Mathematics Enhancement Programme **TEACHING SUPPORT: Year 6**

FACTS TO KNOW AND REM	EMBER	
Multiplication tables	Up to 10) × 10
S I Units	10 mm	= 1 cm
	1000 mm	= 1 m
	100 cm	= 1 m
		= 1 km
		= 1 cl
		= 1 litre
	100 cl	= 1 litre
		= 1 kg
		= 1 tonne
		= 1 minute
	60 minutes	
		= 1 day
	-	= 1 week
	12 months	= 1 year
		- 1 year
Imperial Units	12 inches	= 1 foot
	3 feet	= 1 yard
	1760 yards	= 1 mile
	16 oz	= 1 lb
	14 lb	= 1 stone
		= 1 gallon

Conversion between units

(so
$$1 \text{ km} \approx \frac{5}{8} \text{ mile}$$
 and $1 \text{ mile} \approx \frac{8}{5} \text{ km}$)

Mass 1 oz
$$\approx 28.35 \text{ g}$$
 1 g $\approx 0.0353 \text{ oz}$ 1 kg $\approx 2.205 \text{ lb}$ 1 lb $\approx 0.4536 \text{ kg}$

Capacity 1 litre
$$\approx 1.76 \text{ pints}$$
 1 pint $\approx 0.568 \text{ litres}$
1 litre $\approx 0.22 \text{ gallons}$ 1 gallon $\approx 4.545 \text{ litres}$

Temperature
$$x \, ^{\circ}C = \left(\frac{9x}{5} + 32\right) \, ^{\circ}F$$

 $y \, ^{\circ}F = \left(y - 32\right) \times \frac{5}{9} \, ^{\circ}C$

$$(^{\circ}C = \text{degrees Celsius}, \quad ^{\circ}F = \text{degrees Fahrenheit})$$

Numbers

$$1 \text{ th} = \frac{1}{1000}$$

$$1 \text{ h} = \frac{1}{100}$$

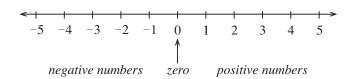
$$1 \text{ t} = \frac{1}{10}$$

$$1 \text{ T} = 10$$

$$1 \text{ H} = 10 \text{ T} = 100$$

$$1 \text{ Th} = 10 \text{ H} = 100 \text{ T} = 1000$$

Negative Numbers



Roman Numerals

I	1
V	5
X	10
L	50
С	100
D	500
M	1000

Even / Odd

Whole numbers ending in 0, 2, 4, 6, 8 are EVEN (and divisible by 2 with no remainder).

Whole numbers ending in 1, 3, 5, 7, 9 are ODD (and have remainder 1 when divided by 2).

Divisor or Factor and Multiple

Any whole number that divides exactly into a whole number with no remainder is called a *divisor* or *factor* of the number.

For example, 1, 2, 3, 4, 6 and 12 are all divisors (or factors) of 12.

Any whole number that can be divided by a whole number with no remainder is called a *multiple* of the number.

For example, $5, 10, 15, 20, \ldots$ are all multiples of 5.

Any whole number is *divisible by 3* if the sum of its digits is divisible by 3.

For example, 123
$$(1+2+3=6)$$
, so 123 is divisible by 3. In fact, $123 \div 3 = 41$)

7212 $(7+2+1+2=12)$, and 12 is divisible by 3, so 7212 is divisible by 3

In fact, $7212 \div 3 = 2404$)

Any whole number is *divisible by 9* if the sum of its digits is divisible by 9.

For example, 873 $(8 + 7 + 3 = 18 \text{ and } 18 \text{ is divisible by } 9. \text{ In fact, } 873 \div 9 = 97)$

Equivalent Fractions

$$\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \dots$$

$$\frac{1}{10} = \frac{5}{50} = \frac{10}{100} = \dots$$

Adding/Subtracting Fractions

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

(a, b and c are natural numbers, that is, numbers used for counting)

$$\frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}$$

Decimals

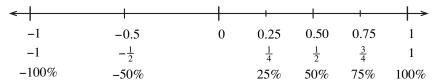
$$0.a = \frac{a}{10} \qquad (a = 0, 1, ..., 9) \quad \text{(e.g. } 0.8 = \frac{8}{10})$$

$$0.ab = \frac{a}{10} + \frac{b}{100} \qquad (a, b = 0, 1, 2, ..., 9) \quad \text{(e.g. } 0.82 = \frac{8}{10} + \frac{2}{100})$$

$$0.abc = \frac{a}{10} + \frac{b}{100} + \frac{c}{1000} \qquad (a, b, c = 0, 1, 2, ..., 9) \quad \text{(e.g. } 0.823 = \frac{8}{10} + \frac{2}{100} + \frac{3}{1000})$$

Fraction, Decimal, Percentage Equivalents

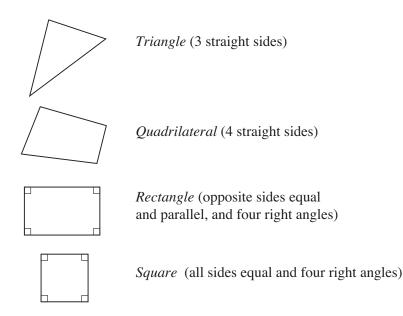
For example,



Similarly,

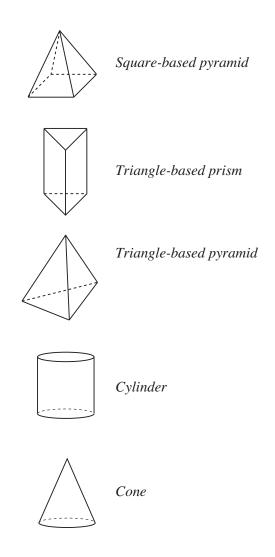
$$\frac{1}{10} = 0.1 = 10\%,$$
 $\frac{1}{20} = 0.05 = 5\%,$ etc.

Shapes: 2D



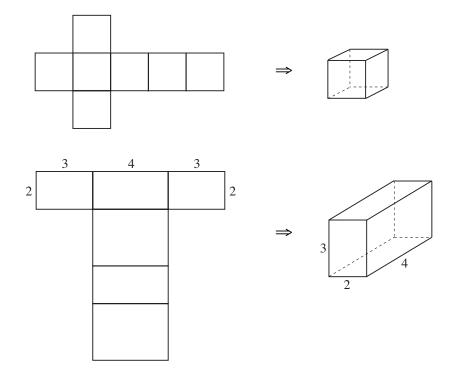
(Note that all squares are rectangles and all rectangles are quadrilaterals.)

Polygon (any closed 2D shape with sides (edges) all straight lines) Pentagon (any 5-sided polygon: a regular pentagon has all internal angles of 108° and all sides the same length) Hexagon (any 6-sided polygon; a regular hexagon has internal angles of 120° and all sides of equal length) Octagon (any 8-sided polygon; a regular octagon has internal angles of 135°) Trapezium (a quadrilateral with at least one pair of sides parallel) Rhombus (a quadrilateral with 4 equal sides; opposite sides are parallel) Parallelogram (2 pairs of equal and parallel sides) Deltoid (a quadrilateral with two pairs of adjacent sides equal) Shapes: 3D Cube (all sides equal so each face is a square) Cuboid (all opposite sides equal so each face is a rectangle) Sphere



Nets

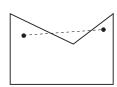
A *net* is a 2-D figure which can be folded to make a 3-D shape.

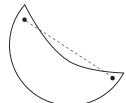


Convex and Concave Shapes

Concave:

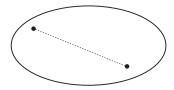
a straight line cannot always be drawn between any two points on the shape that is always inside the shape. In each of the examples below, the two points are *inside* the shape but the straight line drawn between them passes *outside* the shape.



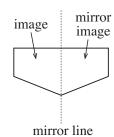


Convex:

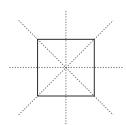
a straight line drawn between any two points on the shape will always lie *inside* the shape, as can be seen from the example below.



Symmetry

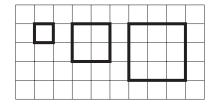


The whole shape has one line of symmetry.

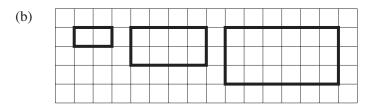


Four lines of symmetry are shown here.

Similarity



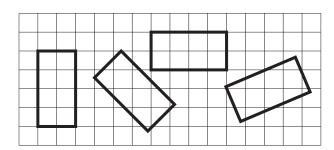
These shapes are similar.



These shapes are similar.

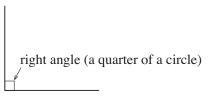
(The sides are in the same ratio, that is, 1:1 in (a) and 1:2 (i.e, 2:4 and 3:6) in (b).

Congruence



Congruent shapes are identical in shape and size but can be rotated or reflected; the 4 shapes shown are congruent.

Parallel and Perpendicular Lines



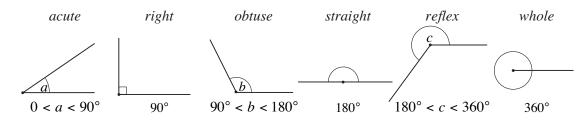
right angles

Lines are perpendicular

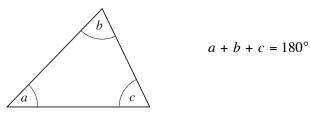
Lines are parallel

Angles

Angles about a point

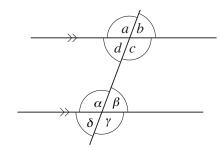


Angles in a triangle



Angles on a straight line

Angles in parallel and intersecting lines

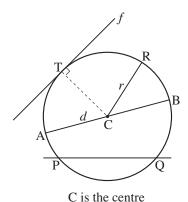


Angle a = angle c Angle b = angle d

Angle a = angle α Angle b = angle β

Angle c = angle γ Angle d = angle δ

Circles



of the circle

AB is the diameter, d, of the circle

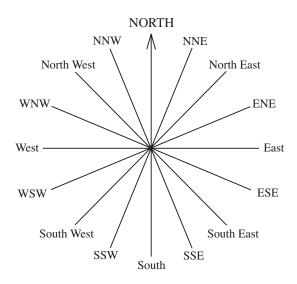
CR is a radius, r, of the circle (d = 2r)

RB is an arc of the circle

PQ is a chord

f is a tangent to the circle

Compass Points

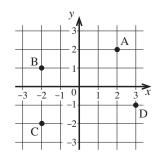


Coordinates

In the diagram opposite,

A is at the point with coordinates (2, 2), B is at (-2, 1), C is at (-2, -2)

and D is at (3, -1).

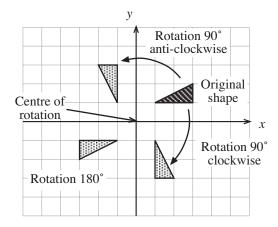


Transformations and Enlargements

Transformations are ways of moving a shape; for example, reflection, rotation and translation.

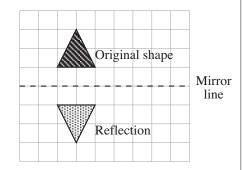
A *reflection* is obtained by drawing the image of a shape in a mirror line.

An example is shown opposite.



A *rotation* is obtained when a shape is rotated about a point, the *centre of rotation*, through a specified angle.

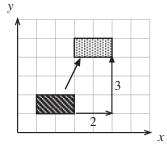
An example is shown opposite.



A *translation* moves a shape so that it is in a different position but retains the same size, area, angles and line lengths.

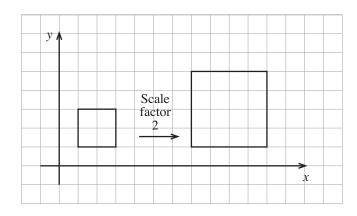
The diagram opposite shows the translation

$$\begin{cases} 2 \text{ in } x \text{-direction} \\ 3 \text{ in } y \text{-direction} \end{cases}$$



Enlargements are similar to transformations but they alter (enlarge or reduce) the size of the shape.

For example, the shape on the left below has been enlarged by a scale factor of 2 to give the image on the right.



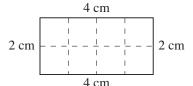
Perimeter, Area and Volume

The *perimeter* is the total distance around the outside of a 2D shape.

For example,

The *area* is the quantity inside a 2D shape.

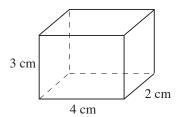
For example,



area = 8 square cm

The *volume* is the number of cubic units that will exactly fill a 3D shape.

For example,



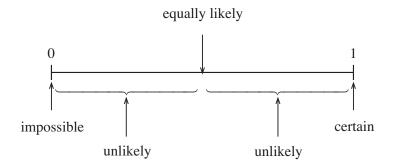
volume = $3 \times 2 \times 4 = 24$ cubic cm

Probability

The probability of any outcome, p, must satisfy $0 \le p \le 1$.

The sum of the probabilities of all outcomes must equal 1.

Probabilities can be illustrated on a *probability line*, as shown below:



For finding probabilities by experiment:

$$probability of event = \frac{frequency of event}{total frequency}$$

For equally likely outcomes:

$$probability of particular event = \frac{number of ways of obtaining event}{total no. of possible outcomes}$$

For example, when throwing a fair die,

$$p(6) = \frac{1}{6}$$
, $p(\text{prime number}) = p(2, 3 \text{ or } 5) = \frac{3}{6} = \frac{1}{2}$

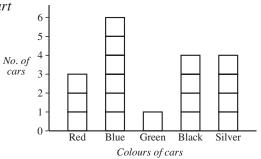
Illustrating Data

You can illustrate data with a:

Tally Chart

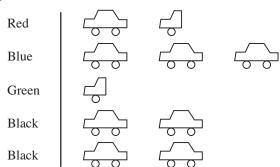
The tally chart represents 18 items of data

Bar Chart



The bar chart represents 18 items of data (3 Red, 6 Blue, 1 Green, 4 Black and 4 Silver cars)

Pictogram

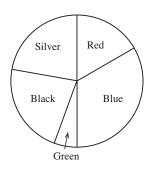


$$\equiv 2 \text{ cars}$$
 Key

The pictogram represents the 18 cars above.

A pictogram must always have a key.

Pie Chart



The pie chart represents the 18 cars.

As there are 18 items of data, the angle representing each item is $\frac{360^{\circ}}{18} = 20^{\circ}$.

So the angle for Red = $3 \times 20^{\circ} = 60^{\circ}$, Blue = 120° , etc.

Median of a set of numbers is the *middle value* when they are arranged in order.

For example,

$$2, 5, 3, 1, 4, 9, 8 \Rightarrow 1, 2, 3, 4, 5, 8, 9$$

Mean of a set of numbers is the *average value* calculated by adding all the numbers in the set and then dividing by the total number of numbers in the set.

For example,

ample,
2, 5, 3, 1, 4, 9, 8
$$\Rightarrow$$
 mean = $\frac{2+5+3+1+4+5+8}{7}$
= $\frac{28}{7}$

Mode of a set of numbers (or objects) is the number (or object) that has the highest frequency, that is, occurs most often.

For example, for the set of numbers

we have

	Frequency			_
1	I		1	
2	1	 	1	
3	11		2	
4	11	i	2	
5	I		1	
6			0	
7	111		3	← highest freque

So the mode is 7 as it occurs most frequently.

Range of a set of numbers is the difference between the highest and the lowest values in the data set.

For example, for the data set { 5, 7, 2, 5, 1, 2, 3, 5, 6 },

the range is 7 - 1 = 6.