligned}$ Q. 2 Construct and label: a) a 45° angle Construct a 90° angle then bisect it. $\begin{aligned} & 180^{\circ} \div 2 \div 2=45^{\circ} \\ & \left(\text { or } 30^{\circ}+15^{\circ}=45^{\circ}\right) \end{aligned}$ b) a 120° angle e.g. Construct two 60° angles. $60^{\circ}+60^{\circ}=120^{\circ}$ (or $180^{\circ}-60^{\circ}=120^{\circ}$)	This $P b$ page could be used as a diagnostic test in 2 parts: Part A: Q. 1-4 Part B: Q. 5-7 Allow 25 minutes for each part (working and review). Review Part A interactively with the whole class before continuing with Part B. If there is no time for the two parts during a single lesson, Part B could be set as homework and reviewed interactively before the start of Lesson 138. If done as practice, deal with one question at a time and review interactively after each question as usual, with any mistakes discussed and corrected. or a) construct two 60° angles and bisect the 2nd angle to form the 90° angle, rather than bisecting a 180° angle, or construct a 60° angle, bisect it to form two 30° angles and bisect one of the 30° angles.

16		Lesson Plan 137
Activity 2	(Test 7, Part A, continued) Q. 3 a) Draw an equilateral triangle which has sides of length 2 cm . b) Draw a triangle which has sides 3 times longer than those in the 1st riangle. Triangle 1 c) How many times more than the area of the 1st triangle is the area of the $2 n d$ triangle? Measure the perpendicular height of each triangle (see diagram).$\begin{aligned} & A_{1} \approx \frac{12 \times 1.7}{2_{1}} \mathrm{~cm}^{2}=\underline{1.7 \mathrm{~cm}^{2}} \\ & A_{2} \approx \frac{3 \times 5.2}{2_{1}} \mathrm{~cm}^{2}=\underline{15.6 \mathrm{~cm}^{2}} \\ & \frac{A_{2}}{A_{1}} \approx \frac{15.6}{1.7}=\frac{156}{17} \approx \underline{9.2} \end{aligned}$ 7 9.2 -1 5 6.6 1 5 3 3. 6 - 3. Answer: The area of the 2 nd triangle is about 9 times more than the area of the 1st triangle. c) How many times more than the perimeter of the 1st triangle is the perimeter of the $2 n d$ triangle? $\begin{aligned} & P_{1}=3 \times 2 \mathrm{~cm}=\underline{6 \mathrm{~cm}} \\ & P_{2} \approx 3 \times 6 \mathrm{~cm}=\underline{18 \mathrm{~cm}} \\ & \frac{P_{2}}{P_{1}}=\frac{18}{6}=\underline{3} \end{aligned}$ Answer: The perimeter of the 2 nd triangle is 3 times more than the perimeter of the 1 st triangle.	Notes Construction: Triangle 1 1. Mark a point and draw a ray. 2. Set compasses to width 2 cm and keep that width. 3. With point of compasses on original point, mark 2 cm on the ray. This is the base of the triangle. 4. With point of compasses on each end point of the base, draw 2 arcs above the base. 5. The point of intersection of the 2 arcs is the 3 rd vertex of the triangle. 6. Join the end points of the base to the 3 rd vertex. Repeat for Triangle 2 but with compasses set to width 6 cm . Elicit that the area of a triangle is half the length of its base times its perpendicular height. ie. $A_{2} \approx 9 \times A_{1}$ Note that it would be exactly 9 times more if we could measure completely accurately. Elicit that the angles in both triangles are all 60°, so the triangles are similar. ie. $P_{2}=3 \times P_{1}$ This is exact as we have made no approximations. We have calculated, not measured!

16		Lesson Plan 137
Activity 2	(Test 7, Part A, continued) Q. 4 a) Construct an isosceles triangle which has a side of length 4 cm as its base and angles of 75° at its baseline. b) Measure the necessary data then calculate the perimeter of the triangle. $\begin{aligned} & \mathrm{AC}=\mathrm{BC} \approx 7.7 \mathrm{~cm} \\ & P \approx 4 \mathrm{~cm}+(2 \times 7.7 \mathrm{~cm})=4 \mathrm{~cm}+15.4 \mathrm{~cm}=19.4 \mathrm{~cm} \end{aligned}$ c) Calculate the area of the triangle. Measure the perpendicular height. $(h \approx 7.5 \mathrm{~cm})$ $A \approx \frac{2}{\frac{4 \times 7.5}{2_{1}}} \mathrm{~cm}^{2}=15 \mathrm{~cm}^{2}$	Notes Construction 1. Mark a point, A, and draw a ray. 2. With compasses point on A and width set to 4 cm , mark point B on the ray. $A B$ is the base of the triangle. 3. At A and at B, construct two angles of 60°, then bisect the 2nd angle to form an angle of 30°, then bisect this 30° angle to form an angle of 15°. $\left(60^{\circ}+15^{\circ}=75^{\circ}\right)$ 4. Extend the arms of angles A and B until they intersect at C . Triangle $A B C$ is the isosceles triangle required.

16		Lesson Plan 137
Activity 3	TEST 7, Part B PbY6b, page 137 Q. 5 a) Construct a deltoid which has sides of length 4 cm and 6 cm and the length of the diagonal which lies on its line of symmetry is 8 cm . b) Calculate its perimeter. $P=2 \times(4+6) \mathrm{cm}=2 \times 10 \mathrm{~cm}=\underline{20 \mathrm{~cm}}$ c) Measure the necessary data, then calculate its area. Measure the other diagonal: $\mathrm{BD} \approx 5.8 \mathrm{~cm}$ $A \approx \frac{\mathrm{AC} \times \mathrm{BD}}{2}=\frac{48 \times 5.8}{2_{1}} \mathrm{~cm}^{2}=\underline{23.2 \mathrm{~cm}^{2}}$ Q. 6 Two opposite angles of a deltoid are 50° and 110°. Calculate the size of the other two angles. The sum of the angles in any quadrilateral is 360°. $\begin{aligned} \angle \mathrm{B}=\angle \mathrm{D} & =\frac{360^{\circ}-\left(110^{\circ}+50^{\circ}\right)}{2} \\ & =\frac{360^{\circ}-160^{\circ}}{2}=\frac{200^{\circ}}{2}=100^{\circ} \end{aligned}$ Answer: The other two angles are each 100°.	Notes Advise Ps to draw a sketch first to help them plan the construction. Construction 1. Mark a point A and draw a ray. 2. Set compasses to 8 cm and with compasses point on A , mark point C on the ray. 3. Set compasses to width 4 cm and draw 2 arcs around A above and below AC. 4. Set compasses to width 6 cm and draw 2 arcs around C above and below AC. 5. Label the 2 points of intersection B and D 6. Join A and C to B and D. $A B C D$ is the required deltoid. Elicit that: $\mathrm{A} \hat{B} C=A \hat{D} C$ $\Delta \mathrm{ABC} \cong \Delta \mathrm{ADC}$ area of a deltoid is half its length times its height. Sketch: e.g.

		Lesson Plan 137
Activity	(Test 7, Part B, continued) Q. 7 a) Construct a rhombus which has diagonals 8 cm and 5 cm long. b) Measure the distance between two opposite sides. (e.g. the perpendicular distance between AB and DC , as shown in diagram, or BC and $\mathrm{AD}: h \approx 4.2 \mathrm{~cm}$) c) Measure the angles and add them together. $\angle \mathrm{A}=\angle \mathrm{C} \approx 64^{\circ}, \quad \angle \mathrm{B}=\angle \mathrm{D} \approx 116^{\circ}$ \sum angles $=2 \times\left(64^{\circ}+116^{\circ}\right)=2 \times 180^{\circ}=360^{\circ}$ (Extra praise for Ps who realised that they did not need to calculate, as the sum of the angles in any quadrilateral is 360°.) d) Calculate the perimeter of the rhombus. Measure the length of a side: $a \approx 4.7 \mathrm{~cm}$ $P \approx 4 \times 4.7 \mathrm{~cm}=\underline{18.8 \mathrm{~cm}}$ e) Calculate the area of the rhombus. $A=\frac{\mathrm{AC} \times \mathrm{BD}}{2}=\frac{8 \times 5}{2} \mathrm{~cm}^{2}=\underline{20 \mathrm{~cm}^{2}}$ T: We could also calculate the area like this. BB: $A=a \times h \approx(4.7 \times 4.2) \mathrm{cm}^{2}=19.74 \mathrm{~cm}^{2} \approx \underline{20 \mathrm{~cm}^{2}}$ Is it correct? Who can explain it?	Notes Construction 1. Mark a point A and draw a ray. 2. Set compasses to 8 cm and with point of compasses on A , mark point C on the ray. 3. Set compasses to an appropriate width and draw 2 arcs around A and around C above and below AC. 4. Draw a line through the 2 points of intersection. This is the perpendicular bisector of AC. 5. Set compasses to 2.5 cm . With point of compasses on point of intersection of the 2 diagonals, mark points B and D on the perpendicular bisector of AC. 6. Join B and D to A and C. ABCD is the required rhombus. (\sum means 'sum of') Elicit that a rhombus is a deltoid which has equal sides, and its area is half the product of its diagonals (i.e. half the area of the dotted rectangle shown in the diagram). (See dashed rectangle in diagram.)
	Class applauds Ps with all correct (or the fewest errors) and also the Ps chosen by the T as having the neatest drawings.	Feedback for T

	R: Calculations C: Review and practice: diagnostic test E: Formulae	$\begin{gathered} \text { Lesson Plan } \\ 138 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T , explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - $\underline{138}=2 \times 3 \times 23 \quad$ Factors: 1, 2, 3, 6, 23, 46, 69, 138 - $\underline{313}$ is a prime number Factors: 1, 313 (as not exactly divisible by $2,3,5,7,11,13,17$, and $19^{2}>313$) - $\underline{488}=2 \times 2 \times 2 \times 61=2^{3} \times 61$ Factors: 1, 2, 4, 8, 61, 122, 244, 488 - $\underline{1138}=2 \times 569 \quad$ Factors: 1, 2, 569, 1138 (569 is not divisible by $2,3,5,7,11,13,17,19,23$, and $29^{2}>569$)	Notes Individual work, monitored (or whole class activity) BB: 138, 313, 488, 1138 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising
2	Solving equations Let's solve these equations. What does 'solve' mean? (Find out what number could be written instead of the letter to make the equation true.) Ps come to BB or dictate to T , explaining reasoning. Class points out errors and checks that the solution is correct. T asks Ps to think of a word problem for which the equation is the solution. e.g. a) $\frac{d}{2}=60 \quad[d=60 \times 2=\underline{120}]$ e.g. If a car travelled at a steady speed of 60 miles/hour for 2 hours, what distance would it have covered? [120 miles) b) $100 \times t=1500 \quad\left[t=\frac{1500}{100}=\underline{15}\right]$ e.g. How long would it take a train travelling at an average speed of $100 \mathrm{~km} /$ hour to cover a distance of 1500 km ? (15 hours) c) $s \times 4=80 \quad\left[s=\frac{80}{4}=\underline{20}\right]$ e.g. If a cyclist covered a distance of 80 km in 4 hours, what was his average speed? ($20 \mathrm{~km} /$ hour) d) $30=2 \times b \times 5 \quad\left[b=\frac{30}{2 \times 5}=\frac{30}{10}=\underline{3}\right]$ e.g. What is the width of a cuboid which has length 2 cm , height 5 cm and volume $30 \mathrm{~cm}^{3}$? etc. Ps could suggest other equations if there is time.	Whole class activity Written on BB or SB or OHT At a good pace. Involve several Ps. Reasoning, checking, agreement, praising Check: $\frac{120}{2}=60$ Check: $100 \times \underline{15}=1500$ Check: $\underline{20} \times 4=80$ Check: $2 \times \underline{3} \times 5=30$ Extra praise for unexpected contexts.

		Lesson Plan 138
Activity 3	(Test 8, Part A, continued) Q. 4 The volume of a square-based pyramid can be calculated using this formula: $V=\frac{A \times h}{3}$ where A is the area of the base and h is the height of the pyramid. How high is the pyramid if its base edge is 36 cm and its volume is $17289 \mathrm{~cm}^{3}$? Plan: $h=\frac{V \times 3}{A}=\frac{17289 \times 3}{36 \times 36} \mathrm{~cm}=\frac{1921}{48} \mathrm{~cm} \approx \underline{40 \mathrm{~cm}}$ Answer: The pyramid is about 40 cm high. 35 min	Notes or Ps might do 3 separate calculations: work out the area of the base first, then multiply the volume by 3 , then divide this product by the area of the base.
4 Erratum In c) in $P b$: $' 21 \frac{7}{8}$ should be $' 21 \frac{7}{8} \mathrm{~m} '$	TEST 8, Part B PbY6b, page 138 Q. 5 $\begin{aligned} & {\left[\frac{4}{5} \times 1 \frac{3}{7}-\left(3 \frac{1}{4}-1 \frac{5}{6}\right)\right] \times 4 \frac{2}{3}} \\ & =\left[\frac{4}{5} \times \frac{10^{2}}{7}-\left(2 \frac{3-10}{12}\right)\right] \times \frac{14}{3} \\ & =\left[\frac{8}{7}-\left(2-\frac{7}{12}\right)\right] \times \frac{14}{3} \\ & =\left(1 \frac{1}{7}-1 \frac{5}{12}\right) \times \frac{14}{3} \\ & =\left(\frac{12-35}{84}\right) \times \frac{14}{3}=-\frac{23}{84} \times \frac{14}{3}=-\frac{23}{18}=-1 \frac{5}{18} \end{aligned}$ b) What is $\frac{5}{6}$ of $3 \frac{5}{7} \mathrm{~kg}$? $\frac{5}{6} \times 3 \frac{5}{7} \mathrm{~kg}=\frac{5}{6} \times \frac{13}{3} \frac{26}{7} \mathrm{~kg}=\frac{65}{21} \mathrm{~kg}=3 \frac{2}{21} \mathrm{~kg}$ c) If $3 \frac{1}{2}$ times a length is $21 \frac{7}{8}$, what is the whole length? Whole length: $\begin{aligned} 21 \frac{7}{8} \mathrm{~m} \div 3 \frac{1}{2}=21 \frac{7}{8} \mathrm{~m} \div \frac{7}{2} & =21 \frac{7}{8} \mathrm{~m} \div 7 \times 2 \\ & =3 \frac{1}{8} \mathrm{~m} \times 2 \\ & =6 \frac{2}{8} \mathrm{~m}=6 \frac{1}{4} \mathrm{~m} \end{aligned}$	Tell Ps not to be dismayed by this calculation but to work through it carefully doing one step at a time. Class applauds Ps who did it correctly but also praise Ps who made a good attempt.

	R: Calculations C: Formulae. Combinatorical probability E: Generalisations, abstractions	$\begin{gathered} \text { Lesson Plan } \\ 139 \end{gathered}$
Activity 1	Factorisation Factorise these numbers in your exercise book and list their positive factors. T sets a time limit of 6 minutes. Review with whole class. Ps come to BB or dictate to T, explaining reasoning. Class agrees/disagrees. Mistakes discussed and corrected. Elicit that: - 139 is a prime number Factors: 1,139 (as not exactly divisible by $2,3,5,7,11$ and $13^{2}>139$) - $\underline{314}=2 \times 157$ Factors: 1, 2, 157, 314 - $\underline{489}=3 \times 163$ Factors: 1, 3, 163, 489 - $\underline{1139}=17 \times 67$ Factors: 1, 17, 67, 1139 8 min	Notes Individual work, monitored (or whole class activity) BB: 139, 314, 4891139 T decides whether Ps may use calculators. Reasoning, agreement, selfcorrection, praising
2	Sequences Let's write the first 5 terms of these sequences if $n=1,2,3,4$, etc. Who can explain what we should do? (Substitute 1 for n to get the 1 st term, 2 for n to get the 2 nd term, 3 for n to get the 3 rd term, etc.) Ps calculate mentally or on scrap paper or slates, then come to BB or dictate what T should write. Class points out errors and agrees on another form of the rule (where possible). BB: a) $a_{n}=\frac{2}{5} n-1: \quad\left(-\frac{3}{5},-\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, \ldots\right)$ Rule: Increasing by 2 fifths from -3 fifths [or $+\frac{2}{5}$] b) $b_{n}=14.2-6.5 n: \quad(7.7,1.2,-5.3,-11.8,-18.3, \ldots)$ Rule: Decreasing by 6.5 from 7.7 [or -6.5] c) $c_{n}=\frac{n \times n-2 n+1}{3}$: $\left(0, \frac{1}{3}, \frac{4}{3}, 3, \frac{16}{3}, \ldots\right)$ or $\left(0, \frac{1}{3}, 1 \frac{1}{3}, 3,5 \frac{1}{3}, \ldots\right)$ or $\left(\frac{0^{2}}{3}, \frac{1^{2}}{3}, \frac{2^{2}}{3}, \frac{3^{2}}{3}, \frac{4^{2}}{3}, \ldots\right)$ d) $d_{n}=\frac{n-2}{n}$: $\left(-1,0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \ldots\right)$ or $\quad\left(-\frac{1}{1}, \frac{0}{2}, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \ldots\right)$	Whole class activity Written on BB or SB or OHT At a good pace Involve several Ps. Reasoning, agreement, praising Elicit that $\frac{2}{5} n$ means $\frac{2}{5} \times n$ Point out that: $\frac{n \times n-2 n+1}{3}$ can be written as $\frac{n^{2}-2 n+1}{3}$ Agree that in c) and d) the rules are best described by the given formulae, as it is difficult to explain them in words.

